(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022077634
(43)【公開日】2022-05-24
(54)【発明の名称】蓄電装置
(51)【国際特許分類】
H01M 10/0585 20100101AFI20220517BHJP
H01M 10/052 20100101ALI20220517BHJP
H01M 4/66 20060101ALI20220517BHJP
H01M 50/183 20210101ALI20220517BHJP
【FI】
H01M10/0585
H01M10/052
H01M4/66 A
H01M2/08 Z
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2020188530
(22)【出願日】2020-11-12
(71)【出願人】
【識別番号】000003218
【氏名又は名称】株式会社豊田自動織機
(74)【代理人】
【識別番号】100105957
【弁理士】
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【弁理士】
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】秋山 泰有
【テーマコード(参考)】
5H011
5H017
5H029
【Fターム(参考)】
5H011AA17
5H011FF01
5H011GG01
5H011JJ12
5H011KK02
5H017AA03
5H017AS03
5H017EE01
5H029AJ05
5H029AJ12
5H029AK01
5H029AK03
5H029AL06
5H029AL07
5H029AL11
5H029AL12
5H029AM03
5H029AM04
5H029AM07
5H029BJ12
5H029BJ17
5H029DJ03
5H029DJ04
5H029DJ07
5H029HJ07
5H029HJ12
(57)【要約】
【課題】負極集電体から空間を満たす電解液中への銅の溶出を抑制する。
【解決手段】シール部材50は、正極集電体32の正極表面32aと、負極集電体22の負極表面22aと、の間に配置されている。シール部材50は、第1方向X及び第2方向Yにおいて、正極活物質層33及び負極活物質層23を囲んでいる。負極集電体22は銅からなる。負極表面22aは、積層方向Zから見た平面視で、負極活物質層23及びシール部材50によって覆われている。負極活物質層23及びシール部材50は互いに当接している。
【選択図】
図1
【特許請求の範囲】
【請求項1】
積層方向に複数積層する集電体と、
前記積層方向における前記集電体の一方面である第1面に配置される正極活物質層と、
前記積層方向における前記集電体の他方面である第2面に配置される負極活物質層と、
前記積層方向において隣り合う2つの前記集電体のうち、一方の前記集電体の前記第1面と、他方の前記集電体の前記第2面と、の間に配置されるとともに、前記積層方向に直交する直交方向において前記正極活物質層及び前記負極活物質層を囲むシール部材と、を備え、
前記積層方向において隣り合う2つの前記集電体と、前記シール部材と、によって区画形成される空間の内部が電解液で満たされるリチウムイオン二次電池の蓄電装置であって、
前記集電体は、銅からなる負極集電体を含み、
前記第2面は、前記負極集電体の前記積層方向における一面であるとともに、前記積層方向から見た平面視で前記負極活物質層及び前記シール部材によって覆われており、
前記負極活物質層及び前記シール部材は互いに当接していることを特徴とする蓄電装置。
【請求項2】
前記積層方向における平面視で前記第2面を見たときに、前記負極活物質層と前記シール部材との境界位置が前記正極活物質層と重なっていない請求項1に記載の蓄電装置。
【請求項3】
前記シール部材は、前記第1面を覆う面積よりも大きい面積で前記第2面を覆っている請求項1または請求項2に記載の蓄電装置。
【請求項4】
前記第1面は、前記正極活物質層及び前記シール部材のいずれによっても覆われない露出面を備える請求項1~請求項3のうちいずれか一項に記載の蓄電装置。
【請求項5】
前記シール部材は、前記一方の前記集電体の前記第1面及び前記他方の前記集電体の前記第2面に接合される第1シール部と、前記他方の前記集電体の前記第2面のみに接合されるとともに、前記直交方向において前記第1シール部から前記負極活物質層に向かって延出する第2シール部と、を含み、
前記負極活物質層は、前記第2シール部と当接している請求項4に記載の蓄電装置。
【請求項6】
前記第2シール部の前記積層方向における寸法は、前記負極活物質層よりも小さい請求項5に記載の蓄電装置。
【請求項7】
前記積層方向における前記正極活物質層と前記負極活物質層との間に位置するセパレータをさらに備え、
前記シール部材は、前記空間に面するとともに前記積層方向に交差する設置面を有し、
前記設置面上に前記セパレータの端部が配置される請求項1~6のうちいずれか一項に記載の蓄電装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蓄電装置に関する。
【背景技術】
【0002】
特許文献1に記載のリチウムイオン二次電池である蓄電装置は、複数積層する集電体と、正極活物質層と、負極活物質層と、シール部材と、を備えている。正極活物質層は、集電体の積層方向における集電体の一方面に配置されている。負極活物質層は、積層方向における集電体の他方面に配置されている。シール部材は、積層方向において隣り合う2つの集電体の間に配置されているとともに、正極活物質層及び負極活物質層の周囲を液密に封止している。集電体とシール部材によって区画される空間には、電解液が注入される。
【0003】
また、蓄電装置は、集電体として、銅からなる負極集電体を含むものが知られている。この場合、積層方向における負極集電体の一面に負極活物質層が配置される。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、積層方向における負極集電体の一面の一部が、負極活物質層が配置されず、且つ空間の電解液中に露出する露出面となる場合がある。この場合、空間への電解液の注入から初充電までの間や過放電が生じたとき等の負極集電体の電位が、銅が電解液に溶出する電位まで高まる際に、空間を満たす電解液中に露出面から銅が溶出するおそれがある。電解液中に銅が溶出すると、短絡、ガス発生、及びシール部材によるシール性悪化等、種々の問題が生じるおそれがあり好ましくない。
【課題を解決するための手段】
【0006】
上記課題を解決する蓄電装置は、積層方向に複数積層する集電体と、前記積層方向における前記集電体の一方面である第1面に配置される正極活物質層と、前記積層方向における前記集電体の他方面である第2面に配置される負極活物質層と、前記積層方向において隣り合う2つの前記集電体のうち、一方の前記集電体の前記第1面と、他方の前記集電体の前記第2面と、の間に配置されるとともに、前記積層方向に直交する直交方向において前記正極活物質層及び前記負極活物質層を囲むシール部材と、を備え、前記積層方向において隣り合う2つの前記集電体と、前記シール部材と、によって区画形成される空間の内部が電解液で満たされるリチウムイオン二次電池の蓄電装置であって、前記集電体は、銅からなる負極集電体を含み、前記第2面は、前記負極集電体の前記積層方向における一面であるとともに、前記積層方向から見た平面視で前記負極活物質層及び前記シール部材によって覆われており、前記負極活物質層及び前記シール部材は互いに当接していることを特徴とする。
【0007】
上記構成によれば、第2面は、負極活物質層が配置されず、且つ空間の電解液中に露出する露出面を有さない。そのため、空間への電解液の注入から初充電までの間や過放電が生じた場合に、負極集電体から空間を満たす電解液中への銅の溶出を抑制できる。
【0008】
蓄電装置において、前記積層方向における平面視で前記第2面を見たときに、前記負極活物質層と前記シール部材との境界位置が前記正極活物質層と重なっていないことが好ましい。
【0009】
負極集電体の一面を負極活物質層とシールとで覆う手段として、一面に負極活物質層を配置した負極集電体に対して、負極活物質層の周りに溶融したシール材を配置する方法がある。こうした方法では、溶融したシール材が負極活物質層の周縁部に接する際に、負極活物質層の周縁部がシール材から伝熱を受けて成分が変化するおそれがある。
【0010】
上記構成によれば、積層方向における平面視で第2面を見たときに、負極活物質層とシール部材との境界位置が正極活物質層と重なっていない。そのため、負極活物質層の周縁部が正極活物質層と積層方向に対向しない。したがって、負極活物質層の周縁部にシール部材が当接するように形成する際の熱の影響による成分の変化が生じたとしても、電池性能への影響を抑制できる。
【0011】
蓄電装置において、前記シール部材は、前記第1面を覆う面積よりも大きい面積で前記第2面を覆っていることが好ましい。
上記構成によれば、第2面は第1面と比較してシール部材によって覆われる面積が大きい。すなわち、第2面において、シール部材による被覆面積を増やすことで、負極活物質層が配置されず露出する露出面を第2面が有さない構成としている。そのため、第2面において、内部に電解液を含む負極活物質層による被覆面積を増やす場合と比較して、負極集電体から電解液中への銅の溶出をさらに抑制できる。
【0012】
蓄電装置において、前記第1面は、前記正極活物質層及び前記シール部材のいずれによっても覆われない露出面を備えることが好ましい。
上記構成によれば、第1面が露出面を備える分だけ、蓄電装置の内部の空間を大きくできる。そのため、蓄電装置の使用中にガスが発生したとしても、空間が大きい分だけ蓄電装置の内圧上昇を低減できる。
【0013】
蓄電装置において、前記シール部材は、前記一方の前記集電体の前記第1面及び前記他方の前記集電体の前記第2面に接合される第1シール部と、前記他方の前記集電体の前記第2面のみに接合されるとともに、前記直交方向において前記第1シール部から前記負極活物質層に向かって延出する第2シール部と、を含み、前記負極活物質層は、前記第2シール部と当接していてもよい。
【0014】
蓄電装置において、前記第2シール部の前記積層方向における寸法は、前記負極活物質層よりも小さいことが好ましい。
上記構成によれば、第2シール部の積層方向における寸法を負極活物質層よりも小さくする分だけ空間を大きくできる。そのため、蓄電装置の使用中にガスが発生した際に、蓄電装置の内圧上昇をさらに低減できる。
【0015】
蓄電装置において、前記積層方向における前記正極活物質層と前記負極活物質層との間に位置するセパレータをさらに備え、前記シール部材は、前記空間に面するとともに前記積層方向に交差する設置面を有し、前記設置面上に前記セパレータの端部が配置されることが好ましい。
【0016】
上記構成によれば、シール部材の設置面上にセパレータの端部を配置することで、直交方向におけるセパレータの位置決めを行うことができる。
【発明の効果】
【0017】
この発明によれば、負極集電体から空間を満たす電解液中への銅の溶出を抑制できる。
【図面の簡単な説明】
【0018】
【
図4】セルスタックとして積層される前の蓄電セルを示す断面図。
【
図5】別の実施形態において、セルスタックとして積層される前の蓄電セルを示す断面図。
【
図6】別の実施形態において、セルスタックとして積層される前の蓄電セルを示す断面図。
【
図7】別の実施形態において、セルスタックとして積層される前の蓄電セルを示す断面図。
【発明を実施するための形態】
【0019】
以下、蓄電装置を具体化した実施形態について、
図1~
図4を用いて説明する。なお、蓄電装置は、例えば、フォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリに用いられる蓄電モジュールである。本実施形態の蓄電装置はリチウムイオン二次電池である。
【0020】
図1に示すように、蓄電装置10は、セルスタック11と、正極通電板12bと、負極通電板12aと、を備える。正極通電板12b及び負極通電板12aは、セルスタック11を挟んで互いに対向している。正極通電板12b及び負極通電板12aは、金属製の良導電性材料で構成されている。セルスタック11、正極通電板12b、及び負極通電板12aは、積層方向Zに積層している。積層方向Zは、正極通電板12b及び負極通電板12aにおける外面のうち、セルスタック11と隣接する外面に垂直をなす方向である。セルスタック11は、複数の蓄電セル20が積層方向Zに積層された積層体である。
【0021】
正極通電板12b及び負極通電板12aは、それぞれセルスタック11と電気的に接続している。図示は省略しているが、正極通電板12b及び負極通電板12aの各々には端子が接続されている。この端子を通じて蓄電装置10の充放電が行われる。
【0022】
セルスタック11、正極通電板12b、及び負極通電板12aは、積層方向Zにおける両側から拘束ユニット等によって拘束されている。これにより、積層方向Zにおける拘束荷重がセルスタック11、正極通電板12b、及び負極通電板12aに付与されている。
【0023】
各蓄電セル20は、正極31と、負極21と、セパレータ40と、を備える。正極31は、正極集電体32と、正極集電体32の一方面である正極表面32aに配置される正極活物質層33と、を備える。正極集電体32は、正極表面32aの裏面である正極裏面32bに正極活物質層33を有さない。
【0024】
負極21は、負極集電体22と、負極集電体22の一方面である負極表面22aに配置される負極活物質層23と、を備える。負極集電体22は、負極表面22aの裏面である負極裏面22bに負極活物質層23を有さない。
【0025】
本実施形態において、正極集電体32及び負極集電体22は、積層方向Zから見た平面視で同じ面積を有する長方形状をなす。正極集電体32及び負極集電体22は、積層方向Zから見た平面視で、互いの縁部が重なっている。正極活物質層33は、積層方向Zから見た平面視で、正極集電体32よりも小さい長方形状をなす。負極活物質層23は、積層方向Zから見た平面視で、負極集電体22よりも小さく、且つ正極活物質層33よりも大きい長方形状をなす。
【0026】
図2及び
図3に示すように、負極集電体22を積層方向Zから見た平面視で、負極集電体22の長辺が延びる方向を第1方向Xといい、負極集電体22の短辺が延びる方向を第2方向Yという。図示は省略しているが、正極集電体32を積層方向Zから見た平面視で、正極集電体32の長辺は第1方向Xに延びており、正極集電体32の短辺は第2方向Yに延びている。第1方向Xは、積層方向Zと直交する方向である。第2方向Yは、積層方向Z及び第1方向Xの両方向と直交する方向である。第1方向X及び第2方向Yは、積層方向Zに直交する直交方向に相当する。
【0027】
図1に示すように、セパレータ40は、積層方向Zにおける正極活物質層33と負極活物質層23との間に位置する。セパレータ40を介して、正極活物質層33と負極活物質層23とは積層方向Zに対向している。積層方向Zから見た平面視で、正極活物質層33の全体がセパレータ40を介して負極活物質層23と重なっている。
【0028】
セパレータ40は、積層方向Zから見た平面視で、正極活物質層33及び負極活物質層23よりも大きい長方形状をなす。セパレータ40を積層方向Zから見た平面視で、セパレータ40の長辺は第1方向Xに延びており、セパレータ40の短辺は第2方向Yに延びている。
【0029】
セパレータ40は、積層方向Zから見た平面視で、中央に位置するセパレータ中央部40aと、セパレータ中央部40aの周りに位置するセパレータ端部40bと、を備える。積層方向Zから見た平面視で、セパレータ中央部40aは、正極活物質層33及び負極活物質層23の各々の全体と重なっている。積層方向Zから見た平面視で、セパレータ端部40bは、正極活物質層33及び負極活物質層23よりも外側に位置している。セパレータ端部40bの積層方向Zにおける一面は、正極表面32aに溶着して接合するとともに正極表面32aに沿って配置されている。
【0030】
セパレータ40は、正極31と負極21とを隔離する。セパレータ40は、正極31及び負極21の接触による短絡を防止しつつ、リチウムイオン等の電荷担体を通過させる部材である。セパレータ40は、接着剤などによって正極活物質層33及び負極活物質層23に接着していてもよい。ホットプレス等の公知の手法により蓄電セル20に加圧することで、セパレータ40を正極活物質層33及び負極活物質層23に接着してもよい。
【0031】
図1に示すように、蓄電装置10はシール部材50を備える。シール部材50は、積層方向Zにおいて隣り合う正極集電体32と負極集電体22との間に配置されている。シール部材50は、絶縁材料を含み、正極集電体32と負極集電体22との間を絶縁することによって、それら両集電体間の短絡を防止する。
【0032】
図2及び
図3に示すように、シール部材50を積層方向Zから見た平面視において、シール部材50は四角枠状をなしている。シール部材50は、4つの縁部によって正極活物質層33及び負極活物質層23を囲んでいる。シール部材50の2つの縁部は、第1方向Xにおいて正極活物質層33及び負極活物質層23を囲んでいる。シール部材50の2つの縁部は、第2方向Yにおいて正極活物質層33及び負極活物質層23を囲んでいる。シール部材50は、積層方向Zにおいて隣り合う正極集電体32及び負極集電体22のうち、正極集電体32の正極表面32aと、負極集電体22の負極表面22aと、に溶着している。
【0033】
シール部材50は樹脂製である。シール部材50を構成する材料としては、例えば、ポリエチレン(PE)、ポリスチレン(PS)、ポリプロピレン(PP)、変性ポリプロピレン(変性PP)、ABS樹脂、及びAS樹脂等、種々の樹脂材料が挙げられる。
【0034】
蓄電セル20の内部には、積層方向Zにおいて隣り合う正極集電体32及び負極集電体22と、シール部材50と、によって空間Sが区画形成されている。空間Sには、正極活物質層33、負極活物質層23、セパレータ40、及び電解液が収容されている。
【0035】
なお、正極集電体32及び負極集電体22は、化学的に不活性な電気伝導体である。負極集電体22を構成する材料としては、銅が用いられる。正極集電体32を構成する材料としては、例えば、金属材料、導電性樹脂材料、及び導電性無機材料等を用いることができる。導電性樹脂材料としては、例えば、導電性高分子材料又は非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂等が挙げられる。正極集電体32は、金属材料又は導電性樹脂材料を含む1以上の層を含む複数層を備えてもよい。
【0036】
正極集電体32の表面に、メッキ処理又はスプレーコート等の公知の方法により被覆層を形成してもよい。正極集電体32及び負極集電体22は、例えば、板状、箔状、シート状、フィルム状、及びメッシュ状等の形態に形成されていてもよい。
【0037】
正極集電体32を金属箔とする場合、例えば、アルミニウム箔、銅箔、ニッケル箔、チタン箔又はステンレス鋼箔等を用いることができる。正極集電体32としてステンレス鋼箔を用いた場合、正極集電体32の機械的強度を確保することができる。ステンレス鋼箔としては、例えばJISG4305:2015にて規定されるSUS316、SUS301、及びSUS304等が挙げられる。正極集電体32は、上記金属の合金箔又はクラッド箔であってもよい。箔状の正極集電体32及び負極集電体22を用いる場合、その厚みは、例えば、1~100μmとしてもよい。
【0038】
正極通電板12bを構成する材料には、正極集電体32を構成する材料と同じ材料を用いることができる。負極通電板12aを構成する材料には、負極集電体22を構成する材料と同じ材料を用いることができる。正極通電板12b及び負極通電板12aは、正極集電体32及び負極集電体22よりも厚い金属板で構成してもよい。
【0039】
正極活物質層33は、リチウムイオン等の電荷担体を吸蔵及び放出し得る正極活物質を含む。正極活物質としては、層状岩塩構造を有するリチウム複合金属酸化物、スピネル構造の金属酸化物、及びポリアニオン系化合物等、リチウムイオン二次電池の正極活物質として使用可能なものを採用すればよい。また、2種以上の正極活物質を併用してもよい。
【0040】
負極活物質層23は、リチウムイオンなどの電荷担体を吸蔵及び放出可能である単体、合金、又は化合物であれば、特に限定はなく使用可能である。例えば、負極活物質としては、炭素、金属化合物、及びリチウムと合金化可能な元素もしくはその化合物等が挙げられる。炭素としては、天然黒鉛、人造黒鉛、ハードカーボン(難黒鉛化性炭素)、及びソフトカーボン(易黒鉛化性炭素)を挙げることができる。人造黒鉛としては、高配向性グラファイト、メソカーボンマイクロビーズ等が挙げられる。リチウムと合金化可能な元素の例としては、シリコン(ケイ素)及びスズが挙げられる。
【0041】
正極活物質層33及び負極活物質層23を単に活物質層ともいう。活物質層は、必要に応じて電気伝導性を高めるための導電助剤、結着剤、電解質(ポリマーマトリクス、イオン伝導性ポリマー、電解液等)、及びイオン伝導性を高めるための電解質支持塩(リチウム塩)等をさらに含み得る。活物質層に含まれる成分、当該成分の配合比、及び活物質層の厚さは特に限定されず、リチウムイオン二次電池についての従来公知の知見が適宜参照され得る。活物質層の厚みは、例えば2~150μmである。正極集電体32及び負極集電体22の表面に活物質層を形成させるには、ロールコート法等の従来から公知の方法を用いてもよい。
【0042】
正極31及び負極21の熱安定性を向上させるために、正極表面32a又は活物質層の表面に、耐熱層を設けてもよい。耐熱層は、例えば、無機粒子と結着剤とを含み、その他に増粘剤等の添加剤を含んでもよい。
【0043】
導電助剤は、正極31又は負極21の導電性を高めるために添加される。導電助剤は、例えばアセチレンブラック、カーボンブラック、及びグラファイト等である。
結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリアクリル酸、ポリメタクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム、カルボキシメチルセルロース、アルギン酸ナトリウム、アルギン酸アンモニウム等のアルギン酸塩、水溶性セルロースエステル架橋体、デンプン-アクリル酸グラフト重合体を例示することができる。これらの結着剤は、単独で又は複数で用いられ得る。溶媒には、例えば、水、N-メチル-2-ピロリドン等が用いられる。
【0044】
セパレータ40は、例えば、電解質を吸収保持するポリマーを含む多孔性シート又は不織布であってもよい。セパレータ40を構成する材料としては、例えば、ポリプロピレン、ポリエチレンといったポリオレフィン、及びポリエステルなどが挙げられる。セパレータ40は、単層構造又は多層構造を有してもよい。多層構造は、例えば、耐熱層としてのセラミック層等を有してもよい。セパレータ40は、電解質が含浸されてもよく、セパレータ40自体を高分子電解質又は無機型電解質等の電解質で構成してもよい。
【0045】
セパレータ40に含浸される電解質としては、例えば、非水溶媒と非水溶媒に溶解した電解質塩とを含む液体電解質である電解液、又はポリマーマトリックス中に保持された電解質を含む高分子ゲル電解質等が挙げられる。
【0046】
セパレータ40に電解液が含浸される場合、その電解質塩として、LiClO4、LiAsF6、LiPF6、LiBF4、LiCF3SO3、LiN(FSO2)2、LiN(CF3SO2)2等の公知のリチウム塩を使用できる。また、非水溶媒として、環状カーボネート類、環状エステル類、鎖状カーボネート類、鎖状エステル類、及びエーテル類等の公知の溶媒を使用できる。なお、これら公知の溶媒材料を二種以上組合せて用いてもよい。
【0047】
本実施形態における正極集電体32はアルミニウム箔である。本実施形態における負極集電体22は銅箔である。本実施形態における正極活物質層33は、複合酸化物としてのオリビン型リン酸鉄リチウム(LiFePO4)を含む。本実施形態における負極活物質層23は、炭素系材料としての黒鉛を含む。本実施形態において、セパレータ40には電解液が含浸されている。
【0048】
次に、積層されてセルスタック11を構成する前の蓄電セル20について、シール部材50の構成を中心にさらに詳しく説明する。
図4に示すように、シール部材50は、シール本体56及びシール端部57を備える。シール本体56は、積層方向Zにおいて隣り合う正極集電体32の正極表面32aと負極集電体22の負極表面22aと、の間に配置されている。シール端部57は、シール本体56から正極集電体32及び負極集電体22よりも外側に延びている。
【0049】
シール本体56は、第1シール部58と、第2シール部59と、を備えてもよい。第2シール部59は、第1シール部58から負極活物質層23に向かって延出している。すなわち、積層方向Zから見た平面視で第2シール部59は第1シール部58よりも空間S内側に位置している。第1方向Xにおいて正極活物質層33及び負極活物質層23を囲むシール部材50においては、
図4に図示するように、第2シール部59は、第1方向Xにおいて第1シール部58から負極活物質層23に向かって延出する。図示は省略しているが、第2方向Yにおいて正極活物質層33及び負極活物質層23を囲むシール部材50においては、第2方向Yにおいて第1シール部58から負極活物質層23に向かって延出する。
【0050】
第1シール部58は、第1溶着面58aと、セパレータ溶着面58bと、第2溶着面58cと、を備える。第1溶着面58aは、積層方向Zに直交する面であるとともに、正極集電体32の正極表面32aに溶着している。積層方向Zにおける平面視で見たときに、第1溶着面58aは、正極集電体32の周縁部に沿って位置する四角枠状をなしている。
【0051】
セパレータ溶着面58bは、積層方向Zから見た平面視で第1溶着面58aより空間S内側に位置する。セパレータ溶着面58bは、積層方向Zに直交する面であるとともに、セパレータ40のセパレータ端部40bと溶着している。すなわち、セパレータ溶着面58bは、セパレータ端部40bを介して正極集電体32の正極表面32aに接合している。積層方向Zにおける平面視で見たときに、セパレータ溶着面58bは、セパレータ40のセパレータ端部40bに沿って位置する四角枠状をなしている。
【0052】
セパレータ溶着面58bの空間S内側の端縁は、正極活物質層33の周縁部から離れている。具体的には、シール部材50のうち、第1方向Xにおいて正極活物質層33及び負極活物質層23を囲む部分においては、
図4に図示するように、セパレータ溶着面58bの空間S内側の端縁は、第1方向Xにおいて正極活物質層33の周縁部から離れている。図示は省略しているが、シール部材50のうち、第2方向Yにおいて正極活物質層33及び負極活物質層23を囲む部分においては、セパレータ溶着面58bの空間S内側の端縁は、第2方向Yにおいて正極活物質層33の周縁部から離れている。
【0053】
正極表面32aのうち、第1溶着面58a及び正極活物質層33によって覆われる部分以外は空間Sに露出している。すなわち、正極表面32aは、正極活物質層33及びシール部材50のいずれによっても覆われない露出面32cを備える。露出面32cは、積層方向Zから見た平面視において、第1溶着面58aによって覆われる正極表面32aの部分と、正極活物質層33によって覆われた正極表面32aの部分と、の間に位置する四角枠状をなしている。
【0054】
第2溶着面58cは、積層方向Zに直交する面であるとともに、負極集電体22の負極表面22aに溶着している。第1シール部58において、第2溶着面58cは第1溶着面58a及びセパレータ溶着面58bの反対側に位置する面である。積層方向Zにおける平面視で見たときに、第2溶着面58cは、負極集電体22の周縁部に沿って位置する四角枠状をなしており、第1溶着面58a及びセパレータ溶着面58bと全体が重なっている。
【0055】
シール部材50のうち第1方向Xにおいて正極活物質層33及び負極活物質層23を囲む部分においては、
図4に図示するように、第2溶着面58cの第1方向Xにおける寸法は、第1溶着面58a及びセパレータ溶着面58bの第1方向Xにおける寸法の和に等しい。図示は省略しているが、シール部材50のうち第2方向Yにおいて正極活物質層33及び負極活物質層23を囲む部分においては、第2溶着面58cの第2方向Yにおける寸法は、第1溶着面58a及びセパレータ溶着面58bの第2方向Yにおける寸法の和に等しい。
【0056】
第1シール部58は、第1溶着面58a及びセパレータ溶着面58bを介して正極集電体32の正極表面32aに接合するとともに、第2溶着面58cを介して負極集電体22の負極表面22aに接合している。すなわち、シール部材50において、積層方向Zにおける平面視で見たときに、シール部材50と正極集電体32の正極表面32aとの接合面と、シール部材50と負極集電体22の負極表面22aとの接合面と、が重なり合う部分が第1シール部58といえる。第1シール部58は、積層方向Zにおいて隣り合う正極集電体32及び負極集電体22のうち、正極集電体32の正極表面32a及び負極集電体22の負極表面22aに接合されているといえる。
【0057】
第2シール部59は、積層方向Zに直交し、空間Sに面している直交面59aと、負極活物質層23と当接する当接面59bと、直交面59aの反対側に位置する第3溶着面59cと、を備える。積層方向Zにおける平面視で見たときに、直交面59aは、セパレータ溶着面58bより内側に位置する四角枠状をなしている。直交面59aは、積層方向Zに正極集電体32の正極表面32aと離間している。すなわち、第2シール部59は、正極集電体32の正極表面32aと接合されない。
【0058】
当接面59bは、積層方向Zから見て直交面59aの空間S内側の縁部から積層方向Zに延びている。シール部材50のうち、第1方向Xにおいて正極活物質層33及び負極活物質層23を囲む部分においては、
図4に図示するように、当接面59bは、第1方向Xにおいて負極活物質層23の周縁部と対向している。図示は省略しているが、シール部材50のうち、第2方向Yにおいて正極活物質層33及び負極活物質層23を囲む部分においては、当接面59bは、第2方向Yにおいて負極活物質層23の周縁部と対向している。負極活物質層23及びシール部材50は互いに当接している。詳細には、負極活物質層23は、第2シール部59と当接している。シール部材50は、第2シール部59の当接面59bを介して負極活物質層23の周縁部と当接している。第2シール部59の積層方向Zにおける寸法は、負極活物質層23の積層方向Zにおける寸法以上である。本実施形態では、第2シール部59の積層方向Zにおける寸法は、負極活物質層23の積層方向Zにおける寸法と等しい。負極活物質層23の周縁部の全体が当接面59bと当接している。
【0059】
第3溶着面59cは、積層方向Zに直交する面であるとともに、負極集電体22の負極表面22aに溶着している。すなわち第2シール部59は、第3溶着面59cを介して負極集電体22に接合しているといえる。第2シール部59は、積層方向Zにおいて隣り合う正極集電体32及び負極集電体22のうち、正極集電体32の正極表面32aに接合されない一方で、負極集電体22の負極表面22aに接合されているといえる。積層方向Zにおける平面視で見たときに、第3溶着面59cは、第1シール部58の第2溶着面58cより空間S内側に位置するとともに、負極集電体22の周縁部に沿って位置する四角枠状をなしている。
【0060】
第1方向Xにおいて正極活物質層33及び負極活物質層23を囲むシール部材50において、
図4に図示するように、シール部材50と正極集電体32の正極表面32aとの接合面である、第1方向Xに並ぶ第1溶着面58aの各々と、第1方向Xに並ぶセパレータ溶着面58bの各々との第1方向Xでの寸法の和を第1寸法L1という。また、シール部材50と負極活物質層23の負極表面22aとの接合面である、第1方向Xに並ぶ第2溶着面58cの各々と、第1方向Xに並ぶ第3溶着面59cの各々との第1方向Xでの寸法の和を第2寸法L2という。図示は省略しているが、第2方向Yにおいて正極活物質層33及び負極活物質層23を囲むシール部材50において、第2方向Yに並ぶ第1溶着面58aの各々と、第2方向Yに並ぶセパレータ溶着面58bの各々との第2方向Yでの寸法の和は第1寸法L1と同じ寸法である。第2方向Yにおいて正極活物質層33及び負極活物質層23を囲むシール部材50において、第2方向Yに並ぶ第2溶着面58cの各々と、第2方向Yに並ぶ第3溶着面59cの各々との第2方向Yでの寸法の和は第2寸法L2と同じ寸法である。
【0061】
第2寸法L2は第1寸法L1よりも大きい。なお、正極集電体32及び負極集電体22は、積層方向Zから見た平面視で、互いの縁部が重なっている。すなわち、第2寸法L2が第1寸法L1よりも大きいことにより、第2溶着面58c及び第3溶着面59cによって覆う負極表面22aの面積は、第1溶着面58a及びセパレータ溶着面58bによって覆う正極表面32aの面積よりも大きいと言える。言い換えると、シール部材50は、正極表面32aを覆う面積よりも大きい面積で負極表面22aを覆っていると言える。
【0062】
図3に示すように、負極表面22aは、積層方向Zから見た平面視で負極活物質層23及びシール部材50によって覆われている。積層方向Zにおける平面視で負極表面22aを見たときに、シール部材50における当接面59bは、正極活物質層33よりも外側に位置している。負極活物質層23の周縁部とシール部材50における当接面59bとが当接する位置が、負極活物質層23とシール部材50との境界位置に相当する。すなわち、積層方向Zにおける平面視で負極表面22aを見たときに、負極活物質層23とシール部材50との境界位置が正極活物質層33と重なっていない。
【0063】
蓄電セル20の内部の空間Sに電解液を注入することで、正極活物質層33及び負極活物質層23への電解液の含浸を行う。空間Sへの電解液の注入は、例えばシール部材50に形成された図示しない注液孔を介して行ってもよい。注入された電解液によって空間Sは満たされる。蓄電セル20は、空間Sへの電解液の含浸が完了した後に、複数積層されてセルスタック11を構成する。
【0064】
次に、積層されてセルスタック11を構成した状態で、蓄電セル20の構成について、さらに詳しく説明する。
図1に示すように、積層方向Zに隣り合う2つの蓄電セル20のうち、一方の蓄電セル20の正極裏面32bと、他方の蓄電セル20の負極裏面22bと、が互いに接する。これにより、積層方向Zに隣り合う2つの蓄電セル20において、一方の蓄電セル20の正極31と他方の蓄電セル20の負極21とが接している。
【0065】
互いに接する正極31及び負極21によって疑似的なバイポーラ電極25が形成されている。互いに接する正極集電体32及び負極集電体22が、バイポーラ電極25の電極体として機能する。1つのバイポーラ電極25は、積層方向Zにおいて互いに接する正極集電体32及び負極集電体22と、正極活物質層33及び負極活物質層23と、を含む。バイポーラ電極25は、積層方向Zにおいてセパレータ40と交互に積層されている。
【0066】
1つのバイポーラ電極25を構成する正極集電体32及び負極集電体22の組を、1つの集電体26という。集電体26は、積層方向Zに複数積層する。正極表面32aは、積層方向Zにおける集電体26の一方面である。負極表面22aは、積層方向Zにおける集電体26の他方面である。以下では、正極表面32aを集電体26の第1面26bともいい、負極表面22aを集電体26の第2面26aともいう。
【0067】
正極活物質層33は、積層方向Zにおける集電体26の第1面26bに配置されるといえる。負極活物質層23は、積層方向Zにおける集電体26の第2面26aに配置されるといえる。
【0068】
蓄電装置10は、積層方向Zにおける一端に正極31を備えるとともに、積層方向Zにおける他端に負極21を備える。正極通電板12bは、積層方向Zにおける一端に位置する正極31の正極集電体32に電気的に接続される。負極通電板12aは、積層方向Zにおける他端に位置する負極21の負極集電体22に電気的に接続される。
【0069】
積層方向Zに隣り合う蓄電セル20において、シール部材50のシール端部57同士が接合されて一体化している。積層方向Zにおいて積層する全ての蓄電セル20のシール端部57が一体化している。一体化されたシール端部57を封止体57aという。
【0070】
封止体57aは、正極集電体32及び負極集電体22の周縁部を覆っている。封止体57aは、積層方向Zにおいてセルスタック11の一端に配置された正極集電体32から、積層方向Zにおいてセルスタック11の他端に配置された負極集電体22まで延びている。なお、接合方法としては、例えば、熱溶着、超音波溶着、及び赤外線溶着等が挙げられる。
【0071】
シール部材50は、正極31と負極21との間の空間Sを封止する封止部としても機能する。シール部材50は、空間Sに収容された電解液が蓄電装置10の外部に漏れることを防止し得る。シール部材50は、蓄電装置10の外部から空間Sへと水分が侵入することを防止し得る。さらに、シール部材50は、例えば充放電反応等により正極31又は負極21から発生したガスが蓄電装置10の外部に漏れることを防止し得る。
【0072】
次に、蓄電セル20の製造手順について説明する。
図4に示すように、まず、負極表面22aに負極活物質層23を配置した負極集電体22に対して、負極活物質層23の周りに溶融したシール材を配置する。負極表面22a上に型を設置するとともに、溶融したシール材を型の内部に流す。これにより、シール材はシール本体56及びシール端部57を備えた形状になる。溶融したシール材を負極活物質層23の周縁部に接触させる。この状態でシール材を固定することで、シール部材50を形成する。負極表面22aのうち、負極活物質層23が位置しない部分の全てがシール部材50で覆われる。
【0073】
シール部材50の形成後、セパレータ40を積層方向Zにおいて負極活物質層23と重ねる。このとき、セパレータ端部40bをシール部材50の上に配置する。さらに、正極31を積層方向Zにおいてセパレータ40と重ねる。
【0074】
つづいて、シール部材50を正極集電体32及び負極集電体22に溶着する。正極集電体32及び負極集電体22へのシール部材50の溶着は、例えば溶着治具を正極裏面32bの周縁部及び負極裏面22bに当接することで行ってもよい。シール部材50は、溶着治具からの熱の伝達を受けて溶融する。第1溶着面58aが正極表面32aに溶着すると共に、第2溶着面58c及び第3溶着面59cが負極表面22aに溶着する。また、セパレータ端部40bが正極表面32aに溶着すると共に、シール部材50と溶着し、セパレータ溶着面58bが形成される。その後、蓄電セル20の空間Sへの電解液の注入を行う。蓄電セル20を複数積層してセルスタック11を形成する。
【0075】
次に、本実施形態の作用について説明する。
集電体26の第2面26aは、負極活物質層23が配置されない部分の全てがシール部材50によって覆われている。そのため、第2面26aは、空間Sの電解液中に露出しない。空間Sへの電解液の注入から初充電までの間や過放電が生じた場合も、空間Sの電解液中に第2面26aが露出しないため、集電体26から空間Sの電解液中への銅の溶出が生じにくい。
【0076】
上記実施形態によれば以下の効果を得ることができる。
(1)第2面26aは、負極活物質層23が配置されず、且つ空間Sの電解液中に露出する露出面を有さない。そのため、空間Sへの電解液の注入から初充電までの間や過放電が生じた場合に、負極集電体22から空間Sを満たす電解液中への銅の溶出を抑制できる。
【0077】
(2)積層方向Zにおける平面視で第2面26aを見たときに、負極活物質層23とシール部材50との境界位置が正極活物質層33と重なっていない。そのため、負極活物質層23の周縁部が正極活物質層33と積層方向Zに対向しない。したがって、負極活物質層23の周縁部にシール部材50が当接するように形成する際の熱の影響による成分の変化が生じたとしても、電池性能への影響を抑制できる。
【0078】
(3)シール部材50は、第1面26bを覆う面積よりも大きい面積で第2面26aを覆っている。そのため、第2面26aは第1面26bと比較して、シール部材50によって覆われる面積が大きい。すなわち、第2面26aにおいて、シール部材50による被覆面積を増やすことで、負極活物質層23が配置されず露出する露出面を第2面26aが有さない構成としている。そのため、第2面26aにおいて、内部に電解液を含む負極活物質層23による被覆面積を増やす場合と比較して、負極集電体22から電解液中への銅の溶出をさらに抑制できる。
【0079】
(4)第1面26bは、正極活物質層33及びシール部材50のいずれによっても覆われない露出面32cを備える。そのため、第1面26bが露出面32cを備える分だけ、蓄電装置10の内部の空間Sを大きくできるため、蓄電装置10の使用中にガスが発生したとしても、空間Sが大きい分だけ蓄電装置10の内圧上昇を低減できる。
【0080】
なお、上記実施形態は、以下のように変更して実施することができる。上記の各実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
【0081】
○
図5に示すように、シール部材50は、空間Sに面するとともに積層方向Zに交差する設置面を有してもよい。設置面上にセパレータ40のセパレータ端部40bが配置されてもよい。具体的には、この変更例のシール部材50は、セパレータ端部40bが溶着するセパレータ溶着面58bを有さない。シール部材50は、積層方向Zにおける第1シール部58の一方の面全体に、正極集電体32の正極表面32aと溶着する第1溶着面58aを有している。第2シール部59の直交面59aは上記設置面として機能している。設置面として機能する直交面59aは、空間Sに面するとともに、積層方向Zに交差している。
【0082】
上記変更例によれば、上記実施形態での効果と合わせて以下の効果を得ることができる。
(5)シール部材50は、空間Sに面するとともに積層方向Zに直交する設置面としての直交面59aを有している。直交面59a上にセパレータ端部40bが配置されている。そのため、シール部材50の直交面59a上にセパレータ端部40bを配置することで、第1方向X及び第2方向Yにおけるセパレータ40の位置決めを行うことができる。
【0083】
○
図5に示すように、第2シール部59の積層方向Zにおける寸法である第3寸法L3は、負極活物質層23の積層方向Zにおける寸法である第4寸法L4よりも小さくてもよい。第4寸法L4は、負極活物質層23の厚みである。
【0084】
上記変更例によれば、上記実施形態での効果と合わせて以下の効果を得ることができる。
(6)第2シール部59の積層方向Zにおける寸法は、負極活物質層23よりも小さい。そのため、第2シール部59の積層方向Zにおける寸法を負極活物質層23よりも小さくする分だけ空間Sを大きくできる。したがって、蓄電装置10の使用中にガスが発生した際に、蓄電装置10の内圧上昇をさらに低減できる。
【0085】
○
図6に示すように、シール部材50によって第1面26bを覆う面積と、第2面26aを覆う面積とが同じ大きさであってもよい。すなわち、シール部材50は負極集電体22の負極表面22aのみに接合される第2シール部を有していない。この場合、上記実施形態よりも大きい面積で負極活物質層23が第2面26aを覆う。これにより、第2面26aは、積層方向Zから見た平面視で、負極活物質層23及びシール部材50によって覆われる。
【0086】
○
図6に示すように、シール部材50は積層方向Zにおいて複数に分割されていてもよい。
図6には積層方向Zにおいて2つに分割されたシール部材50を図示している。この場合のシール部材50は、積層方向Zにおいて2つに分割されたシール端部57を備えている。シール部材50は、シール本体56に代えて、積層方向Zに分割された第1シール本体部56aと第2シール本体部56bを備えている。第1シール本体部56aは、負極集電体22の負極表面22aのみに接合されている。第2シール本体部56bは、正極集電体32の正極表面32aのみに接合されている。第1シール本体部56aは、負極活物質層23と当接している。第1シール本体部56aの負極表面22aと接合される面の反対側の面は、第2シール本体部56bの正極表面32aと接合される面の反対側の面と互いに接合される。第1シール本体部56aと第2シール本体部56bとの間にはセパレータ端部40bが挟み込まれる。セパレータ端部40bは第1シール本体部56a及び第2シール本体部56bに溶着している。
【0087】
○ 第1面26bは露出面32cを備えなくてもよい。この場合、第1面26bは、正極活物質層33及びシール部材50によって全体が覆われている。
○ 負極表面22aへのシール部材50の配置を、負極活物質層23よりも先に行ってもよい。この場合、まず、負極表面22aに溶融したシール材を流す等によって、負極表面22aの中央部分を除いた部分をシール部材50で覆う。その後、シール部材50が配置されない負極表面22aの中央部分に、負極活物質を含んだスラリーを塗工する等により、負極活物質層23を配置する。これにより、形成された負極活物質層23の周縁部がシール部材50と接触するようになる。負極表面22aの全てが、負極活物質層23及びシール部材50で覆われるようになる。
【0088】
○ バイポーラ電極25の集電体26は、上記実施形態のように別体の正極集電体32及び負極集電体22からなるものに限らない。例えば、集電体26は、異なる金属同士のクラッド箔であってもよいし、金属箔の表面にメッキ加工を施したものであってもよい。この場合、積層方向Zにおける集電体26の一方面は、正極活物質層33を有する第1面26bとなる。積層方向Zにおける集電体26の他方面は、銅からなるとともに、負極活物質層23を有する第2面26aとなる。
【0089】
○
図7に示すように、積層方向Zにおいてシール部材50と負極活物質層23とが重なり合ってもよい。この変更例のシール部材50は
図5を用いて説明した上記の変更例と同様の形態を備える。この変更例においては、積層方向Zにおいて、第2シール部59の内周端と負極活物質層23の外周端とが重なり合っている。負極活物質層23の外周端は、積層方向Zにおける第2シール部59の内周端とセパレータ40との間に位置する。なお、この変更例におけるシール部材50及び負極活物質層23の位置関係は、上記変更例と同様に、負極表面22aへのシール部材50の配置を負極活物質層23よりも先に行うことで実現可能である。
【符号の説明】
【0090】
S…空間、X…第1方向、Y…第2方向、Z…積層方向、10…蓄電装置、22…負極集電体、23…負極活物質層、26…集電体、26a…第2面、26b…第1面、32…正極集電体、32c…露出面、33…正極活物質層、40…セパレータ、40b…セパレータ端部、50…シール部材、58…第1シール部、59…第2シール部、59a…直交面。