(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022077999
(43)【公開日】2022-05-24
(54)【発明の名称】画像解析方法および画像解析システム
(51)【国際特許分類】
G01B 15/02 20060101AFI20220517BHJP
G06T 7/00 20170101ALI20220517BHJP
G01N 23/04 20180101ALI20220517BHJP
G01N 23/2251 20180101ALI20220517BHJP
【FI】
G01B15/02 K
G06T7/00 610Z
G01N23/04
G01N23/2251
【審査請求】有
【請求項の数】10
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2021183814
(22)【出願日】2021-11-11
(31)【優先権主張番号】63/113,173
(32)【優先日】2020-11-12
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】110122956
(32)【優先日】2021-06-23
(33)【優先権主張国・地域又は機関】TW
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.コンパクトフラッシュ
(71)【出願人】
【識別番号】519101029
【氏名又は名称】邑流微測股▲ふん▼有限公司
(74)【代理人】
【識別番号】100107423
【弁理士】
【氏名又は名称】城村 邦彦
(74)【代理人】
【識別番号】100120949
【弁理士】
【氏名又は名称】熊野 剛
(74)【代理人】
【識別番号】100093997
【弁理士】
【氏名又は名称】田中 秀佳
(72)【発明者】
【氏名】鍾 侑原
【テーマコード(参考)】
2F067
2G001
5L096
【Fターム(参考)】
2F067AA27
2F067BB01
2F067BB16
2F067CC15
2F067EE10
2F067HH06
2F067JJ05
2F067RR24
2F067RR35
2G001AA03
2G001BA07
2G001BA11
2G001CA03
2G001HA07
2G001HA13
2G001KA11
2G001LA11
2G001MA10
5L096AA03
5L096AA06
5L096BA03
5L096CA18
5L096DA02
5L096FA13
5L096FA67
5L096FA69
5L096GA28
5L096GA51
(57)【要約】 (修正有)
【課題】多層構造の画像の各層の厚さを自動的に測定することができる画像解析方法および画像解析システムを提供する。
【解決手段】画像解析方法は、電子顕微鏡によって提供される多層構造の画像を取得し、表示装置を介して多層構造の画像を表示するステップであって、多層構造の画像がグレースケール画像であるステップと、第1の方向に沿って延在する測定線分を多層構造の画像上に設定するステップと、測定線分に沿った多層構造の画像に対応する測定線分内のグレースケール分布を検出するステップと、グレースケール分布を解析して、閾値範囲に従って複数の暗層厚さおよび複数の明層厚さを決定するステップと、を含む。
【選択図】
図1
【特許請求の範囲】
【請求項1】
電子顕微鏡によって提供される多層構造の画像を取得し、前記多層構造の前記画像を表示装置によって表示するステップであって、前記多層構造の前記画像がグレースケール画像である、ステップと、
前記多層構造の前記画像上に測定線分を設定するステップであって、前記測定線分が第1の方向に沿って延在する、ステップと、
前記測定線分に沿って前記多層構造の前記画像に対応する前記測定線分内のグレースケール分布を検出するステップであって、前記グレースケール分布が、前記多層構造の前記画像に対応する前記測定線分内の複数の画素の複数のグレースケール値の分布を含む、ステップと、
前記グレースケール分布を解析して、前記多層構造の前記画像における複数の暗層厚さおよび複数の明層厚さを、閾値範囲および連続する2つのグレースケール値によって形成される間隔に従って決定するステップと、
を含む、画像解析方法。
【請求項2】
前記多層構造の前記画像が複数の暗層画像および複数の明層画像を含み、前記暗層画像および前記明層画像が前記第1の方向に沿ってインターレース状に配置され、前記暗層画像および前記明層画像が第2の方向に沿ってそれぞれ延在し、前記第1の方向が前記第2の方向に垂直である、請求項1に記載の画像解析方法。
【請求項3】
前記グレースケール分布を解析するステップが、
前記画素の前記グレースケール値と前記閾値範囲とを比較して、前記暗層厚さに対応する複数の暗画素と、前記明層厚さに対応する複数の明画素とを決定するステップ、
を含む、請求項1に記載の画像解析方法。
【請求項4】
前記閾値範囲が第1の閾値範囲および第2の閾値範囲を含み、前記グレースケール分布を解析するステップが、
前記グレースケール値が前記第1の閾値範囲に属すると判定することに応答して、前記グレースケール値に対応する前記画素が前記暗画素に属すると判定するステップと、
前記グレースケール値が前記第2の閾値範囲に属すると判定することに応答して、前記グレースケール値に対応する前記画素が前記明画素に属すると判定するステップと、
を含む、請求項3に記載の画像解析方法。
【請求項5】
前記暗層厚さが当該暗層厚さの前記暗画素の数に対応し、前記明層厚さが当該明層厚さの前記明画素の数に対応する、請求項4に記載の画像解析方法。
【請求項6】
前記グレースケール分布を解析するステップが、
前記グレースケール値のうちの連続する2つのグレースケール値によって形成される間隔が前記第1の閾値範囲の第1の上限値を含むと判定し、前記連続する2つの画素のうちの2番目の画素が前記暗画素であると判定することに応答して、前記対応する連続する2つの画素のうちの前記2番目の画素を、前記対応する暗層厚さの暗層開始点としてマークするステップと、
前記グレースケール値のうちの連続する2つのグレースケール値によって形成される間隔が前記第2の閾値範囲の第2の上限値を含むと判定し、前記連続する2つの画素のうちの2番目の画素が前記明画素であると判定することに応答して、前記対応する連続する2つの画素のうちの前記2番目の画素を、前記対応する明層厚さの明層開始点としてマークするステップと、
を含む、請求項4に記載の画像解析方法。
【請求項7】
前記グレースケール分布を解析するステップが、
前記グレースケール値のうちの連続する2つのグレースケール値によって形成される間隔が前記第1の閾値範囲の前記第1の上限値を含むと判定し、前記連続する2つの画素のうちの最初の画素が前記暗画素であると判定することに応答して、前記対応する連続する2つの画素のうちの前記最初の画素を、前記対応する暗層厚さの暗層終了点としてマークするステップと、
前記グレースケール値のうちの連続する2つのグレースケール値によって形成される間隔が前記第2の閾値範囲の前記第2の上限値を含むと判定し、前記連続する2つの画素のうちの最初の画素が前記明画素であると判定することに応答して、前記対応する連続する2つの画素のうちの前記最初の画素を前記対応する明層厚さの明層終了点としてマークするステップと、
を含む、請求項6に記載の画像解析方法。
【請求項8】
前記暗層厚さが、当該暗層厚さの前記暗層開始点と前記暗層終了点との間の前記暗画素の数に対応し、前記明層厚さが、当該明層厚さの前記明層開始点と前記明層終了点との間の前記明画素の数に対応する、請求項7に記載の画像解析方法。
【請求項9】
隣接する暗層厚さまたは隣接する明層厚さが同じ画素に対応することを確認した後、前記隣接する明層厚さまたは前記隣接する暗層厚さを単一の明層厚さまたは単一の暗層厚さに併合するステップ、
を含む、請求項8に記載の画像解析方法。
【請求項10】
多層構造の画像を提供するように構成された電子顕微鏡と、
前記多層構造の前記画像を表示するように構成された表示装置と、
前記電子顕微鏡および前記表示装置に結合され、前記電子顕微鏡によって提供される前記多層構造の前記画像を取得し、前記多層構造の前記画像を前記表示装置に出力する画像解析装置と、を備える、画像解析システムであって、前記画像解析装置が、
画像解析モジュールを含む記憶装置、および
前記記憶装置に結合されたプロセッサを備え、
前記プロセッサが、前記多層構造の前記画像を前記画像解析モジュールに入力し、
前記プロセッサが、前記多層構造の前記画像上に、第1の方向に沿って延在する測定線分を設定し、
前記プロセッサが、前記画像解析モジュールを介して、前記測定線分に沿った前記多層構造の前記画像に対応する前記測定線分内のグレースケール分布を検出し、
前記プロセッサが、前記画像解析モジュールを介して前記グレースケール分布を解析して、閾値範囲に従って前記多層構造の前記画像における複数の暗層厚さおよび複数の明層厚さを決定する、
画像解析システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は解析方法に関し、詳しくは画像解析方法および画像解析システムに関する。
【背景技術】
【0002】
半導体製造プロセスでは、デバイスのサイズが電気的変化に影響を及ぼすことがある。そのため、デバイスのサイズは正確である必要がある。半導体デバイスの測定には、通常、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)などの拡大機能を備えた電子顕微鏡が用いられる。
【発明の概要】
【発明が解決しようとする課題】
【0003】
電子顕微鏡を用いてデバイス像のサイズを測定する場合、各領域のエッジ点を1つずつ手動で設定することによって各領域のサイズを求めており、これには、時間がかかる。したがって、以下の一部の実施形態は、上記の問題に対する解決策として提案されている。
【課題を解決するための手段】
【0004】
本開示は、設定された測定線分に従って多層構造の画像の各層の厚さを自動的に測定することができる画像解析方法および画像解析システムを対象とする。
【0005】
本開示の画像解析方法は以下を含む。電子顕微鏡によって提供される多層構造の画像を得る。多層構造の画像は、表示装置を介して表示され、多層構造の画像は、グレースケール画像である。測定線分が多層構造の画像上に設定され、測定線分は、第1の方向に沿って延在する。多層構造の画像に対応する測定線分内のグレースケール分布が、測定線分に沿って検出される。グレースケール分布を解析して、閾値範囲に従って多層構造の画像における複数の暗層厚さおよび複数の明層厚さを決定する。
【0006】
本発明の画像解析システムは、電子顕微鏡と、表示装置と、画像解析装置と、を備える。電子顕微鏡は、多層構造の画像を提供するように構成されている。表示装置は、多層構造の画像を表示するように構成されている。画像解析装置は、電子顕微鏡および表示装置に結合されて、電子顕微鏡によって提供される多層構造の画像を取得し、多層構造の画像を表示装置に出力する。画像解析装置は、記憶装置およびプロセッサを含む。記憶装置は、画像解析モジュールを含む。プロセッサは、記憶装置に結合されている。プロセッサは、多層構造の画像を画像解析モジュールに入力する。プロセッサは、多層構造の画像上に測定線分を設定し、測定線分は、第1の方向に沿って延在する。プロセッサは、画像解析モジュールを介して、測定線分に沿った多層構造の画像に対応する測定線分内のグレースケール分布を検出する。プロセッサは、画像解析モジュールを介してグレースケール分布を解析して、閾値範囲に従って多層構造の画像における複数の暗層厚さおよび複数の明層厚さを決定する。
【発明の効果】
【0007】
上記に基づいて、本発明の画像解析方法および画像解析システムは、設定された測定線分に従って、多層構造の画像の各層の厚さを自動的に測定することができる。したがって、手動操作に費やされる多大な時間が短縮される。
【0008】
本開示の前述の特徴および利点を理解可能にするために、図面を伴う実施形態が以下で詳細に説明される。
【図面の簡単な説明】
【0009】
【
図1】本発明の実施形態による画像解析システムの概略図である。
【0010】
【
図2】本発明の一実施形態による画像解析方法のフローチャートである。
【0011】
【
図3】本開示の一実施形態による多層構造の画像の概略図である。
【0012】
【
図4】本開示の一実施形態によるグレースケール分布の概略図である。
【0013】
【
図5】本開示の一実施形態による表示インターフェースの概略図である。
【0014】
【
図6】本発明の一実施形態による画像解析方法のフローチャートである。
【0015】
【
図7】本開示の一実施形態による多層構造の画像のグレースケール分布の概略図である。
【発明を実施するための形態】
【0016】
本開示の内容をより理解しやすくするために、以下の実施形態は、本開示を実施することができる例として具体的に説明される。可能な限り、図面および実施形態において同じ参照番号を有する要素/構成要素/ステップは、同じまたは類似の部分を表す。
【0017】
加えて、特に定義されない限り、本明細書で使用されるすべての用語(技術用語および科学用語を含む)は、本開示が属する技術分野の当業者によって一般に理解されるものと同じ意味を有する。一般的に使用される辞書に定義されているものなどの用語は、関連技術および本開示の文脈におけるそれらの意味と、一致する意味を有すると解釈されるべきであり、本明細書において明示的に定義されていない限り、理想化された意味または過度に形式的な意味を有すると解釈されないことがさらに理解されよう。
【0018】
図1は、本開示の実施形態による画像解析システムの概略図である。
図1を参照すると、画像解析システム100は、画像解析装置101、電子顕微鏡140、および表示装置150を含むことができる。電子顕微鏡140は、半導体製造プロセスの対象物(半導体製品)を撮影することによって多層構造の画像を提供するように構成されていてもよい。多層構造の画像は、電子顕微鏡画像およびグレースケール画像である。多層構造の画像は、異なる材料の多層半導体構造層を含んでもよく、多層半導体構造層の画像のグレースケール分布は、異なる半導体材料に従って決定されてもよい。
【0019】
本実施形態において、表示装置150は、多層構造の画像を表示するように構成されていてもよい。画像解析装置101は、電子顕微鏡140および表示装置150に結合されて、電子顕微鏡140によって提供される多層構造の画像を取得し、多層構造の画像を表示装置150に出力することができる。画像解析装置101は、プロセッサ110および記憶装置120を含むことができる。記憶装置120は、画像解析モジュール121を含むことができる。プロセッサ110は、記憶装置120に結合されていてもよい。本実施形態において、画像解析装置101は、独立したコンピュータ装置またはクラウドサーバであってもよい。本開示はこれに限定されない。
【0020】
本実施形態において、プロセッサ110は、多層構造の画像を画像解析モジュール121に入力することができ、プロセッサ110は、多層構造の画像上に測定線分を設定することができる。測定線分は、多層構造が積層されている方向に沿って延在する。本実施形態において、プロセッサ110が測定線分を設定する方法は、手動設定または自動設定を含んでもよい。ここで、手動設定は、例えば、画像解析システム100の入力装置よって提供される設定指示またはパラメータ(例えば、ユーザによる入力)を介して、測定線分の位置を設定することであってもよいが、これらに限定されない。自動設定は、例えば、画像のマージン範囲に応じた自動設定、または画像解析システム100による所定の条件に応じた自動設定であってもよいが、これらに限定されない。
【0021】
次に、プロセッサ110は、画像解析モジュール121を介して、測定線分に沿った多層構造の画像に対応する測定線分内のグレースケール分布を検出することができる。さらに、プロセッサ110は、画像解析モジュール121を介してグレースケール分布を解析して、閾値範囲に従って多層構造の画像における複数の暗層厚さおよび複数の明層厚さを決定することができる。このようにして、画像解析システム100は、設定された測定線分に従って、多層構造の画像の各層の厚さを自動的に測定することができる。したがって、手動操作に費やされる多大な時間が短縮される。
【0022】
本実施形態において、プロセッサ110は、例えば中央処理装置(CPU)、マイクロプロセッサ制御装置(MCU)またはフィールドプログラマブルゲートアレイ(FPGA)であってもよいが、これらに限定されない。
【0023】
本実施形態において、記憶装置120は、例えばランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、光ディスク、磁気ディスク、ハードドライブ、ソリッドステートドライブ、フラッシュドライブ、セキュリティデジタル(SD)カード、メモリスティック、コンパクトフラッシュ(CF)カード、または任意のタイプの記憶装置であってよいが、これらに限定されない。記憶装置120は、プロセッサ110がアクセスして実行するために、各実施形態で説明される画像解析モジュール121および関連する画像データ、関連する解析結果およびデータ、表示インターフェースなどを記憶することができる。
【0024】
本実施形態において、電子顕微鏡140は、例えば、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)であってもよいが、これらに限定されない。本実施形態において、表示装置150は、例えば、表示機能を有する様々な電子機器であってよい。加えて、別の実施形態では、画像解析装置101に表示装置150を配置してもよく、それにより、画像解析装置101を例えば表示機能を有するコンピュータ装置とすることができる。
【0025】
図2は、本発明の一実施形態による画像解析方法のフローチャートである。
図3は、本開示の一実施形態による多層構造の画像の概略図である。
図4は、本開示の一実施形態によるグレースケール分布の概略図である。
図1~
図4を参照すると、本実施形態では、画像解析システム100は、画像解析方法の以下のステップS210~S250を実行することができる。ステップS210において、画像解析装置101は、電子顕微鏡140によって提供される多層構造の画像300を取得することができる。ステップS220において、画像解析装置101は、表示装置150を介して多層構造の画像300を表示することができる。ステップS230において、画像解析モジュール121は、多層構造の画像300上に測定線分330を設定することができる。ステップS240において、画像解析モジュール121は、測定線分330に沿った多層構造の画像300に対応する測定線分330内のグレースケール分布400を検出する。ステップS250において、画像解析モジュール121は、グレースケール分布400を解析して、閾値範囲461および閾値範囲462に基づいて、多層構造の画像300における複数の暗層厚さおよび複数の明層厚さを決定する。
【0026】
具体的には、多層構造の画像300は、グレースケール画像であってもよく、第1の方向P1は、第2の方向P2に垂直である。さらに、多層構造の画像300は、複数の暗層画像310-1~310-4および複数の明層画像320-1~320-5を含むことができる。暗層画像310-1~310-4および明層画像320-1~320-5は、第1の方向P1に沿ってインターレース状に配置され、暗層画像310-1~310-4および明層画像320-1~320-5は、第2の方向P2に沿ってそれぞれ延在する。本実施形態では、暗層画像310-1~310-4は、第1のタイプの半導体材料層であり、明層画像320-1~320-5は、第2のタイプの半導体材料層である。第1のタイプの半導体材料層は、第2のタイプの半導体材料層とは異なる。本実施形態では、暗層画像310-1~310-4と明層画像310-1~320-5との間にそれぞれ複数の白い薄層の画像340-1~340-7がさらに存在してもよく、白い薄層の画像340-1~340-7は、第1のタイプおよび第2のタイプとは異なる第3のタイプの半導体材料層であってもよい。
【0027】
図1~
図4を参照すると、ステップS230において、プロセッサ110は、画像解析モジュール121を実行して、多層構造の画像300上に測定線分330を設定することができる(上述したように手動設定または自動設定によって)。ステップS240において、プロセッサ110は、測定線分330に沿った多層構造の画像300に対応する測定線分330内の複数の連続する画素を検出して、画素の複数のグレースケール値を取得することができる。加えて、プロセッサ110は、グレースケール値に従って、
図4に示すようなグレースケール分布400を確立することができる。ステップS250において、プロセッサ110は、グレースケール分布400を解析し、所定の閾値範囲461および所定の閾値範囲462に従って、多層構造の画像300における暗層厚さおよび明層厚さを決定することができる。ここで、
図4に示すように、グレースケール分布400の横軸の値は、第1の方向P1に沿った測定線分330上の各画素に対応することができ、縦軸の値は、多層構造の画像300に対応する測定線分330内の各画素のグレースケール値を表すことができる。
【0028】
本実施形態では、閾値範囲461(第1の閾値範囲とも呼ばれる)は、例えば、0~15に設定されてもよく、閾値範囲462(第2の閾値範囲とも呼ばれる)は、例えば、45~90に設定されてもよい。すなわち、画素のグレースケール値が0~15である場合、その画素は、暗画素であると見なすことができる。逆に、別の画素のグレースケール値が45~90である場合、その画素は、明画素であると見なすことができる。例えば、ステップS250において、プロセッサ110は、グレースケール値が閾値範囲461内にある画素を暗画素として決定することができる。さらに、プロセッサ110は、グレースケール値が閾値範囲462内にある画素を明画素として決定することができる。次に、プロセッサ110は、連続する2つのグレースケール値の勾配値に従って各層の開始点および終了点を決定することによって、測定線分330上の暗層厚さのそれぞれに対応する暗画素の数または明層厚さのそれぞれに対応する明画素の数を算出して、暗層厚さのそれぞれまたは明層厚さのそれぞれを、それぞれ取得することができる。すなわち、各暗層厚さは、各暗層厚さの暗画素の数に対応し、各明層厚さは、各明層厚さの明画素の数に対応する。
【0029】
本実施形態では、プロセッサ110が各暗層の暗画素の数および各明層の明画素の数を計算し終えると、プロセッサ110は、これらの数を対応する厚さパラメータに即座に変換して測定結果を出力することができる。例えば、画素は、1ナノメートルに相当してもよい。一実施形態では、第6の画素~第44の画素が明画素であると仮定すると、プロセッサ110は、対応する明層画像の層の厚さが39ナノメートル(44-6+1=39)であると取得することができる。しかしながら、画素と長さの対応関係は、手動設定または自動検出によって調整されてもよい。本開示はこれに限定されない。
【0030】
加えて、本実施形態では、全体の測定結果を以下の表1のように提示して表示装置150に表示することができる。本開示はこれに限定されない。本実施形態では、層番号は、多層構造の画像300において、第1の方向P1に沿って測定線分330と順次交差する暗層画像310-1~310-4または明層画像320-1~320-5の番号を表すことができる。本実施形態では、平均グレースケール値は、多層構造の画像300において、第1の方向P1に沿って測定線分330と順次交差する暗層画像310-1~310-4または明層画像320-1~320-5に対応する画素のグレースケール値の平均値を表すことができる。本実施形態では、測定厚さは、層番号に対応する暗層厚さまたは明層厚さを表すことができる。
【表1】
【0031】
加えて、一実施形態では、多層構造の画像300は、複数の異なるグレースケール値範囲を有する暗層画像310-1~310-4および明層画像320-1~320-5を含むことができる。プロセッサ110は、これに対応して、閾値範囲461、閾値範囲462、または他の閾値範囲を設定して、厚さを測定することができる。さらに、一実施形態では、多層構造の画像300において、異なるグレースケール値範囲を有する暗層画像300-1~310-4および明層画像320-1~320-5は、第1の方向P1に沿ってランダムに配置されてもよく、暗層画像310-1~310-4および明層画像320-1~320-5が第1の方向P1に沿ってインターレース状に配置されることに限定されない。
【0032】
図5は、本開示の一実施形態による表示インターフェースの概略図である。
図3および
図5を参照すると、表示インターフェース500は、多層構造の画像510、ツールバー520、および測定結果530を含む。多層構造の画像510の説明に関しては、
図3の多層構造の画像300の説明を参照することができ、ここでは繰り返さない。本実施形態では、ツールバー520は、ユーザが操作するように構成された拡大鏡、表示範囲の移動、測定線分の設定などのボタンを含むことができるが、本開示はこれらに限定されない。例えば、ユーザは、ツールバー520上の測定線分設定のボタンを用いて、所望の測定線分330を自ら設定してもよい。さらに、測定結果530は、例えば、層番号および暗層(暗)に対応する暗層厚さまたは明層に対応する明層厚さを含んでもよい。測定結果530において、暗層厚さおよび明層厚さは、同じ層番号にそれぞれ対応していることに留意されたい。別の実施形態では、測定結果530は、表1のような形態であってもよく、層番号は、1つの暗層厚さまたは1つの明層厚さのみに対応する。本実施形態では、ユーザが測定結果530を即座に見ることができるように、表示インターフェース500が表示装置150に表示されてもよい。
【0033】
図6は、本発明の一実施形態による画像解析方法のフローチャートである。
図1~
図4および
図6を参照すると、
図2のステップS250は、例えば、
図6の方法を採用することによって実現されてもよい。本実施形態では、プロセッサ110が画像解析モジュール121を実行してグレースケール分布400を解析する場合、プロセスは、以下の4つのステップに分割されてもよい。すなわち、ステップS610(暗層厚さまたは明層厚さの開始点を見つける)、ステップS620(暗層厚さまたは明層厚さの終了点を見つける)、ステップS630(厚さ範囲をチェックする)、およびステップS640(厚さが重なり合っているかどうかをチェックする)である。
【0034】
白い薄層の画像340-1~340-7のグレースケール値は、暗層画像310-1~310-4および明層画像320-1~320-5のグレースケール値よりも大きいため、プロセッサ110がグレースケール分布400を解析すると、白い薄層の画像340-1~340-7から暗層画像310-1~310-4に入る場合も、白い薄層の画像340-1~340-7から明層画像320-1~320-5に入る場合も、グレースケール値は徐々に減少することに留意されたい。すなわち、連続する2つのグレースケール値の勾配値はマイナスである。次に、プロセッサ110が、連続する2つのグレースケール値によって形成される間隔が閾値範囲461および閾値範囲462の上限値を含んでいると判定し、そして連続する2つのグレースケール値のうちの2番目のグレースケール値が、暗層画像320-1~310-4の閾値範囲461に属するのか、または明層画像310-1~320-5の閾値範囲462に属するのかを判定しさえすれば、プロセッサ110は、暗層厚さまたは明層厚さの開始点をマークすることができる。すなわち、プロセッサ110が、連続する2つのグレースケール値によって形成される間隔が閾値範囲461の上限値(第1の上限値とも呼ばれる)を含んでおり、対応する連続する2つの画素のうちの2番目の画素が暗画素であると判定した場合、プロセッサ110は、対応する連続する2つの画素のうちの2番目の画素を、対応する暗層厚さの暗層開始点としてマークする。同様に、プロセッサ110が、連続する2つのグレースケール値によって形成される間隔が閾値範囲462の上限値(第2の上限値とも呼ばれる)を含んでおり、対応する連続する2つの画素のうちの2番目の画素が明画素であると判定した場合、プロセッサ110は、対応する連続する2つの画素のうちの2番目の画素を、対応する明層厚さの明層開始点としてマークする。
【0035】
加えて、プロセッサ110がグレースケール分布400を解析すると、グレースケール値は、暗層画像310-1~310-4から白い薄層の画像340-1~340-7に入る場合も、明層画像320-1~320-5から白い薄層の画像340-1~340-7に入る場合も、徐々に増加する。すなわち、連続する2つのグレースケール値の勾配値は、プラスである。次に、プロセッサ110が、連続する2つのグレースケール値によって形成される間隔が閾値範囲461および閾値範囲462の上限値を含んでいると判定し、そして連続する2つのグレースケール値のうちの2番目のグレースケール値が、暗層画像320-1~310-4の閾値範囲461に属さないか、または明層画像310-1~320-5の閾値範囲462に属さないかを判定しさえすれば、プロセッサ110は、暗層厚さまたは明層厚さの終了点をマークすることができる。すなわち、プロセッサ110が、連続する2つのグレースケール値によって形成される間隔が閾値範囲461の第1の上限値を含んでおり、対応する連続する2つの画素のうちの最初の画素が暗画素であると判定した場合、プロセッサ110は、対応する連続する2つの画素のうちの最初の画素を、対応する暗層厚さの暗層終了点としてマークする。同様に、プロセッサ110が、連続する2つのグレースケール値によって形成される間隔が閾値範囲462の第2の上限値を含んでおり、対応する連続する2つの画素のうちの最初の画素が明画素であると判定した場合、プロセッサ110は、対応する連続する2つの画素のうちの最初の画素を対応する明層厚さの明層終了点としてマークする。
【0036】
本実施形態では、プロセッサ110は、減少閾値を設定し、勾配値が減少閾値よりも小さいかどうかを判定して、暗層厚さまたは明層厚さの開始点をマークすることができる。本実施形態では、プロセッサ110は、増加閾値を設定し、勾配値が増加閾値よりも大きいかどうかを判定して、暗層厚さまたは明層厚さの終了点をマークすることができる。例えば、減少閾値および増加閾値の両方が0に設定されてもよいが、本開示はこれに限定されない。すなわち、プロセッサ110は、勾配値がマイナス(0よりも小さい)であるかどうかを判定して、暗層厚さまたは明層厚さの開始点をマークすることができる。さらに、プロセッサ110は、勾配値がプラス(0よりも大きい)であるかどうかを判定して、暗層厚さまたは明層厚さの終了点をマークすることができる。一実施形態では、減少閾値および増加閾値は、設計の必要性に応じて同じ値または異なる値としてそれぞれ設定されてもよく、本開示はこれに限定されない。
【0037】
例えば、ステップS610において、プロセッサ110がグレースケール分布400を解析する際に、プロセッサ110は、連続する2つのグレースケール値の勾配値を算出することができる。プロセッサ110は、勾配値の変化に応じて、そして連続する2つのグレースケール値のうちの2番目のグレースケール値が、暗層画像320-1~310-4に対応する閾値範囲461に入るのか、または明層画像310-1~320-5に対応する閾値範囲462に入るのかを判定することによって、連続する2つのグレースケール値のうちの2番目のグレースケール値に対応する画素を暗層または明層の開始点としてマークすることができる。すなわち、プロセッサ110は、連続する2つのグレースケール値によって形成される間隔が閾値範囲461および閾値範囲462の上限値を含むか否かを判定して、連続する2つのグレースケール値のうちの2番目のグレースケール値に対応する画素を暗層または明層の開始点としてマークする。
【0038】
ステップS620において、プロセッサ110がグレースケール分布を解析する際に、プロセッサ110は、連続する2つのグレースケール値の勾配値を算出することができる。プロセッサ110は、勾配値の変化に応じて、そして連続する2つのグレースケール値のうちの2番目のグレースケール値が、暗層画像320-1~310-4に対応する閾値範囲461から離れるのか、または明層画像310-1~320-5に対応する閾値範囲462から離れのるかを判定することによって、連続する2つのグレースケール値のうちの最初のグレースケール値に対応する画素を暗層または明層の終了点としてマークすることができる。すなわち、プロセッサ110は、連続する2つのグレースケール値によって形成される間隔が閾値範囲461および閾値範囲462の上限値を含むか否かを判定して、連続する2つのグレースケール値のうちの最初のグレースケール値に対応する画素を暗層または明層の終了点としてマークする。
【0039】
次に、ステップS630において、プロセッサ110は、暗層厚さまたは明層厚さのそれぞれに対応する開始点と終了点との間の画素数をそれぞれ算出する。このようにして、プロセッサ110は、暗層厚さまたは明層厚さのそれぞれに対応する開始点と終了点との間の画素数に応じて、対応する暗層厚さまたは明層厚さを算出することができる。
【0040】
さらに、プロセッサ110は、不正確な開始点を除外するために画素をチェックすることができる。例えば、プロセッサ110は、各暗層厚さの開始点と終了点との間の全画素の平均グレースケール値が、暗層画像310-1~310-4に対応する閾値範囲461内に入るか否か、または、各明層厚さの開始点と終了点との間の全画素の平均グレースケール値が、明層画像320-1~320-5に対応する閾値範囲462内に入るか否かをチェックすることができる。チェック結果が正しい場合、プロセッサ110は、暗層厚さまたは明層厚さのそれぞれに対応する開始点と終了点との間の画素数を算出することができる。逆に、チェック結果が正しくない場合、プロセッサ110は、現在の開始点を除外し、次の開始点を新たな開始点として決定することを継続するために、やり直すことができる。
【0041】
最後に、ステップS640において、プロセッサ110は、隣接する暗層厚さまたは隣接する明層厚さが同じ画素に対応するかどうかをチェックして、厚さが重なり合っているかどうかをチェックすることができる。重なり合った厚さは、同じ暗層厚さまたは明層厚さであると見なされる。すなわち、プロセッサ110が、隣接する暗層厚さまたは隣接する明層厚さが同じ画素に対応することを確認すると、プロセッサ110は、隣接する明層厚さまたは隣接する暗層厚さを単一の明層厚さまたは暗層厚さに併合することができる。このようにして、プロセッサ110は、ノイズの干渉によって引き起こされる暗層厚さまたは明層厚さの重なりを補正して、正しい暗層厚さまたは明層厚さを得ることができる。加えて、一実施形態では、ステップS640を省略し、ステップS630において算出され、得られた厚さを直接暗層厚さまたは明層厚さとしてもよい。
【0042】
図7は、本開示の一実施形態による多層構造の画像のグレースケール分布の概略図である。
図1および
図7を参照すると、本実施形態では、多層構造の画像のグレースケール分布700は、
図3に示すように、複数の暗層画像710-1~710-4および複数の明層画像720-1~720-3のみを含むことができ、白い薄層の画像340-1~340-7を省略することができる。上述した方法と同様に、プロセッサ110は、暗層厚さまたは明層厚さの開始点または終了点を決定する際に、連続する2つのグレースケール値が、暗層画像710-1~710-4の閾値範囲761および明層画像720-1~720-3の閾値範囲762に属するか否かをそれぞれ判定することができる。言い換えれば、プロセッサ110は、連続する2つのグレースケール値によって形成される間隔が閾値範囲761の上限値を含むか否かを判定して、暗層厚さの開始点または終了点をマークすることができる。加えて、プロセッサ110は、連続する2つのグレースケール値によって形成される間隔が閾値範囲762の上限値を含むか否かを判定して、明層厚さの開始点または終了点をマークすることができる。次に、プロセッサ110は、連続する2つのグレースケール値のうちの2番目の画素が暗層画像710-1~710-4の閾値範囲761に入るのか、または明層画像720-1~720-3の閾値範囲762に入るのか、あるいはそこから離れるのかに応じて、開始点または終了点が、暗層厚さまたは明層厚さに属するか否かを判定することができる。加えて、厚さの算出方法の詳細は、上述した通りであり、ここでは繰り返さない。
【0043】
さらに、プロセッサ110は、勾配値がプラスまたはマイナスであることに応じて、暗層厚さまたは明層厚さの開始点または終了点を決定することができるが、本開示はこれに限定されない。具体的には、暗層から明層に入るとき、グレースケール値は、徐々に増加してもよい。明層から暗層に入るとき、グレースケール値は、徐々に減少してもよい。すなわち、プロセッサ110は、連続する2つのグレースケール値の勾配値に応じて、連続する2つの画素のうちの2番目の画素が暗画素であるか明画素であるかを判定することができる。例えば、プロセッサ110は、勾配値がマイナスであることに応じて暗層厚さの開始点710aを決定することができ、プロセッサ110は、勾配値がプラスであることに応じて暗層厚さの終了点710bを決定することができる。さらに、プロセッサ110は、勾配値がプラスであることに応じて明層厚さの開始点720aを決定することができ、プロセッサ110は、勾配値がマイナスであることに応じて明層厚さの終了点720bを決定することができる。
【0044】
以上をまとめると、本開示の画像解析方法および画像解析システムは、設定された測定線分に従って、多層構造の画像の各層の厚さを自動的かつ迅速に測定することができる。したがって、各層の厚さを手動で測定するために費やされる多大な時間が短縮される。さらに、本開示の画像解析方法および画像解析システムは、画像ノイズの干渉または材料不純物の影響を効果的に回避し、多層構造の画像の各層の厚さを正確に測定することができる。
【0045】
上記の実施形態を参照して本開示を説明してきたが、本開示は、上記の実施形態に限定されることは意図されていない。本開示の精神および範囲から逸脱することなく、記載された実施形態に対する修正がなされ得ることは、当業者には明らかであろう。したがって、本開示の範囲は、上記の詳細な説明によってではなく、添付の特許請求の範囲およびそれらの均等物によって定義される。
【産業上の利用可能性】
【0046】
本開示による画像解析方法および画像解析システムは、電子顕微鏡に適用することができる。
【符号の説明】
【0047】
100:画像解析システム
101:画像解析装置
110:プロセッサ
120:記憶装置
121:画像解析モジュール
140:電子顕微鏡
150:表示装置
S210,S220,S230,S240,S250,S610,S620,S630,S640:ステップ
300:多層構造の画像
310-1~310-4,710-1~710-4:暗層画像
320-1~320-5,720-1~720-3:明層画像
330:測定線分
340-1~340-7:白い薄層の画像
400:グレースケール分布
461,462,761,762:閾値範囲
500:表示インターフェース
510:多層構造の画像
520:ツールバー
530:測定結果
700:多層構造の画像のグレースケール分布
710a,720a:開始点
710b,720b:終了点
P1:第1の方向
P2:第2の方向
【外国語明細書】