IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大口 元気の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022084851
(43)【公開日】2022-06-07
(54)【発明の名称】軸継手を有する駆動構造
(51)【国際特許分類】
   F16D 1/12 20060101AFI20220531BHJP
   F16D 1/02 20060101ALI20220531BHJP
【FI】
F16D1/12
F16D1/02 110
【審査請求】有
【請求項の数】2
【出願形態】OL
(21)【出願番号】P 2022049366
(22)【出願日】2022-03-25
(62)【分割の表示】P 2021155420の分割
【原出願日】2021-09-24
(31)【優先権主張番号】P 2020196049
(32)【優先日】2020-11-26
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】713012530
【氏名又は名称】大口 元気
(72)【発明者】
【氏名】大口 勝雅
(57)【要約】      (修正有)
【課題】駆動軸と被動部品とそれらを固定接続する軸継手からなる駆動構造であり、駆動軸の回転角度に対しカム等の被動部品との位相調節が5°~0.5°といった微小な角度単位で可能とし、位相調節作業が軸継手の挿し直しで完了する、簡便・正確かつ再現性良く調節可能な駆動構造を提供する。
【解決手段】駆動軸と被動部品と、それら2部品を相対回転不能に接続する軸継手を有する駆動構造であって、前記駆動軸と軸継手、前記被動部品と軸継手の2箇所の接続はN回回転対称(N:2以上の整数)を有する形状で嵌合している第1の部分と、M回回転対称(M>Nの整数)を有する形状で嵌合している第2の部分とからなり、前記NとMの最小公倍数LCM(N,M)は72以上であり、かつMより大きく(N<M<LCM(N,M))、前記第1と第2の結合の嵌合状態を示す標線または目印が3部品それぞれの表面に少なくとも各一つ付されている駆動構造である。
【選択図】図4A
【特許請求の範囲】
【請求項1】
駆動軸と、被動部品と、この2部品を相対回転不能に接続する軸継手を有する駆動構造であって、前記駆動軸と軸継手、前記被動部品と軸継手の2箇所の接続はN回回転対称(N:2以上の整数)を有する形状で嵌合している第1の部分と、M回回転対称(M>Nの整数)を有する形状で嵌合している第2の部分とからなり、前記Nと前記Mの最小公倍数LCM(N,M)は72以上であり、かつ前記最小公倍数LCM(N,M)はMより大きく( N<M<LCM(N,M))、前記駆動軸及び前記軸継手及び前記被動部品の相互の嵌合状態を示す標線または目印がそれぞれの表面に少なくとも各一つ付されている駆動構造。
【請求項2】
駆動軸と、被動部品と、この2部品を相対回転不能に接続する軸継手を有する駆動構造であって、前記駆動軸と軸継手、前記被動部品と軸継手の2箇所の接続はN回回転対称(N:2以上の整数)を有する形状で嵌合している第1の部分と、M回回転対称(M>Nの整数)を有する形状で嵌合している第2の部分とからなり、前記第1の部分と前記第2の部分のいずれか一方の接続のメス側の部材の空間形状を、オス側の形状に対応した空間をT個(T:2以上の整数)重ね合わせ、かつ下記条件を全て満たすよう配置した駆動構造。
1) 各空間はオス側の部材と同軸上に配置される
2) 各空間はその軸方向に重なっており位相差を有する
3) 基準となる最初の空間S0と他の空間Skの位相差θk°は全てのk(1≦k≦T-1を満たす整数)について以下を満たす
θk=(n×a)+(a/T)×k
但しnは任意の整数であり、a=360°/LCM(N、M)である
このときの分解能は A=360°/(LCM(N、M)×T)となる
【請求項3】
請求項2の駆動構造において、MとNの最大公約数をLとするとき、M/LをN/Lで割った時の余り MOD(M/L,N/L)が1またはN/L-1となるMとN、Lであり、この駆動構造の第1の部分のメス側空間形状を複数個、下記2条件両方をを満たすよう重ね合わせて成る請求項2の駆動構造
条件1) 重ね合わせの基準になる最初の空間S0と他の空間Skの位相差θk°は全てのk(1≦k≦T-1を満たす整数)について以下を満たす
MOD(M/L,N/L)が1の場合
θk=(n×360/M)+(a/T)×k
MOD(M/L,N/L)がN-1の場合
θk=(n×360/M)-(a/T)×k
但し、0°<θk<(360°/N)である。
条件2)前記他の空間Skの任意の2つ(Si、SJ 但しi>J)を選択したとき、前記位相差θi、θJはθi>θJである


【発明の詳細な説明】
【技術分野】
【0001】
本件発明は、駆動軸と被動部品を設定された位相角度で嵌合する軸継手を含む駆動
構造に関する
【背景技術】
【0002】
駆動軸と被動部品/回転体を嵌合する軸継手はごく一般的な機械要素として様々な
機械に用いられている。その中でも駆動軸と被動体の回転位相を調整した上で一定の位相
に設定嵌合する軸継手は少ないながら一定のニーズがあり、主目的である位相の調整・設
定のためにいくつかの発明・考案がなされている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2016-125532
【特許文献2】特開2018-100715
【特許文献3】特開2015-152120
【0004】
(背景技術の問題点)
特許文献1の図2に示されるすり割りを締め付ける方式が最も簡素でよく使われている。これは位相の調整と位相の設定を主目的とした構造を持ったものではないが、特定の位相角度に設定する用途にも流用されている。位相を調整するには当該機械を熟知した熟練者による作業が必要であり、しかし異常トルクで容易にずれてしまい、復旧は最初から調整のやり直しとなり、しかも位相角度の調整実績値を数値で把握することが軸継手部分では困難であり、カム等の出力側部分で位相角度の測定が毎回必要である。
特許文献2の方式では雌雄のセレーションをかみ合わせ、やはり締め付ける方式をとっており、一度設定された位相がずれることは破壊以外にありえなくなっている。しかし位相角度の調整においてはその調整角度単位は360°/セレーションの山数となりたとえば軸の直径30mm(円周長94.2mm)セレーション一山の幅が約2mmであれば山数は47、調整角度の単位は約7.7°となり、1°や2°といった小さい単位での微調整は不能である。
特許文献3の方式では角度調整はアナログ(無段階)に可能であり、またずれることも無く、初心者にも調整が容易であろうと推察されるが、機構が複雑大型になりすぎてかつコストアップになり、広く普及しているとは言い難い。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本件発明の目的は従来の軸継手より簡便・安価でかつデジタルな機械的構造により、5°以下(望ましくは2°以下)の小さな角度単位での位相設定を可能とする軸継手を提供し熟練者でなくても正確で単純・簡便・再現しやすい位相設定作業を可能ならしめることを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するため本件発明は駆動軸と、被動部品と、それら2部品を相対回転不能に接続する軸継手を有する駆動構造であって、前記駆動軸と軸継手、前記被動部品と軸継手の2箇所の接続はN回回転対称(N:2以上の整数)を有する形状で嵌合している第1の部分と、M回回転対称(M>Nの整数)を有する形状で嵌合している第2の部分とからなり、前記Nと前記Mの最小公倍数LCM(N,M)は72以上であり、かつ前記最小公倍数LCM(N,M)はMより大きく( N<M<LCM(N,M))、前記駆動軸及び前記軸継手及び前記被動部品の相互の嵌合状態を示す標線または目印がそれぞれの表面に少なくとも各一つ付されている駆動構造である。
【0007】
ここで以下の明細書をわかりやすくするために数式上の記号を定義し説明する。
N: 接続箇所の第1の部分の回転対称数、2以上の整数
Y: 接続箇所の第1の部分のピッチ角度、360°/N=Y
M: 接続箇所の第2の部分の回転対称数、M>Nの整数
X: 接続箇所の第2の部分のピッチ角度、360°/M=X
LCM(N,M): NとMの最小公倍数
a: NとMの組み合わせで得られる調整可能な位相角度の最小単位(分解能) 36
0°/LCM(N,M)=a
A: 勘合形状の重ね合わせによって得られる分解能
T: 重ね合わせの個数
A=360/(T×LCM(N,M))=a/T
LLCM(N,M,θ1/θ2/・・・/θT-1):
またはLLCM(M,N,θ1/θ2/・・・/θT-1):
請求項2で定義された接続形状のメス側空間がT個、それぞれ位相差θkで配置された状態を示す式。( )内先頭の記号が重ね合わせをする側の回転対称数、通常はNである。
この時分解能A=360/(T×LCM(N,M))=a/T
L:NとMの最大公約数
また本明細書において特に断らない限り、角度は被動部品側から駆動軸側を見たとき、基準となるものから時計回り方向を正(+)方向として測定されるものである。
【0008】
目的の分解能aまたはAを得るためのNとM、Tの組み合わせ方法を以下に説明する
分解能a=360°/LCM(N,M)となる。
a=5°以下(望ましくは2°以下)を得るためには、NとMの最小公倍数LCM(N,M)が72以上(望ましくは180以上)となるようにNとMを組み合わせる。
例1 N=8 M=45 LCM(N,M)=360 a=1
例2 N=16 M=45 LCM(N,M)=720 a=0.5
例3 N=20 M=36 LCM(N,M)=180 a=2
例4 N=24 M=25 LCM(N,M)=600 a=0.6
またT個の嵌合空間を重ね合わせる方式ではA=5°以下(望ましくは2°以下)を得るためにはT×LCM(N,M)が72以上(望ましくは180以上)となるようにNとM、Tを組み合わせる。
【発明の効果】
【0009】
本件発明によれば軸継手と駆動軸、軸継手とカム等の2箇所の嵌合を抜いてはずし、角度を変更して組みなおすことで簡単に5°以下といった微細な角度の設定が初心者にも簡単・単純に実施できるようになる。
また上記効果は軸継手などに設けられた標線や目印に駆動軸とカム等の標線や目印を合わせることにより調整実績値を数値で把握することで容易に再現可能とされている。例えば標線または目印を第一、第二の部分それぞれの回転対称数に一致させて設ければ、分解能aの角度単位で位相設定が容易に可能になる。
また予め所定量の位相が必要な場合はその位相が得られる位置に単一の標線または目印を例えばレーザー刻印等でそれぞれに設ければよい。
これにより同一の軸継手でありながら適用する製品・機種別に刻印位置を変更するだけで位相角度の異なるものが得られ部品の共通化ができる。
【0010】
さらにこの場合組付け指示線が1本だけとなるので1°、1/2°といった微細な調
位角度の軸継手においても、組み間違えることが少ない。
【図面の簡単な説明】
【0011】
図1A】実施例1の全体外観図である。M=45 N=4 LCM(N、M)=180 の実施例である。
図1B】実施例1の断面図である。
図1C】実施例1の標線の展開図(原位置組付時)である。
図1D】実施例1の進角22°に調整した状態の標線の展開図である
図2A】実施例2の全体外観図である。M=45 N=8 LCM(N,M)=360 の実施例である。
図2B】実施例2の断面図である。
図2C】実施例2の標線の展開図(原位置組付時)である。
図2D】実施例2の進角33°に調整した状態の標線の展開図である。
図2E】実施例2の図2Bとは異なる形式の標線の説明図である。実施例2’として実施例2と区別する
図2F図2Eの実施例の標線位置と位相角の関係を示す表である。
図3A】実施例3の全体外観図である。M=45 N=4 LCM(N,M)=180 T=2の2重化の実施例である。
図3B】実施例3の断面図である。
図3C】実施例3の標線の展開図(原位置組付時)である。
図3D】実施例3の進角9°に調整した状態の標線の展開図である。
図4A】実施例4の全体外観図である。M=45 N=4CM(N,M)=180 T=2の2重化の実施例である。
図4B】実施例4の断面図である。
図4C】実施例4の標線の展開図(進角352°組付時)である。
図5A】実施例5、M=40 N=3 LCM(N,M)=120 T=3の3重化の断面図である。
図5B】実施例5の標線の展開図である。進角82°に調整した状態の展開図である。
図6-1A】実施例6-1、M=36 N=5 LCM(N,M)=180 T=2の2重化の断面図である。
図6-1B】実施例6-1の位相調整目盛りの展開図である。進角155°に調整した状態の展開図である。
図6-2A】実施例6-2、M=36 N=5 LCM(N,M)=180 T=4の4重化の断面図である。
図6-2B】実施例6-2の標線の展開図である。進角123.5°に調整した状態の展開図である。
図7A】実施例7の説明図である。N=8、M=9、LCM(N,M)=72、a=5°の説明図である
図7B】実施例7の標線の展開図である。進角45°に調整した状態の展開図である。
図8A】実施例8の説明図である。N=8、M=30、LCM(N,M)=120、a=3°T=3、A=1の説明図である
図8B】実施例8の標線の展開図である。
【発明を実施するための形態】
【0012】
回転対称ピッチ角度の組み合わせを決定するのに、2段階の手順がある。すなわち目標となる分解能a又はAを得るには、a×LCM(N,M)=360°となるNとMの組み合わせ、またはN、M、Tの組み合わせを求めればよい。通常は複数の組み合わせが抽出できるはずである。
次に製造しやすさ、組付け及び進角調節のしやすさから軸継手の直径と勘案し、軸継手の「円周長さ/回転対称数M」が軸継手の円周表面上で1mm程度以上になるような回転対
称数Mを選びこれと組み合わせて、前記最小公倍数LCM(N,M)を得るNを求める。1mmを目安においたのは使い慣れた定規の目盛りと同程度の幅であれば目視で容易に合わせられるという判断による。
【実施例0013】
以下の段落で本件発明の実施例を示す。本件発明の理解を容易にするため発明の初期の形態から順に呈示する。後の実施例ほど、より使い勝手のよい実施例になるが原理的な理解は逆にわかりにくくなる。
以下の実施例ではいずれも被動部品側から駆動軸側を見たとき、駆動軸が時計回り回転する方向を正転とし、駆動軸の基準位置(基準線200)から、被動部品の基準位置(0°位置または基準線310)の位相を正転方向で測った角度を進角とする。
またセレーション等の山をギアと同様に歯と呼び換え、その数を「枚」の単位で記述する。
ここで時計回り方向を正転としたのは本明細書をわかり易くするための便宜的な処置であり、反時計方向を正転とした場合も発明の効果は同一である。
【実施例0014】
図1Aより図1Dに実施例1を示す。この実施例では軸継手10と駆動軸20の嵌合は回転対称数N=4の第一の部分であり、ピッチ角度Y=90°であり、嵌合方法はピッチ角度に配列されたねじによる取付けである。軸継手10とカム30(被動物)の嵌合はセレーションによる嵌合であり、回転対称数M=45(45枚歯、ピッチ角度X=8°)となっている。
軸接手10上の位相調節目盛102、104、106は下部で各ねじ穴10D、10C、10Bの中央と一致しているが、上部では正転側直近のセレーション頂点位置に斜行している。なお位相調節目盛100は一つのセレーションの頂点からねじ穴10Aの中央を通り、かつ駆動軸の軸に平行に引かれている。
図1B図1Cでは軸継手10側目盛角度0°の位相調節目盛100に、駆動軸20に刻印された基準線200が、カム30側目盛角度0°が組み合わされた状態が図示されている。この位置を原位置と呼ぶこととする。
被動物側から駆動軸側を見たとき、時計回り方向を正転と決めたので、カムなどの被動物が原位置より時計回り方向にシフトすることを進角度+とする。
すなわち軸継手10や被動物30を原位置より時計回り方向にシフトして組み付けるとき駆動軸20の基準線200に一致する角度に軸継手上に刻印される位相調節目盛にその進角度を付記するので、位相調節目盛は原位置から反時計まわり方向に組み付けピッチ数の小さい順に整列する。
正転方向で表現すると位相調節目盛は調節角の大きい順に並ぶ。
ここで「調節角」とは第一の部分Nの各嵌合位置に刻印された標線に付記された進角度の数値を言う。(標線の斜行による進角の量)
図1Dでは駆動軸20とカム30を軸継手10から取り外し、軸継手10を3ピッチ(270°)正転(右回転)させて、駆動軸基準線200と軸継手側位相調節目盛り106を合致させて取り付けると、駆動軸基準線200に正転側直近の軸継手側セレーションの頂点は原位置から6°進んだ位置となる。軸継手上の位相調節目盛り106は下部で駆動軸20の基準線200と一致しているが上部では正転方向(左)に6°ずれた位置に位置合わせ線が斜行して軸継手側セレーションの歯の頂点に一致している。
この調節角6°の調節目盛線106にカム30の0°の線を合わせて組付ければカムは原位置より6°進角して組付けされることになる。
このときの進角6°が調整角として目盛のわきに表示されている。
図1Dでは6°の調節目盛りにカム側目盛り16°の線を合わせて組付け、カム30の進角が22°となっている。すなわち 「カム30の進角度=調節角+カム上の目盛り」となり組付け作業者にわかりやすい目盛り表示となる。
取付けねじに皿ねじ4本を使ったのは、ねじを締め終わったときに回転方向の遊びが無く、かつ軸継手10と駆動軸20の同芯精度を向上するためである。
なお、図1A、2A、2E、3A、4Aの全体外観図においては第2の部分のセレーションによる嵌合部はデフォルメして作図している。正しい形状は断面図を参照されたい
【実施例0015】
図2Aより図2Fに実施例2を示す。実施例1では360/LCM(4、 45)=2°が分解能となっていたのを、1°とするべくLCM(N,M)=360となるようM=45、N=8と回転対称数Nを倍に変更したものであり回転対称数Mは実施例1と同じM=45である。軸継手10には45°ピッチで8個の穴が設けられ、45°ピッチ8分割での軸継手組み換えを可能にしている。N=8の形式的な回転対称であるねじ8個、駆動軸のねじ穴も8個とすると組み換え作業が不必要に煩雑になるので、ねじ本数と駆動軸のねじ穴ともに半分の4個に省略している。
この実施例においては軸継手10を45°ずつ正転させて組み替えていくとその調節角は、90°、180°、270°では実施例1と同じ2°、4°、6°になるが、45°単位の位置では原点から軸継手10を45°ずつ正転させて組み替えていくとその調節角は順に0°、5°、2°、7°、4°、1°、6°、3°、の順不同になってしまい、1°単位での位相調整が可能ではあるが使い勝手の悪いものになってしまう。
なおこの実施例では継手10とカム30に角度表示を行ったが、図2-Eに示すように継手10の外周だけにN、Mに対応した0からの英数の符号を付け駆動軸20、カム30の側には1本の標線だけとしても良い。
駆動軸20は市販の汎用モーター、被動物30も市販の汎用ギアであっても、細密な目盛りの刻印を継手側に集中することで、既製品の駆動軸や被動物に対しても本件発明の適用が容易となる。また、軸継手10に刻印される目盛りに付記される符号に変えて、数字の序数やかな文字を符号として用いても良い。
なお図2Fの表は図2Eの実施例2‘において、所定の位相角θを得るため第一の部分の標線の合わせ位置αと、第二の部分の標線の合わせ位置βの組み合わせを示すものである。
特定の用途で量産される機器では予め所定の位相角θが決まっており、その場合その位相角θとなるαとβの位置のみに標線を設けた軸継手を使用しても良い。
この実施例2ではN=8、M=45の請求項1の実施例ともみなせるし、N=4の第1の空間のメス側空間をT=2個重ね合わせた請求項2の実施例ともみなせる。
【実施例0016】
図3Aより図3Dに実施例3を示す。実施例2で調節角が順不同に配列されてしまうのを大小順に並ぶよう改良したものである。実施例1の取り付けねじ4本の90°ピッチ配列に加えて、駆動軸(請求項2のメス側の部材に該当)の原点から正転49°を起点に90°ピッチでねじ穴4個(請求項2の空間形状S1に該当)を駆動軸に追加したものである。すなわち49°、90°、139°、180°、229°、270°、319°、360(0)°にねじ穴を配置する。取付けねじは4本であり、軸継手10の穴は4箇所、駆動軸20のねじ穴は前記角度の8箇所となる。軸継手10と駆動軸20の穴個数を実施例2に対して逆転させ嵌合の内側を8個としたのは、運転時に使っていない穴への異物侵入対策である。
図3Cに示すとおり位相調整単位角度は1°であり、正転方向に進角度の大きい目盛から順に並ぶ配列になる。
なお、本実施例ではオス側の部材に相当する構成は継手10の第一の部分と4本の取付ねじである。
【0017】
実施例3では駆動軸20と継手10を接続する第1の部分においてメス側の部材である駆動軸20の8個のねじ穴は、回転対称数4の2つの空間形状が49°ずらされて重ね合わされている様に配置されている。
この配置をLLCM(4,45,49°)と表記することとする。記号で書くとLLCM(N,M,θ1) ここでθ1は空間重ね合わせのシフト量(位相差)であり、この実施例では49°である。
この実施例3の図ではシフト量が49°であったが、9、17、25、、、、、41、49、57、、、、89°(=X×n+A、nは任意の整数)であっても同じ効果が得られる。
【0018】
実施例3に限らず、より微細な分解能と調節角の大小順配列を両立させるためには、単純な回転対称数の増大ではだめで「メス側空間の重ね合わせ」が有効であるが、いくつかの条件がある。
(条件α)より微細な分解能を得るには、T個の空間形状を以下のように配置する必要がある。
(α1)重ね合わせる空間形状を回転対称数Nの第1の部分(または第2の部分)のメス側空間とし、これをT個重ね合わせるとき、基準となる最初の空間S0の一つの頂点と隣の頂点の間に、重ねあわされるT-1個の各空間がそれぞれθk(k:1~T-1の整数)のシフト量(位相差)で配置される。この時T-1個の重ね合わせた空間を元の空間S0よりのシフト量の小さい方から1,2,3、、、T-1番目の順に番号を付ける
S0に対しS1、S2、、、、、ST-1であり、それぞれのシフト量をθ1~θT-1とすると
0°<θ1<θ2<、、、、、θT-1<Y360°/N・・・・式1である
ここで式1は2つの空間SiとSjにおいてi>jならばθi>θjと同値である。
(α2)各空間はオス側の部材(軸継手と4本の取付ねじ)と同軸上に配置される
(α3)各空間はその軸方向に重なっており位相差を有する。
(α4)基準となる最初の空間S0と他の空間Skの位相差θk°は全てのk(1≦k≦T-1を満たす整数)について以下を満たす
θk=(n×a)+(a/T)×k
但しnは0以上の任意の整数であり、a=360°/LCM(N,M)である
このときの分解能は A=360/(LCM(N、M)×T)=a/Tとなる
(条件β)調節角が大小順に配列されるためには
(β1)重ね合わせの元になるNとMの組み合わせが既に調節角の大小順になっていなければならない
NとMの組み合わせが互いに素である時、M÷Nの余りが1の場合、正転方向に調節角の大きい標線から順に配列される。
また、M÷Nの余りがN-1のとき標線は正転方向に調整角の小さい順に配列される。
NとMが2以上の最大公約数Lを持つ(互いに素でない)とき、N、MのうちLを1つだけ持つ片方をを最大公約数で割って互いに素にし、またはN、M両方をLで割った値で上記評価を行えばよい。
(β2)そして前記余りが1の時、調節角の目盛の配列が大きいほうから正転順に並ぶには θk=(n×X)+(a/T)×k
このとき継手10を回転軸に対し1ピッチずつ正転方向に組み替えると軸継手の0°標線より逆転方向に小さい順に刻印された標線の調整角が順に駆動軸20の基準線に一致する。
また前記余りがN-1のとき元のNとMの組み合わせであるS0の調節角が正転方向に小さい順に並ぶので、これに合わせてS1以降のメス側空間を正転方向に小さい順に並べるには θk=(n×X)-(a/T)×k
但しXは第2の部分のピッチ角度(360/M)である。
なおnの値として小さいほうから順にS1、S2、、、Sk、、、、に割りあてればkの値が大きいほどθkの値は大きくなり、式1を満たすことができる。
【実施例0019】
図4Aより図4Cに実施例4を示す。この実施例では回転対称数N、Mの数値は実施例3と同一であり当然最小公倍数LCM(N,M)も同じである。2重化の角度シフト量が41°(n=5)と変化しているが実施例3の49°と等価である。違いは駆動軸10と軸継手20の嵌合形式が改良されている。駆動軸20は正4角柱(オス側の部材)になり、軸継手10側は変形した八芒星型穴(メス側の空間形状)が設けられ、8個の頂点のうち
一個おきの4頂点が正方形を成しており、この正方形形状で駆動軸20の4角柱と嵌合する。
このようにメス側空間形状を多重化することによりオス側部材を簡素な形状とすることができる。
二つの正方形は実施例3と等価の41°シフトにて配置されている。六角ボルトを締める「めがねレンチ」に類似した嵌合形状となる。
この形態の嵌合方式を採用すると実施例3とオスメスが逆になる。
また回転方向の遊びをなくす方策を変更することが可能となる。一つの方法
として、四角柱及び八芒星型の穴にテーパーを持たせることが考えられる。
この場合図に示す取り付けねじは異常トルクに対する回転方向の機械的強度やバックラッシの除去といった役割を失い、抜け止めの役割以外に機能が無くなりねじ本数を減らすことが可能になる。
例えば円筒面上のねじ穴を廃止し、駆動軸上端の正方形中心に大径のねじ穴を一個設け、ねじ一本で3部品を固定すれば位相調整時のねじ緩め本数が減り作業性が向上する
【実施例0020】
図5A及び図5Bに実施例5を示す。この実施例では駆動軸20が正3角形になり、軸継手10の側には正3角形3つが重ねられた九芒星形の穴が設けられている、これにより位相調整用に9ポジションの嵌合位置が得られるので、1°の位相調整単位角度を得るためにはX=9°すなわちM=40 (360/9、40枚セレーション)のMが組み合わされる。シフト量θ1=37=9°×4+1°、θ2=83=9°×9+2°でありLCM(3,40)、LLCM(3,40,37°/83°)と表記する。
実施例4に対し軸継手10と駆動軸20の嵌合面が大きくなり大きなトルクへの耐久性が向上する。
【実施例0021】
図6-1A及び図6-1Bに実施例6-1を示す。この実施例では回転対称数M=36(X°=10°、36枚歯)、回転対称数N=5で2重の重ね合わせシフト量θ=31°=10°×3+1であり、軸継手の仕様数値はLLCM(5,36,31°)分解能Aは1°である。
特にこの場合M側の目盛り単位は10°ピッチ、N側の調節角の目盛りは1°ピッチで0~9°となり、位相調整作業が10進法となり判り易くなる。
【0022】
図6-2A及び図6-2Bに実施例6の変形例を示す。図6-1Aでは駆動軸の断面形状が正五角形であったのを星印のような鋭角の突起で構成された五芒星型に変えたものである。6-1のように正五角形または鈍角で構成された形状であると、分解能Aをより小さくするため、正五角形等をさらに2倍の4枚重ねるとしたら、メス側の嵌合形状がより円に近づいてしまい異常トルクの場合に軸との嵌合がズレてしまい易い。
この実施例では回転対称数M=36(X=10°、36枚歯)、回転対称数N=5でT=4の重ね合わせである。
シフト量θ1=20.5 θ2=31 θ3=41.5°であり、軸継手の仕様数値はLLCM(4,36,20.5°/31°/41.5°)位相調節単位角度Aは0.5°である。
なお、本実施例では、駆動軸20が嵌合される部分のみをメス側形状とし、駆動軸20が嵌合可能な空間を3つ配置したが、これに加え被動物が嵌合される部分にも適用してもよい。この場合、第2の部分は歯数36の単純なメス側セレーションとなり、これに嵌合する被動部品は正6角柱(重ね合わせ空間数T=6)または正4角柱(T=9)または正3角柱(T=12)となる。この重ね合わせはより細かい分解能を得る目的ではなく、被動部品の形状をより単純化することを目的としている。
【実施例0023】
図7A及び図7Bに実施例7を示す。
N=8、M=9、LCM(N,M)=72、a=5°この実施例では既存の汎用サーボモータ等の軸、及び既存のカムなどに本件発明を適用するために、嵌合形状の「歯」の部分を既存のモーター軸や既存の被動物に追加する様に、後付可能な付属部品として継手とセットで提供できるよう考慮されたものである。
図では鋸刃状凹凸を向かい合わせた形状が2箇所の嵌合の両方に採用されているが、どちらか片方の嵌合(形状自由度が高い被動物側が有望)を回転対称数を大きく出来るセレーションなどの嵌合に置き換えても良い。
Mが大きくなり、M/N<2となれば、のこぎり形状の「重ね合わせ」が可能となる。
【実施例0024】
図8A及び図8Bに実施例8を示す。
N=8、Y=45、M=30、X=12、LCM(N,M)=120、a=3、T=3、A=1であり
L=GCD(N、M)=2、MOD(M/L,N/L)=3=N/L-1
標線の配列が調節角の小さい順になる実施例である
【符号の説明】
【0025】
10: 軸継手
11: 軸継手側セレーション
100~109:軸継手側位相調節目盛り
10A~10H:軸継手取付ねじ穴(通し穴)
15: 軸継手側軸嵌合突起(原点)
16: 軸継手側軸嵌合突起(原点以外)
17: 軸継手側軸嵌合突起(原点以外)
20: 駆動軸
200: 駆動軸側原位置指示線
20A~20H:軸継手取付ねじ穴(メスねじ)
20X: 分離式嵌合部品(軸側)
30: カム
31: カム側セレーション
300: カム側位相調節目盛り
310 カム側基準線
30X: 分離式嵌合部品(被動物側)
390: 位置決めピン






図1A
図1B
図1C
図1D
図2A
図2B
図2C
図2D
図2E
図2F
図3A
図3B
図3C
図3D
図4A
図4B
図4C
図5A
図5B
図6-1A】
図6-1B】
図6-2A】
図6-2B】
図7A
図7B
図8A
図8B
【手続補正書】
【提出日】2022-04-11
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0006
【補正方法】変更
【補正の内容】
【0006】
上記課題を解決するため本件発明は駆動軸と、被動部品と、それら2部品を相対回転不能に接続する軸継手を有する駆動構造であって、駆動軸と軸継手、被動部品と軸継手の2箇所の接続はN回回転対称(N:2以上の整数)を有する形状で嵌合している第1の部分と、M回回転対称(M>Nの整数)を有する形状で嵌合している第2の部分とからなり最小公倍数LCM(N,M)はMより大きく(N<M<LCM(N,M))、駆動軸及び軸継手及び被動部品の相互の嵌合状態を示す標線または目印がそれぞれの表面に少なくとも各一つ付され、
第1の部分と前記第2の部分のいずれか一方の接続のメス側の部材の空間形状を、オス側の形状に対応したT個(T:2以上の整数)の空間を所定の位相差で重ね合わせ配置し、LCM(N、M)×Tが72以上である駆動構造である。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0007
【補正方法】変更
【補正の内容】
【0007】
ここで以下の明細書をわかりやすくするために数式上の記号を定義し説明する。
N: 接続箇所の第1の部分の回転対称数、2以上の整数
Y: 接続箇所の第1の部分のピッチ角度、360°/N=Y
M: 接続箇所の第2の部分の回転対称数、M>Nの整数
X: 接続箇所の第2の部分のピッチ角度、360°/M=X
LCM(N,M): NとMの最小公倍数
a: NとMの組み合わせで得られる調整可能な位相角度の最小単位(分解能) 360°/LCM(N,M)=a
A: 勘合形状の重ね合わせによって得られる分解能
T: 重ね合わせの個数
A=360/(T×LCM(N,M))=a/T
LLCM(N,M,θ1/θ2/・・・/θT-1):
またはLLCM(M,N,θ1/θ2/・・・/θT-1):
請求項で定義された接続形状のメス側空間がT個、それぞれ位相差θkで配置された状態を示す式。( )内先頭の記号が重ね合わせをする側の回転対称数、通常はNである。
この時分解能A=360/(T×LCM(N,M))=a/T
L:NとMの最大公約数
また本明細書において特に断らない限り、角度は被動部品側から駆動軸側を見たとき、基準となるものから時計回り方向を正(+)方向として測定されるものである。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0015
【補正方法】変更
【補正の内容】
【0015】
図2Aより図2Fに実施例2を示す。実施例1では360/LCM(4、 45)=2°が分解能となっていたのを、1°とするべくLCM(N,M)=360となるようM=45、N=8と回転対称数Nを倍に変更したものであり回転対称数Mは実施例1と同じM=45である。軸継手10には45°ピッチで8個の穴が設けられ、45°ピッチ8分割での軸継手組み換えを可能にしている。N=8の形式的な回転対称であるねじ8個、駆動軸のねじ穴も8個とすると組み換え作業が不必要に煩雑になるので、ねじ本数と駆動軸のねじ穴ともに半分の4個に省略している。
この実施例においては軸継手10を45°ずつ正転させて組み替えていくとその調節角は、90°、180°、270°では実施例1と同じ2°、4°、6°になるが、45°単位の位置では原点から軸継手10を45°ずつ正転させて組み替えていくとその調節角は順に0°、5°、2°、7°、4°、1°、6°、3°、の順不同になってしまい、1°単位での位相調整が可能ではあるが使い勝手の悪いものになってしまう。
なおこの実施例では継手10とカム30に角度表示を行ったが、図2-Eに示すように継手10の外周だけにN、Mに対応した0からの英数の符号を付け駆動軸20、カム30の側には1本の標線だけとしても良い。
駆動軸20は市販の汎用モーター、被動物30も市販の汎用ギアであっても、細密な目盛りの刻印を継手側に集中することで、既製品の駆動軸や被動物に対しても本件発明の適用が容易となる。また、軸継手10に刻印される目盛りに付記される符号に変えて、数字の序数やかな文字を符号として用いても良い。
なお図2Fの表は図2Eの実施例2‘において、所定の位相角θを得るため第一の部分の標線の合わせ位置αと、第二の部分の標線の合わせ位置βの組み合わせを示すものである。
特定の用途で量産される機器では予め所定の位相角θが決まっており、その場合その位相角θとなるαとβの位置のみに標線を設けた軸継手を使用しても良い。
この実施例2ではN=4の第1の空間のメス側空間をT=2個重ね合わせた請求項の実施例みなせる。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0016
【補正方法】変更
【補正の内容】
【0016】
図3Aより図3Dに実施例3を示す。実施例2で調節角が順不同に配列されてしまうのを大小順に並ぶよう改良したものである。実施例1の取り付けねじ4本の90°ピッチ配列に加えて、駆動軸(請求項のメス側の部材に該当)の原点から正転49°を起点に90°ピッチでねじ穴4個(請求項の空間形状S1に該当)を駆動軸に追加したものである。すなわち49°、90°、139°、180°、229°、270°、319°、360(0)°にねじ穴を配置する。取付けねじは4本であり、軸継手10の穴は4箇所、駆動軸20のねじ穴は前記角度の8箇所となる。軸継手10と駆動軸20の穴個数を実施例2に対して逆転させ嵌合の内側を8個としたのは、運転時に使っていない穴への異物
侵入対策である。
図3Cに示すとおり位相調整単位角度は1°であり、正転方向に進角度の大きい目盛から順に並ぶ配列になる。
なお、本実施例ではオス側の部材に相当する構成は継手10の第一の部分と4本の取付ねじである。
【手続補正5】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
駆動軸と、被動部品と、この2部品を相対回転不能に接続する軸継手を有する駆動構造であって、前記駆動軸と軸継手、前記被動部品と軸継手の2箇所の接続はN回回転対称(N:2以上の整数)を有する形状で嵌合している第1の部分と、M回回転対称(M>Nの整数)を有する形状で嵌合している第2の部分とからなり、前記Nと前記Mの最小公倍数LCM(N,M)はMより大きく(N<M<LCM(N,M))、前記駆動軸及び前記軸継手及び前記被動部品の相互の嵌合状態を示す標線または目印がそれぞれの表面に少なくとも各一つ付され
前記第1の部分と前記第2の部分のいずれか一方の接続のメス側の部材の空間形状を、オス側の形状に対応した空間をT個(T:2以上の整数)重ね合わせ、かつ下記条件を全て満たすよう配置した駆動構造。
(1)各空間はオス側の部材と同軸上に配置される
(2)各空間はその軸方向に重なっており位相差を有する
(3)基準となる最初の空間S0と他の空間Skの位相差θk°は、全てのk(1≦k≦T-1を満たす整数)について以下を満たす
θk=(n×a)+(a/T)×k
但しnは任意の整数であり、a=360°/LCM(N、M)である
(4)LCM(N、M)×Tは、72以上
【請求項2】
請求項の駆動構造において、MとNの最大公約数をLとするとき、M/LをN/Lで割った時の余り MOD(M/L,N/L)が1またはN/L-1となるMとN、Lであり、前記第1の部分のメス側空間形状を複数個、下記2条件の両方を満たすよう重ね合わせて成る駆動構造。
条件1)前記最初の空間S0と前記他の空間Skの位相差θk°は全てのk(1≦k≦T-1を満たす整数)について以下を満たす
MOD(M/L,N/L)が1の場合θk=(n×360/M)+(a/T)×k
MOD(M/L,N/L)がN-1の場合θk=(n×360/M)-(a/T)×k
但し、0°<θk<(360°/N)である。
条件2)前記他の空間Skの任意の2つ(Si、SJ 但しi>J)を選択したとき、前記位相差θi、θJはθi>θJである