前記ポリアミンが2-ピペラジン-1-エチルアミンとジエチレントリアミンとを合わせたものであり、前記アミノヒンダードアルコールが2-メチルアミノ-2-メチル-1-プロパノールと2-アミノ-2-メチルプロポノールとを合わせたものである、請求項1に記載の溶媒。
炭酸塩が、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸アンモニウム、炭酸マグネシウム、及びそれらの組み合わせからなる群から選択される、請求項2に記載の溶媒。
促進剤水溶液が、2-アミノ-2-メチルプロポノール、2-ピペラジン-1-エチルアミン、ジエチレントリアミン、及び2-メチルアミノ-2-メチル-1-プロパノールを含む、請求項1に記載の溶媒。
二酸化炭素を含む少なくとも1つの第1の組成物を少なくとも1つの第2の組成物と接触させて、前記第1の組成物の二酸化炭素を前記第2の組成物に少なくとも部分的に溶解することを含む方法であって、前記第2の組成物が、アミノヒンダードアルコールと、3つ以上のアミノ基を有するポリアミンと、炭酸緩衝液とを含む、方法。
前記ポリアミンが2-ピペラジン-1-エチルアミンとジエチレントリアミンとを合わせたものであり、前記アミノヒンダードアルコールが2-メチルアミノ-2-メチル-1-プロパノールと2-アミノ-2-メチルプロポノールとを合わせたものである、請求項25に記載の溶媒。
本明細書に記載の実施形態には、例えば、化合物及び組成物、並びに化合物及び組成物を作製する方法及び使用する方法が含まれる。これらの化合物及び組成物を使用し、方法に関連するシステム及びデバイスも提供され得る。説明のため、本開示は、炭素回収溶媒(例えば「APBS」と名付ける)及びその溶媒を使用して産業排ガスを処理するための方法に関する。本明細書に開示される溶媒は、MEAよりも効率的な速度でCO2を除去し、他の溶媒(例えば、MEA)よりも遅い速度で劣化する。
一実施形態では、本明細書に開示される組成物及び方法は、例えば、発電所を含む様々なタイプの産業プラントで実施され得る。一例では、溶媒は、2-アミノ-2-メチルプロポノール、2-ピペラジン-1-エチルアミン、ジエチレントリアミン、2-メチルアミノ-2-メチル-1-プロパノール、及び炭酸カリウム緩衝塩の水性混合物を含み得る。組成物はまた、約75重量%未満の溶解媒質(すなわち、水)を含んでもよく、単一の液相を有し得る。別の例では、溶媒は、アミノヒンダードアルコール、3つ以上のアミノ基を有するポリアミン、及び炭酸緩衝塩の水性混合物を含み得る。
デバイス、システム、及び方法の実施形態が、例示的であり、限定的ではないことを意味する添付の図面の図に示され、同様の参照は同様の又は対応する部品を参照することを意図するものである。
本明細書に述べられる本開示の態様の詳細な説明は、例示として様々な実施形態を示す添付の図面及び写真を参照している。これらの様々な実施形態は、当業者が開示を実施することを可能にするのに十分詳しく説明されているが、他の実施形態を実現することができ、論理的及び機械的な変更が開示の趣旨及び範囲から逸脱することなくなされ得ることを理解されたい。したがって、本明細書の詳細な説明は、限定ではなく例示のみを目的として提示されている。例えば、方法又はプロセスの説明のいずれかに記載されている工程は、任意の順序で実施することができ、提示された順序に限定されない。さらに、単一の実施形態への言及は、複数の実施形態を含み得て、複数の構成要素への言及は、単一の実施形態を含み得る。本明細書で使用される場合、「溶媒」という用語は、単一の溶媒又は溶媒の混合物を指す場合があり、「組成物」という用語と同じ意味で使用することができる。
一実施形態では、溶媒は、25℃で蒸気圧が0.1kPa未満のアミノヒンダードアルコールと、25℃で蒸気圧が0.009kPa未満の3つ以上のアミノ基を有するポリアミンと、溶媒を8よりも高いpH(例えば、約8、約10又は約13のpH)に緩衝するための炭酸緩衝液とを含む。溶媒は、25℃で1.85kPa未満の蒸気圧を持つことができる。
別の実施形態では、25℃で0.009kPa未満の蒸気圧を有するポリアミン(例えば、2-ピペラジン-1-エチルアミン又はジエチレントリアミンとして)は、非常に低い圧力のためにエアロゾル相放出に対する弾力性を生み出すが、これはCO2とのカルバメート反応の結果である可能性がある。25℃で蒸気圧が0.1kPa未満のアミノヒンダードアルコールは、CO2との炭酸塩/重炭酸塩反応によりエアロゾル相の放出を形成する。具体的な実施形態では、蒸気圧が低い(0.009)ポリアミンを含むヒンダードアルコールは、32mg/Nm3未満のエアロゾル形成をもたらす。具体的な実施形態では、蒸気圧が低い(0.009)ポリアミンを含むヒンダードアルコールは、28mg/Nm3未満のエアロゾル形成をもたらす。他の実施形態では、蒸気圧が低い(0.009)ポリアミンを含むヒンダードアルコールは、32mg/Nm3未満のエアロゾルが半分超である。別の実施形態では、蒸気圧が低い(0.009)ポリアミンを含むヒンダードアルコールは、28mg/Nm3未満のエアロゾルが半分超である。
一例では、溶媒は、2-アミノ-2-メチルプロポノール、2-ピペラジン-1-エチルアミン、ジエチレントリアミン、2-メチルアミノ-2-メチル-1-プロパノール、及び炭酸カリウムの水性溶液を含み得る。溶媒及び方法は、好ましい溶媒再生(すなわち、入力エネルギー量が少ない)、化学的安定性、蒸気圧、総熱消費量、正味の循環容量、及び反応キネティクスを有する。溶媒と方法はまた、エアロゾル及びニトロソアミンの排出が少なく、実質的に泡立ちがないという結果になる。
一例では、溶媒は、25℃で0.1kPa未満の蒸気圧を有するアミノヒンダードアルコールと、25℃で蒸気圧が0.009kPa未満の3つ以上のアミノ基を有するポリアミンと、炭酸緩衝液と、を含む。溶媒は、25℃で1.85kPa未満の蒸気圧を有する。ポリアミンは2-ピペラジン-1-エチルアミンとジエチレントリアミンとを合わせたものであり、アミノヒンダードアルコールは2-メチルアミノ-2-メチル-1-プロパノールと2-アミノ-2-メチルプロポノールとを合わせたものである。
説明のため、2-アミノ-2-メチルプロポノール及び2-メチルアミノ-2-メチル-1-プロパノールは、低い吸収熱、高い化学的安定性、及び比較的低い反応性を有する立体障害のあるアルコールである。ピペラジン-1-エチルアミン及びジエチレントリアミンは、非常に高速のキネティクスを有し、本明細書に開示されている条件下で化学的に安定している。ピペラジン-1-エチルアミン及びジエチレントリアミンは揮発性が非常に低く、開示される溶媒の環境問題を軽減する。ピペラジン-1-エチルアミン及びジエチレントリアミンは、2-アミノ-2-メチルプロポノール及び2-メチルアミノ-2-メチル-1-プロパノールの促進剤として作用し得て、高い吸収活性及び速い反応キネティクスを提供する。
炭酸緩衝塩も使用することができる。使用する炭酸緩衝塩の量は、開始pHに関係なく、唾液のpHを約7.8以上、約8.5以上、又は約9以上(例えば、約9~約11)に上げるのに十分でなければならない。そのため、溶媒に使用される炭酸緩衝塩の量は、実施条件に依存する。一例では、炭酸緩衝塩は、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸アンモニウム、又は炭酸マグネシウムであり得る。
重炭酸塩も使用することができる。例示的な重炭酸塩としては、例えば、重炭酸ナトリウム、重炭酸カリウム、重炭酸カルシウム、重炭酸アンモニウム、及び重炭酸マグネシウムが挙げられる。
二成分緩衝組成物を追加的に利用することができる。例示的な二成分緩衝組成物としては、炭酸ナトリウムと重炭酸ナトリウムとの組み合わせが挙げられる。一例では、溶媒の重炭酸ナトリウムは、乾燥剤でコーティングされた重炭酸ナトリウムであり得る。
一例では、溶媒は、約10重量%~約32重量%、約11重量%~約28重量%の量、好ましくは約13重量%~約25重量%の量で2-アミノ-2-メチルプロポノールを含む。排煙ガスCO2回収システムの入口で約12体積%のCO2が発生する場合、約19.5重量%の2-アミノ-2-メチルプロポノールが望ましい場合がある。排煙CO2回収システムの入口で約4体積%のCO2が発生する場合、約13.3重量%の2-アミノ-2-メチルプロポノールが望ましい場合がある。排煙CO2回収システムの入口で約40体積%のCO2が発生する場合、約24.2重量%の2-アミノ-2-メチルプロポノールが望ましい場合がある。
別の例では、溶媒は、約10重量%~約35重量%、約12重量%~約30重量%、好ましくは約14重量%~約28重量%の量で2-ピペラジン-1-エチルアミンを含む。排煙CO2回収システムの入口で約12体積%のCO2が発生する場合、約22.4重量%の2-ピペラジン-1-エチルアミンが望ましい場合がある。排煙CO2回収システムの入口で約4体積%のCO2が発生する場合、約27.6重量%の2-ピペラジン-1-エチルアミンが望ましい場合がある。バイオガスCO2回収システムの入口で約40体積%のCO2が発生する場合、約15.15重量%の2-ピペラジン-1-エチルアミンが望ましい場合がある。
更なる例では、溶媒は、約0.1重量%~約4重量%、約0.1重量%~約3重量%の量、好ましくは約0.1重量%~約0.35重量%の量のジエチレントリアミンを含む。排煙CO2回収システムの入口で約12体積%のCO2が発生する場合、約0.2重量%のジエチレントリアミンが望ましい場合がある。排煙CO2回収システムの入口で約4体積%のCO2が発生する場合、約0.35重量%のジエチレントリアミンが望ましい場合がある。バイオガスCO2回収システムの入口で約40体積%のCO2が発生する場合、約0.1重量%のジエチレントリアミンが望ましい場合がある。
更に別の例では、溶媒は、約0.8重量%~約5重量%、約1重量%~約2.8重量%の量で、好ましくは1.2重量%~約1.8重量%の量で2-メチルアミノ-2-メチル-1-プロパノールを含む。排煙CO2回収システムの入口で約12体積%のCO2が発生する場合、約1.5重量%の2-メチルアミノ-2-メチル-1-プロパノールが望ましい場合がある。排煙CO2回収システムの入口で約4体積%のCO2が発生する場合、約1.2重量%の2-メチルアミノ-2-メチル-1-プロパノールが望ましい場合がある。バイオガスCO2回収システムの入口で約40体積%のCO2が発生する場合、約1.8重量%の2-メチルアミノ-2-メチル-1-プロパノールが望ましい場合がある。
追加の例では、溶媒は、約0.1重量%~約6重量%、約0.2重量%~約3重量%の量、好ましくは約0.5重量%~約1.0重量%の量の緩衝液(例えば、炭酸カリウム)を含む。排煙CO2回収システムの入口で約12体積%のCO2が発生する場合、約0.5重量%の炭酸カリウムが望ましい場合がある。排煙CO2回収システムの入口で約4体積%のCO2が発生する場合、約0.7重量%の炭酸カリウムが望ましい場合がある。バイオガスCO2回収システムの入口で約40体積%のCO2が発生する場合、約0.4重量%の炭酸カリウムが望ましい場合がある。
溶媒の特性は、機器のサイズ及びプロセスエネルギー要求の両方を決定する上で主要な役割を果たす。特定の状況では、溶媒を選択する際に次の要因を考慮することができる。
・再生エネルギー:吸収装置で起こる発熱反応はリボイラーで熱を加えることによって逆転することから、吸収熱が低い又はより低い溶媒が望ましい。
・循環容量(吸収装置を出る溶媒とリボイラーを出る溶媒のCO2濃度の差):循環容量が高いほど、リボイラーの負荷が低くなり、ポンプの電力消費量が減少し、機器の小型化が可能となって投資コストが削減されるため、循環容量が高い又はより高い溶媒が望ましい。
・蒸発損失:溶媒は蒸発損失が大きく、吸収装置の上部に水洗セクションが必要である。そのため、蒸発損失が低い溶媒が望ましく、それにより、水洗浄セクションの必要性が排除される。
・水への溶解度:水への溶解度が限られている、嵩高い非極性部分を含むアミン。そのため、水に可溶性のアミンを有する溶媒が望ましい。
・化学的安定性:酸化劣化を受けにくい溶媒が望ましい。MEAの課題は、排気ガスに曝露された場合の酸化劣化に対する脆弱性である。
・腐食性:溶媒及びその可能性のある劣化生成物は、腐食性が限定的でなければならない。
・発泡:制御されていない場合、発泡はガス浄化及び吸収塔内の液体の流れの偏在につながるため、その性能が低下する場合がある。したがって、発泡が最小限であるか又は全くない溶媒が望ましい。
・毒性及び環境への影響:毒性及び環境への影響が最小限であるか又は全くない溶媒が望ましい、並びに
・エアロゾル及びニトロソアミンの排出:エアロゾル及びニトロソアミンは揮発性であるため、エアロゾル及びニトロソアミンの生成が最小限又は全くない溶媒が望ましい。
特定の例示的な溶媒は、現在受け入れられている業界標準である他の溶媒(例えば、MEA)と比較して、前述の基準に関する特性を有する。これらの特性は、参照溶媒としてMEAを使用する以下の詳細な実験によって例示される。本明細書に開示される特定の溶媒は、低いエネルギー要件及び良好な化学的安定性を有する。本明細書に開示される溶媒を使用する方法は、溶媒の特性を利用するため、環境への影響を最小限に抑えながら、エネルギー消費量が少ない方法をもたらす。開示された溶媒及び方法の他の利点は、本明細書に記載された説明に照らして明らかになるであろう。
当技術分野で知られている様々な容器、吸収装置、又は塔装置を接触工程に使用することができる。例えば、サイズ及び形状を変えることができる。容器は、1つ以上の入口ポート及び1つ以上の出口ポートを備えることができる。例えば、接触工程は、吸収カラムで行われ得る。接触工程では、第1の組成物等の気体は、第2の組成物等の液体組成物を通過することができる。パラメータを適合させて、例えば、少なくとも70%、又は少なくとも80%、又は少なくとも90%の二酸化炭素回収等の所望の割合の二酸化炭素回収を達成することができる。溶媒を更に処理するために反応器にループバックする場合、再生を行うことができる。一実施形態では、接触工程の後、その溶解二酸化炭素を有する第2の組成物を、1つ又は複数の二酸化炭素除去工程に供して、二酸化炭素を含む第1の組成物と更に接触される第3の組成物を形成する。他の既知の処理工程を行うことができる。例えば、濾過を行うことができる。当技術分野で知られているように、ポンプ、冷却器、及び加熱器を使用することができる。
接触工程を、接触工程の前後の両方の他の工程を含むより大きなプロセスフローの一部とすることができる。例えば、膜分離工程は、より大きなプロセスの一部として行うこともできる。例えば、PBIメンブレンを使用することができる。接触工程を、成分が除去されるより大きなプロセスの一部とすることもできる。幾つかの好ましい実施形態では、接触工程は、炭素回収プロセスの一部である。例えば、IGCCプラント及び炭素回収が文献に記載されている。当該技術分野で知られているように、燃焼前の回収プロセス及び圧縮サイクルを実施することができる。連続処理又はバッチ処理を行うことができる。接触工程は、第2の組成物において第1の組成物の二酸化炭素の少なくとも部分的な溶解をもたらす。
実施例及び実験
以下の実施例は、本発明による方法及び実施形態を示す。
スクリーニング
特定の実施例では、ミニ-気液平衡(「VLE」)セットアップを使用して、例示的な溶媒を試験した。ミニ-VLEセットアップは、6台の装置を並列に備えていた。6台の装置は、異なる温度で操作することが可能であった。溶媒成分と濃度の異なる組み合わせを40℃及び120℃でスクリーニングした。スクリーニングされたこれらの溶媒成分は、2-アミノ-2-メチルプロポノール、2-ピペラジン-1-エチルアミン、ジエチレントリアミン、2-メチルアミノ-2-メチル-1-プロパノール、炭酸カリウム、ピペラジン、2-メチルピペラジン、N-エチルエタノールアミン、及びN-メチルジエタノールアミンであった。
オートクレーブを使用するVLE測定
顕熱に寄与する要因は、溶媒フロー、溶媒の比熱容量、及び温度上昇である。したがって、変更できるパラメータは1つの溶媒フローであり、これは更に1つの溶媒の濃縮とその1つの溶媒のローディングに依存する。これは、より少ない溶媒を循環させ、同じCO2生成率を維持することによって減らすことができる。これは、吸収条件と脱着条件でのローディングの差として定義される溶媒の正味容量を比較することによって確認される。
溶媒の劣化は、熱的に、又は排煙の酸化のいずれかによって発生することが多い。典型的な石炭火力発電所からの排煙の酸素含有量は、約6体積%~約7体積%である。熱溶媒による劣化は、通常、ストリッパー等のホットゾーンで発生する。ただし、熱劣化の程度は酸化劣化よりも低くなる。溶媒の劣化は、有効成分濃度の低下、形成された劣化生成物による装置の腐食、及びアンモニア放出につながる。
エアロゾルボックスを、パイロットプラントの水洗セクションの上のサンプリングポイントに設置した。予備試験より、エアロゾルボックス内の温度を収着塔及び測定場所で監視されている温度より1.5℃高くすることを決定した。アンダーソンカスケードインパクターを調整するため、エアロゾルボックスの内部温度が非常に高速であることから、パイロットプラントの状態が安定するまでには時間がかかる。最初の測定時間は63分間であった。2回目の測定は、ほぼ同じ時間(66分)であった。66分の終わりに、インピンジャーのサンプリングを続けた。1回目の測定では、サンプル位置の温度は39.94℃~41.05℃で変化したが、エアロゾル測定ボックス内の温度は40.8℃~42.2℃で変化した。2回目の測定では、サンプル位置の温度は39.7℃~41.4℃で変化し、エアロゾルボックス温度は40.7℃~42.2℃で変化する。インパクター段階の28.3L/分のフローからエアロゾルに由来するサンプルを捕捉し、各々の濾紙を備えるバイアルに5mLの水を加えることによって収集した。バイアルを振とうした後、LC-MSによる更なる分析のために8液量を加える。
表10は、溶媒成分であるポリアミン、並びにインパクター(エアロゾル)の液滴及びインピンジャー(蒸気)に由来するアミノヒンダードアルコールの結果を示す。実施例1の結果によると、ほとんどのアミンはインパクターから検出される。2-ピペラジン-1-エチルアミンの絶対量は予想通りである。更に、2-アミノ-2-メチルプロポノールと2-ピペラジン-1-エチルアミンとの比率は予想通りである。実施例2の結果は、インパクターではなくインピンジャーに多くのアミンが存在することを示している。これは、サンプリングの2時間目にエアロゾル及び蒸気ベースの排出物の両方が含まれていたためである。したがって、インピンジャーへの寄与のほとんどはエアロゾル成分によるものである。
実行J16及び実行J17は、実行J17が中間冷却を伴って行われたことを除いて、同じ条件下で実施された。中間冷却を使用すると、再生エネルギーはわずかに(0.3%未満)1434.4Btu/lb CO2まで減少し、これは、中間冷却が4体積%CO2の排煙の再生エネルギーの削減に効果的でない可能性があることを示唆した。
充填ベッド数の効果
実行J16及びJ19は、実行J19が2つのベッドで実施されたことを除いて、同じ条件下で実施された。2つのベッドを使用すると、再生エネルギーは1515.1Btu/lb CO2に増加したが、CO2除去効率は(実行J16の89.5%に対して)90.4%とわずかに高くなった。これは、本開示のAPBS溶媒が、3つのベッドで必要とされるものと比較して、約5%多い再生エネルギーで、2つの充填されたベッド(PTSUにおいて6メートル又は20フィートの充填)で90%のCO2を除去できたことを示す。
予想される最小エネルギー消費量
わかるように、MEAのクロムレベルは、2カ月の試験の後、APBS溶媒の22倍超であった。これは、MEAがAPBS溶媒よりもはるかに腐食性が高いことを示している。
NCCCは、セレンの主な発生源は排煙である可能性があると結論付けている。APBS溶媒試験による入口の排煙は、セレン又はその他の金属についてはサンプリングされなかった。しかしながら、ガストン発電所で使用された石炭は同じ供給源からのものであったため、排煙中の金属レベルは、2013年のMEA試験から2014年のAPBS試験まで大幅に変化していなかったであろう。セレンのレベルは、実施終了時のMEAサンプルで3倍高く、このレベル(1950ppb重量)は、RCRAの限界である1000mg/L(比重1.0の液体のppb重量と同じ)のほぼ2倍である。
CO2純度
APBS試験を、詳細なパラメトリック試験及びaMDEA溶媒によるベースラインのため2014年7月から2015年6月まで行った。プラントでAPBSを使用した後、吸収装置の上部から放出されるCO2はごくわずかであった。吸収装置の上部から出るメタンリッチ流には2%モルのCO2が含まれているはずであることから、この要件を満たすために全ての最適化試験を実施した。
正味ローディング容量
aMDEAが直面した主な運転上の課題の1つは、週に1回の発泡であり、これにより、プラントの運転が過度に停止し、バイオガスの処理が失われ、収益が失われた。対照的に、APBSを使用しても、吸収体に発泡は起こらなかった。
エネルギー
APBSを使用すると、熱エネルギー及び電気エネルギーをそれぞれ最大約20%及び約40%節約することができる。APBSは泡立ちを1回も発生させなかったため、APBSはバイオガス処理の生産性を向上させることができる。溶媒寿命が長く、腐食速度が非常に遅いため、APBSを使用することで、プラント寿命全体に対する投資を削減することができる。
二酸化炭素を含む少なくとも1つの第1の組成物を少なくとも1つの第2の組成物と接触させて、前記第1の組成物の二酸化炭素を前記第2の組成物に少なくとも部分的に溶解することを含む方法であって、
前記第2の組成物は水性溶媒であり、かつ、
25℃で0.1kPa未満の蒸気圧を有するアミノヒンダードアルコールを含み、ここで、前記アミノヒンダードアルコールは、2-メチルアミノ-2-メチル-1-プロパノールと2-アミノ-2-メチルプロポノールとを合わせたものであり、
前記2-メチルアミノ-2-メチル-1-プロパノールは、前記溶媒の0.8重量%~5重量%存在し、
前記2-アミノ-2-メチルプロポノールは、前記溶媒の10重量%~32重量%存在し、
前記第2の組成物は25℃で0.009kPa未満の蒸気圧を有するポリアミンをさらに含み、ここで、前記ポリアミンは、2-ピペラジン-1-エチルアミンとジエチレントリアミンとを合わせたものであり、
前記2-ピペラジン-1-エチルアミンは、前記溶媒の10重量%~35重量%存在し、
前記ジエチレントリアミンは、前記溶媒の0.1重量%~4重量%存在し、
前記第2の組成物は炭酸カリウム緩衝液をさらに含み、
ここで、前記溶媒は、25℃で1.85kPa未満の蒸気圧を有する、方法。
CARBON CAPTURE SOLVENTS HAVING ALCOHOLS AND AMINES AND METHODS FOR USING SUCH SOLVENTS
TECHNICAL FIELD
[0001] This application relates generally to and more particularly to carbon capture.
TECHNICAL BACKGROUND
[0002] Separating CO2 from gas streams has been commercialized for decades in food production, natural gas sweetening, and other processes. Aqueous monoethanolamine (MEA) based solvent capture is currently considered to be the best commercially available technology to separate CO2 from exhaust gases, and is the benchmark against which future developments in this area will be evaluated. Unfortunately, amine-based systems were not designed for processing the large volumes of flue gas produced by a pulverized coal power plant. Scaling the amine-based CO2 capture system to the size required for such plants is estimated to result in an 83% increase in the overall cost of electricity from such a plant.
[0003] Accordingly, there is always a need for an improved solvent.
INTRODUCTION OF THE INVENTION
[0004] Embodiments described herein include, for example, compounds and compositions, and methods of making and methods of using the compounds and compositions. Systems and devices can also be provided which use these compounds and compositions and relate to the methods. For illustration, this disclosure relates to a carbon capturing solvent ("APBS") and a methods for treating industrial effluent gases using the solvent. The solvent disclosed herein removes CO
2 at a more efficient rate than MEA and degrades at a rate lower than other solvents (e.g., MEA).
[0005] In one embodiment, the composition and method disclosed herein may be implemented at various types of industrial plants, including power plants, for example. In one example, the solvent may include an aqueous mixture of 2-amino-2-methylproponol, 2-piperazine-1-ethylamine, diethylenetriamine, 2-methylamino-2-methyl-1-propanol, and potassium carbonate buffer salt. The composition may also contain less than about 75% by weight of dissolving medium (i.e., water) and may have a single liquid phase. In another example, the solvent may include an aqueous mixture of amino hindered alcohol, polyamine with three or more amino group and a carbonate buffer salt.
[0006] Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of the following detailed description exemplifying the best mode for carrying out the disclosure.
DESCRIPTION OF THE DRAWINGS
[0007] Embodiments of devices, systems, and methods are illustrated in the figures of the accompanying drawings which are meant to be exemplary and not limiting, in which like references are intended to refer to like or corresponding parts, and in which:
[0008] FIG. 1 illustrates APBS vapor liquid equilibrium data at 40 C and 120 C to determine CO2 loading (mol/L) versus the partial pressure of CO
2 (kPa);
[0009] FIG. 2 illustrates APBS solvent vapor liquid equilibrium data as compared to MEA according to the present disclosure;;
[0010] FIG. 3 illustrates a flow-scheme of a carbon capture pilot according to the present disclosure;
[0011] FIG. 4 illustrates corrosion/solvent metal content MEA (30 wt.%) and APBS according to the present disclosure;
[0012] FIG. 5 illustrates ammonia emissions during a pilot plant campaign according to the present disclosure;
[0013] FIG. 6 illustrates aerosol particle size distribution according to the present disclosure;
[0014] FIG. 7 illustrates the effect of L/G ratio on regeneration efficiency according to the present disclosure;
[0015] FIG. 8 illustrates the effect of stripper pressure on regeneration efficiency according to the present disclosure; and
[0016] FIG. 9 illustrates methane recovery using solvent according to the present disclosure.
DEFINITIONS
[0017] As used herein, the term "solvent" can refer to a single solvent or a mixture of solvents and may be used interchangeable with the term "composition".
DETAILED DESCRIPTION
[0018] The detailed description of aspects of the present disclosure set forth herein makes reference to the accompanying drawings and pictures, which show various embodiments by way of illustration. While these various embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that logical and mechanical changes may be made without departing from the spirit and scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not limited to the order presented. Moreover, references to a singular embodiment may include plural embodiments, and references to more than one component may include a singular embodiment. As used herein, the term "solvent" can refer to a single solvent or a mixture
of solvents and may be used interchangeable with the term "composition."
[0019] Generally, this disclosure provides a composition and method of using the composition to reduce or eliminate CO
2 emissions from a process steam, e.g., as coal-fired power plants, which burn solid fuels. The solvent and method disclosed herein capture/sequester CO
2 from flue gases. The flue gases may be generated by gas and oil fired boilers, combined cycle power plants, coal gasification, and hydrogen and biogas plants.
[0020] In one embodiment, a solvent an amino hindered alcohol with vapor pressure less 0.1 kPa at 25 C and a polyamine with three or more amino groups with vapor pressure less 0.009 kPa at 25 C , and a carbonate buffer to buffer the solvent to a pH greater than 8 (e.g., a pH of about 8, about 10, or about 13). The solvent can have a vapor pressure less than 1.85 kPa at 25 C.
[0021] In another embodiment, a polyamine with vapor pressure less than 0.009 kPa at 25 C (e.g., as 2-Piperazine-1-ethylamine or diethylenetriamine) creates resiliency to an aerosol phase emissions due to very low pressure, which may result of carbamate reaction with CO2. The amino hindered alcohol with vapor pressure less 0.1 kPa at 25 C will form aerosol phase emissions due to carbonate/bicarbonate reaction with CO2. In specific embodiment, a hindered alcohol with a polyamine with low vapor pressure (0.009) yields less than 32 mg/Nm3 aerosol formation. In specific embodiment, a hindered alcohol with a polyamine with low vapor pressure (0.009) yields less than 28 mg/Nm3 aerosol formation. In other embodiments, a hindered alcohol with a polyamine with low vapor pressure (0.009) yields more than half of aerosols being less than 32 mg/Nm3. In another embodiment, a hindered alcohol with a polyamine with low vapor pressure (0.009) yields more than half of the aerosols being less than 28
mg/Nm3.
[0022] In one example, the solvent may include an aqueous solution of 2-amino-2-methylproponol, 2-Piperazine-1-ethylamine, diethylenetriamine, 2-methylamino-2-methyl-1-propanol, and potassium carbonate. The solvent and method have favorable solvent regeneration (i.e., amount of input energy is low), chemical stability, vapor pressure, total heat consumption, net cyclic capacity, and reaction kinetics. The solvent and method also result in low emission of aerosols and nitrosamines, and substantially no foaming.
[0023] In one example, the solvent comprises an amino hindered alcohol having a vapor pressure less than 0.1 kPa at 25 C, a polyamine with three or more amino groups having vapor pressure less 0.009 kPa at 25 C, and a carbonate buffer. The solvent has a vapor pressure less than 1.85 kPa at 25 C. The polyamine can be 2-Piperazine-1-ethylamine and diethylenetriamine together, and the amino hindered alcohol can be 2-Methylamino-2-methyl-1-propanol and 2-amino-2-methylproponol together.
[0024] For illustration, 2-amino-2-methylproponol and 2-Methylamino-2-methyl-1-propanol are sterically hindered alcohols that have low absorption heats, high chemical stabilities, and relatively low reactivity. Piperazine-1-ethylamine and diethylenetriamine have very high, fast kinetics and are chemically stable under the conditions disclosed herein. Piperazine-1-ethylamine and diethylenetriamine have very low volatilities, which reduce environmental concerns of the disclosed solvent. Piperazine-1-ethylamine and diethylenetriamine may act as promoters for 2-amino-2-methylproponol and 2-methylamino-2-methyl-1-propanol to provide high absorption activity and fast reaction kinetics.
[0025] The CO
2 solvent may contain a carbonate buffer. A pH range for the carbonate buffer may be between about 8.0 and about 13. The presence of the carbonate buffer can increase the pH of the solvent. A pH of about 8.0 to about 9.0 allows for increased CO
2 capture in the form of bicarbonate salts. The carbonate buffer may be regenerated when the solvent is heated. For example, percarbonate may be utilized.
[0026] Carbonate buffer salts may also be used. The amount of carbonate buffer salt used should be sufficient to raise salivary pH to about 7.8 or more, about 8.5 or more, or about 9 or more (e.g., about 9 to about 11), irrespective of the starting pH. Thus, the amount of carbonate buffer salt used in the solvent will depend upon implementation conditions. In an example, the carbonate buffer salt may be sodium carbonate, potassium carbonate, calcium carbonate, ammonium carbonate, or magnesium carbonate.
[0027] Bicarbonate salts may also be used. Exemplary bicarbonate salts include, for example, sodium bicarbonate, potassium bicarbonate, calcium bicarbonate, ammonium bicarbonate, and magnesium bicarbonate.
[0028] Binary buffer compositions may additionally be utilized. An exemplary binary buffer composition includes a combination of sodium carbonate and sodium bicarbonate. In an example, the sodium bicarbonate of the solvent may be dessicant-coated sodium bicarbonate.
[0029] An amount of carbonate buffer and amine promoter in the solvent may be limited by the solubility of both components in water, resulting in a solid solubility limit for aqueous solutions. For example, at 25 C, the solubility of potassium carbonate buffer in a CO
2 rich solution is 3.6 m. With the solid solubility limitation, the resulting lower concentration can result in a slow reaction rate and low solution capacity. By combining Piperazine-1-ethylamine, Diethylenetriamine, and carbonate buffer, for example, the resultant solubility increases.
[0030] When promoter absorbent amines such as Piperazine-1-ethylamine and Diethylenetriamine reach with CO
2, an equilibrium reaction occurs to form carbamate and dicarbamate and some free and bound promoter amines. Because of the addition of carbonate buffer salt, which reacts with free and bound promoter amines, the equilibrium reaction is driven to completion, thereby resulting in more CO
2 absorption.
[0031] In an example, the solvent contains 2-amino-2-methylproponol in an amount of about 10 wt% to about 32 wt%, about 11 wt% to about 28 wt%, and preferably in an amount of about 13 wt% to about 25 wt%. When about 12 vol% CO
2 is experienced at the inlet of a flue gas CO
2 capture system, about 19.5 wt% of 2-amino-2-methylproponol may be desirable. When about 4 vol% CO
2 is experienced at the inlet of a flue gas CO
2 capture system, about 13.3 wt% of 2-amino-2-methylproponol may be desirable. When about 40 vol% CO
2 is experienced at the inlet of a biogas CO
2 capture system, about 24.2 wt% of 2-amino-2-methylproponol may be desirable.
[0032] In another example, the solvent contains 2-Piperazine-1-ethylamine in an amount of about 10 wt% to about 35 wt%, about 12 wt% to about 30 wt%, and preferably in an amount of about 14 wt% to about 28 wt%. When about 12 vol% CO
2 is experienced at the inlet of a flue gas CO
2 capture system, about 22.4 wt% of 2-Piperazine-1-ethylamine may be desirable. When about 4 vol% CO
2 is experienced at the inlet of a flue gas CO
2 capture system, about 27.6 wt% of 2-Piperazine-1-ethylamine may be desirable. When about 40 vol% CO
2 is experienced at the inlet of a biogas CO
2 capture system, about 15.15 wt% of 2-Piperazine-1-ethylamine may be desirable.
[0033] In a further example, the solvent contains diethylenetriamine in an amount of about 0.1 wt% to about 4 wt%, about 0.1 wt% to about 3 wt%, and preferably in an amount of about 0.1 wt% to about 0.35 wt%. When about 12 vol% CO
2 is experienced at the inlet of a flue gas CO
2 capture system, about 0.2 wt% of diethylenetriamine may be desirable. When about 4 vol% CO
2 is experienced at the inlet of a flue gas CO
2 capture system, about 0.35 wt% of Diethylenetriamine may be desirable. When about 40 vol% CO
2 is experienced at the inlet of a biogas CO
2 capture system, about 0.1 wt% of diethylenetriamine may be desirable.
[0034] In yet another example, the solvent contains 2-Methylamino-2-methyl-1-propanol in an amount of about 0.8 wt% to about 5 wt%, about 1 wt% to about 2.8 wt%, and preferably in an amount of about 1.2 wt% to about 1.8 wt%. When about 12 vol% CO
2 is experienced at the inlet of a flue gas CO
2 capture system, about 1.5 wt% of 2-Methylamino-2-methyl-1-propanol may be desirable. When about 4 vol% CO
2 is experienced at the inlet of a flue gas CO
2 capture system, about 1.2 wt% of 2-methylamino-2-methyl-1-propanol may be desirable. When about 40 vol% CO
2 is experienced at the inlet of a biogas CO
2 capture system, about 1.8 wt% of 2-methylamino-2-methyl-1-propanol may be desirable.
[0035] In an additional example, the solvent contains buffer (e.g., potassium carbonate) in an amount of about 0.1 wt% to about 6 wt%, about 0.2 wt% to about 3 wt%, and preferably in an amount of about 0.5 wt% to about 1.0 wt%. When about 12 vol% CO
2 is experienced at the inlet of a flue gas CO
2 capture system, about 0.5 wt% of potassium carbonate may be desirable. When about 4 vol% CO
2 is experienced at the inlet of a flue gas CO
2 capture system, about 0.7 wt% of potassium carbonate may be desirable. When about 40 vol% CO
2 is experienced at the inlet of a biogas CO
2 capture system, about 0.4 wt% of potassium carbonate may be desirable.
[0036] Characteristics of the solvent play a major role in determining both equipment size and process energy requirements. In certain circumstances, the following factors can be considered when choosing a solvent:
・Regeneration energy: since the exothermic reactions taking place in the absorber are reversed by addition of heat in a reboiler, a solvent having a low or lower heat of absorption is desirable;
・Cyclic capacity (the difference between CO
2 concentration in the solvent leaving the absorber and that leaving the reboiler): a solvent having a high or higher cyclic capacity is desirable since higher cyclic capacities result in a lower rebolier duty, reduced electrical consumption in pumps, and possible downsizing of equipment, which results in lower investment costs;
・Evaporation loss: a solvent has high evaporation loss, a water wash section is needed on top of the absorber. Thus, a solvent having a low evaporation loss is desirable, thereby eliminating the need for a water wash section;
・Solubility in water: amines with bulky non-polar parts showing limited solubility in water. Thus, a solvent having amines soluble in water is desirable;
・Chemical stability: a solvent that is not vulnerable to oxidative degradation is desired. A problem with MEA is its vulnerability towards oxidative degradation when exposed to an exhaust gas;
・Corrosivity: the solvent, as well as its possible degradation products, should exhibit limited corrosivity;
・Foaming: if not controlled, foaming may lead to gas cleaning and mal-distribution of liquid flow in the absorption tower, thus reducing its performance. Accordingly, a solvent exhibiting minimal to no foaming is desirable;
・Toxicity and environment impact: a solvent exhibiting minimal to no toxicity and environmental impact is desirable; and
・Aerosol and nitrosamine emissions: since aerosols and nitrosamine are volatile, a solvent exhibiting minimal to no production of aerosols and nitrosamine is desirable.
Certain exemplary solvents have characteristics with respect to the aforementioned criteria compared to other solvants (e.g., MEA), presently accepted industry standard. These characteristics are exemplified through the below detailed experiments involving MEA as a reference solvent. Certain solvents disclosed herein has low energy requirements and good chemical stability. The method of using the solvent disclosed herein makes use of the solvent's characteristics, resulting in the method having a low energy consumption with minimal environment impact. Other benefits of the disclosed solvent and method will become apparent in light of the description set forth herein.
A variety of container, absorber, or tower devices as known in the art can be used for the contacting step. The size and shape, for example, can be varied. The container can have one or more input ports and one or more exit ports. For example, the contacting step can be carried out in an absorption column. In the contacting step, a gas such as the first composition can be passed through a liquid composition such as the second composition. One can adapt the parameters to achieve a desired percentage of carbon dioxide capture such as, for example, at least 70%, or at least 80%, or at least 90% carbon dioxide capture. Recycling can be carried out where solvent is looped back into a reactor for further processing. In one embodiment, after the contacting step, the second composition with its dissolved carbon dioxide is subjected to one or more carbon dioxide removal steps to form a third composition which is further contacted with a first composition comprising carbon dioxide. Other known p
rocessing steps can be carried out. For example, filtering can be carried out. As known in the art, pumps, coolers, and heaters can be used.
A contacting step can be part of a larger process flow with other steps both before and after the contacting step. For example, membrane separation steps can also be carried out as part of the larger process. For example, PBI membranes can be used. The contacting step can be also part of a larger process in which components are removed. In some preferred embodiments, the contacting step is part of a carbon capture process. For example, an IGCC plant and carbon capture are described in in the literature. As known in the art, pre-combustion capture processes and compression cycles can be carried out. Continuous or batch processing can be carried out. The contacting step results in at least partial dissolution of the carbon dioxide of the first composition in the second composition.
EXAMPLES AND EXPERIMENTS
The following examples illustrate methods and embodiments in accordance with the invention.
Screening
[0037] In certain examples, a mini-vapor-liquid equilibrium ("VLE") setup was used to test exemplary solvents. The mini-VLE setup included six (6) apparatuses in parallel. The 6 apparatuses were capable of being operated at different temperatures. Different combinations of solvent components and concentrations were screened at 40 C and 120 C. These solvents components screened were 2-amino-2-methylproponol, 2-Piperazine-1-ethylamine, Diethylenetriamine, 2-Methylamino-2-methyl-1-propanol, potassium carbonate, piperazine, 2-methyl piperazine, N-ethyl ethanolamine, and N-methyl diethanolamine.
VLE Measurements Using Autoclave
[0038] VLE measurements demonstrate the relationship between partial pressure of CO
2 in the vapor phase and the loading (i.e., concentration) of CO
2 in a solvent at different temperatures. An autoclave apparatus used to perform VLE testing is described. The autoclave includes a glass vessel, a stirrer, a pH sensor, and pressure sensors. The volume of the vessel was 1 liter. Prior to commencing the experiment, pressure was brought down to -970 mbar using a vaccum pump. 0.5 liter of solvent was added to the vessel and was heated up so equilibrium could be determined at a constant temperature of the solvent. VLE was determined at several CO
2 partial pressures and temperatures.
[0039] At the start of the experiment, a CO
2 pulse was performed. A subsequent pulse was performed only if the following two conditions were satisfied: (1) the time between two pulses was at least 45 minutes; and (2) the average pressure value of 5 minutes of data did not deviate by more than 1 mbar from the average value of 5 other minutes of data points 15 minutes earlier. The latter condition ensured the subsequent pulse was only given when the pressure was stabilized. The pressure measured in the vessel at t = 0 s was subtracted from pressures measured after the CO
2 pulses. At higher temperatures, the vapor pressure of the solvent (measured in a separate experiment) was subtracted from the measured pressures.
[0040] FIGS. 4 and 6 show results of the aforementioned VLE testing. The partial pressure of CO
2 in the vapor phase increased with temperature for a given CO
2 loading in the solvent. The points of interest for a solvent based CO
2 capture process are the observed CO
2 loading at "rich" and "lean" solvent conditions. "Lean" solvent is the fresh solvent entering the absorber and is ideally free of CO
2. "Rich" solvent is the solvent leaving the absorber having absorbed as much CO
2 as possible. The two main parameters of a solvent that influence its absorption performance are (a) net cyclic capacity (i.e., the difference of rich and lean loading); and (b) kinetics due to change in the temperature of both lean solvent and flue gas.
[0041] As indicated in FIG. 3, the APBS solvent was tested at 40 C and 120 C to determine vapor equilibrium data of the APBS solvent (i.e., CO
2 loading (mol/L) versus the partial pressure of CO
2 (kPa)). The APBS solvent was screened and optimized based on CO
2 vol% at the inlet in resultant flue gases, such as coal (12 vol% CO
2)/gas (4 vol% CO
2) fired flue gases and biogas (40 vol% CO
2). The CO
2 loading of the solvent increased as the partial pressure of the CO
2 was increased. However, temperature played a role in the magnitude of CO
2 loading versus the CO
2 partial pressure.
[0042] FIGS. 5 show a comparison of vapour-liquid equilibrium data of the solvent disclosed herein (APBS 12 vol% CO
2) versus MEA at different temperatures (i.e., 40 C and 120 C); under absorber and stripper conditions. The points of interest for a solvent based CO
2 capture process are the observed CO
2 loading at "rich" and "lean" solvent conditions. "Lean" solvent is the fresh solvent entering the absorber and is ideally free of CO
2. "Rich" solvent is the solvent leaving the absorber having absorbed as much CO
2 as possible. For a typical coal fired plant (12 vol% CO
2), the CO
2 partial pressure in the exhaust gas stream is about 12 kPa. For a counter current based absorption system, the rich solvent is in contact with this flue gas at the inlet and is defined as the rich loading. Generally, the temperature of the rich solvent is taken to be 40 C. This leads to a rich loading of 3.3 mol/L for 90% CO
2 capture. The CO
2 partial pressure should not be more than 1 kPa and thus, the lean lo
ading too should not exceed the corresponding value. Based on the VLE measurements, the lean loading of the APBS solvent at CO
2 partial pressure of 1 kPa is 0.74 mol/L. Commercially this data is very important, as difference of rich and lean loading is the amount of CO
2 captured. For APBS solvents this difference is twice the benchmark solvent MEA used today, leading to 50% reduction in solvent circulation rates. Lower solvent circulation rates result in lower solvent circulation cycles, lowering overall energy, degradation, and corrosion.
Kinetic Measurement of CO
2 Reaction in Aqueous Solvent
[0043] Referring to FIG. 7, a device used to determine the kinetics of CO
2 reacting with aqueous APBS is described. The device includes a glass stirred cell reactor having a plane and a horizontal gas-liquid interface used for obtaining absorption rate measurements. The gas and liquid are stirred separately by impellers. The setup was supplied by two reservoirs (equipped with heat exchangers), one for the gas phase and one for the liquid phase.
[0044] The rate of absorption as a function of CO
2 partial pressure at various temperatures using the device of FIG. 7 are represented in Table 1 below.
Table 1. Rate of absorption as a function of CO
2 partial pressure at various temperatures.
Energy and Reboiler Duty Comparison for MEA and APBS/the solvent
[0045] For the CO
2 to be transferred from the liquid phase to the gas phase, there needs to be a driving force on the basis of partial pressure. Steam provides this driving force, resulting in the mass transfer of CO
2 from the liquid phase to the gas phase being enhanced. This also has energy associated with it, which contributes to the overall reboiler duty. By finding out the amount of water associated with the pure CO
2 steam produced (this energy being in the form of water lost that needs to be provided by the reboiler), the amount of energy associated with mass transfer of CO
2 from the liquid phase to the gas phase can be determined. The total amount of energy/heat needed to transfer CO
2 from the liquid phase to the gas phase is represented by Equation 8.
[0046] A solvent loaded with CO
2 in the absorber may be heated up to stripper temperature for the regeneration of CO
2. A solvent stream can be pre-heated in the lean-rich cross heat exchanger and then additional heat may be used to maintain the temperature of a solvent in the stripper (represented by Equation 9).
[0047] Contributing factors to sensible heat are solvent flow, specific heat capacity of a solvent, and the temperature increase. Thus, the parameter that can be varied is one solvent flow, which further depends on the concentration of one solvent and the one solvent's loadings. This can be decreased by circulating less solvent and maintaining the same CO
2 production rate. This is checked by means of comparing the net capacity of a solvent, which is defined as the difference in the loading at absorption and desorption conditions.
[0048] The CO
2 which is reversibly bound to a solvent needs to be regenerated. The heat of desorption (Q
des) is equivalent to the heat of absorption. The stripping heat is represented by Equation 10.
is the heat of vaporization of water and
is the partial pressure of CO
2 at equilibrium with the rich solution at the bottom of the absorber.
[0049] Table 2 below shows a comparison of the reboiler duty in a typical CO
2 capture plant based on 5 M MEA and APBS 12 vol% CO
2 solvent. The total heat requirement in terms of reboiler duty was 2.3 GJ/ton CO
2 for the APBS solvent, which is about 30.5% lower than that of MEA (i.e., 3.31 GJ/ton CO
2).
Table 2. Comparison of the reboiler duty in a typical CO
2 capture plant based on 5M MEA and the APBS 12 vol% solvent.
PILOT PLANT TESTING - E.ON CO
2
CAPTURE PILOT - NETHERLANDS (6 TONS/DAY CO
2
CAPTURE
[0050] The APBS 12 vol% solvent test campaign was conducted at the E.ON CO
2 capture plant in Maasvlakte, Netherlands. The CO
2 capture plant receives flue gas from unit 2 of the E.ON coal based power station. The capture plant can capture 1210 Nm
3/h of flue gas. A schematic representation of the capture plant is depicted in FIG. 8. Table 3 below is a legend for the FIG. 3 schematics and Table 4 provides the main parameters of the columns of the E.ON CO
2 capture plant.
Table 3. Legend of FIG. 8 CO
2 capture plant schematics.
Table 4. Main parameters of the E.ON capture plant columns.
Degradation of and Corrosion Caused by the APBS Solvent
[0051] Degradation of solvent often occurs either thermally or due to oxidation in the flue gas. The oxygen content of flue gas from a typical coal fired power plant is about 6 % to about 7 % by volume. Thermal solvent degradation typically occurs in hot zones such as in the stripper. However, the extent of thermal degradation is lower than oxidative degradation. Degradation of the solvent leads to loss in active component concentration, corrosion of the equipment by the degradation products formed, and ammonia emissions.
[0052] Degradation can be observed visually as shown in FIG. 9, which contains pictures of MEA and the APBS solvent over the duration of a campaign lasting 1000 operating hours. The color of degraded MEA solution is almost black while the color of degraded APBS seems to be largely unchanged from the start of the test campaign to the end. This indicates that APBS has higher resistance to degradation than MEA. Also, the APBS solvent exhibits zero foaming tendency and a high resistivity towards SO
2 in the flue gas.
[0053] As mentioned above, degradation of solvent leads to corrosion of the equipment of CO
2 capture systems. Typically, most of the equipment in contact with the solvent is stainless steel. Thus, based on the amount of metals such as Fe, Cr, Ni, and Mn dissolved in the solvent, it is possible to estimate the extent of internal plant corrosion. FIG. 4 shows the metal content of APBS and MEA during the pilot plant campaign. The metal content of APBS remained below 1 mg/L, even after 1000 operation hours. By comparison, during a previous MEA campaign at the same pilot plant, metal content of MEA was about 80 mg/L within 600 operating hours. Since the metal content of a solvent is correlated with the amount of equipment corrosion caused by the solvent, this comparison of APBS and MEA demonstrates that APBS causes less corrosion of equipment than MEA (which is known by those skilled in the art to degrade rapidly, leading to severe corrosion).
[0054] Ammonia (NH
3) is a degradation product of CO
2 capture solvents. Ammonia, since it is volatile, may only be emitted into the atmosphere in small quantities with CO
2 free flue gas. Consequently, monitoring and minimization of ammonia emission levels is essential. FIG. 5 illustrates measured ammonia emission levels of MEA and APBS during the pilot/campaign at the E.ON CO
2 capture plant. For most of the campaign, ammonia emission levels of the APBS solvent were below 10 mg/Nm
3. This is in stark contrast to the ammonia emission levels of the MEA solvent, which ranged from about 10 mg/Nm
3 to about 80 mg/Nm
3. Accordingly, APBS is a safer solvent than MEA regarding production and emission of ammonia due to degradation.
Aerosol of APBS Solvent Using Impactor and Impingers
[0055] The aerosol box has been installed at a sampling point above the water wash section of the pilot plant. From prelimairy tests it has been decided to raise the temperature in the aerosol box 1.5 C above the temperature monitored in the sorption tower and at the measurment location, It takes some time for the conditions in the pilot plant to stabilize as the internal temperature of the aerosol box very fast in order to condition the Anderson cascade inpactor. The duration of the first measurment was for 63 min. The second measurment was of atlost equal duration (66 min). At the end of 66 min, the impinger sampling was continued. In the first measurment the temperature at the sample location varied between 39.94 and 41.05 C, while the temperature in the aerosol measurement box varies between 40.8 and 42.2 C. In the second measurment the temperature at the sample location varies between 39.7 and 41.4 C and the aerosol bix temperature between 40.7 and 42.2 C. Samples from aerosol t
rapped from the 28.3 L/min flow through the impactor stages and collected by adding 5 mLof water to vials with each one of the filter papers. After shaking the vials, the 8 liquid volumes are added for further abalysis by LC-MS.
[0056] Table 10 shows the results from the solvent components polyamine and the amino hindered alcohol from impactor (aerosol) droplets and impingers (vapour). As per the results of experiment 1, most of the amines are found from the impactor. The absolute amount of 2-Piperazine-1-ethylamine is as expected. Moreover the ratio of 2-amino-2-methylproponol and 2-Piperazine-1-ethylamine is as expected. The results from experiments 2 indicate that more amount of amines is present in the impingers rather than the impactor. This is due to the fact that the second hour of the sampling included both aerosols and vapour based emissions. Thus, most of the contribution in the impingers is due to the aerosol component.
[0057] The concentration of amines in the droplets collected by the impactor is about 3 wt. %. Thus, most of content of the droplets is water. This is quite low as compared to MEA aerosols, whose concentration in the droplets is greater than 50 wt. %. from experiments performed at the pilot plant using a similar method.
Table 5. Resiliency of APBS as compared to MEA regarding aerosol solvent emissions.
[0058] The aerosol box separates particles into one of eight stages with a particle distribution from 0.43 mm to 11 mm. Stage 1 contains the biggest particles, stage 8 contains the smallest. In the first measurement, most aerosol particles were collected on the top three stages with a maximum near 5.8 mm to 9 mm. In the second measurement, most aerosol particles were collected on the top four stages with a maximum near 4.7 mm to 5.8 mm. The total weight collected from all the stages was 421 mg and 690 mg for the first and second experiments, respectively. The corresponding aerosol concentration was 271 mg/Nm
3 and 423 mg/Nm
3 for first and second measurements, respectively. The aerosol particle size distribution over the eight stages for both measurements is given in FIG. 6. Overall, this demonstrates that APBS is more resilient to aerosol production/formation than MEA.
Nitrosamine Emissions of APBS Solvent Using Impactor and Impingers
[0059] Nitrosamines are known to be carcinogenic. However, nitrosamines are also present in the environment. Thus, it is important to quantify the extent of nitrosamines accumulated in the solvent and emitted to the atmosphere. Primarily, secondary amines form nitrosamines on reaction with NO
3
- accumulated in the solvent from the flue gas. However, it is a very tedious task to list all the specific nitrosamines. Thus, only the total nitrosamines in the form of the functional group "NNO". Table 8, the nitrosamine content of the first impinge was below the measured threshold , i.e <15 ug/kg, the content for the second impinge is 15 ug/kg. A total of <15 ug/kg * 0.1 kg + 15 ug/kg*0.1 kg is less than 3 ug total nitrosamines in the 66+60 min duration of the experiment. The resulting nitrosamine concentration in the vapor phase at the sample location is <4.4 ug/Nm3.
Table 6. Nitrosamine content in samples from two impingers placed in series.
PILOT TESTING - US-DOE'S NATIONAL CARBON CAPTURE CENTER (NCCC) - 4 VOL% CO
2
FLUE GAS
[0065] The APBS 4 vol% solvent test campaign was conducted at US-DOE's NCCC CO
2 capture pilot plant at the Southern Company in Alabama. The APBS solvent was specifically developed to capture 3-6 vol% CO
2 from flue gas emissions gas based power generations.
APBS TESTING: 4 VOL% CO
2 NCCC CO
2 Capture Pilot Plant
[0066] The APBS testing was conducted from March 2014 to April 2014 and February 2015 to March 2015 for detailed parametric testing and baseline using state of the art MEA solvent. Table 7 below details a summary of the test data collected from the NCCC pilot testing. All of the testing involved the following conditions:
(1) APBS solvent;
(2) Wash water flow = 10,000 lb/hr;
(3) Wash water section exit gas temperature = 110 F;
(4) Three stages of packing (J19 was packed with 2 beds);
(5) No inter-stage cooling; and
(6) Steam at 35 psi and 268 F (enthalpy = 927 Btu/lb).
Table 7. Summary of test data from PSTU at NCCC (all runs with 4.3% CO
2 wet).
Effect of L/G Ratio
[0067] The stripper pressure was held constant at 10 psig for runs J3 to J5. The regeneration energy goes through a minima at L/G = 0.75 w/w (or 6,000 lb/hr liquid flow for 8,000 lb/hr of gas flow). The "smooth curve" minima was at L/G ratio of about 0.76 (w/w) and about 1,416 Btu/lb. Table 8 below details the data plotted in FIG. 7.
Table 8. Data plotted in FIG. 7.
Effect of Stripper Pressure
[0068] The effect of the stripper pressure on regeneration efficiency is shown in FIG. 8. The L/G ratio was held constant at 0.75 w/w. The regeneration energy goes through sharp minima at stripper pressure close to 15 psig. The "smooth curve" minima is at stripper pressure of about 14 psig and 1,325 Btu/lb CO
2. Table 9 below details the data plotted in FIG. 8.
Table 9. Data plotted in FIG. 8.
Optimal L/G Ratio and Stripper Pressure
[0069] The CO
2 absorption efficiency for Run J15 (illustrated in Table 8) was 92.5%, which had the minimum energy of regeneration. This shows that the regeneration energy for the conditions of Run J15, but for CO
2 removal efficiency of 90%, would have been about 1,290 Btu/lb CO
2 (or 3.0 GJ/ton CO
2). From the plots in FIGS. 7 and 8, a global minimum value below 1,250 Btu/lb (2.9 GJ/ton CO2) should be obtained to achieve 90% CO
2 capture at NCCC with G = 8,000 lb/hr, L/G ratio of 0.76 (or L = 6,080 lb/hr), and a stripper pressure of 14.5 psig.
Effect of Inter-Cooling
[0070] Runs J16 and J17 were performed under the same conditions, except run J17 was carried out with inter-cooling. The regeneration energy reduced only slightly (less than 0.3%) to 1,434.4 Btu/lb CO
2 with the use of inter-cooling, suggesting that inter-cooling may not be effective in reducing the regeneration energy for 4 vol% CO
2 flue gas.
Effect of Number of Packed Beds
[0071] Runs J16 and J19 were performed under the same conditions, except run J19 was carried out 2 beds. The regeneration energy increased to 1,515.1 Btu/lb CO
2 with the use of 2 beds, but the CO
2 removal efficiency was slightly higher at 90.4% (as against 89.5% for run J16). This shows that the APBS solvent of the present disclosure was capable of removing 90% CO
2 with two packed beds (of 6 meter or 20' packing in PTSU) with about 5% more regeneration energy as compared to that required with 3 beds.
Expected Minimum Energy Consumption
[0072] The projected regeneration energy for 90% CO
2 capture (1,290 Btu/lb CO
2 or 3.0 GJ/ton CO
2) using the solvent of the present disclosure is 35% to 40% lower than the values reported for MEA for gas-fired boiler flue gas. However, this is not the lowest achievable value for the APBS solvent. The PSTU was designed for operation using 30% MEA with the flexibility to accommodate other solvents, but the NCCC lean/rich heat exchanger was not designed for the higher viscosity of the APBS solvent relative to 30% MEA. Thus, the measured approach temperatures during the APBS solvent test were higher than those for MEA leading to less than optimal heat recovery.
[0073] Simulations with g-PROMs have predicted that with an optimal lean/rich heat exchanger and an advanced stripper design, the minimum regeneration energy of 1,200 Btu/lb CO
2 (2.8 GJ/ton CO
2) can be achieved for CO
2 removal of 90% under the following conditions:
(1) Flue gas with 4.3 vol% CO
2 and 16 vol% O
2 (G = 8,000 lb/hr at PSTU);
(2) Absorber gas velocity = 9 ft/sec (PSTU absorber diameter = 2', Area = 3.142 ft
2);
(3) L/G ratio of 0.76 w/w (or L = 6,080 lb/hr at PSTU); and
(4) Stripper pressure = 14.5 psig.
Effect of Oxygen: Ammonia Emissions (16 vol% O
2)
[0074] Table 10 illustrates ammonia (NH
3)
emissions measured in the vapor stream at the wash water outlet in the PSTU at NCCC for a flue gas with 4.3 vol% CO
2 and 16 vol% O
2 (simulating a natural gas fired boiler). As can be extrapolated, the average ammonia emissions were 3.22 ppm. The NH
3 emissions measured at the PSTU while treating a flue gas with 11.4 vol% CO
2 and 8 vol% O
2 (from coal-fired boiler) with MEA as the solvent were 53.7 ppm. This is almost 17 times higher than the average for APBS solvent (3.22 ppm), which was measured with almost twice the amount of O
2 in the flue gas.
Table 10. Ammonia emissions with APBS solvent (4.3 vol% CO
2, 16 vol% O
2.
Dissolved Metals Concentrations
[0075] During tests, samples were taken for fresh solvent at the beginning of the test runs and from spent solvent at the end of the test runs. Similar tests were carried out for MEA runs in 2013. A comparison of the results of the APBS solvent and MEA tests is depicted in Table 11.
Table 11. Metal concentrations in solvents before and after the test runs (ppb wt).
[0076] As can be seen, the level of chromium for MEA was more than 22 times that in the APBS solvent, after two months of testing. This indicates that MEA is much more corrosive than the APBS solvent.
[0077] NCCC has concluded that the major source of selenium may be the flue gas. The inlet flue gas with APBS solvent testing was not sampled for selenium or other metals. However, since the coal used at the Gaston power plant was from the same source, the metals level in the flue gas would not have changed significantly from MEA tests in 2013 to those for APBS in 2014. The level of selenium is three times higher in the MEA sample at the end of the runs, and this level (1,950 ppb wt) is almost twice of the RCRA limit of 1,000 mg/L (which is the same as ppb wt for a liquid with specific gravity of 1.0).
CO
2 Purity
[0078] The CO
2 stream after the condenser was analyzed and it was found to be consistently higher than 97 vol% in CO
2 with about 2.5 vol% water vapor and 210 ppm N
2.
APBS Emissions Testing
[0079] An analysis of amines and degradation products in the gas leaving the water wash was conducted. The results are summarized in Tables 12 and 13 below.
Table 12. Analysis of non-condensed vapor at wash tower outlet (May 2015).
Table 13. Details of compounds analyzed for data in Table 11 (May 2015).
APBS Nitrosamines Testing
[0080] Detailed Nitrosamine APBS solvent testing was performed. In all three samples tested (CCS-WTO-7, CCS-WTO-8 and CCS-WTO-10), the values of N-Nitroso-diethanolamine and a series of nitrosoamines were below detection limits of the two methods used. The results are summarized in Tables 14 and 15 below.
Table 14. Test for N-Nitrosodiethanolamine by OSHA Method 31-Modified (April 2015).
Table 15. Results for Nitrosamines by NIOSH 2522-Modified (April, 2015).
TESTING - MT BIOMETHANE BIOGAS UP-GRADATION CO
2
CAPTURE PILOT PLANT - 40 VOL% CO
2
BIOGAS
[0081] An APBS 40 vol% solvent test campaign was conducted at the MT Biomethane biogas up-gradation CO
2 capture pilot plant in Zeven, Germany. The APBS solvent was specifically developed to capture 40 vol% CO
2 from biogas. The MT Biomethane facility has a biogas up-gradation capacity of 200 to 225 Nm
3/hr. Agricultural waste is used to produce biogas using a digester. The heat needed for regeneration of the solvent was provided by hot water.
APBS Testing: 40 vol% CO
2 Capture Pilot Plant
[0086] The APBS testing was conducted from July 2014 to June 2015 for a detailed parametric test and baseline with an aMDEA solvent. After APBS was used by the plant, CO
2 released through the absorber top was negligible. The methane rich stream leaving from the top of the absorber should contain 2% mol of CO
2, hence all the optimization test was conducted to meet this requirement.
Net Loading Capacity
[0087] It has been observed that the APBS solvent has a net loading capacity for CO
2 1.5 times higher than aMDEA. FIG. 15 illustrates the results of a capacity comparison of aMDEA and APBS. As easily seen, APBS has a higher capacity for CO
2 than does aMDEA. A higher capacity of a solvent for CO
2 leads to a decrease in circulation rate of the solvent, and hence a reduction in size of the equipment needed.
Recovery of Methane From Biogas
[0088] FIG. 9 illustrates methane recovery using APBS solvent. As APBS is inert to methane, the recovery from biogas is > 99.9%.
Foaming
[0089] One of the major operational problems encountered by aMDEA was foaming once a week, which lead to undue stoppage of plant operations and loss of processing of biogas, and hence revenue. In contrast, the use of APBS did not result in any foaming in the absorber.
Energy
[0090] FIG. 17 illustrates thermal and electrical energy performance of APBS. The average thermal energy for APBS is about 0.55 kWh/Nm
3 of raw biogas. The electrical energy was 0.1 kWh/Nm
3 of raw biogas.
Make-Up Chemicals
[0091] Over a period of time, due to vapor pressure and degradation, performance of aMDEA starts to diminish. Thus, a regular make-up of chemicals are needed to achieve required performance using aMDEA. In the case of APBS, it has been observed that there is no need for make-up chemicals. FIG. 18 illustrates a comparison of aMDEA and APBS make-up chemicals needed for on-going operations.
MT Biomethane Biogas Up-Gradation CO
2 Capture Pilot Plant Testing
[0092] Use of APBS leads to
savings in thermal and electrical energy up to about 20% and to about 40%, respectively. Since APBS did not lead to a single occurrence of foaming, APBS can increase productivity of biogas processing. Due to higher solvent life and very low corrosion rate, the overall investment over the plant life can be decreased by using APBS.
1. A solvent comprising:
an amino hindered alcohol having a vapor pressure less than 0.1 kPa at 25 C,
a polyamine with three or more amino groups having vapor pressure less 0.009 kPa at 25 C, and
a carbonate buffer,
wherein the solvent has a vapor pressure less than 1.85 kPa at 25 C.
2. The solvent of claim 1, wherein the polyamine is 2-piperazine-1-ethylamine and diethylenetriamine together, and the amino hindered alcohol is 2-methylamino-2-methyl-1-propanol and 2-amino-2-methylproponol together.
3. The solvent of claim 2, wherein the carbonate buffer creates a pH selected from the group consisting of about 7.8 or more, about 8.5 or more, and about 9 or more.
4. The solvent in claim 2, wherein the carbonate buffer increases CO2 absorption by less than 6 wt.
5. The solvent in claim 2, wherein piperazine-1-ethylamine and diethylenetriamine increase the solubility of CO2 at 25 C by more than 3.6 molar.
6. The solvent in claim 1, wherein the wherein the polyamine, amino hindered alcohol and carbonate buffer together exhibit substantially no foaming.
7. The solvent in claim 1, wherein the potassium carbonate buffer increase the resistivity of SO2 reaction with polyamine and amino hindered alcohol by more than 2 wt%
8. The solvent of claim 2, wherein the carbonate salt is selected from the group consisting of sodium carbonate, potassium carbonate, calcium carbonate, ammonium carbonate, magnesium carbonate, and a combination thereof.
9. The solvent of claim 1, wherein the wt% of the amino hindered alcohol is between about 10 wt% to about 32 wt% and the polyamine is about 13 wt% to about 25 wt%.
10. The solvent of claim 1, wherein a wt% of the polyamine is about 0.1 wt% to about 4 wt%.
11. The solvent of claim 2, wherein a wt% of 2-amino-2-methylproponol in the CO2 solvent is about 10 wt% to about 32 wt%.
12. The solvent of claim 12, wherein the wt% of 2-amino-2-methylproponol in the CO2 solvent is about 13 wt% to about 25 wt%.
13. The solvent of claim 2, wherein a wt% of 2-piperazine-1-ethylamine in the CO2 solvent is about 10 wt% to about 35 wt%.
14. The solvent of claim 13, wherein the wt% of 2-piperazine-1-ethylamine in the CO2 solvent is about 14 wt% to about 28 wt%.
15. The solvent of claim 1, wherein the wt% of the amino hindered alcohol is between about 10 wt% to about 32 wt% and the polyamine is about 13 wt% to about 25 wt%.
16. The solvent of claim 2, wherein a wt% of diethylenetriamine in the CO2 solvent is about 0.1 wt% to about 4 wt%.
17. The CO2 solvent of claim 16, wherein the wt% of diethylenetriamine in the CO2 solvent is about 0.2 wt% to about 0.35 wt%.
18. The solvent of claim 1, wherein a wt% of 2-methylamino-2-methyl-1-propanol in the CO2 solvent is about 0.8 wt% to about 5 wt%.
19. The solvent of claim 17, wherein the wt% of 2-methylamino-2-methyl-1-propanol in the CO2 solvent is about 1.2 wt% to about 1.8 wt%.
20. The solvent of claim 1, wherein a wt% of buffer in the CO2 solvent is about 0.1 wt% to about 6 wt%.
21. The solvent of claim 19, wherein the wt% of buffer in the CO2 solvent is about 0.5 wt% to about 1.0 wt%.
22. The solvent of claim 1, wherein the promoter aqueous solution comprises 2-amino-2-methylproponol, 2-piperazine-1-ethylamine, diethylenetriamine, and 2-methylamino-2-methyl-1-propanol.
23. The solvent of claim 1, wherein the polyamine is 2-Piperazine-1-ethylamine aerosolizes less than 5.6 mg/Nm3.
24. The solvent of claim 1, wherein the amino hindered alcohol is 2-amino-2-methylproponol which aerosolizes less than 16.4 mg/Nm3.
25. A method comprising: contacting at least one first composition comprising carbon dioxide with at least one second composition to at least partially dissolve the carbon dioxide of the first composition in the second composition, wherein the second composition comprises at an amino hindered alcohol, a polyamine with three or more amino groups, and a carbonate buffer.
26. The solvent of claim 25, wherein the polyamine is 2-piperazine-1-ethylamine and diethylenetriamine together, and the amino hindered alcohol is 2-methylamino-2-methyl-1-propanol and 2-amino-2-methylproponol together.
27. The solvent of claim 25, wherein the polyamine is 2-Piperazine-1-ethylamine aerosolizes less than 5.6 mg/Nm3.
28. The solvent of claim 25, wherein the amino hindered alcohol is 2-amino-2-methylproponol which aerosolizes less than 16.4 mg/Nm3.
29. The solvent in claim 25, wherein the polyamine with vapor pressure less than 0.009 kPa at 25 C and the solvent forms aerosols that are less than 5.6 mg/Nm3.
30. The solvent in claim 25, wherein the amino hindered alcohol with vapor pressure less than 0.1 kPa at 25 C and the solvent forms aerosols that are less than 16.4 mg/Nm3.
31. The solvent of claim 25, wherein the amino hindered alcohol and polyamine concentration of amines in the aerosols droplets are less 3 wt%