(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022075779
(43)【公開日】2022-05-18
(54)【発明の名称】異方性導電フィルム
(51)【国際特許分類】
H01R 11/01 20060101AFI20220511BHJP
H01B 1/00 20060101ALI20220511BHJP
H01B 1/22 20060101ALI20220511BHJP
H01B 5/16 20060101ALI20220511BHJP
【FI】
H01R11/01 501C
H01B1/00 L
H01B1/22 B
H01B5/16
【審査請求】有
【請求項の数】15
【出願形態】OL
(21)【出願番号】P 2022035989
(22)【出願日】2022-03-09
(62)【分割の表示】P 2017160655の分割
【原出願日】2017-08-23
(31)【優先権主張番号】P 2016233715
(32)【優先日】2016-12-01
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000108410
【氏名又は名称】デクセリアルズ株式会社
(74)【代理人】
【識別番号】110000224
【氏名又は名称】特許業務法人田治米国際特許事務所
(72)【発明者】
【氏名】江島 康二
(72)【発明者】
【氏名】平山 堅一
(72)【発明者】
【氏名】塚尾 怜司
(57)【要約】
【課題】酸化皮膜が形成されている端子でも接続でき、かつ低圧条件での圧着を可能とすると共に端子における導電粒子の捕捉の確認を容易とする異方性導電フィルムを提供する。
【解決手段】絶縁性樹脂層2に、導電粒子として、20%圧縮弾性率が8000~28000N/mm
2の高硬度導電粒子1Aと、該高硬度導電粒子1Aよりも20%圧縮弾性率が低い低硬度導電粒子1Bが分散している異方性導電フィルムであって、導電粒子全体の個数密度が6000個/mm
2以上であり、低硬度導電粒子1Bの個数密度が導電粒子全体の10%以上である。
【選択図】
図1A
【特許請求の範囲】
【請求項1】
絶縁性樹脂層に、導電粒子として、20%圧縮弾性率が8000~28000N/mm2の高硬度導電粒子と、該高硬度導電粒子よりも20%圧縮弾性率が低い低硬度導電粒子が分散している異方性導電フィルムであって、導電粒子全体の個数密度が6000個/mm2以上であり、低硬度導電粒子の個数密度が導電粒子全体の10%以上である異方性導電フィルム。
【請求項2】
低硬度導電粒子の20%圧縮弾性率が、高硬度導電粒子の20%圧縮弾性率の10%以上70%以下である請求項1記載の異方性導電フィルム。
【請求項3】
低硬度導電粒子の個数密度が導電粒子全体の20%以上80%以下である請求項1又は2記載の異方性導電フィルム。
【請求項4】
導電粒子全体の平均粒子径が10μm未満で、導電粒子全体の個数密度が6000個/mm2以上42000個/mm2以下である請求項1~3のいずれかに記載の異方性導電フィルム。
【請求項5】
導電粒子全体の平均粒子径が10μm以上で、導電粒子全体の個数密度が20個/mm2以上2000個/mm2以下である請求項1~3のいずれかに記載の異方性導電フィルム。
【請求項6】
高硬度導電粒子と低硬度導電粒子を含む導電粒子が平面視で規則的に配置されており、フィルム厚方向の位置が揃っている請求項1~5のいずれかに記載の異方性導電フィルム。
【請求項7】
高硬度導電粒子と低硬度導電粒子を含む導電粒子同士が違いに非接触で存在する個数割合が95%以上である請求項6記載の異方性導電フィルム。
【請求項8】
高硬度導電粒子と低硬度導電粒子がランダムに混合している請求項1~5のいずれかに記載の異方性導電フィルム。
【請求項9】
高硬度導電粒子及び低硬度導電粒子の近傍の絶縁性樹脂層の表面が、隣接する導電粒子間の中央部における絶縁性樹脂層の接平面に対して傾斜又は起伏を有する請求項1~8のいずれかに記載の異方性導電フィルム。
【請求項10】
前記傾斜では、高硬度導電粒子及び低硬度導電粒子の周りの絶縁性樹脂層の表面が、前記接平面に対して欠けており、前記起伏では、高硬度導電粒子及び低硬度導電粒子の直上の絶縁性樹脂層の樹脂量が、前記高硬度導電粒子及び低硬度導電粒子の直上の絶縁性樹脂層の表面が該接平面にあるとしたときに比して少ない請求項9記載の異方性導電フィルム。
【請求項11】
請求項1~10のいずれかに記載の異方性導電フィルムで第1の電子部品と第2の電子部品が異方性導電接続されている接続構造体。
【請求項12】
第1の電子部品においてPET基材に端子が形成されている請求項11記載の接続構造体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、異方性導電フィルムに関する。
【背景技術】
【0002】
ICチップなどの電子部品の実装に、導電粒子を絶縁性樹脂層に分散させた異方性導電フィルムが広く使用されている。しかしながら、異方性導電フィルムで接続する電子部品の端子の表面に酸化皮膜が形成されていると、接続抵抗が高くなってしまう。これに対しては、粒子径の異なる導電粒子を使用して酸化皮膜を突き破ることにより低抵抗化を図ること(特許文献1)や、硬い導電粒子を使用することで導電粒子を配線に食い込ませ、接続面積を大きくして低抵抗化を図ること(特許文献2)等が提案されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2013-182823号公報
【特許文献2】特開2012-164454号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載のように粒子径の異なる導電粒子を使用すると、粒子径の大きい粒子よりも小さい粒子が端子に食い込むが、これにより十分に低抵抗化を図ることは難しい。また、特許文献2に記載のように硬い導電粒子を使用すると、異方性導電接続時に高圧で圧着することが必要となり、異方性導電接続により得た基板とICチップとの接続構造体に変形やクラックが生じる場合がある。
【0005】
変形やクラックの発生を防止するために導電粒子を減らす方法があるが、導電粒子を減らすと端子における導電粒子の捕捉数が減り、かえって高抵抗化したり、接続後の導通抵抗の上昇が引き起こされたりする。
【0006】
これに対し、本発明は、酸化皮膜が形成されている端子でも接続できるように高硬度の導電粒子を使用し、かつ低圧条件での圧着を可能とすると共に端子における導電粒子の捕捉の確認を容易とし、確実に低抵抗化を図れるようにすることを目的とする。
【課題を解決するための手段】
【0007】
本発明者は、硬度の異なる導電粒子を混合して使用すると、異方性導電接続時には高硬度導電粒子に接圧が集中し、高硬度導電粒子が酸化皮膜を突き破ること、低硬度導電粒子は、高硬度導電粒子が酸化皮膜に形成したクラックを利用して導通に寄与すること、したがって、高硬度導電粒子の粒子密度を下げても端子における導電には高硬度導電粒子と低硬度導電粒子の双方が寄与するので導通抵抗が下がること、また、高硬度導電粒子の粒子密度を下げることができるので、異方性導電接続時に高圧での圧着が不要となり、接続構造体に変形やクラックが発生する問題を解消できること、さらに、高硬度導電粒子と低硬度導電粒子を混合使用することにより、導電粒子の圧痕の観察が容易になることを見いだし、本発明を想到した。
【0008】
即ち本発明は、絶縁性樹脂層に、20%圧縮弾性率が8000~28000N/mm2の高硬度導電粒子と、該高硬度導電粒子よりも20%圧縮弾性率が低い低硬度導電粒子が分散している異方性導電フィルムであって、導電粒子全体の個数密度が6000個/mm2以上であり、低硬度導電粒子の個数密度が導電粒子全体の10%以上である異方性導電フィルムを提供する。
【発明の効果】
【0009】
本発明の異方性導電フィルムによれば、電子部品の端子の表面に酸化皮膜が形成されていても、高硬度導電粒子が酸化皮膜に食い込み、また、高硬度導電粒子が酸化皮膜に形成したクラックにより低硬度導電粒子も端子における導通に寄与するので、導通抵抗を低下させることができる。
【0010】
また、高硬度導電粒子に低硬度導電粒子が混合していることにより、導電粒子が高硬度導電粒子のみからなる場合に比して異方性導電接続時に必要な圧着力を低下させることができる。したがって、異方性導電接続した接続構造体に変形やクラックが発生することを防止できる。
【0011】
さらに、異方性導電接続した接続構造体では、高硬度導電粒子の圧痕も低硬度導電粒子の圧痕も観察することができ、特に、高硬度導電粒子の圧痕は鮮明に観察することができるので、端子における導電粒子の捕捉数を正確に評価することができる。よって、確実に低抵抗化を図ることができる。
【図面の簡単な説明】
【0012】
【
図1A】
図1Aは、本発明の一実施例の異方性導電フィルム10Aにおける導電粒子の配置を示す平面図である。
【
図1B】
図1Bは、実施例の異方性導電フィルム10Aの断面図である。
【
図2A】
図2Aは、本発明の一実施例の異方性導電フィルム10Bにおける導電粒子の配置を示す平面図である。
【
図2B】
図2Bは、実施例の異方性導電フィルム10Bの断面図である。
【
図3】
図3は、実施例の異方性導電フィルム10Cの断面図である。
【
図4】
図4は、実施例の異方性導電フィルム10Dの断面図である。
【
図5】
図5は、実施例の異方性導電フィルム10Eの断面図である。
【
図6】
図6は、実施例の異方性導電フィルム10Fの断面図である。
【
図7】
図7は、実施例の異方性導電フィルム10Gの断面図である。
【
図8】
図8は、実施例の異方性導電フィルム100Aの断面図である。
【
図9】
図9は、実施例の異方性導電フィルム100Bの断面図である。
【
図11】
図11は、実施例の異方性導電フィルム100Dの断面図である。
【
図12】
図12は、実施例の異方性導電フィルム100Eの断面図である。
【
図13】
図13は、実施例の異方性導電フィルム100Fの断面図である。
【
図14】
図14は、実施例の異方性導電フィルム100Gの断面図である。
【
図15】
図15は、比較のための異方性導電フィルム100Xの断面図である。
【発明を実施するための形態】
【0013】
以下、本発明の異方性導電フィルムを、図面を参照しつつ詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。
【0014】
<異方性導電フィルムの全体構成>
図1Aは、本発明の一実施例の異方性導電フィルム10Aについて、導電粒子1A、1Bの配置を説明する平面図である。また、
図1Bは、異方性導電フィルム10Aのx-x断面図である。
【0015】
この異方性導電フィルム10Aは、20%圧縮弾性率が8000~28000N/mm2の高硬度導電粒子1Aと、該高硬度導電粒子1Aよりも20%圧縮弾性率が低い低硬度導電粒子1Bの双方が絶縁性樹脂層2に分散している導電粒子分散層3から形成されている。高硬度導電粒子1Aと低硬度導電粒子1Bを合わせた導電粒子全体の個数密度は6000個/mm2以上であり、そのうち低硬度導電粒子1Bが導電粒子全体の10%以上を占めている。導電粒子全体として正方格子配列となっているが、各格子点に高硬度導電粒子1Aと低硬度導電粒子1Bのいずれが位置するかに規則性はない。
【0016】
<導電粒子>
導電粒子分散層3には、導電粒子として、高硬度導電粒子1Aと低硬度導電粒子1Bの双方が存在する。このうち、高硬度導電粒子1Aは、20%圧縮弾性率が8000~28000N/mm2である。
【0017】
ここで、20%圧縮弾性率は、微小圧縮試験機(例えば、フィッシャー社製、フィッシャースコープH-100)を用いて導電粒子に圧縮荷重を加えたときの導電粒子の圧縮変量を測定し、
20%圧縮弾性率(K)(N/mm2 )=(3/21/2)・F・S-3/2・R-1/2
により算出されるK値を使用することができる。
式中、
F:導電粒子が20%圧縮変形したときの荷重値(N)
S:導電粒子が20%圧縮変形したときの圧縮変位(mm)
R:導電粒子の半径(mm)
である。
【0018】
高硬度導電粒子の20%圧縮弾性率を8000N/mm2以上とすることにより、電子部品の端子表面に酸化皮膜が形成されていても高硬度導電粒子によってその酸化皮膜を突き破ることができ、また、28000N/mm2以下とすることにより、異方性導電接続時に必要な圧着力が過度に高まらず、従前の押圧治具を用いて異方性導電接続することが可能となる。
【0019】
高硬度導電粒子1Aの粒子径は、導通抵抗の上昇を抑制し、且つショートの発生を抑制するために、好ましくは1μm以上30μm以下、より好ましくは3μm以上10μm未満である。絶縁性樹脂層に分散させる前の導電粒子の粒子径は、一般的な粒度分布測定装置により測定することができ、また、平均粒子径も粒度分布測定装置を用いて求めることができる。画像型でもレーザー型であってもよい。画像型の測定装置としては、一例として湿式フロー式粒子径・形状分析装置FPIA-3000(マルバーン社)を挙げることができる。導電粒子径Dを測定するサンプル数(導電粒子個数)は1000個以上が好ましい。異方性導電フィルムにおける導電粒子の粒子径は、SEMなどの電子顕微鏡観察から求めることができる。この場合、導電粒子径を測定するサンプル数を200以上とすることが望ましい。
【0020】
なお、導電粒子として、その表面に絶縁性微粒子が付着しているものを使用する場合、本発明における導電粒子の粒子径は、表面の絶縁性微粒子を含めない粒子径を意味する。
【0021】
一方、低硬度導電粒子1Bは20%圧縮弾性率が高硬度導電粒子よりも低く、好ましくは高硬度導電粒子の20%圧縮弾性率の10%以上70%以下である。低硬度導電粒子1Bの20%圧縮弾性率が低すぎると導通に寄与し難い状態となり、反対に高すぎると高硬度導電粒子との硬度差が不十分となり、本発明の効果を得られなくなる。
【0022】
低硬度導電粒子1Bの粒子径は、好ましくは1μm以上30μm以下で、高硬度導電粒子の粒子径に対して80%以上であれば実用上問題ないが、同等以上とすることが好ましい。低硬度導電粒子の粒子径を高硬度導電粒子の粒子径に対して同等以上とすることにより、高硬度導電粒子が端子表面の酸化皮膜に形成したクラックを利用して低硬度導電粒子が導通に寄与しやすくなる。
【0023】
上述の硬さ及び粒子径を有する高硬度導電粒子1A及び低硬度導電粒子1Bは、公知の異方性導電フィルムに用いられている導電粒子の中から適宜選択することができる。例えばニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、ハンダなどの合金粒子、金属被覆樹脂粒子、表面に絶縁性微粒子が付着している金属被覆樹脂粒子などが挙げられる。金属被覆樹脂粒子における金属層の厚みは50nm~250nmが好ましい。また、導電粒子は、表面に突起が設けられたものであってもよい。金属被覆樹脂粒子の場合は、特開2016-89153号公報に挙げられているものを使用してもよい。
【0024】
<導電粒子の個数密度>
低硬度導電粒子1Bの個数密度は、導電粒子全体の10%以上とし、接続する端子の種類や接続条件で適宜調整できる。一例として、好ましくは20%以上80%以下であり、より好ましくは30%以上70%以下である。導電粒子全体に対する低硬度導電粒子の個数密度が低すぎても高すぎても、高硬度導電粒子と低硬度導電粒子とを混合することによる本発明の効果を得られにくい。
【0025】
また、導電粒子全体の個数密度は、特に限定はされないが、一例として、導電粒子1A、1B全体の平均粒子径が10μm未満の場合には、好ましくは6000個/mm2以上42000個/mm2以下である。平均粒子径が10μm以上になる場合は、この範囲に限定はされない。一例として、20個/mm2以上2000個/mm2以下である。
【0026】
導電粒子1A、1B全体の平均粒子径が10μm未満になる場合に、導電粒子全体の個数密度が過度に高くなると、次式で算出される導電粒子の面積占有率も過度に高くなる。
面積占有率
=[平面視における導電粒子の個数密度(個/mm2)]×[導電粒子1個の平面視面積の平均(mm2/個)]×100
【0027】
面積占有率は、異方性導電フィルムを電子部品に熱圧着するために押圧治具に必要とされる推力の指標となる。この面積占有率を好ましくは35%以下、より好ましくは0.3~30%の範囲とすることにより、異方性導電フィルムを電子部品に熱圧着するために押圧治具に必要とされる推力を低く抑えることが可能となる。
【0028】
なお、導電粒子の個数密度は、金属顕微鏡などによる観測画像を用いて測定することができる。また、画像解析ソフト(例えば、WinROOF、三谷商事株式会社等)により観察画像を計測して求めてもよい。導電粒子の個数密度を求める場合の測定領域は、1辺が100μm以上の矩形領域を任意に複数箇所(好ましくは5箇所以上、より好ましくは10箇所以上)設定し、測定領域の合計面積を2mm2以上とすることが好ましい。個々の領域の大きさや数は、個数密度の状態によって適宜調整すればよい。また、導電粒子1個の平面視面積の平均は、フィルム面の金属顕微鏡やSEMなどの電子顕微鏡などによる観測画像の計測により求めることができる。画像解析ソフトを用いてもよい。観察方法や計測手法は、上述の方法に限定されるものではない。
【0029】
なお、導電粒子1A、1B全体としての粒子間距離Lcは、上述した導電粒子1A、1Bの面積占有率が達成されるようにした上で、所定の個数密度及び粒子配置に応じて適宜設定する。
【0030】
<導電粒子の配置>
本発明の異方性導電フィルムにおいて、高硬度導電粒子1A及び低硬度導電粒子1Bを含む導電粒子全体の、フィルムの平面視における配置は、規則的配置でもランダムでもよい。規則的配置の態様としては、
図1Aに示した正方格子の他、6方格子、斜方格子、長方格子等の格子配列を挙げることができる。また、導電粒子全体の粒子配置として、導電粒子1A又は1Bが所定間隔で直線状に並んだ粒子列を所定の間隔で並列させてもよい。本発明において規則的な配置は、フィルムの長手方向で繰り返されるものであれば特に制限はない。
【0031】
一方、高硬度導電粒子1A及び低硬度導電粒子1Bのそれぞれが規則的に配置されていてもよい。例えば、
図2A及び
図2Bに示した異方性導電フィルム10Bのように、低硬度導電粒子1Bの個数密度を導電粒子全体の50%とし、高硬度導電粒子1A及び低硬度導電粒子1Bのそれぞれを正方格子配列とすることができる。
図2Aでは、高硬度導電粒子1A及び低硬度導電粒子1Bが交互に配置されているが、本発明はこのような厳密な配置も、そうではない配置も包含するものである。
【0032】
導電粒子全体としての粒子配列に格子軸又は配列軸がある場合に、その格子軸又は配列軸は異方性導電フィルム10Aの長手方向に対して平行でもよく、異方性導電フィルムの長手方向と交叉してもよく、接続する端子幅、端子ピッチなどに応じて定めることができる。例えば、ファインピッチ用の異方性導電フィルムとする場合、
図1Aに示したように導電粒子1A、1Bの少なくとも一つの格子軸Aを異方性導電フィルム10Aの長手方向に対して斜行させ、異方性導電フィルム10Aで接続する端子20の長手方向と格子軸Aとのなす角度θを16°~74°にすることが好ましい。
【0033】
また、フィルムの平面視にて導電粒子1A、1Bは互いに接触することなく存在し、フィルム厚方向にも導電粒子1A、1Bが互いに重なることなく存在していることが好ましい。そのため、導電粒子全体に対し、導電粒子1A、1B同士が互いに非接触で存在する個数割合は95%以上、好ましくは98%以上、より好ましくは99.5%以上である。これは、規則的配置でもランダム配置でも同様である。後述するように、転写型を使用して導電粒子1A、1Bを規則的に配置させると、導電粒子1A、1B同士が互いに非接触で存在する割合を容易に制御することができるので好ましい。ランダム配置の場合は、絶縁性樹脂に導電粒子1A、1Bを混練して異方性導電フィルムを作製することが容易なため、性能やコストとの兼ね合いで、転写型を利用する製造方法と、混練を利用する製造方法のどちらを選択してもよい。
【0034】
各導電粒子1A、1Bは、互いに接触することなく存在する場合に、そのフィルム厚方向の位置が揃っていることが好ましい。例えば、高硬度導電粒子1Aと低硬度導電粒子1Bの粒子径が等しい場合、
図1Bに示したように、導電粒子1A、1Bのフィルム厚方向の埋込量Lbを揃えることができる。即ち、絶縁性樹脂層2の一方の界面からの距離をそろえることができるので、端子における導電粒子の捕捉性が安定し易い。
【0035】
また、高硬度導電粒子1Aと低硬度導電粒子1Bの粒子径が異なる場合には、導電粒子1A、1Bの絶縁性樹脂層2への埋め込みにより該絶縁性樹脂層の表面から導電粒子1A、1Bまでの距離が同じになっていると、上記と同様の理由から端子における導電粒子の捕捉性が安定し易い。一方、
図3に示したように、導電粒子1A、1Bを絶縁性樹脂層2から露出させる場合には、高硬度導電粒子1A及び低硬度導電粒子1Bの各導電粒子が絶縁性樹脂層2から露出している頂部のフィルム厚方向の位置を揃えることもできる。なお、絶縁性樹脂層2の層厚Laと導電粒子1A、1Bの平均粒子径Dとの比(La/D)の関係については後述する。
【0036】
高硬度導電粒子1Aと低硬度導電粒子1Bの粒子径が等しい場合も異なる場合も、導電粒子1A、1Bが絶縁性樹脂層2から露出していと、接続時にかかる圧力が導電粒子1A、1Bに伝わり易くなる。金属被覆樹脂粒子の場合を例に詳細に述べると、後述する凹み2b、2cの作用と同様に、導電粒子1A、1Bが絶縁性樹脂層2から露出していると、異方性導電接続時に押圧治具による金属被覆樹脂粒子の押し込みによって生じる、該金属被覆樹脂粒子の変形に対する絶縁性樹脂層2の抵抗が低減されるため、接続後の圧痕の状態が均一になり易い。これにより、接続後の状態が確認し易くなる。
【0037】
ここで、埋込量Lbは、導電粒子1A、1Bが埋め込まれている絶縁性樹脂層2の表面(絶縁性樹脂層2の表裏の面のうち、導電粒子1A、1Bが露出している側の表面、又は導電粒子1A、1Bが絶縁性樹脂層2に完全に埋め込まれている場合には、導電粒子1A、1Bとの距離が近い表面)であって、隣接する導電粒子間の中央部における接平面2pと、導電粒子1A、1Bの最深部との距離をいう。導電粒子1A、1Bの平均粒子径Dに対する埋込量Lbの割合を埋込率(Lb/D)とした場合に、埋込率は30%以上105%以下が好ましい。
【0038】
埋込率(Lb/D)を30%以上60%未満とすると導電粒子を保持する比較的高粘度の樹脂から粒子が露出している比率が高くなることから、より低圧実装が容易になる。60%以上とすることにより、導電粒子1A、1Bを絶縁性樹脂層2によって所定の粒子分散状態あるいは所定の配列に維持し易くなる。また、105%以下とすることにより、異方性導電接続時に端子間の導電粒子を無用に流動させるように作用する絶縁性樹脂層の樹脂量を低減させることができる。尚、導電粒子1A、1Bは絶縁性樹脂層2を貫通していてもよく、その場合の埋込率(Lb/D)は100%となる。
【0039】
なお、本発明において、埋込率(Lb/D)の数値は、異方性導電フィルムに含まれる全導電粒子数の80%以上、好ましくは90%以上、より好ましくは96%以上が、当該埋込率(Lb/D)の数値になっていることをいう。したがって、埋込率が30%以上105%以下とは、異方性導電フィルムに含まれる全導電粒子数の80%以上、好ましくは90%以上、より好ましくは96%以上の埋込率が30%以上105%以下であることをいう。このように全導電粒子の埋込率(Lb/D)が揃っていることにより、押圧の加重が導電粒子に均一にかかるので、端子における導電粒子の捕捉状態が良好になり、導通の安定性が期待できる。より精度を上げるため、200個以上の導電粒子を計測して求めてもよい。
【0040】
また、埋込率(Lb/D)の計測は、面視野画像において焦点調整することにより、ある程度の個数について一括して求めることができる。もしくは埋込率(Lb/D)の計測にレーザー式判別変位センサ(キーエンス製など)を用いてもよい。
【0041】
<絶縁性樹脂層>
(絶縁性樹脂層の粘度)
本発明の異方性導電フィルムにおいて、絶縁性樹脂層2の最低溶融粘度は、特に制限はなく、異方性導電フィルムの使用対象や、異方性導電フィルムの製造方法等に応じて適宜定めることができる。例えば、後述の凹み2b(
図4)、2c(
図5)を形成できる限り、異方性導電フィルムの製造方法によっては1000Pa・s程度とすることもできる。一方、異方性導電フィルムの製造方法として、導電粒子を絶縁性樹脂層の表面に所定の配置で保持させ、その導電粒子を絶縁性樹脂層に押し込む方法を行うとき、絶縁性樹脂層がフィルム成形を可能とする点から絶縁性樹脂の最低溶融粘度を1100Pa・s以上とすることが好ましい。
【0042】
また、後述の異方性導電フィルムの製造方法で説明するように、
図4に示すように絶縁性樹脂層2に押し込んだ導電粒子1A、1Bの露出部分の周りに凹み2bを形成したり、
図5に示すように絶縁性樹脂層2に押し込んだ導電粒子1A、1Bの直上に凹み2cを形成したりする点から、好ましくは1500Pa・s以上、より好ましくは2000Pa・s以上、さらに好ましくは3000~15000Pa・s、さらにより好ましくは3000~10000Pa・sである。この最低溶融粘度は、一例として回転式レオメータ(TA instrument社製)を用い、測定圧力5gで一定に保持し、直径8mmの測定プレートを使用し求めることができ、より具体的には、温度範囲30~200℃において、昇温速度10℃/分、測定周波数10Hz、前記測定プレートに対する荷重変動5gとすることにより求めることができる。
【0043】
絶縁性樹脂層2の最低溶融粘度を1500Pa・s以上の高粘度とすることにより、異方性導電フィルムの物品への圧着に導電粒子の不用な移動を抑制でき、特に、異方性導電接続時に端子間で挟持されるべき導電粒子が樹脂流動により流されてしまうことを防止できる。
【0044】
また、絶縁性樹脂層2に導電粒子1A、1Bを押し込むことにより異方性導電フィルム10Aの導電粒子分散層3を形成する場合において、導電粒子1A、1Bを押し込むときの絶縁性樹脂層2は、導電粒子1A、1Bが絶縁性樹脂層2から露出するように導電粒子1A、1Bを絶縁性樹脂層2に押し込んだときに、絶縁性樹脂層2が塑性変形して導電粒子1A、1Bの周囲の絶縁性樹脂層2に凹み2b(
図4)が形成されるような高粘度な粘性体とするか、あるいは、導電粒子1A、1Bが絶縁性樹脂層2から露出することなく絶縁性樹脂層2に埋まるように導電粒子1A、1Bを押し込んだときに、導電粒子1A、1Bの直上の絶縁性樹脂層2の表面に凹み2c(
図5)が形成されるような高粘度な粘性体とする。そのため、絶縁性樹脂層2の60℃における粘度は、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、さらに好ましくは10000Pa・s以下である。この測定は最低溶融粘度と同様の測定方法で行い、温度が60℃の値を抽出して求めることができる。
【0045】
絶縁性樹脂層2に導電粒子1A、1Bを押し込むときの該絶縁性樹脂層2の具体的な粘度は、形成する凹み2b、2cの形状や深さなどに応じて、下限は好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上であり、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、さらに好ましくは10000Pa・s以下である。また、このような粘度を好ましくは40~80℃、より好ましくは50~60℃で得られるようにする。
【0046】
上述したように、絶縁性樹脂層2から露出している導電粒子1A、1Bの周囲に凹み2b(
図4)が形成されていることにより、異方性導電フィルムの物品への圧着時に生じる導電粒子1A、1Bの偏平化に対して絶縁性樹脂から受ける抵抗が、凹み2bが無い場合に比して低減する。このため、異方性導電接続時に端子で導電粒子が挟持され易くなることで導通性能が向上し、また捕捉性が向上する。
【0047】
また、絶縁性樹脂層2から露出することなく埋まっている導電粒子1A、1Bの直上の絶縁性樹脂層2の表面に凹み2c(
図5)が形成されていることにより、凹み2cが無い場合に比して異方性導電フィルムの物品への圧着時の圧力が導電粒子1に集中し易くなる。このため、異方性導電接続時に端子で導電粒子が挟持され易くなることで捕捉性が向上し、導通性能が向上する。
【0048】
<凹みに代わる“傾斜”又は“起伏”>
図4、5に示すような異方性導電フィルムの 「凹み」2b、2cは、「傾斜」または「起伏」という観点から説明することもできる。以下に、図面(
図8~15)を参照しながら説明する。
【0049】
異方性導電フィルム100Aは導電粒子分散層3から構成されている(
図8)。導電粒子分散層3では、絶縁性樹脂層2の片面に高硬度導電粒子1A、低硬度導電粒子1Bが露出した状態で規則的に分散している。フィルムの平面視にて導電粒子1A、1Bは互いに接触しておらず、フィルム厚方向にも導電粒子1A、1Bが互いに重なることなく規則的に分散し、導電粒子1A、1Bのフィルム厚方向の位置が揃った単層の導電粒子層を構成している。
【0050】
個々の導電粒子1A、1Bの周囲の絶縁性樹脂層2の表面2aには、隣接する導電粒子間の中央部における絶縁性樹脂層2の接平面2pに対して傾斜2bが形成されている。なお後述するように、本発明の異方性導電フィルムでは、絶縁性樹脂層2に埋め込まれた導電粒子1A、1Bの直上の絶縁性樹脂層の表面に起伏2cが形成されていてもよい(
図11、
図13)。
【0051】
本発明において、「傾斜」とは、導電粒子1A、1Bの近傍で絶縁性樹脂層の表面の平坦性が損なわれ、前記接平面2pに対して樹脂層の一部が欠けて樹脂量が低減している状態を意味する。換言すれば、傾斜では、導電粒子の周りの絶縁性樹脂層の表面が接平面に対して欠けていることになる。一方、「起伏」とは、導電粒子の直上の絶縁性樹脂層の表面にうねりがあり、うねりのように高低差がある部分が存在することで樹脂が低減している状態を意味する。換言すれば、導電粒子直上の絶縁性樹脂層の樹脂量が、導電粒子直上の絶縁性樹脂層の表面が接平面にあるとしたときに比して少なくなる。これらは、導電粒子の直上に相当する部位と導電粒子間の平坦な表面部分(
図8、
図11、
図13の2f)とを対比して認識することができる。なお、起伏の開始点が傾斜として存在する場合もある。
【0052】
上述したように、絶縁性樹脂層2から露出している導電粒子1A、1Bの周囲に傾斜2b(
図8)が形成されていることにより、異方性導電接続時に導電粒子1A、1Bが端子間で挟持される際に生じる導電粒子1A、1Bの偏平化に対して絶縁性樹脂層から受ける抵抗が、傾斜2bが無い場合に比して低減するため、端子における導電粒子の挟持がされ易くなることで導通性能が向上し、また捕捉性が向上する。この傾斜は、導電粒子の外形に沿っていることが好ましい。接続における効果がより発現しやすくなる以外に、導電粒子を認識し易くなることで、異方性導電フィルムの製造における検査などが行い易くなるからである。また、この傾斜および起伏は絶縁性樹脂層にヒートプレスするなどにより、その一部が消失してしまう場合があるが、本発明はこれを包含する。この場合、導電粒子は絶縁性樹脂層の表面に1点で露出する場合がある。なお、異方性導電フィルムは、接続する電子部品が多様であり、これらに合わせてチューニングする以上、種々の要件を満たせるように設計の自由度が高いことが望まれるので、傾斜もしくは起伏を低減させても部分的に消失させても用いることができる。
【0053】
また、絶縁性樹脂層2から露出することなく埋まっている導電粒子1A、1Bの直上の絶縁性樹脂層2の表面に起伏2c(
図11、
図13)が形成されていることにより、傾斜の場合と同様に、異方性導電接続時に端子からの押圧力が導電粒子にかかりやすくなる。また、起伏があることにより樹脂が平坦に堆積している場合よりも導電粒子の直上の樹脂量が低減しているため、接続時の導電粒子直上の樹脂の排除が生じやすくなり、端子と導電粒子とが接触し易くなることから、端子における導電粒子の捕捉性が向上し、導通信頼性が向上する。
【0054】
(縁性樹脂層の厚さ方向における導電粒子の位置)
「傾斜」もしくは「起伏」という観点を考慮した場合の絶縁性樹脂層2の厚さ方向における導電粒子1A、1Bの位置は、前述と同様に、導電粒子1A、1Bが絶縁性樹脂層2から露出していてもよく、露出することなく、絶縁性樹脂層2内に埋め込まれていても良いが、隣接する導電粒子間の中央部における接平面2pからの導電粒子の最深部の距離(以下、埋込量という)Lbと、導電粒子径Dとの比(Lb/D)(以下、埋込率という)が30%以上105%以下であることが好ましい。
【0055】
埋込率(Lb/D)を30%以上とすることにより、導電粒子1A、1Bを絶縁性樹脂層2によって所定の粒子分散状態あるいは所定の配列に維持し、また、105%以下とすることにより、異方性導電接続時に端子間の導電粒子を無用に流動させるように作用する絶縁性樹脂層の樹脂量を低減させることができる。
【0056】
なお、埋込率(Lb/D)の数値は、異方性導電フィルムに含まれる全導電粒子数の80%以上、好ましくは90%以上、より好ましくは96%以上が、当該埋込率(Lb/D)の数値になっていることをいう。したがって、埋込率30%以上105%以下とは、異方性導電フィルムに含まれる全導電粒子数の80%以上、好ましくは90%以上、より好ましくは96%以上の埋込率が30%以上105%以下であることをいう。このように全導電粒子の埋込率(Lb/D)が揃っていることにより、押圧の加重が導電粒子に均一にかかるので、端子における導電粒子の捕捉状態が良好になり、導通の安定性が向上する。
【0057】
埋込率(Lb/D)は、異方性導電フィルムから面積30mm2以上の領域を任意に10箇所以上抜き取り、そのフィルム断面の一部をSEM画像で観察し、合計50個以上の導電粒子を計測することにより求めることができる。より精度を上げるため、200個以上の導電粒子を計測して求めてもよい。
【0058】
また、埋込率(Lb/D)の計測は、面視野画像において焦点調整することにより、ある程度の個数について一括して求めることができる。もしくは埋込率(Lb/D)の計測にレーザー式判別変位センサ(キーエンス製など)を用いてもよい。
【0059】
(埋込率30%以上60%未満の態様)
埋込率(Lb/D)30%以上60%未満の導電粒子1A、1Bのより具体的な埋込態様としては、まず、
図8に示した異方性導電フィルム100Aのように、導電粒子1A、1Bが絶縁性樹脂層2から露出するように埋込率30%以上60%未満で埋め込まれた態様をあげることができる。この異方性導電フィルム100Aは、絶縁性樹脂層2の表面のうち該絶縁性樹脂層2から露出している導電粒子1A、1Bと接している部分及びその近傍が、隣接する導電粒子間の中央部の絶縁性樹脂層の表面2aにおける接平面2pに対して導電粒子の外形に概ね沿った稜線となる傾斜2bを有している。
【0060】
このような傾斜2bもしくは後述する起伏2cは、異方性導電フィルム100Aを、絶縁性樹脂層2に導電粒子1A、1Bを押し込むことにより製造する場合に、導電粒子1A、1Bの押し込みを、40~80℃で3000~20000Pa・s、より好ましくは4500~15000Pa・sで行うことにより形成することができる。
【0061】
(埋込率60%以上100%未満の態様)
埋込率(Lb/D)60%以上100%未満の導電粒子1A、1Bのより具体的な埋込態様としては、まず、
図8に示した異方性導電フィルム100Aのように、導電粒子1A、1Bが絶縁性樹脂層2から露出するように埋込率60%以上100%未満で埋め込まれた態様をあげることができる。この異方性導電フィルム100Aは、絶縁性樹脂層2の表面のうち該絶縁性樹脂層2から露出している導電粒子1A、1Bと接している部分及びその近傍が、隣接する導電粒子間の中央部の絶縁性樹脂層の表面2aにおける接平面2pに対して導電粒子の外形に概ね沿った稜線となる傾斜2bを有している。
【0062】
このような傾斜2bもしくは後述する起伏2cは、異方性導電フィルム100Aを、絶縁性樹脂層2に導電粒子1A、1Bを押し込むことにより製造する場合に、導電粒子1A、1Bの押し込み時の粘度を、下限は、好ましくは3000Pa・s以上、より好ましくは4000Pa・s以上、さらに好ましくは4500Pa・s以上とし、上限は、好ましくは20000Pa・s以下、より好ましくは15000Pa・s以下、更に好ましくは10000Pa・s以下とする。また、このような粘度を好ましくは40~80℃、より好ましくは50~60℃で得られるようにする。なお、絶縁性樹脂層をヒートプレスすることなどにより傾斜2bや起伏2cの一部が消失してもよく、傾斜2bが起伏2cに変化してもよく、また、起伏2cを有する導電粒子が、その頂部の1点で絶縁性樹脂層2に露出してもよい。
【0063】
(埋込率100%の態様)
次に、本発明の異方性導電フィルムのうち、埋込率(Lb/D)100%の態様としては、
図9に示す異方性導電フィルム100Bのように、導電粒子1A、1Bの周りに
図8に示した異方性導電フィルム100Aと同様の導電粒子の外形に概ね沿った稜線となる傾斜2bを有し、絶縁性樹脂層2から露出している導電粒子1A、1Bの露出径Lcが導電粒子径Dよりも小さいもの、
図10Aに示す異方性導電フィルム100Cのように、導電粒子1A、1Bの露出部分の周りの傾斜2bが導電粒子1A、1Bの近傍で急激に現れ、導電粒子1A、1Bの露出径Lcと導電粒子径Dとが略等しいもの、
図11に示す異方性導電フィルム100Dのように、絶縁性樹脂層2の表面に浅い起伏2cがあり、導電粒子1A、1Bがその頂部1aの1点で絶縁性樹脂層2から露出しているものをあげることができる。
【0064】
なお、導電粒子の露出部分の周りの絶縁性樹脂層2の傾斜2bや、導電粒子の直上の絶縁性樹脂層の起伏2cに隣接して微小な突出部分2qが形成されていてもよい。この一例を
図10Bに示す。
【0065】
これらの異方性導電フィルム100B、100C、100Dは埋込率100%であるため、導電粒子1A、1Bの頂部1aと絶縁性樹脂層2の表面2aとが面一に揃っている。導電粒子1A、1Bの頂部1aと絶縁性樹脂層2の表面2aとが面一に揃っていると、
図8に示したように導電粒子1A、1Bが絶縁性樹脂層2から突出している場合に比して、異方性導電接続時に個々の導電粒子の周辺にてフィルム厚み方向の樹脂量が不均一になりにくく、樹脂流動による導電粒子の移動を低減できるという効果がある。なお、埋込率が厳密に100%でなくても、絶縁性樹脂層2に埋め込まれた導電粒子1A、1Bの頂部と絶縁性樹脂層2の表面とが面一となる程度に揃っているとこの効果を得ることができる。言い換えると、埋込率(Lb/D)が概略80~105%、特に、90~100%の場合には、絶縁性樹脂層2に埋め込まれた導電粒子1A、1Bの頂部と絶縁性樹脂層2の表面とは面一であるといえ、樹脂流動による導電粒子の移動を低減させることができる。
【0066】
これらの異方性導電フィルム100B、100C、100Dの中でも、100Dは導電粒子1A、1Bの周りの樹脂量が不均一になりにくいので樹脂流動による導電粒子の移動を解消でき、また頂部1aの1点であっても絶縁性樹脂層2から導電粒子1A、1Bが露出しているので、端子における導電粒子1A、1Bの捕捉性もよく、導電粒子のわずかな移動も起こりにくいという効果が期待できる。したがって、この態様は、特にファインピッチやバンプ間スペースが狭い場合に有効である。
【0067】
なお、傾斜2b、起伏2cの形状や深さが異なる異方性導電フィルム100B(
図9)、100C(
図10A)、100D(
図11)は、後述するように、導電粒子1A、1Bの押し込み時の絶縁性樹脂層2の粘度等を変えることで製造することができる。
【0068】
(埋込率100%超の態様)
本発明の異方性導電フィルムのうち、埋込率100%を超える場合、
図12に示す異方性導電フィルム100Eのように導電粒子1A、1Bが露出し、その露出部分の周りの絶縁性樹脂層2に接平面2pに対する傾斜2bもしくは導電粒子1A、1Bの直上の絶縁性樹脂層2の表面に接平面2pに対する起伏2c(
図13)があるものをあげることができる。
【0069】
なお、導電粒子1A、1Bの露出部分の周りの絶縁性樹脂層2に傾斜2bを有する異方性導電フィルム100E(
図12)と導電粒子1A、1Bの直上の絶縁性樹脂層2に起伏2cを有する異方性導電フィルム100F(
図13)は、それらを製造する際の導電粒子1A、1Bの押し込み時の絶縁性樹脂層2の粘度等を変えることで製造することができる。
【0070】
なお、
図12に示す異方性導電フィルム100Eを異方性導電接続に使用すると、導電粒子1A、1Bが端子から直接押圧されるので、端子における導電粒子の捕捉性が向上する。また、
図13に示す異方性導電フィルム100Fを異方性導電接続に使用すると、導電粒子1A、1Bが端子を直接押圧せず、絶縁性樹脂層2を介して押圧することになるが、押圧方向に存在する樹脂量が
図15の状態(即ち、導電粒子1A、1Bが埋込率100%を超えて埋め込まれ、導電粒子1A、1Bが絶縁性樹脂層2から露出しておらず、かつ絶縁性樹脂層2の表面が平坦である状態)に比べて少ないため、導電粒子に押圧力がかかりやすくなり、且つ異方性導電接続時に端子間の導電粒子1A、1Bが樹脂流動により無用に移動することが妨げられる。
【0071】
上述した導電粒子の露出部分の周りの絶縁性樹脂層2の傾斜2b(
図8、
図9、
図10A、
図12)や、導電粒子の直上の絶縁性樹脂層の起伏2c(
図11、
図13)の効果を得易くする点から導電粒子1A、1Bの露出部分の周りの傾斜2bの最大深さLeと導電粒子1A、1Bの粒子径Dとの比(Le/D)は、好ましくは50%未満、より好ましくは30%未満、さらに好ましくは20~25%であり、導電粒子1A、1Bの露出部分の周りの傾斜2bの最大径Ldと導電粒子1A、1Bの粒子径Dとの比(Ld/D)は、好ましくは100%以上、より好ましくは100~150%であり、導電粒子1A、1Bの直上の樹脂における起伏2cの最大深さLfと導電粒子1A、1Bの粒子径Dとの比(Lf/D)は、0より大きく、好ましくは10%未満、より好ましくは5%以下である。
【0072】
なお、導電粒子1A、1Bの露出部分の径Lcは、導電粒子1A、1Bの粒子径D以下とすることができ、好ましくは粒子径Dの10~90%である。
図11に示したように導電粒子1A、1Bの頂部の1点で露出するようにしてもよく、導電粒子1A、1Bが絶縁性樹脂層2内に完全に埋まり、径Lcがゼロとなるようにしてもよい。
【0073】
なお、
図14に示すように、埋込率(Lb/D)が60%未満の異方性導電フィルム100Gでは、絶縁性樹脂層2上を導電粒子1A、1Bが転がりやすくなるため、異方性導電接続時の捕捉率を向上させる点からは、埋込率(Lb/D)を60%以上とすることが好ましい。
【0074】
また、埋込率が100%を超える態様(Lb/D)において、
図15に示す比較例の異方性導電フィルム100Xのように絶縁性樹脂層2の表面が平坦な場合は導電粒子1A、1Bと端子との間に介在する樹脂量が過度に多くなる。また、導電粒子1A、1Bが直接端子に接触して端子を押圧することなく、絶縁性樹脂層を介して端子を押圧するので、これによっても導電粒子が樹脂流動によって流され易い。
【0075】
このような本発明において、絶縁性樹脂層2の表面の傾斜2b、起伏2cの存在は、異方性導電フィルムの断面を走査型電子顕微鏡で観察することにより確認することができ、面視野観察においても確認できる。光学顕微鏡、金属顕微鏡でも傾斜2b、起伏2cの観察は可能である。また、傾斜2b、起伏2cの大きさは画像観察時の焦点調整などで確認することもできる。上述のようにヒートプレスにより傾斜もしくは起伏を減少させた後であっても、同様である。痕跡が残る場合があるからである。
【0076】
(絶縁性樹脂層の組成)
絶縁性樹脂層2は、硬化性樹脂組成物から形成することが好ましく、例えば、熱重合性化合物と熱重合開始剤とを含有する熱重合性組成物から形成することができる。熱重合性組成物には必要に応じて光重合開始剤を含有させてもよい。
【0077】
熱重合開始剤と光重合開始剤を併用する場合に、熱重合性化合物として光重合性化合物としても機能するものを使用してもよく、熱重合性化合物とは別に光重合性化合物を含有させてもよい。好ましくは、熱重合性化合物とは別に光重合性化合物を含有させる。例えば、熱重合開始剤として熱カチオン系硬化開始剤、熱重合性化合物としてエポキシ樹脂を使用し、光重合開始剤として光ラジカル重合開始剤、光重合性化合物としてアクリレート化合物を使用する。
【0078】
光重合開始剤として、波長の異なる光に反応する複数種類を含有させてもよい。これにより、異方性導電フィルムの製造時における、絶縁性樹脂層を構成する樹脂の光硬化と、異方性導電接続時に電子部品同士を接着するための樹脂の光硬化とで使用する波長を使い分けることができる。
【0079】
異方性導電フィルムの製造時の光硬化では、絶縁性樹脂層に含まれる光重合性化合物の全部又は一部を光硬化させることができる。この光硬化により、絶縁性樹脂層2における導電粒子1A、1Bの配置が保持乃至固定化され、ショートの抑制と捕捉の向上が見込まれる。また、この光硬化により、異方性導電フィルムの製造工程における絶縁性樹脂層の粘度を適宜調整してもよい。特にこの光硬化は、絶縁性樹脂層2の層厚Laと導電粒子1A、1Bの平均粒子径Dとの比(La/D)が0.6未満である場合に行うことが好ましい。導電粒子径に対して絶縁性樹脂層2の層厚が薄い場合にも絶縁性樹脂層2で導電粒子の配置の保持乃至固定化をより確実に行うと共に、絶縁性樹脂層2の粘度調整を行い、異方性導電フィルムを用いた電子部品同士の接続において歩留まりの低下を抑制するためである。
【0080】
絶縁性樹脂層における光重合性化合物の配合量は30質量%以下が好ましく、10質量%以下がより好ましく、2質量%未満がより好ましい。光重合性化合物が多すぎると接続時の押し込みにかかる推力が増加するためである。
【0081】
熱重合性組成物の例としては、(メタ)アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合性アクリレート系組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合性エポキシ系組成物等が挙げられる。熱カチオン重合開始剤を含む熱カチオン重合性エポキシ系組成物に代えて、熱アニオン重合開始剤を含む熱アニオン重合性エポキシ系組成物を使用してもよい。また、特に支障を来さなければ、複数種の重合性化合物を併用してもよい。併用例としては、カチオン重合性化合物とラジカル重合性化合物の併用などが挙げられる。
【0082】
ここで、(メタ)アクリレート化合物としては、従来公知の熱重合型(メタ)アクリレートモノマーを使用することができる。例えば、単官能(メタ)アクリレート系モノマー、二官能以上の多官能(メタ)アクリレート系モノマーを使用することができる。
【0083】
熱ラジカル重合開始剤としては、例えば、有機過酸化物、アゾ系化合物等を挙げることができる。特に、気泡の原因となる窒素を発生しない有機過酸化物を好ましく使用することができる。
【0084】
熱ラジカル重合開始剤の使用量は、少なすぎると硬化不良となり、多すぎると製品ライフの低下となるので、(メタ)アクリレート化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
【0085】
エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などを挙げることができ、これらの2種以上を併用することができる。また、エポキシ化合物に加えてオキセタン化合物を併用してもよい。
【0086】
熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により酸を発生するヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができ、特に、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。
【0087】
熱カチオン重合開始剤の使用量は、少なすぎても硬化不良となる傾向があり、多すぎても製品ライフが低下する傾向があるので、エポキシ化合物100質量部に対し、好ましくは2~60質量部、より好ましくは5~40質量部である。
【0088】
熱重合性組成物は、膜形成樹脂やシランカップリング剤を含有することが好ましい。膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。重量平均分子量は10000以上であることが好ましい。また、シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。
【0089】
熱重合性組成物には、溶融粘度調整のために、上述の導電粒子1A、1Bとは別に絶縁性フィラーを含有させてもよい。これはシリカ粉やアルミナ粉などが挙げられる。絶縁性フィラー粒径20~1000nmの微小なフィラーが好ましく、また、配合量はエポキシ化合物等の熱重合性化合物(光重合性化合物)100質量部に対して5~50質量部とすることが好ましい。
【0090】
本発明の異方性導電フィルムには、上述の絶縁性のフィラーとは別に充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを含有させてもよい。
【0091】
(絶縁性樹脂層の層厚)
本発明の異方性導電フィルムでは、絶縁性樹脂層2の層厚Laと導電粒子1A、1Bの粒子径Dとの比(La/D)が後述の理由から下限を0.3以上とすることができ、上限を10以下することができる。従って、その比は0.3~10が好ましく、0.6~8がより好ましく、0.6~6が更に好ましい。ここで、導電粒子1A、1Bの粒子径Dは、その平均粒子径を意味する。絶縁性樹脂層2の層厚Laが大き過ぎると異方性導電接続時に導電粒子1A、1Bが樹脂流動により位置ズレしやすくなり、端子における導電粒子1A、1Bの捕捉性が低下する。この傾向はこの比(La/D)が10を超えると顕著であるため、8以下がより好ましく、6以下が更に好ましい。反対に絶縁性樹脂層2の層厚Laが小さすぎてこの比(La/D)が0.3未満となると、導電粒子1A、1Bを絶縁性樹脂層2によって所定の粒子分散状態あるいは所定の配列に維持することが困難となるので比(La/D)は0.3以上が好ましく、絶縁性樹脂層2によって所定の粒子分散状態あるいは所定の配列を確実に維持する点から0.6以上がより好ましい。また、接続する端子が高密度COGの場合、絶縁性樹脂層2の層厚Laと導電粒子1A、1Bの粒子径Dとの比(La/D)は、好ましくは0.8~2である。
【0092】
一方、平均粒子径Dが10μm以上の場合には、La/Dは、上限に関しては、3.5以下、好ましくは2.5以下、より好ましくは2以下とし、下限に関しては0.8以上、好ましくは1以上、より好ましくは1.3より大きくする。
【0093】
平均粒子径Dの大きさに関わらず、絶縁性樹脂層2の層厚Laが大き過ぎてこの比が過度に大きくなると、異方性導電接続時に導電粒子1A、1Bが端子に押し付けられにくくなると共に、樹脂流動により導電粒子が流されやすくなる。そのため導電粒子が位置ずれしやすくなり、端子における導電粒子の捕捉性が低下する。また、導電粒子を端子に押し付けるために押圧治具に必要とされる推力も増大し、低圧実装の妨げになる。反対に絶縁性樹脂層2の層厚Laが小さすぎてこの比が過度に小さくなると、導電粒子1A、1Bを絶縁性樹脂層2によって所定の配置に維持することが困難となる。
【0094】
<変形態様>
本発明の異方性導電フィルムとしては、導電粒子分散層3に、絶縁性樹脂層2を構成する樹脂よりも最低溶融粘度が低い第2の絶縁性樹脂層4を積層することができる(
図6、
図7)。この第2の絶縁性樹脂層4は、異方性導電接続時に電子部品のバンプ等の端子によって形成される空間を充填し、対向する電子部品同士の接着性を向上させることができる。即ち、異方性導電フィルムを用いた電子部品の低圧実装を可能とするため、及び異方性導電接続時の絶縁性樹脂層2の樹脂流動を抑制して導電粒子1A、1Bの粒子捕捉性を向上させるため、絶縁性樹脂層2の粘度を高くすると共に、導電粒子1A、1Bが位置ずれを起こさない限りで絶縁性樹脂層2の厚さは薄くすることが望ましいが、絶縁性樹脂層2の厚さを過度に薄くすると、対向する電子部品同士を接着させる樹脂量の不足を招くことから接着性の低下が懸念される。これに対し、異方性導電接続時に絶縁性樹脂層2よりも粘度が低い第2の絶縁性樹脂層4を設けることにより、電子部品同士の接着性も向上させることができ、第2の絶縁性樹脂層4の流動性が絶縁性樹脂層2よりも高いことから端子による導電粒子1A、1Bの挟持や押し込みを阻害し難くすることができる。
【0095】
導電粒子分散層3に第2の絶縁性樹脂層4を積層する場合、第2の絶縁性樹脂層4が凹み2bの形成面上にあるか否かに関わらず、ツールで加圧する電子部品に第2の絶縁性樹脂層4が貼られるようにする(絶縁性樹脂層2がステージに載置される電子部品に貼られるようにする)ことが好ましい。このようにすることで、導電粒子の不本意な移動を避けることができ、捕捉性を向上させることができる。
【0096】
絶縁性樹脂層2と第2の絶縁性樹脂層4との最低溶融粘度比は、差があるほど電子部品の電極やバンプによって形成される空間が第2の絶縁性樹脂層4で充填されやすくなり、電子部品同士の接着性を向上させることができる。また、この差があるほど導電粒子分散層3中に存在する絶縁性樹脂層2の移動量が相対的に少なくなり、端子間の導電粒子1A、1Bが樹脂流動により流されにくくなることにより、端子における導電粒子1A、1Bの捕捉性が向上するので好ましい。実用上は、絶縁性樹脂層2と第2の絶縁性樹脂層4との最低溶融粘度比は、好ましくは2以上、より好ましくは5以上、さらに好ましくは8以上である。一方、この比が大きすぎると長尺の異方性導電フィルムを巻装体にした場合に、樹脂のはみだしやブロッキングの虞があるので、実用上は15以下が好ましい。第2の絶縁性樹脂層4の好ましい最低溶融粘度は、より具体的には、上述の比を満たし、かつ3000Pa・s以下、好ましくは2000Pa・s以下であり、特に100~2000Pa・sである。
【0097】
なお、第2の絶縁性樹脂層4は、絶縁性樹脂層2と同様の樹脂組成物において、粘度を調整することにより形成することができる。
【0098】
また、第2の絶縁性樹脂層4の層厚は、好ましくは4~20μmである。もしくは、導電粒子1A、1Bの平均粒子径Dに対して、好ましくは1~8倍である。
【0099】
また、絶縁性樹脂層2と第2の絶縁性樹脂層4を合わせた異方性導電フィルム10F、10G全体の最低溶融粘度は、実用上は8000Pa・s以下、好ましくは200~7000Pa・s以下、より好ましくは、200~4000Pa・sである。
【0100】
第2の絶縁性樹脂層4の具体的な積層態様としては、例えば、
図6に示す異方性導電フィルム10Fのように、導電粒子1A、1Bが絶縁性樹脂層2の片面から突出している場合に、その突出している面に第2の絶縁性樹脂層4を積層し、第2の絶縁性樹脂層4に導電粒子1A、1Bを食い込ませることができる。導電粒子1A、1Bの埋込率(Lb/D)が0.95以下の場合に、このように第2の絶縁性樹脂層4を積層することが好ましく、0.9以下の場合はより好ましい。また、平均粒子径Dが10μm未満の場合には、このようにすることが望ましい場合がある。
【0101】
一方、
図7に示す異方性導電フィルム10Gのように、導電粒子1A、1Bが埋め込まれている絶縁性樹脂層2の面と反対側の面に第2の絶縁性樹脂層4を積層してもよい。
【0102】
(第3の絶縁性樹脂層)
第2の絶縁性樹脂層4と絶縁性樹脂層2を挟んで反対側に第3の絶縁性樹脂層が設けられていてもよい。第3の絶縁性樹脂層をタック層として機能させることができる。第2の絶縁性樹脂層4と同様に、電子部品の電極やバンプによって形成される空間を充填させるために設けてもよい。
【0103】
第3の絶縁性樹脂層の樹脂組成、粘度及び厚みは第2の絶縁性樹脂層と同様でもよく、異なっていても良い。絶縁性樹脂層2と第2の絶縁性樹脂層4と第3の絶縁性樹脂層を合わせた異方性導電フィルムの最低溶融粘度は特に制限はないが、実用上は8000Pa・s以下、好ましくは200~7000Pa・s以下、より好ましくは、200~4000Pa・sである。
【0104】
<異方性導電フィルムの製造方法>
本発明の異方性導電フィルムは、例えば、絶縁性樹脂層2の表面に導電粒子1A、1Bが個々に独立した所定の規則的な配列又はランダムな分散状態で保持させ、その導電粒子1A、1Bを平板又はローラで絶縁性樹脂層2に押し込むことにより製造することができる。
【0105】
ここで、絶縁性樹脂層2における導電粒子1A、1Bの埋込量Lbは、導電粒子1A、1Bの押し込み時の押圧力、温度等により調整することができ、また、凹み2b、2cの有無、形状及び深さは、押し込み時の絶縁性樹脂層2の粘度、押込速度、温度等により調整することができる。
【0106】
また、絶縁性樹脂層2に導電粒子1A、1Bを保持させる手法としては、特に限定されるものではないが、導電粒子1A、1Bを規則的な配列とする場合、例えば、転写型を使用して絶縁性樹脂層2に、所定の割合で混合した導電粒子1A、1Bを保持させる。転写型としては、例えば、シリコン、各種セラミックス、ガラス、ステンレススチールなどの金属等の無機材料や、各種樹脂等の有機材料の転写型材料に対し、フォトリソグラフ法等の公知の開口形成方法によって開口を形成したものを使用することができる。なお、転写型は、板状、ロール状等の形状をとることができる。
【0107】
絶縁性樹脂層2の導電粒子1A、1Bがランダムな状態で個々に独立しないものを得る方法としては、絶縁性樹脂層2を形成する樹脂組成物に導電粒子1A、1Bを所定の割合で混練(混合)し、それを剥離フィルム上に塗布することにより、導電粒子1A、1Bがランダムな位置にある絶縁性樹脂層を得てもよい。
【0108】
異方性導電フィルムを用いて電子部品の接続を経済的に行うには、異方性導電フィルムはある程度の長尺であることが好ましい。そこで異方性導電フィルムは長さを、好ましくは5m以上、より好ましくは10m以上、さらに好ましくは25m以上に製造する。一方、異方性導電フィルムを過度に長くすると、異方性導電フィルムを用いて電子部品の製造を行う場合に使用する従前の接続装置を使用することができなくなり、取り扱い性も劣る。そこで、異方性導電フィルムは長さを好ましくは5000m以下、より好ましくは1000m以下、さらに好ましくは500m以下に製造する。異方性導電フィルムのこのような長尺体は、巻芯に巻かれた巻装体とすることが取り扱い性に優れる点から好ましい。
【0109】
<異方性導電フィルムの使用方法>
本発明の異方性導電フィルムは、ICチップ、ICモジュール、FPCなどの第1電子部品と、FPC、ガラス基板、プラスチック基板、リジッド基板、セラミック基板などの第2電子部品とを異方性導電接続する際に好ましく使用することができ、特にプラスチック基板としては、高圧で圧着することにより変形やクラックが生じやすいPET基材に端子が形成されたものをあげることができる。なお、このPET基材は接着剤を介してポリイミド基材を積層したものであってもよい。これらの総厚は、一例として0.15mm以下とすることができる。本発明の異方性導電フィルムを用いてICチップやウェーハーをスタックして多層化してもよい。なお、本発明の異方性導電フィルムで接続する電子部品は、上述の電子部品に限定されるものではない。近年、多様化している種々の電子部品に使用することができる。本発明は、本発明の異方性導電フィルムを用いて電子部品同士が異方性導電接続されている接続構造体も包含する。
【0110】
異方性導電フィルムを用いた電子部品の接続方法としては、異方性導電フィルムの樹脂層が導電粒子分散層3の単層からなる場合、各種基板などの第2電子部品に対し、異方性導電フィルムの導電粒子1A、1Bが表面に埋め込まれている側から仮貼りして仮圧着し、仮圧着した異方性導電フィルムの導電粒子1A、1Bが表面に埋め込まれていない側にICチップ等の第1電子部品を合わせ、熱圧着することにより製造することができる。異方性導電フィルムの絶縁性樹脂層に熱重合開始剤と熱重合性化合物だけでなく、光重合開始剤と光重合性化合物(熱重合性化合物と同一でもよい)が含まれている場合、光と熱を併用した圧着方法でもよい。このようにすれば、導電粒子の不本意な移動は最小限に抑えることができる。また、導電粒子が埋め込まれていない側を第2電子部品に仮貼りして使用してもよい。なお、第2電子部品ではなく、第1電子部品に異方性導電フィルムを仮貼りすることもできる。
【0111】
また、異方性導電フィルムが、導電粒子分散層3と第2の絶縁性樹脂層4の積層体から形成されている場合、導電粒子分散層3を各種基板などの第2電子部品に仮貼りして仮圧着し、仮圧着した異方性導電フィルムの第2の絶縁性樹脂層4側にICチップ等の第1電子部品をアライメントして載置し、熱圧着する。異方性導電フィルムの第2の絶縁性樹脂層4側を第1電子部品に仮貼りしてもよい。また、導電粒子分散層3側を第1電子部品に仮貼りして使用することもできる。
【実施例0112】
以下、本発明を実施例に基づいて具体的に説明する。
【0113】
実施例1~4、比較例1、2
(1)異方性導電フィルムの製造
表1に示した配合で、導電粒子分散層を形成する絶縁性樹脂層形成用樹脂組成物、及び第2の絶縁性樹脂層形成用樹脂組成物をそれぞれ調製した。絶縁性樹脂層の最低溶融粘度は3000Pa・s以上であり、この絶縁性樹脂層の最低溶融粘度と第2の絶縁性樹脂層の最低溶融粘度の比は2以上であった。
【0114】
一方、樹脂コア粒子の表面に約70個のアルミナ粒子(平均粒子径150nm)を有し、最外層にNi層(厚さ100nm)を有する高硬度導電粒子(20%圧縮弾性率22000N/mm2、平均粒子径3μm、積水化学工業(株)製)(特開2006-269296号公報に記載の手法で製造されたもの)を用意し、また、高硬度導電粒子と同様の構造の低硬度導電粒子(20%圧縮弾性率6000N/mm2、平均粒子径3μm、積水化学工業(株)製)を用意した。なお、以降の実施例1~24及び比較例1~10においても同様に製造された積水化学工業(株)製の導電粒子を用意した。
【0115】
高硬度導電粒子と低硬度導電粒子を、それらの個数密度が表2に示す比率となるように絶縁性樹脂層(高粘度樹脂層)形成用樹脂組成物に混合し、それをバーコータ-でフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に高硬度導電粒子と低硬度導電粒子がランダムに分散している導電粒子分散層を形成した。この導電粒子分散層の絶縁性樹脂層の厚さは6μmであった。また、第2の絶縁性樹脂層形成用樹脂組成物をバーコータ-でフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させることにより、PETフィルム上に厚さ12μmの第2の絶縁性樹脂層となる樹脂層を形成した。この樹脂層を上述の導電粒子分散層に積層し、異方性導電フィルムとした。
【0116】
【0117】
(2)異方性導電フィルムの評価
(1)で製造した実施例及び比較例の異方性導電フィルムを接続に十分な面積で裁断したものを用いて電子部品の接続構造体を作製し、(a)捕捉効率、(b)圧痕、(c)粒子潰れ率、(d)抵抗値を次のように評価した。結果を表2に示す。
【0118】
(a)捕捉効率
以下に示す評価用ICと、この評価用ICと端子パターンが対応するガラス基板と(Ti/Al配線)に異方性導電フィルムを介して200℃、表2に記載の加圧力で5秒間加熱加圧し、評価用接続構造体を得た。
【0119】
評価用IC:
外形 1.8×20.0mm
厚み 0.5mm
バンプ仕様 サイズ30×85μm、バンプ間距離20μm、バンプの表面材質Au
【0120】
加熱加圧後の端子対100個について高硬度導電粒子及び低硬度導電粒子の捕捉数を計測し、その平均を求めた。また、加熱加圧前に端子上に存在する高硬度導電粒子及び低硬度導電粒子の理論値を、[端子100個分の端子面積]×[導電粒子の個数密度]から算出しておき、計測した導電粒子の捕捉数の理論値に対する比率を求め、次の基準で評価した。実用上、B評価以上が好ましい。
【0121】
捕捉効率評価基準
A:30%以上
B:15%以上30%未満
C:15%未満
【0122】
(b)圧痕
(a)で製造した評価用接続構造体における高硬度導電粒子及び低硬度導電粒子の圧痕を金属顕微鏡により観察し、加熱加圧後の端子対5個について高硬度導電粒子及び低硬度導電粒子の圧痕(捕捉)数を画像解析ソフトWinROOF(三谷商事株式会社)を用いて、計測し、その平均を求めた。また、加熱加圧前に端子上に存在する高硬度導電粒子及び低硬度導電粒子の理論値を、[端子5個分の端子面積]×[導電粒子の個数密度]から算出しておき、計測した導電粒子の圧痕(捕捉)数の理論値に対する比率を求め、次の基準で評価した。なお、確認された圧痕は、導電粒子がランダムに配置されている分散型の異方性導電フィルムではバンプ5個の圧痕の合計が100個程度であり、後述する、導電粒子が正方格子に配列している整列型の異方性導電フィルムではバンプ5個の圧痕の合計が200個程度であった。
【0123】
圧痕評価基準
OK:理論値の50%以上が圧痕として認識できた場合
NG:理論値の50%未満が圧痕として認識できた場合
【0124】
(c)粒子潰れ率
(a)で製造した評価用接続構造体の製造直後のもの(初期)、及び(a)で製造した評価用接続構造体を温度85℃、湿度85%RHの恒温槽に500時間おいたもの(500h)のそれぞれについて、対向する端子間の距離を圧着後の粒子径として計測し、その平均粒子径を求めた。一方、圧着前の平均粒子径も求めておき、次式により粒子潰れ率を算出し、次の基準で評価した。実用上、B評価以上が好ましい。
【0125】
粒子潰れ率(%)
=([圧着前の平均粒子径]-[圧着後の平均粒子径])×100/[圧着前の平均粒子径]
【0126】
初期及び500hにおける粒子潰れ率評価基準
A:10%以上
B:5%以上10%未満
C:5%未満
【0127】
(d)抵抗値
(a)で製造した評価用接続構造体の製造直後のもの(初期)、及び(a)で製造した評価用接続構造体を温度85℃、湿度85%RHの恒温槽に500時間おいたもの(500h)のそれぞれについて、導通抵抗を4端子法で測定し、次の基準で評価した。抵抗値は、実用上B評価以上が好ましい。
【0128】
初期における抵抗値
A:3Ω未満
B:3Ω以上5Ω未満
C:5Ω以上10Ω未満
D:10Ω以上
【0129】
500hにおける抵抗値
A:3Ω未満
B:3Ω以上5Ω未満
C:5Ω以上10Ω未満
D:10Ω以上
【0130】
実施例5~8、比較例3、4
実施例1と同様の導電粒子を用意した。ただし、樹脂コア粒子の20%圧縮弾性率を調整することにより、高硬度導電粒子として、20%圧縮弾性率が14000N/mm2の導電粒子(平均粒子径3μm)と、低硬度導電粒子として、20%圧縮弾性率が6000N/mm2の導電粒子(平均粒子径3μm)を用意した。
【0131】
この高硬度導電粒子と低硬度導電粒子を表3に示す比率となるように絶縁性樹脂層(高粘度樹脂層)形成用樹脂組成物に混合した以外は実施例1と同様にして高硬度導電粒子と低硬度導電粒子がランダムに分散している異方性導電フィルムを製造した。
【0132】
また、実施例1と同様にして(a)捕捉効率、(b)圧痕、(c)粒子潰れ率、(d)抵抗値を評価した。結果を表3に示す。
【0133】
実施例9~12、比較例5
実施例1と同様の導電粒子を用意した。ただし、樹脂コア粒子の20%圧縮弾性率を調整することにより、高硬度導電粒子として、20%圧縮弾性率が9000N/mm2の導電粒子(平均粒子径3μm)と、低硬度導電粒子として、20%圧縮弾性率が6000N/mm2の導電粒子(平均粒子径3μm)を用意した。
【0134】
この高硬度導電粒子と低硬度導電粒子を表4に示す比率となるように絶縁性樹脂層(高粘度樹脂層)形成用樹脂組成物に混合した以外は実施例1と同様にして高硬度導電粒子と低硬度導電粒子がランダムに分散している異方性導電フィルムを製造した。
【0135】
また、実施例1と同様にして(a)捕捉効率、(b)圧痕、(c)粒子潰れ率、(d)抵抗値を評価した。結果を表4に示す。
【0136】
実施例13~16、比較例6、7
表1に示した配合で、導電粒子分散層を形成する絶縁性樹脂層形成用樹脂組成物を調製し、これをバーコータ-でフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に絶縁性樹脂層を形成した。この絶縁性樹脂層の厚さは6μmであった。また、表1に示した配合で第2の絶縁性樹脂層形成用樹脂組成物を調製し、同様にして厚さ12μmの樹脂層を形成した。
【0137】
また、実施例1と同様の20%圧縮弾性率が22000N/mm2の高硬度導電粒子と、20%圧縮弾性率が6000N/mm2の低硬度導電粒子を用意した。
【0138】
一方、導電粒子が
図1Aに示すように正方格子配列となり、高硬度導電粒子と低硬度導電粒子の全体の個数密度が表5に示す数値となるように金型を作製し、この金型に公知の透明性樹脂のペレットを溶融させた状態で流し込み、冷やして固めることで、凹部が
図1Aに示す配列パターンの樹脂型を形成した。
【0139】
この樹脂型の凹部に、高硬度導電粒子と低硬度導電粒子が表5に示す比率の混合粒子を充填し、その上に上述の絶縁性樹脂層を被せ、60℃、0.5MPaで押圧することで貼着させた。そして、型から絶縁性樹脂層を剥離し、絶縁性樹脂層上の導電粒子を(押圧条件:60~70℃、0.5MPa)で該絶縁性樹脂層内に押し込み、導電粒子分散層を形成した。この場合、埋込率は99.9%とした。導電粒子が埋め込まれている導電粒子分散層の表面に、上述の第2の絶縁性樹脂層形成用樹脂組成物から形成した樹脂層を積層し、高硬度導電粒子と低硬度導電粒子が全体として正方格子に配列している異方性導電フィルムを製造した。
【0140】
こうして得た異方性導電フィルムを接続に十分な面積で裁断し、裁断した異方性導電フィルムを使用して実施例1と同様に評価用接続構造体を作製し、(a)捕捉効率、(b)圧痕、(c)粒子潰れ率、(d)抵抗値を評価した。結果を表5に示す。
【0141】
実施例17~20、比較例8、9
実施例5と同様の20%圧縮弾性率が14000N/mm2の高硬度導電粒子と、20%圧縮弾性率が6000N/mm2の低硬度導電粒子を用意した。
【0142】
この高硬度導電粒子と低硬度導電粒子を表6に示す比率となるように混合して樹脂型に充填する以外は実施例13と同様にして高硬度導電粒子と低硬度導電粒子が全体として4方格子に配列している異方性導電フィルムを製造した。
【0143】
また、実施例1と同様に接続に十分な面積で裁断し、裁断した異方性導電フィルムを使用して(a)捕捉効率、(b)圧痕、(c)粒子潰れ率、(d)抵抗値を評価した。結果を表6に示す。
【0144】
実施例21~24、比較例10
実施例9と同様の20%圧縮弾性率が9000N/mm2の高硬度導電粒子と、20%圧縮弾性率が6000N/mm2の低硬度導電粒子を用意した。
【0145】
この高硬度導電粒子と低硬度導電粒子を表7に示す比率となるように混合して樹脂型に充填する以外は実施例13と同様にして高硬度導電粒子と低硬度導電粒子が全体として4方格子に配列している異方性導電フィルムを製造した。
【0146】
また、実施例1と同様に接続に十分な面積で裁断し、裁断した異方性導電フィルムを使用して(a)捕捉効率、(b)圧痕、(c)粒子潰れ率、(d)抵抗値を評価した。結果を表7に示す。
【0147】
【0148】
【0149】
【0150】
【0151】
【0152】
【0153】
表2から、20%圧縮弾性率が22000N/mm2の高硬度導電粒子と20%圧縮弾性率が6000N/mm2の低硬度導電粒子の双方を含有し、導電粒子がランダムに配置されている実施例1~4の異方性導電フィルムによれば、いずれも圧痕の評価が良好であり、導通特性(初期抵抗値、500h抵抗値)も良好なことがわかる。これに対し、20%圧縮弾性率が22000N/mm2の高硬度導電粒子のみを含有する比較例1の異方性導電フィルムも、20%圧縮弾性率が6000N/mm2の低硬度導電粒子のみを含有する比較例2の異方性導電フィルムも、圧痕の評価が劣っており、さらに高硬度導電粒子のみを含有する比較例1の異方性導電フィルムは、導通特性(500h)が劣っている。このことから、導電粒子が低硬度粒子のみであると硬さが足りないために圧痕が見え難い状態になること、また、導電粒子が高硬度のみであると硬すぎて導電粒子の圧縮が不十分となることにより圧痕が見えにくいことが推察される。なお、高硬度導電粒子のみの場合に、圧痕の評価がOKであった場合でも、高硬度導電粒子と低硬度導電粒子が混合されている実施例の方が圧痕は観察されやすかった。
【0154】
表5から、20%圧縮弾性率が22000N/mm2の高硬度導電粒子と20%圧縮弾性率が6000N/mm2の低硬度導電粒子の双方を含有し、導電粒子が正方格子に配列している実施例13~16においても、上述の実施例1~4と同様に、いずれも圧痕の評価が良好であり、導通特性(初期抵抗値、500h抵抗値)も良好なことがわかる。
【0155】
表3から、20%圧縮弾性率が14000N/mm2の高硬度導電粒子と、20%圧縮弾性率が6000N/mm2の低硬度導電粒子の双方を含有し、導電粒子がランダムに配置されている実施例5~8の異方性導電フィルムは、いずれも圧痕の評価が良好であり、導通特性(初期抵抗値、500h抵抗値)も良好であることがわかる。特に異方性導電接続時の圧力が60MPaという低圧であっても良好である。これに対し、20%圧縮弾性率が14000N/mm2の高硬度導電粒子のみを含有する比較例3の異方性導電フィルムは圧痕の評価が劣っており、さらに異方性導電接続時の圧力が60MPaであると、導通特性(500h)も劣っている。
【0156】
表6から、20%圧縮弾性率が14000N/mm2の高硬度導電粒子と20%圧縮弾性率が6000N/mm2の低硬度導電粒子の双方を含有し、導電粒子が正方格子に配列している実施例17~20においても、上述の実施例5~8と同様に、いずれも圧痕の評価が良好であり、導通特性(初期抵抗値、500h抵抗値)も良好なことがわかる。
【0157】
表4からも、20%圧縮弾性率が9000N/mm2の高硬度導電粒子と、20%圧縮弾性率が6000N/mm2の低硬度導電粒子の双方を含有する実施例9~12の異方性導電フィルムは、いずれも圧痕の評価が良好であり、導通特性(初期抵抗値、500h抵抗値)も良好であり、特に異方性導電接続時の圧力が60MPaという低圧であっても良好なことがわかる。
【0158】
表7から、20%圧縮弾性率が9000N/mm2の高硬度導電粒子と20%圧縮弾性率が6000N/mm2の低硬度導電粒子の双方を含有し、導電粒子が正方格子に配列している実施例21~24においても、上述の実施例9~12と同様に、いずれも圧痕の評価が良好であり、導通特性(初期抵抗値、500h抵抗値)も良好であり、特に異方性導電接続時の圧力が60MPaという低圧であっても良好なことがわかる。
前記傾斜では、高硬度導電粒子及び低硬度導電粒子の周りの絶縁性樹脂層の表面が、前記接平面に対して欠けており、前記起伏では、高硬度導電粒子及び低硬度導電粒子の直上の絶縁性樹脂層の樹脂量が、前記高硬度導電粒子及び低硬度導電粒子の直上の絶縁性樹脂層の表面が該接平面にあるとしたときに比して少ない請求項10記載の異方性導電フィルム。