(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022008559
(43)【公開日】2022-01-13
(54)【発明の名称】ハーフトーニングを用いて厚さを制御するインクベース層加工方法および装置
(51)【国際特許分類】
B05D 1/26 20060101AFI20220105BHJP
B05D 3/00 20060101ALI20220105BHJP
【FI】
B05D1/26 Z
B05D3/00 D
B05D3/00 F
【審査請求】有
【請求項の数】19
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2021156642
(22)【出願日】2021-09-27
(62)【分割の表示】P 2018092037の分割
【原出願日】2014-08-12
(31)【優先権主張番号】61/915,149
(32)【優先日】2013-12-12
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】61/977,939
(32)【優先日】2014-04-10
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/005,044
(32)【優先日】2014-05-30
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/019,076
(32)【優先日】2014-06-30
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】513317345
【氏名又は名称】カティーバ, インコーポレイテッド
(74)【代理人】
【識別番号】100140833
【弁理士】
【氏名又は名称】岡東 保
(72)【発明者】
【氏名】エリヤフ ブロンスキー
(72)【発明者】
【氏名】ナヒド ハルジー
【テーマコード(参考)】
4D075
【Fターム(参考)】
4D075AC06
4D075AC09
4D075AC88
4D075AC91
4D075AC92
4D075AC94
4D075AC95
4D075AC96
4D075BB24Z
4D075BB26Z
4D075BB42Z
4D075BB46Z
4D075BB91Y
4D075BB93Y
4D075BB95Y
4D075CA47
4D075CA48
4D075DA04
4D075DA06
4D075DB13
4D075DC24
4D075EA05
4D075EA10
4D075EA33
4D075EC30
(57)【要約】
【課題】好適なインクベース層加工方法および装置を提供すること。
【解決手段】所望の厚さまで材料層を堆積させるために、インクジェットプロセスが使用される。レイアウトデータが、それぞれ局所的に送達されるインク体積を表す、セルあたりのグレースケール値に変換される。グレースケール値は、可変インク体積(および厚さ)を基板に送達するハーフトーンパターンを生成するために使用される。ハーフトーニングは、可変体積を提供しながら、比較的連続的な層を提供し、所望の厚さを達成するように可変インク/材料蓄積に寄与する。インクは、材料層を形成するために使用される材料、例えば、フラットパネルデバイスのためのカプセル化層を形成するために使用される有機材料を懸濁させる、液体またはエアロゾルとして噴出される。次いで、堆積層は、プロセスを完了するように、硬化させられるかまたは別様に仕上げられる。
【選択図】
図1A
【特許請求の範囲】
【請求項1】
発光デバイスの層を製造する方法であって、前記層は所定の厚さを有し、基板の第1の部分に形成され、前記基板の第2の部分には形成されないようにする方法であって、前記方法は、以下のステップを含む、
単位面積当たりの液体の第1の体積と第1の厚さとの関係を決定するステップと、
第1の値を取得するステップであって、前記第1の値は、単位面積当たりの前記液体の前記第1の体積および前記第1の厚さに対応し、前記第1の厚さは、連続したコートを達成するための最小の厚さであるステップと、
単位面積当たりの前記液体の前記第1の体積および前記第1の厚さと、前記所定の厚さとの関係に基づいて、前記第1の値よりも大きい第2の値を決定するステップと、
第1の制御された雰囲気の中で、前記第1の部分に前記液体の前記液滴を印刷して、単位面積当たりの前記液体の第2の体積を堆積させ、前記第2の体積は前記第2の値に依存し、単位面積内に前記液体の連続したコートを形成するステップと、
前記所定の厚さの層を形成するために、制御された第2の雰囲気の中で、前記連続したコートを硬化させるステップと、
を含む方法。
【請求項2】
請求項1に記載の方法であって、前記第1の制御された雰囲気内で、単位面積当たりの前記液体の第3の体積を、前記第1の部分と前記第2の部分との間の前記基板の第3の部分に印刷するステップを、さらに含み、前記第3の体積は、第2の値を調整することによって得られた第3の値に対応し、単位面積当たりの前記第3の体積は、単位面積当たりの前記第2の体積よりも小さい方法。
【請求項3】
有機発光ダイオード電子ディスプレイの層を作製する方法として具現化された請求項2に記載の方法であって、
前記層が有機カプセル化層であり、前記液体は有機分子を含み、連続的なコーティングを硬化させるステップは、前記連続的なコーティングおよび前記第3の部分に印刷された前記液体に紫外線を照射して、前記有機分子から有機ポリマーを形成するステップを含む、方法。
【請求項4】
請求項2に記載の方法であって、
前記第1の値、前記第2の値、および前記第3の値がそれぞれデジタル値であり、前記方法は、さらに、前記第2の値に数値を加算するか、または前記第2の値から前記数値を減算するかの少なくとも一方により、前記第3の値を計算するステップと、
前記第3の値を非一過性の記憶装置に格納するステップと、
を含む方法。
【請求項5】
請求項2に記載の方法であって、
前記第1の部分に前記液滴を印刷するステップは、プリントヘッドに、第1のサイズの液滴を前記第1の部分に放出させるステップを含み、
前記第3の部分に前記液滴を印刷するステップは、前記プリントヘッドに、第2のサイズの液滴を前記プリントヘッドから前記第3の部分に放出させるステップを含み、
前記第1のサイズは、前記第2のサイズとは異なる液滴当たりの体積に対応する方法。
【請求項6】
請求項5に記載の方法であって、
前記プリントヘッドに前記第1のサイズの液滴を放出させるステップは、前記プリントヘッドのノズル変換器に第1の駆動波形を印加して、前記プリントヘッドのノズルに、第1の部分に液滴を放出させるステップを含み、
前記プリントヘッドに前記第2のサイズの液滴を放出させるステップは、前記プリントヘッドのノズル変換器に第2の駆動波形を印加して、前記プリントヘッドのノズルに、前記第3の部分に前記液滴を放出させるステップを含み、
前記第2の駆動波形は前記第1の駆動波形とは異なる、方法。
【請求項7】
請求項2に記載の方法であって、
前記第1の部分に前記液滴を印刷するステップは、プリントヘッドに、単位面積に対する液滴の第1の密度で、前記第1の部分に前記液滴を放出させるステップを含み、
前記第3の部分に前記液滴を印刷するステップは、前記プリントヘッドに、単位面積に対する液滴の第2の密度で、前記第3の部分に前記液滴を放出させるステップを含み、
前記第1の密度は前記第2の密度とは異なる、方法。
【請求項8】
請求項2に記載の方法であって、
前記第1の部分に前記液滴を印刷するステップは、前記プリントヘッドに、前記第1の部分に単位面積に対して均等な液滴体積分布を用いて前記液滴を放出させるステップを含み、
第3の部分に液滴を印刷するステップは、前記プリントヘッドに、前記第3の部分に単位面積に対して不均等な液滴体積分布を用いて前記液滴を放出させるステップを含む、方法。
【請求項9】
請求項1に記載の方法であって、
前記方法は、さらに
プリンタを制御して、前記液体の液滴を単位面積当たりの前記第1の体積で基板上に印刷するステップと、
単位面積当たりの前記第1の体積で印刷された前記液体の前記液滴が合体した後、前記連続的なコーティングから形成された層の厚さを測定して前記第1の厚さを得るステップと、を含み、
前記第1の部分に前記液体の液滴を印刷するステップは、前記プリンタを使用して印刷を行うステップ含み、さらに、
前記第3の部分に前記液体の液滴を印刷するステップは、前記プリンタを使用して印刷を行うステップを含み、
前記第1の厚さは、印刷に使用されるプリンタについて、前記第1の部分上および前記第3の部分上へ放出された液体の液滴の量に基づいて、その場で測定される方法。
【請求項10】
請求項1に記載の方法であって、
前記第2の値を決定するステップは、前記印刷された液滴を受け取るべき前記第1の部分の表面の地形に基づいて修正を行うステップを含む、方法。
【請求項11】
所定の厚さを有し、基板の第1の部分に形成され、基板の第2の部分には形成されない発光素子の層を製造する装置であって、前記装置は
基板支持体と、
前記基板が前記基板支持体上に支持されている間に、前記基板に向けて液体の液滴を放出するプリントヘッドと、
前記基板上に堆積した液体を硬化させる硬化モジュールと、
プロセッサと、を備え、
前記プロセッサは、
単位面積当たりの液体の第1の体積と第1の厚さとの関係を決定するステップと、
第1の値を求めるステップであって、前記第1の値は、単位面積当たりの液体の前記第1の体積および前記第1の厚さに対応し、前記液体は有機分子を含み、前記第1の厚さは、前記基板上に連続したコートを達成するための最小の厚さであるステップと、
単位面積当たりの液体の第1の体積、第1の厚さ、および前記所定の厚さの関係に加えて、前記第1の部分の位置および前記第1の部分の地形のうちの1つ以上に基づいて、前記第1の値よりも大きい第2の値を決定するステップと、
前記第2の値を調整して第3の値を決定するステップと、
前記プリントヘッドに、第1の制御された雰囲気の中で、単位面積あたりの液体の第2の体積、前記第2の体積は前記第2の値に依存し、前記第1の部分に前記液体の液滴を印刷させて、単位面積内に前記液体の連続したコートを形成させるステップと
前記プリントヘッドは、前記第1の制御された雰囲気の中で、前記第1の部分と前記第2の部分の間にある前記基板の第3の部分に、単位面積あたりの前記液体の第3の体積で、前記液体の前記液滴を印刷し、前記第3の体積は前記第3の値に依存するステップと、
前記硬化モジュールに、第2の制御された雰囲気内で、前記印刷された液体を硬化させて、前記有機分子をポリマーに変換させ、前記第1の部分に前記所定の厚さの層を形成させるステップと、を含むステップを実行するように構成される、装置。
【請求項12】
請求項11に記載の装置であって、前記層を電子ディスプレイのカプセル化層として作製するように構成された装置。
【請求項13】
請求項11に記載の装置であって、前記プロセッサは、さらに、
前記第1の値、前記第2の値、および前記第3の値をデジタル値とするステップと、
前記第2の値に数値を加えるか、または前記第2の値から前記数値を引くかの少なくとも一方によって、前記第3の値を計算するステップと、
前記第3の値を非一過性の記憶装置に格納するステップと、を含むステップを実行するように構成される、装置。
【請求項14】
請求項11に記載の装置であって、前記プロセッサは、さらに、
前記プリントヘッドに前記液滴を前記第1の部分に印刷させるステップは、前記プリントヘッドのノズルに第1のサイズの液滴を前記第1の部分に放出させるステップと、
前記プリントヘッドに前記液滴を前記第3の部分に印刷させるステップは、前記プリントヘッドの前記ノズルに第2のサイズの液滴を前記プリントヘッドから前記第3の部分に放出させるステップと、
を含むステップを実行するように構成され、
前記第1のサイズは、前記第2のサイズとは異なる液滴当たりの体積に対応する、装置。
【請求項15】
請求項14に記載の装置であって、前記プロセッサは、さらに、
前記プリントヘッドのノズル変換器に第1の駆動波形を印加して、前記プリントヘッドのノズルが前記第1の部分上に前記液滴を放出するステップと、
前記プリントヘッドのノズル変換器に第2の駆動波形を印加し、前記プリントヘッドの前記ノズルが前記第3の部分上に前記液滴を放出するステップと、
を含むステップを実行するように構成され、
前記第2の駆動波形は、前記第1の駆動波形とは異なる、装置。
【請求項16】
請求項11に記載の装置であって、
前記プリントヘッドに、前記第1の部分に前記液滴を印刷させるステップは、前記プリントヘッドに、単位面積に対する液滴を第1の密度で前記第1の部分に前記液滴を放出させるステップを含み、
前記プリントヘッドに、前記第3の部分に前記液滴を印刷させるステップは、前記プリントヘッドに、単位面積に対する液滴を第2の密度で前記第3の部分に前記液滴を放出させるステップを含み、
前記第1の密度は、前記第2の密度とは異なる、装置。
【請求項17】
請求項11に記載の装置であって、
前記プリントヘッドに、前記第1の部分に前記液滴を印刷させるステップは、前記プリントヘッドに、前記第1の部分に単位面積に対して均等な液滴体積分布を用いて前記液滴を放出させるステップを含み、
前記プリントヘッドに前記第3の部分に前記液滴を印刷させるステップは、前記プリントヘッドに、前記第3の部分に単位面積に対して不均等な液滴体積分布を用いて前記液滴を放出させるステップを含む、装置。
【請求項18】
請求項11に記載の装置であって
前記プロセッサは、さらに、
前記プリントヘッドに、単位面積当たりの前記第1の体積で前記液体の前記液滴のテストデポジションを行わせるステップと、
単位面積当たりの前記第1の体積で印刷された前記液体の前記液滴が合体した後、連続したコートから形成された層の厚さを測定し、前記第1の厚さを得るステップと、
を含むステップを実行するように構成される、装置。
【請求項19】
請求項11に記載の装置であって、前記第1および第2の制御された雰囲気のそれぞれは、不活性であり、所定の圧力で制御される装置。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本開示は、“Ink-Based Layer Fabrication Using Halftoning to Control Thickness”と題され、第1発明者Eliyahu Vronskyを代理して、2014年6月30日に出願された、米国仮出願第62/019076号、“Ink-Based Layer Fabrication Using Halftoning to Control Thickness”と題され、第1発明者Eliyahu Vronskyを代理して、2014年5月30日に出願された、米国仮出願第62/005044号、“Ink-Based Layer Fabrication Using Halftoning to Control Thickness”と題され、第1発明者Eliyahu Vronsky を代理して、2014年4月10日に出願された、米国仮出願第61/977939号、および、“Ink-Based Layer Fabrication Using Halftone Variation”と題され、第1発明者Eliyahu Vronskyを代理して、2013年12月12日に出願された、米国仮出願第61/915,149号のそれぞれに対する優先権を主張するものである。上記出願は、参照により本明細書中に援用される。
【背景技術】
【0002】
基板を覆って材料を堆積させるために、種々の化学および物理堆積プロセスを使用することができる。いくつかの堆積プロセスは、例えば、トランジスタ経路幅等の電子ナノスケール構造の寸法に合致する正確な許容差内で、ナノスケール特徴を作成するために、マスクまたは他の機構が使用される、パターン化された堆積に依拠する一方で、他の堆積プロセスは、ブランケットベースのコーティング、もしくは数十ミクロンまたはそれを上回る距離に及ぶ堆積等の比較的特徴のない大規模堆積を提供する。
【0003】
既存のプロセスが準最適である、加工用途群が存在している。より具体的には、ナノスケール特徴に対して基板の広い領域を覆って層を形成することを所望する用途について、具体的には、有機材料堆積について、堆積層の一様性を制御することは困難である。
【発明の概要】
【課題を解決するための手段】
【0004】
本主題は、添付図面と併せて熟読されるべきである、以下の発明を実施するための形態を参照することによって、さらに理解され得る。請求項によって記載される技術の種々の実装を構築して使用することを可能にするために以下で立案される、1つまたはそれを上回る特定の実施形態の本説明は、列挙された請求項を制限することを意図しないが、それらの用途を例示することを意図している。先述の内容を限定することなく、本開示は、堆積層の所望の厚さを生じるであろう様式でインク液滴密度を制御するように、ハーフトーニングを使用して材料層を加工するための技法のいくつかの異なる実施例を提供する。これらの技法は、これらの技法を行うためのソフトウェアとして、そのようなソフトウェアを実行するコンピュータ、プリンタ、または他のデバイスの形態で、材料層を形成するための制御データ(例えば、印刷イメージ)の形態で、堆積機構として、またはこれらの技法を使用して加工される電子もしくは他のデバイス(例えば、フラットパネルデバイスまたは他の消費者最終製品)の形態で、具現化することができる。具体的実施例が提示されているが、本明細書で説明される原理は、他の方法、デバイス、およびシステムにも適用され得る。
【0005】
本開示は、印刷プロセスを使用して基板上に層を加工するための技法を提供する。より具体的には、層厚さを表すデータが受信され、インクジェット液滴パターンを生成するように、ハーフトーニングを使用して変換される。インクは、粘性材料であり、その結果、液滴が限定された程度に拡散し、より多くの液滴が単位面積につき(すなわち、セル場所につき)堆積させられるほど、結果として生じた層の厚さが大きくなる。
【0006】
いくつかの実施形態では、層厚さは、最初に、各印刷セルが共通する厚さの値を有する基板の単位面積を表す、いくつかの「印刷セル」のそれぞれに対するグレースケール値に変換される。例えば、各印刷セルは、専用の厚さの値によって表すことが可能な最小単位面積であり得る。次いで、グレースケール値は、所望の厚さを生じるインク液滴密度をもたらすであろう様式で、ハーフトーニングを生成するために使用される。厚さを局所的に表すために印刷セルを使用するという本中間ステップは、随意的であることに留意されたい。
【0007】
他の実施形態では、これらのプロセスは、酸素および水等の物質への基板の暴露を防止するように障壁を提供するであろう、カプセル化層を生成するために使用される。ハーフトーニングは、可変インク体積(および関連する結果として生じた可変厚さ)を伴うが、連続層を生じるように、選択することができる(すなわち、液滴拡散後に、問題になっている堆積面積が、穴または空隙を伴わずにインクで完全に覆われる)。ハーフトーニングは、単一プリントヘッド通過、複数プリントヘッド通過、および/または堆積インクの凝集体積を制御するためにそれぞれの液滴場所における複数の液滴を使用する任意の他の技法を使用して、いくつかの様式で表現または適用できることに留意されたい。
【0008】
いくつかのさらなる随意的な実装変動を、上記で紹介される技法に適用することができる。第1に、異なる層厚さを異なるグレースケール値にマップするために、(例えば、インク粘度または他の要因の所与の変動を考慮して)較正プロセスを使用することができる。初歩的な実施例を提供するために、5.0ミクロンの一様な厚さの層を堆積させることが所望される場合、第1に、本厚さデータをグレースケール値(例えば、数「103」等の0~255の範囲内の数)に変換することができ、数「103」は、印刷および任意の関連硬化プロセスに続いて、問題になっているインクおよび他のプロセス詳細を考慮して、厚さ5.0ミクロンの層を生成するであろう、所与のハーフトーン液滴密度と事前に関連付けられる。一般的に言えば、ハーフトーニングは、問題になっている基板面積全体のための単一の動作として行われるが、本プロセスはまた、随意に、堆積層のそれぞれの「タイル」に別々に行うこともでき、ハーフトーン選択は、隣接液滴パターンの「継ぎ目のない」ステッチを可能にするよう(すなわち、ムラ効果を回避するよう)、タイルが相補的液滴パターンを有するような様式で各タイルに行われる。第2に、堆積層の一様性を確保することに役立つように、いくつかの誤差補正プロセスのうちのいずれか1つを適用することができる。これらの変形例を以下でさらに議論する。
【0009】
したがって、一実施形態では、所望の層厚さが、最初に入力として特定される。本厚さは、随意に、最初にグレースケール値、例えば、百分率等の値、例えば、「50%」、または別の相対的インク体積尺度に変換することができる。例えば、1つの考慮される実装では、適用されたインクの体積と所望の厚さとの間の相関は、事前に経験的に判定されており、したがって、そのような値を選択することは、所望の厚さを構築するであろうインクの体積の効果的な選択をもたらす。また、任意の所望の厚さと所望の厚さを最終的に生成するであろうインクの体積との間の連携に達するために、フィードバックとともに周期的較正または動的測定を使用することも可能である。変換ステップは、随意に、それぞれの印刷セルのグレースケール値の集約を表すグレースケールイメージを作成するように、堆積面積の一部を形成するであろう複数の印刷セル場所のそれぞれに行うことができる(例えば、以下の
図6Aおよび6Bの議論を参照)。次いで、これらの値に基づいて、ハーフトーンパターンが選択または生成され、ハーフトーンパターンは、堆積材料のための任意の硬化プロセス後に生じる、所望の層厚さをもたらすであろう。印刷セルは、特定の実装に関連するハーフトーンブリッドに対して任意のサイズを有することができることに留意されたい。例えば、一実施形態では、印刷セルは、ハーフトーン格子点につき(すなわち、起こり得るハーフトーン液滴につき)1つまたはそれを上回る印刷セルを有して小型
である。別の実施形態では、印刷セルは、比較的大型であり、すなわち、印刷セルにつき多くのハーフトーン格子点を伴う。例えば、比較的大きいドットゲインを有する液滴を伴うが、ハーフトーン格子点を横断する比較的まばらな液滴放出を伴って、所望の厚さを生じるであろう、液滴パターンを生成するように、ハーフトーニングアルゴリズムを起動することができる。したがって、全印刷セルが(例えば、5.0ミクロンの仮説的な所望の層厚さに対応する)「103」というグレースケール値を有し得たとしても、全ての関連ハーフトーン格子点が必ずしも液滴放出を特色とするわけではないであろう。
【0010】
それぞれ以下で議論される、2つの特定の非限定的用途は、有機発光ダイオードデバイス(「OLED」)およびソーラパネルのためのカプセル化層の厚さを調整するために、これらの技法を使用する。これらの用途では、典型的には、カプセル化層が酸素および水に対して不透過性であるべきことが所望される。したがって、このように議論された技法は、随意に、その不透過性を提供するよう、カプセル化層を加工するために使用することができる。一般的な技法はまた、有機および無機である他の種類の材料の堆積、ならびに(例えば、カプセル化層以外の)他の種類の層および他の種類のデバイスの加工にも適用できることに留意されたい。開示される技法は、(例えば、液体であろうと蒸気であろうと、流体インクの形態で)液体または流体堆積プロセスによって堆積させられる材料の堆積のために特に有用であり、例えば、これらの技法は、液体媒体中に懸濁させられた有機材料の堆積に容易に適用されてもよい。また、典型的な堆積プロセスは、各層を構築するように1つだけのインクを堆積させる(例えば、層が事実上単色である)が、これは、全ての実施形態に必要とされるわけではなく、また、複数のインクを使用することも可能である(例えば、一部のテレビで使用されるようなOLEDディスプレイパネルの各画像ピクセルのための赤、緑、および青色成分光の生成と関連付けられる、3つのそれぞれの流体的に単離された「ピクセルウェル」の中に異なる色生成材料を堆積させるために、記述されたプロセスを使用することができる)ことにも留意されたい。また、「層」という用語は、複数の意味で使用され、例えば、カプセル化層は、典型的には、1つまたはそれを上回る構成フィルム層を含み、個々のフィルム層ならびに凝集体がそれぞれ、カプセル化「層」であることも意味する。
本明細書は、例えば、以下の項目も提供する。
(項目1)
基板を覆って層を形成する方法であって、
前記層の所望の厚さを識別するデータを受信するステップと、
印刷機構が前記データに従ってインクの液滴を前記基板上に堆積させるための命令を生成するために、プロセッサを使用するステップであって、前記インクは、前記層を形成する材料を担持する、ステップと、
を含み、
前記プロセッサを使用するステップは、前記所望の厚さに依存するハーフトーンパターンを選択するステップと、前記選択されたハーフトーンパターンに依存する前記命令を生成するステップとを含む、方法。
(項目2)
前記データは、少なくとも1つの厚さの値を含み、前記命令を生成するステップは、前記少なくとも1つの厚さの値を複数の印刷セルのうちの各セルに対するグレースケール値に変換するステップと、前記複数の印刷セルに対する前記グレースケールに依存する前記ハーフトーンパターンを選択するステップとを含む、項目1に記載の方法。
(項目3)
前記命令を生成するステップはさらに、前記複数の印刷セルのうちの選択的なセルに対する前記グレースケール値を調節するステップを含む、項目2に記載の方法。
(項目4)
前記複数の印刷セルのうちの選択的なセルに対する前記グレースケール値を調節するステップは、前記層の縁への近接性に依存してこれを行うステップを含む、項目3に記載の
方法。
(項目5)
前記プロセッサを使用するステップは、基板堆積面積を複数の堆積領域に分割するステップと、前記複数の堆積領域のそれぞれに対するハーフトーンパターンを選択するステップとを含み、前記複数の堆積領域のうちの隣接する領域に対する前記ハーフトーンパターンは、相補的液滴パターンを有するように選択される、項目1に記載の方法。
(項目6)
前記方法はさらに、前記所望の厚さに影響を及ぼすように、可変空間周波数において実質的に類似するサイズの液滴を噴出するステップを含む、液体の液滴を噴出して前記層を堆積させるために、前記印刷機構を使用するステップを含む、項目1に記載の方法。
(項目7)
前記層は、第1の層であり、
前記基板は、少なくとも1つのアクティブ要素と、基礎的支持表面とを備え、
前記少なくとも1つのアクティブ要素は、前記第1の層に隣接する第1の面、前記第1の層の反対側の第2の層の側面上の第2の面、および外側縁を有する、第2の層を含み、
前記方法はさらに、外部雰囲気に対して前記第2の層を取り囲むように、前記基礎的支持表面に対して前記第1の面、前記第2の面、および前記外側縁を取り囲むカプセル化層として、前記第1の層を堆積させるために、前記印刷機構を使用するステップを含む、項目1に記載の方法。
(項目8)
前記印刷機構を使用するステップは、前記カプセル化層の堆積中に前記基板を含有する雰囲気を制御するステップを含む、項目7に記載の方法。
(項目9)
前記層は、カプセル化層であり、
前記基板は、前記カプセル化層で覆われる標的領域と、前記カプセル化層で覆われない露出領域とを備え、
前記方法はさらに、前記ハーフトーンパターンに従って、前記露出領域ではなく前記標的領域中で前記カプセル化層を堆積させるために、前記印刷機構を使用するステップを含む、項目1に記載の方法。
(項目10)
前記基板はさらに、前記露出領域に近接する前記標的領域の境界領域を備え、
前記プロセッサを使用するステップは、印刷セルが前記境界領域に対応する、前記基板の一部を表す前記印刷セルに対するグレースケール値を調節するステップを含む、項目9に記載の方法。
(項目11)
前記基板はさらに、前記露出領域に近接する前記標的領域の境界領域を備え、
前記プロセッサを使用するステップはさらに、前記露出領域に隣接する前記標的領域の周囲における液滴の密度を強調する、前記境界領域に対応する少なくとも1つの印刷セルに対するハーフトーンパターンを選択するステップを含む、項目9に記載の方法。
(項目12)
デバイスを加工する方法として適用され、前記基板は、前記カプセル化層によってカプセル化される前記標的領域内のアクティブ電子要素、前記カプセル化層によってカプセル化されない前記露出領域中の電気接点、および前記電気接点を前記アクティブ電子要素のうちのそれぞれと連結する伝導性経路を支持する、項目9に記載の方法。
(項目13)
前記印刷機構を使用するステップは、前記カプセル化層の堆積中に前記基板を含有する雰囲気を制御するステップを含み、
前記方法はさらに、前記カプセル化層を堆積させるために前記印刷機構を使用するステップに先立って、同様に制御された雰囲気の存在下で前記電子デバイスを形成するステップを含み、前記形成するステップおよび前記使用するステップは、制御されていない雰囲
気への暴露によって中断されない様式で行われる、項目9に記載の方法。
(項目14)
前記堆積中の前記基板を含有する雰囲気および前記制御された雰囲気は、異なる、項目13に記載の方法。
(項目15)
前記カプセル化層は、有機カプセル化層であり、
前記有機カプセル化層を堆積させるために前記印刷機構を使用するステップは、前記層を形成する前記材料を堆積させるためにインクジェット印刷機構を使用するステップを含み、前記材料は、液体単量体、液体ポリマー、またはその中に懸濁させられた有機材料を有する溶媒のうちの少なくとも1つを含む、項目9に記載の方法。
(項目16)
前記方法はさらに、事前層形成を分析するステップと、前記事前層形成を標的層厚さと比較するステップと、それに応答して、前記比較の結果に依存して前記複数の印刷セルに対するグレースケール値または前記ハーフトーンパターンのうちの少なくとも1つを更新するステップと、更新されたハーフトーンパターンを機械可読メモリに記憶するステップとを含む、項目1に記載の方法。
(項目17)
フラットパネルテレビを加工する方法として具現化される、項目1に記載の方法。
(項目18)
ソーラパネルを加工する方法として具現化される、項目1に記載の方法。
(項目19)
前記プロセッサを使用するステップは、
前記基板を表す面積を印刷セルに分割するステップと、
グレースケール値を前記印刷セルのそれぞれに割り当てるステップと、
を含み、
前記ハーフトーンパターンを選択するステップは、前記印刷セルのうちの複数のセルに対する前記グレースケール値に依存する密度においてインクを堆積させるように、前記印刷セルのうちの複数のセルに依存する前記ハーフトーンパターンを選択するステップを含む、項目1に記載の方法。
(項目20)
機械可読メモリからノズル特有の液滴放出パラメータを読み出すステップと、前記読み出されたノズル特有の液滴放出パラメータに依存する印刷パターンを調節するステップとをさらに含む、項目1に記載の方法。
(項目21)
前記データを受信するステップはさらに、レイアウトデータを受信するステップを含み、前記レイアウトデータは、前記所望の厚さを識別する前記データ、ならびに前記層の輪郭を定義するデータを含む、項目1に記載の方法。
(項目22)
フラットパネルディスプレイを形成する方法であって、
基板を覆って堆積させられる層の所望の厚さを識別するデータを受信するステップであって、前記層は、前記フラットパネルディスプレイの一部を形成する、ステップと、
前記所望の厚さに依存するハーフトーンパターンを選択するために、プロセッサを使用するステップであって、前記ハーフトーンパターンは、比較的厚い層のための比較的高濃度の液滴パターン、および比較的薄い層のための比較的低密度の液滴パターンを表す、ステップと、
前記ハーフトーンパターンに従って、インクジェット印刷機構にインクの液滴を前記基板上に堆積させるステップであって、前記インクは、前記層を形成する材料を担持する、ステップと、
を含む、方法。
(項目23)
前記インクは、有機材料を含む、項目22に記載の方法。
(項目24)
前記インクジェット印刷機構にインクの液滴を堆積させるステップは、制御された雰囲気の存在下で前記液滴を堆積させるように、前記インクジェット印刷機構を制御するステップを含む、項目22に記載の方法。
(項目25)
前記フラットパネルディスプレイは、有機発光ダイオード(「OLED」)ディスプレイデバイス層であり、前記層は、前記OLEDディスプレイデバイスのカプセル化層である、項目22に記載の方法。
(項目26)
フラットパネルテレビを加工する方法として具現化される、項目25に記載の方法。
(項目27)
フラットパネル電子デバイスを形成する方法であって、
基板の面積にわたって堆積させられる所望の層と関連付けられる、少なくとも1つの厚さの値を受信するステップと、
前記基板の前記面積と関連付けられる複数の印刷セルのうちの各セルに対するグレースケール値を生成するために、少なくとも1つのプロセッサを使用するステップであって、各グレースケール値は、前記少なくとも1つの厚さの値のうちの厚さの値に依存する、ステップと、
前記グレースケール値に依存する少なくとも1つのハーフトーンパターンを選択するために、前記少なくとも1つのプロセッサを使用するステップと、
前記少なくとも1つのハーフトーンパターンに従ってインク液滴を噴出することによって、前記所望の層を加工するプリンタ制御命令を生成するために、前記少なくとも1つのプロセッサを使用するステップであって、前記所望の層は、前記グレースケール値に依存して選択される各ハーフトーンパターンに依存する厚さを有する、ステップと、
を含む、方法。
(項目28)
非一過性の機械可読媒体上に記憶された実行可能命令を備える、装置であって、前記実行可能命令は、実行された時に、少なくとも1つのプロセッサに、
前記層の所望の厚さを識別するデータを受信することと、
前記データに従って、印刷機構にインクの液滴を前記基板上に堆積させるための制御命令を生成することであって、前記インクは、前記層を形成する材料を担持する、ことと
を行わせ、
前記実行可能命令は、実行されたときに、前記少なくとも1つのプロセッサに、前記所望の厚さに依存するハーフトーンパターンを選択させ、および前記選択されたハーフトーンパターンに依存する前記制御命令を生成させる、装置。
(項目29)
前記データは、少なくとも1つの厚さの値を含み、前記実行可能命令は、実行されたときに、前記少なくとも1つのプロセッサに、前記少なくとも1つの厚さの値を複数の印刷セルのうちの各セルに対するグレースケール値に変換させ、および前記複数の印刷セルに対する前記グレースケール値に依存する前記ハーフトーンパターンを選択させる、項目28に記載の装置。
(項目30)
前記実行可能命令は、実行されたときに、前記少なくとも1つのプロセッサに、前記層の縁への近接性に依存する、前記複数の印刷セルのうちの選択的なセルに対する前記グレースケール値を調節させる、項目28に記載の装置。
【図面の簡単な説明】
【0011】
【
図1A】
図1Aは、所望の層の厚さデータが、所望の層を加工するために有用なハーフトーンパターンに変換される、開示される技法の実施形態を示す略図である。
【0012】
【
図1B】
図1Bは、所望の層を表すレイアウトデータが生成または受信され、ハーフトーンパターンに変換され、所望の層になるであろうインクを堆積させるために使用される、プロセスの説明図である。
【0013】
【
図1C】
図1Cは、厚さデータがそれぞれの「印刷セル」に対するグレースケール値を得るために使用され、次いで、グレースケール値がハーフトーンパターンを生成するために使用される、詳細な実施形態のブロック図である。
【0014】
【
図2A】
図2Aは、本明細書で紹介される技法をそれぞれ独立して具現化することができる、一連の随意的な段階、製品、またはサービスを示す、説明図を提供する。
【0015】
【
図2B】
図2Bは、制御された大気環境の存在下で、構成要素、例えば、フラットパネルデバイスを加工するために使用することができる、加工機構の平面図を提供する。
【0016】
【
図2C】
図2Cは、
図2Bの加工機構内のプリンタのレイアウトを示す平面図であり、より具体的には、
図2Cは、どのようにしてプリントヘッド259が基板253に対して移動させられるかを示す。
【0017】
【
図2D】
図2Dは、
図2Aの印刷モジュール内で関連付けられる種々のサブシステムのブロック図である。
【0018】
【
図3A】
図3Aは、離散波形区画に従って、個別インク液滴を生成するために使用される波形を定義する方法を示す。
【0019】
【
図3B】
図3Bは、異なるノズル発射波形に基づいて、異なるパラメータを有する液滴を生成することができる、実施形態を示す。
【0020】
【
図3C】
図3Cは、プログラムされた時間(または位置)で所望の波形を生成し、プリントヘッドのノズルに適用することと関連付けられる回路を示し、本回路は、例えば、
図3Bからの回路343/351、344/352、および345/353のそれぞれの1つの可能な実装を提供する。
【0021】
【
図4A】
図4Aは、ハーフトーン画像への所望の層の厚さを表すデータの変換を説明するために使用される、フローチャートを提供する。
【0022】
【
図4B】
図4Bは、ハーフトーン画像への所望の層の厚さを表すデータの変換を説明するために使用される、別のフローチャートを提供する。
【0023】
【
図4C】
図4Cは、ハーフトーニング較正と関連付けられるフロー図である。
【0024】
【
図4D】
図4Dは、液滴測定および適格性と関連付けられるフロー図である。
【0025】
【
図5A】
図5Aは、印刷セルのための特定のインク体積を表す、1つのハーフトーンパターンを示す。
【0026】
【
図5B】
図5Bは、特定のインク体積を表す別のハーフトーンパターンを示し、より具体的には、
図5Bは、周波数変調(「FM」)ハーフトーニングについて議論するために、
図5Aのハーフトーンパターンに対して使用される。
【0027】
【
図5C】
図5Cは、特定のインク体積を表す別のハーフトーンパターンを示し、より具体的には、
図5Cは、振幅変調(「AM」)ハーフトーニングについて議論するために、
図5Aのハーフトーンパターンに対して使用される。
【0028】
【
図5D】
図5Dは、隣接タイルのための相補的(または「ステッチ」)ハーフトーンパターンの随意的な使用を示す。
【0029】
【
図5E】
図5Eは、液滴径(または形状)が不発隣接ノズルを補償するように変動させられている、ハーフトーンパターンを示す。
【0030】
【
図5F】
図5Fは、液滴が不発隣接ノズルを補償するように1つのノズルによって「借用」されている、ハーフトーンパターンを示す。
【0031】
【
図6A】
図6Aは、厚さデータに依存して異なる印刷セルに割り当てられたグレースケール値を示すチャートである。
【0032】
【
図6B】
図6Bは、厚さデータデータに依存して異なる印刷セルに割り当てられたグレースケール値を示すが、結果として生じたフィルム厚さの誤差を軽減または補正するようにグレースケール補正が追加されている、別のチャートである。
【0033】
【
図7A】
図7Aは、所望の層厚さを生成するように、どのようにして異なるハーフトーン液滴密度が異なるグレースケール値と関連付けられるかを説明するために使用される、グラフを提供する。
【0034】
【
図7B】
図7Bは、基板の1つまたはそれを上回る境界領域と、縁堆積を軽減するように、どのようにしてハーフトーニングおよび/またはグレースケール選択を境界領域中で変動させることができるかとを概略的に描写する。
【0035】
【
図7C】
図7Cは、より具体的には、堆積層の角で使用するために、境界領域付近のハーフトーニングのための1つの可能な方式を示す。
【0036】
【
図7D】
図7Dは、一貫した層縁を提供するための印刷セルの縁強調を示す。
【0037】
【
図7E】
図7Eは、縁堆積を回避するための境界隣接ハーフトーン変動および縁直線性を向上させるための「フェンシング」の両方の使用を示す。
【0038】
【
図8A】
図8Aは、複数のフラットパネル、例えば、複数の有機発光ダイオード(「OLED」)ディスプレイパネル、ソーラパネル、または他の種類のパネルに配列されるであろう、基板801を示す。
【0039】
【0040】
【0041】
【
図8D】
図8Dは、カプセル化(840)が追加された後の
図8Cの基板を示し、
図8Dはまた、交互の有機および無機層等の多くの個々の層でカプセル化(840)を形成できることを示す、拡大図である。
【0042】
【0043】
【
図9】
図9は、有機カプセル化層を堆積させるための1つのプロセスのブロック図である。
【発明を実施するための形態】
【0044】
本明細書で使用されるように、「ハーフトーニング」という用語は、(例えば、印刷セルあたり、基板あたり、または基板単位面積あたりの)単位面積のための所望の層厚さに応答して、可変量のインクを適用するように、複数の液滴のパターンを生成または選択するプロセスを指し、「ハーフトーンパターン」は、そのプロセスによって作成されるパターンである。本明細書で議論される典型的な実施形態では、ハーフトーニングは、可変液滴密度の液滴パターンを使用して(すなわち、局所グレースケール値またはグレースケール値の局所加重関数に依存して)、層厚さを局所的に表すハーフトーンパターンを生成するように、1つまたはそれを上回るグレースケール値に基づいて行われ、ハーフトーン格子内の各液滴位置は、ブール値(すなわち、1ビット)として表され、各ブール値(ビット)は、ノズルがその位置で液滴を放出するかどうかを示す。「ハーフトーン印刷イメージ」は、印刷面積全体を表す、ハーフトーンパターンを表す。「グレースケール値」は、色を指さない(例えば、白対グレー対黒)が、印刷を受容するものである基板の単位面積に対する可変層厚さ尺度を表す値を指す。例えば、一実施形態では、「小さい」グレースケール値は、所与の印刷セルが、所与の印刷セルによって表される面積に対する比較的薄い層厚さに対応する、比較的少量のインク(例えば、低密度の液滴)を受容するであろうことを示唆する一方で、「大きい」グレースケール値は、所与の印刷セルが、より厚い層に対応する、より大量のインク(比較的高い密度の液滴)を受容するであろうことを示唆する。層厚さが単位面積あたりのインク体積に等しいため、グレースケール値が、所与の単位面積に対する層厚さを特定するために本明細書の多くの実施形態で使用される。各グレースケール値は、典型的には、マルチビット値、例えば、8または16ビットであるが、これは、全ての実施形態に当てはまる必要はない。「グレースケールパターン」が、いずれか1つまたはそれを上回るグレースケール値のパターンである一方で、「グレースケール印刷イメージ」または「グレースケールイメージ」は、印刷面積、例えば、基板を表す、グレースケールパターンである。グレースケール印刷イメージは、典型的には、それぞれマルチビットである値(すなわち、グレースケール値)のアレイを特色とし、各値は、対応する単位面積あたりの層厚さを表し、対照的に、ハーフトーン印刷イメージは、典型的には、個別液滴が特定の位置で放出されるであろうかどうかをそれぞれ表す、単一ビット値のアレイを特色とする。以下で議論される多くの実施形態、具体的には、一様な厚さを伴う1つまたは複数の不透過性層を生成することに向けられた実施形態については、印刷に使用されるハーフトーンパターンは、典型的には、穴または空隙を伴わないが、異なるインク体積を伴う、連続層を生成するように選択される(ドットゲイン/インク拡散を与えられる)。そのような用途では、問題になっているインクは、典型的には、単量体、ポリマー、または材料を懸濁させる溶媒を含み、恒久層として所望の層厚さを形成するよう、堆積後にインクが乾燥させられ、硬化させられ、または別様に処理されることに留意されたい。
【0045】
図1A-1Cは、上記で紹介される技法のいくつかの実施形態を紹介するために使用される。
【0046】
図1Aは、第1の実施形態101を図示する。数字103によって示されるように、基板を覆って堆積させられる層を表す、データが受信される。基板は、以前に堆積させられた構造(例えば、電極、経路、または他の層もしくは要素等)を伴う、または伴わない、任意の基礎的材料または支持表面、例えば、ガラスまたは別の表面であり得、基礎的基板
が平坦であることは要求されない。受信したデータは、典型的には、加工される回路または構造を表す電子ファイルの一部として提示され、堆積させられる層については、典型的には、層のx-y面境界を定義するデータと、所望の層を横断して、またはそのような層の構造内で、例えば、ピクセルウェルの中で、種々の点における厚さを表すデータとを含むことに留意されたい。非限定的実施例を提供するために、基礎的基板は、加工の中間状態における有機発光デバイスまたは有機発光ダイオード(「OLED」)ディスプレイパネル等の有機デバイスであり得、受信したデータは、層が、酸素および水に対してOLEDディスプレイのアクティブ領域を密閉するであろう、その領域のカプセル化の一部となるものであることを示すことができる。そのようなカプセル化実施例における受信したデータは、典型的には、特定のカプセル化層が開始および停止する場所(例えば、xおよびy縁座標)、および高さとしてのその厚さ(例えば、「5.0ミクロン」のz軸厚さ)を示し、高さは、1つまたはそれを上回る種々の点の厚さとして表される。一実施例では、本層データは、x-y格子システム上の各点に対する厚さの値を含むが、これは、全ての実装に必要とされるわけではない(例えば、他の座標系を使用することができ、例えば、厚さを単一の一様な値として、勾配として、または他の手段を使用して表すことができる)。数字105によって示されるように、受信したデータは、本明細書で説明されるプロセスを使用して、所望の層厚さを生成するように、印刷プロセス、例えば、インクジェット印刷プロセスを使用して、層材料の堆積に影響を及ぼすために使用されるであろうハーフトーンパターンに変換される。所望の層厚さが逐点的に提供されるかどうかにかかわらず、厚さデータは、印刷プロセスによって対処されるであろう各印刷セルのために導出され、次いで、結果として生じた液滴が問題になっている層を「構築する」、特定のハーフトーンパターンを選択するために使用される。印刷セルとハーフトーン格子との間の関係(すなわち、液滴密度)は恣意的であることに留意されたい。一実施形態では、各印刷セルは、特定の格子点に一致し、すなわち、1対1の関係がある。第2の実施形態では、各印刷セルは、1つより多くの格子点(すなわち、整数または非整数の格子点)に対応する。さらに第3の実施形態では、各格子点は、1つより多くの印刷セル(すなわち、整数または非整数の印刷セル)に対応する。鎖線ボックス106により、既述のように、一実施形態では、ハーフトーンパターンは、随意に、局所的連続フィルムを常に生成するように制約されるが、所望の層厚さに依存する可変インク体積を伴う。ハーフトーンパターンは、随意に、例えば、パターン選択を変動させる能力を提供するよう、(例えば、グレースケール値またはグレースケール値の平均につき使用することができる1つから多くのハーフトーンパターンを用いて)事前に判定することができる。別の実施形態では、液滴密度は、平均グレースケール値の関数として較正され、グレースケール値のセットを表すハーフトーンパターン化を判定するために「オンザフライで」使用される。一実施形態では、それぞれマルチビットであるグレースケール値のセットは、入力をハーフトーン選択ソフトウェアに提供し、これは次いで、(例えば、ハーフトーン格子に対して位置付けられた液滴とともに、および単一ビットとして表される所与の格子点において液滴を発射する、または発射しない決定とともに)出力ハーフトーンパターンを返す。ハーフトーンパターンは、プリンタ命令(例えば、特定の場所で液滴を印刷するようにプリンタを制御するための印刷イメージ)として表すことができる。これらの命令は、応答して、より厚い層のためのより大きい総印刷セルインク体積、およびより薄い層のためのより小さい総印刷セルインク体積を伴って、ハーフトーンパターンによって表される情報に従って局所的に変動させられる単位面積あたりの体積において、インクジェット印刷プロセスにインクを堆積させるであろう、情報を含有する。
【0047】
ボックス110および媒体グラフィック111は、一実施形態では、このように紹介されたステップを、非一過性の機械可読媒体上に記憶された命令として、例えば、ソフトウェアとして具現化できることを表す。「非一過性の機械可読媒体」は、その媒体上のデータがどのようにして記憶されるかにかかわらず、限定ではないが、後に命令が機械によって読み出され得る、ランダムアクセスメモリ、ハードディスクメモリ、光学メモリ、フロ
ッピー(登録商標)ディスクまたはCD、サーバ記憶装置、揮発性メモリ、および他の有形機構を含む、任意の有形(すなわち、物理的)記憶媒体を意味する。機械可読媒体は、独立型形態(例えば、プログラムディスク)であり得るか、またはより大型の機構、例えば、ラップトップコンピュータ、携帯用デバイス、サーバ、ネットワーク、プリンタ、もしくは他の1つまたはそれを上回るデバイスのセットの一部として具現化することができる。命令は、異なる形式で、例えば、呼び出されたときにある動作を起動するために効果的であるメタデータ、Java(登録商標)コードまたはスクリプト記述、特定のプログラミング言語で(例えば、C++コードとして)書かれたコード、またはプロセッサ特有の命令セットとして、もしくはある他の形態で実装することができ、命令はまた、実施形態に応じて、同一のプロセッサまたは異なるプロセッサによって実行することもできる。例えば、1つの実装では、非一過性の機械可読媒体上の命令は、単一のコンピュータによって実行することができ、記述されるような他の場合においては、例えば、1つまたはそれを上回るサーバ、ウェブクライアント、またはアプリケーション特有のデバイスを使用して、分散型基準で記憶および/または実行することができる。
【0048】
ボックス110のプロセスによって生成されるハーフトーニングは、即時に採用する、および/または後で使用するために記憶することができる。この趣旨で、
図1Aは、例えば、同様に非一過性の機械可読媒体113上に、ハーフトーニングをプリンタ制御ファイル107(例えば、プリンタ制御命令)として記憶できることを示す。本媒体は、媒体グラフィック111によって表されるものと同一の媒体、または異なる媒体、例えば、デスクトップコンピュータまたはプリンタのRAMまたはハードディスク、ディスク、またはフラッシュカードであり得る。非限定的実施例として、そのようなプリンタ制御命令は、電子宛先へのダウンロードまたは伝送のために適合される、ネットワークに記憶された基準設計として利用可能にすることができる。殆どの用途については、随意的なプロセスブロック109によって示されるように、適用されたハーフトーニングは、最終的に、記述されたインクジェット印刷プロセスを使用して層を堆積させるために使用されるであろう。いったん層堆積ステップ(および任意の事後堆積硬化または他の仕上げステップ)が完了すると、堆積の領域中の堆積層は、ハーフトーニングの関数として、意図した層厚さに対応する厚さを有するであろう。
【0049】
図1Bは、
図1Aを参照してこのように議論された層等の層を加工するためのプロセスおよびハードウェアを示す、説明図である。プロセスおよびハードウェアは、概して、数字151によって表され、(例えば、設計ファイルの一部として)材料の1つまたはそれを上回る層のレイアウトデータを受信することができる、1つまたはそれを上回るコンピュータ153を含むことが分かる。本レイアウトデータおよび任意の関連設計ファイルは、コンピュータ155、例えば、コンピュータ支援設計(「CAD」)に使用されるコンピュータによって生成され、そこから受信される。受信したレイアウトデータ(任意の設計ファイルを含む)は、機械可読媒体上に記憶された命令またはデータの一部であり得、データまたは命令は、所望の構成要素、例えば、消費者電子製品または別の製品を加工するために使用することができる。レイアウトデータは、随意に、ネットワーク157、例えば、ローカルエリアネットワーク(「LAN」)または広域ネットワーク(インターネットまたは企業のプライベートネットワーク等の「WAN」)を経由して受信される。いくつかの実施形態では、コンピュータ155は、随意に、それ自体が、1つまたはそれを上回るコンピュータ153のうちの1つであり、すなわち、層の設計およびプリンタ制御命令の生成は、随意に、1つのコンピュータ上で、または単一のローカルネットワーク内で行うことができる。1つまたはそれを上回るコンピュータ153は、上記で紹介されるような、つまり、層の厚さデータを少なくとも1つのハーフトーンパターンに変換するための処理を適用する。ハーフトーニングの結果は、ローカルメモリ159に記憶され、随意に、ネットワーク163を介してインクジェット印刷機構161に伝送される。1つまたはそれを上回るコンピュータ153はまた、インクジェット印刷機構と組み合わせるこ
ともでき、例えば、これらの要素は、所望の層を形成するであろうインクジェットプリンタを含む加工機構のための制御端末として、例えば、任意の硬化または仕上げ手順に続いて、所望の層厚さを堆積させるように、基板の面積にわたる1回の通過としての各スキャンである、層を印刷する1つまたはそれを上回るスキャンとして、具現化できることに留意されたい。インクジェット印刷機構によって噴出されるインクは、典型的には、記述されるように、流体として噴出される材料(例えば、有機材料)を含む。上記で紹介されるように、かつ以下でさらに説明されるように、いくつかの実施形態では、基板の単位印刷可能面積に対応する各印刷セルは、(例えば、グレースケール値の形態で)離散インク体積を割り当てられる。印刷セルのサイズは、恣意的であり、典型的には、離散厚さ(すなわち、グレースケール値)を割り当てることができるか、または割り当てられるであろう、基板の最小単位面積を表す。各印刷セルは、ひいては、典型的には、格子上の1つまたはそれを上回る点と関連付けられ、格子の点はそれぞれ、可能なそれぞれのインク液滴位置を表す。各起こり得る液滴の発射は、適用されたハーフトーニングに応答して制御される。一実施形態では、それぞれのプリントヘッドノズル(または位置)からの液滴の発射が、所望の層厚さに従って変動させられる特定の空間周波数において行われることを意味する、「周波数変調」ハーフトーニングが使用される(例えば、
図5A参照)。別の実施形態では、「振幅変調」ハーフトーニングが使用され、つまり、液滴発射は、クラスタあたりの液滴の数が所望の厚さに従って変動させられる、空間的に分離されたクラスタ中にあり、したがって、より暗い画像(すなわち、より厚い層)は、より薄い層より大きい見掛けの液滴によって表され、再度、本実施形態では、液滴が発射されない格子点にもかかわらず、局所的連続フィルムを達成するために十分なドットゲインを伴う(例えば、
図5C参照)。なおも他の実施形態では、1つまたはそれを上回るインクジェットノズルを発射するために使用される電気的パターンを変化させることによって、液滴径および/または形状を(例えば、円形または楕円形またはある他の形状から)変動させることができ、代替として、または加えて、ハーフトーンパターンおよび/またはプリンタ命令は、インクジェットプリントヘッドによる特定のスキャン位置の複数の通過を命令することができる。最終的に、単独で、または上記の技法と組み合わせて、他の技法も使用することができる。これらの随意的な特徴は、随意的なプロセスブロック165によって表される。
【0050】
入力されたレイアウトデータの処理は、層厚さデータを各印刷セルについて識別させ、次いで、特定の印刷セルを表すグレースケール値に変換させる。例えば、一実施形態では、グレースケール値は、256個の可能な値を有する、8ビットフィールドであり、層厚さが1ミクロン~11ミクロンに及んだ場合には、6ミクロン(すなわち、正確に範囲内の中間厚さ)を表す厚さ尺度がグレースケール値「128」に変換され得る。次いで、(例えば、局所的連続フィルムを表す)ハーフトーンパターンが、数字167により、割り当てられたグレースケール値のうちの1つまたはそれを上回るものに依存して選択される。再度、所望の層厚さとグレースケール値との間の関係は、直線的である必要がないことに留意されたい。例えば、特定の実施形態のための連続フィルムを達成するために、例えば、「67」という最小8ビット値が必要とされた場合には、割り当てられた厚さは、0、67~255の範囲内の数によって表され得る。
【0051】
図1Bはまた、ハーフトーニングに影響を及ぼすための誤差補正データ(または他のデータ)の使用に関する、随意的な(鎖線)プロセス169も紹介する。これは、いくつかの方法で適用することができるが、1つの初歩的な実施例を提供するために、特定の印刷機構のための実践において、インクノズルの一部が動作不能であると判定された場合、随意に、補償を提供するように、ハーフトーンパターンを調節することができ(例えば、パターンを変動させることができる、またはFMハーフトーニングの代わりにAMハーフトーニングを適用することができる、もしくは別の方式を使用することができる)、または(例えば、スキャン経路の随意的なオフセットとともに)異なるノズルを使用するようにプリントヘッドを命令することができ、そのような誤差データが、おそらく、基板にわた
る対象プリントヘッドの各通過に影響を及ぼすであろうため、随意に、修正されたパラメータを使用して、将来の印刷または印刷計画を行うように、少なくとも対象プリントヘッドについて、ハーフトーニングアルゴリズムを更新することができる。他の実施形態では、特定のインクノズルのための駆動波形を変動または調節することができる。例えば、各ノズルのためのプロセス変形例(ならびにノズル耐用期間/寿命等の他の要因、および粘度、表面張力、および温度等のインクパラメータ)が、ノズルあたりの液滴体積に影響を及ぼし得、本影響を軽減するために、ノズルのための駆動波形は、割り当てられた、または所望のハーフトーンパターンに寄与する、放出された液滴の体積、軌道、または速度を調節するために変動させることができる。堆積機械の詳細、インク量、および他の要因に応じて、類似補正/更新を供給することができる。誤差補正はまた、他の形態、例えば、様々な液滴径または形状を成すことができ、または印刷セル内の液滴の空間的位置付けを変化させることに留意されたい。2014年4月23日に最初に名前が挙げられた発明者Nahid Harjeeの代理として出願された、「Techniques for Print Ink Droplet Measurement and Control to Deposit Fluids within Precise Tolerances」についての出願者の同時係属PCT特許出願第PCT/US14/35193号(KT 13-0616CP)は、個別化された液滴体積、軌道および速度測定、使用可能またはノズルが使用から除外されるべきである時点までの異常としての液滴の検証、そのような問題を避けたプリントヘッドスキャン経路の計画、およびノズル駆動波形の調節(および代替的なノズル駆動波形の提供)ならびにそのような挙動を補正する際に使用するための他の補償のための技法を開示し、本記述される出願は、本明細書で記載されるかのように、参照することにより本明細書に組み込まれる。誤差補正のための種々の技法を以下で議論するが、随意的なプロセス169によって表されるように、適用される場合、そのような技法は、堆積層の異常を補正するように、どのようにして個別パターンが作成されるかを調節するために使用することができる。前述の同時係属PCT特許出願(KT 13-0616CP)で説明される技法またはプロセスのうちのいずれかは、液滴生成を調節して一様な液滴生成および/または誤差補償を助長するように適用することができる。
【0052】
図1Cは、上記で議論されるプロセスを紹介するために使用される、さらに別のフロー図を提供する。これらのプロセスを実装する方法は、概して、数字181を使用して識別される。第1に、例えば、所望の層のサイズおよび形状、ならびに所望の層の厚さを識別する、層データが受信される(183)。一実施形態では、所望の層は、完成したフラットパネルディスプレイ(例えば、テレビまたは他のディスプレイデバイス)の一部となり、別の実施形態では、所望の層は、ソーラパネルの一部となるであろう。随意に、いくつかの実装では、所望の層は、酸素および/または水に対してそのようなデバイスのアクティブ要素を保護するであろう、カプセル化層である。鎖線ボックス184によって例示されるように、層データは、随意に、幅、長さ、および高さ(例えば、描写されるように、xミクロン×yミクロン×zミクロン)の形態で表すことができる。ボックス185により、次いで、厚さデータ(例えば、本実施例では「zミクロン」)は、随意に、マッピング(186)に従って、複数の印刷セルのうちの各セルに1つずつ、グレースケール値に変換される。例えば、5.0ミクロンの層厚さ(すなわち、z=5.0)が、ある単位面積につきM個の液滴を発射することによって達成される、特定のインク体積に対応することが判定される場合には、(すなわち、マッピング186により)本インク液滴密度と相関するグレースケール値が、例示的ボックス187で描写されるように、各印刷セルに割り当てられる。本仮説では、ボックス187は、(本実施例では)インクの適用に続いて厚さ5.0ミクロンの層を得るために必要とされる所望のインク密度を提供することがすでに知られている、値「203」の格子を示す。数字189により、随意に、グレースケール値または格子値を調節することができる。例えば、1つの考慮される実施形態では、層縁における蓄積を回避するように、境界(例えば、堆積させられる層の周辺)を表すグ
レースケール値を調節することができる(以下の
図7A-7Eの議論を参照)。代替として、堆積させられたインクが、特定のノズルまたは印刷セルに結び付けることができる非一様性を有する場合には、そのような非一様性を軽減するよう、グレースケール値を調節することができる。(下層のアクティブ要素により、堆積させられたインクの一様な厚さが、非一様な表面をもたらすように)基板が基礎的構造を有する実施形態では、次いで、新しい層の堆積後表面を平らにするよう、グレースケール値を調節することができる。そのような調節は、プロセス191による、ハーフトーンパターンへのグレースケール値の変換前または後に適用することができる(または別様に、随意にハーフトーニングプロセスに織り込まれる)。ハーフトーニングプロセスは、例示的ボックス192で例示されるように、各格子交点が起こり得る液滴と関連付けられ、格子交点における個別格子値(例えば、単一ビット値)が、対応する格子交点において液滴が発射されるものであるかどうかを示す、ビットマップをもたらす。本プロセスの結果はまた、所望の層を印刷する際に使用するため、以降のダウンロード、転送、使用、または操作のために記憶するため、もしくはプリンタを前向きに制御するために修正可能である、プリンタ制御命令のセットでもある。最終的な印刷動作は、
図1Cの数字193によって指定される。
【0053】
いくつかの実施形態の主要な部分がこのようにして紹介されており、ここで、本説明は、ある加工技法に関する付加的な詳細を提供する。
図2A-Dは、最初に、1つの可能な堆積環境、例えば、フラットパネルデバイスの1つまたはそれを上回る恒久層を直接形成するであろう材料を堆積させるためにインクジェット印刷を使用する、工業用加工機械の詳細を説明するために使用されるであろう。次いで、
図3A-6Bは、層厚さを制御するためにどのようにしてハーフトーニングを使用することができるかを説明するために、使用されるであろう。
図7A-7Eは、縁蓄積および境界制御について議論するために使用されるであろう。
図8A-8Eは、仮説的加工プロセスを叙述するために使用されるであろう。最終的に、
図9は、OLEDディスプレイデバイスを製造することのいくつかの加工オプションについて議論するために使用されるであろう。これらの図および関連テキストは、実施例のみを提供すると理解されるべきであり、他の類似技法および実装が当業者に想起されるであろうことは疑問の余地がない。説明された技法およびデバイスを使用すると、ハーフトーンパターンの使用および調節によって提供される層厚さに対する一様な制御とともに、流体インクを使用して、ほぼあらゆる所望の層を堆積させるために、印刷プロセス、より具体的には、インクジェット印刷プロセスを使用することができる。説明された技法は、「ブランケット」堆積、つまり、堆積層の特徴サイズが任意の基礎的ナノスケール構造に対して大きい、堆積のために特に有用であるが、上記で説明される技法は、そのように限定されない。
【0054】
図2Aは、参照数字201によって集合的に指定される、いくつかの異なる実装段階を表し、これらの段階のそれぞれ1つは、本明細書で紹介される技法の可能な離散実装を表す。第1に、本開示で紹介されるようなハーフトーニング技法は、グラフィック203によって表されるように、非一過性の機械可読媒体上に記憶された命令(例えば、コンピュータまたはプリンタを制御するための実行可能命令またはソフトウェア)の形態を成すことができる。第2に、コンピュータアイコン205により、これらの技法は、随意に、例えば、販売または他の製品での使用のための構成要素を設計または製造する企業内で、コンピュータまたはネットワークの一部として実装することができる。第3に、記憶媒体グラフィック207を使用して例示されるように、上記で紹介される技法は、記憶されたプリンタ制御命令、例えば、上記の議論により、作用されたときに、異なるインク体積を表す1つまたはそれを上回るハーフトーンパターンの使用に依存している構成要素の1つまたはそれを上回る層をプリンタに加工させるであろう、ハーフトーン印刷イメージの形態を成すことができる。プリンタ命令は、例えば、LANを経由して、プリンタに直接伝送することができ、このような状況において、記憶媒体グラフィックは、(限定ではないが)コンピュータまたはプリンタの内側にあるか、またはそれにアクセス可能であるRAM
、もしくはフラッシュドライブ等の携帯用媒体を表すことができることに留意されたい。第4に、加工デバイスアイコン209によって表されるように、上記で紹介される技法は、加工装置または機械の一部として、もしくはそのような装置または機械内のプリンタの形態で、実装することができる。加工デバイス209の特定の描写は、以下で
図2Bに関連して議論されるであろう、1つの例示的なプリンタデバイスを表すことが留意される。上記で紹介される技法はまた、製造された構成要素のアセンブリとして具現化することもでき、例えば、
図2Aでは、いくつかのそのような構成要素は、最終消費者製品に組み込むために後に分離されて販売されるであろう、半分完成したフラットパネルデバイスのアレイ211の形態で描写されている。描写されたデバイスは、例えば、1つまたはそれを上回るカプセル化層、もしくは上記で紹介される方法に依存して加工される他の層を有してもよい。上記で紹介される技法はまた、参照されるような最終消費者製品の形態で、例えば、携帯用デジタルデバイス213(例えば、電子パッドまたはスマートフォン等)用の表示画面の形態で、テレビの表示画面215(例えば、OLED TV)、ソーラパネル217、または他の種類のデバイスとして、具現化することもできる。
【0055】
図2Bは、本明細書で開示される技法を適用するために使用することができる、1つの考慮される多重チャンバ加工装置221を示す。一般的に言えば、描写された装置221は、移送モジュール223、印刷モジュール225、および処理モジュール227を含む、いくつかの一般的なモジュールまたはサブシステムを含む。各モジュールは、例えば、印刷を第1の制御された雰囲気中で印刷モジュール225によって行うことができ、他の処理、例えば、無機カプセル化層堆積等の別の堆積プロセスまたは(例えば、印刷された材料のための)硬化プロセスを第2の制御された雰囲気中で行うことができるように、制御された環境を維持する。装置221は、基板を制御されていない雰囲気に暴露させることなく、モジュールの間で基板を移動させるために、1つまたはそれを上回る機械ハンドラを使用する。任意の所与のモジュール内で、そのモジュールについて行われる処理に適合される、他の基板取扱システムおよび/または特定のデバイスおよび制御システムを使用することが可能である。
【0056】
移送モジュール223の種々の実施形態は、入力ロードロック229(すなわち、制御された雰囲気を維持しながら異なる環境間で緩衝を提供するチャンバ)、移送チャンバ231(基板を輸送するためのハンドラも有する)、および雰囲気緩衝チャンバ233を含むことができる。印刷モジュール225内で、印刷プロセス中に基板の安定した支持のための浮動テーブル等の他の基板取扱機構を使用することが可能である。加えて、分割軸またはガントリ運動システム等のxyz運動システムを、基板に対する少なくとも1つのプリントヘッドの精密な位置付けに使用することができるとともに、印刷モジュール225を通した基板の輸送のためのy軸運搬システムを提供する。また、例えば、2つの異なる種類の堆積プロセスを制御された雰囲気中の印刷モジュール内で行うことができるように、印刷チャンバ内で、例えば、それぞれのプリントヘッドアセンブリを使用して、印刷するために複数のインクを使用することも可能である。印刷モジュール225は、不活性雰囲気(例えば、窒素)を導入し、別様に、環境的調整(例えば、温度および圧力)、ガス構成要素、および粒子状物質の存在について雰囲気を制御するための手段とともに、インクジェット印刷システムを収納するガスエンクロージャ235を備えることができる。
【0057】
処理モジュール227の種々の実施形態は、例えば、移送チャンバ236を含むことができ、本移送チャンバはまた、基板を輸送するためのハンドラも有する。加えて、処理モジュールはまた、出力ロードロック237、窒素スタック緩衝器239、および硬化チャンバ241を含むこともできる。いくつかの用途では、硬化チャンバは、例えば、熱または紫外線放射硬化プロセスを使用して、単量体フィルムを一様なポリマーフィルムに硬化させるために使用することができる。
【0058】
ある用途では、装置221は、液晶表示画面またはOLED表示画面の大量生産、例えば、単一の大型基板上に1度に8枚の画面のアレイの加工に適合される。これらの画面は、テレビに、および他の形態の電子デバイス用の表示画面として使用することができる。第2の用途では、装置は、さらに類似する様式で、ソーラパネルの大量生産に使用することができる。
【0059】
上記で議論されるカプセル化実施例に適用され、上記で説明されるハーフトーンベースの印刷技法を使用するように適合されると、印刷モジュール225は、有利なことには、そのようなデバイスの感受性要素を保護することに役立つ有機カプセル化層を堆積させるために、そのような用途で使用することができる。例えば、描写された装置221は、基板を装填されることができ、カプセル化プロセス中の制御されていない雰囲気への暴露によって中断されない様式で、種々のチャンバの間で基板を前後に移動させるように制御することができる。基板は、入力ロードロック229を介して装填することができる。移送モジュール223の中に位置付けられたハンドラは、入力ロードロック229から印刷モジュール225へ基板を移動させることができ、印刷プロセスの完了に続いて、硬化のために基板を処理モジュール227へ移動させることができる。後続の層の繰り返しの堆積によって、制御された厚さ、総カプセル化のそれぞれを、任意の所望の用途に適するように構築することができる。再度、上記で説明される技法は、カプセル化プロセスに限定されず、また、多くの異なる種類のツールを使用できることに留意されたい。例えば、装置221の構成は、異なる並置で種々のモジュール223、225、および227を配置するように変動させることができ、また、付加的な、より少ない、または異なるモジュールも使用することができる。
【0060】
図2Bは、連結されたチャンバまたは加工構成要素のセットの一実施例を提供するが、明確に多くの他の可能性が存在する。上記で紹介されるハーフトーニング技法は、
図2Bで描写されるデバイスとともに、または実際には、任意の他の種類の堆積機器によって行われる加工プロセスを制御するために、使用することができる。
【0061】
図2Cは、堆積プロセス中に出現し得るような基板およびプリンタの平面図を提供する。印刷チャンバは、概して、参照数字251によって指定され、印刷される基板は、概して、数字253によって指定され、基板を輸送するために使用される支持テーブルは、概して、数字255によって指定される。一般的に言えば、基板の任意のx-y座標は、(例えば、数字257によって示されるように、浮動支持を使用する)支持テーブルによる基板のxおよびy次元移動を含み、概して、矢印263によって表されるように、トラベラ261に沿った1つまたはそれを上回るプリントヘッド259の「遅軸」x次元移動を使用する、移動の組み合わせによって到達される。記述されるように、浮動テーブルおよび基板取扱インフラストラクチャは、基板を移動させ、有利なことには、必要に応じて1つまたはそれを上回る「高速軸」に沿ってデスキュー制御を提供するために使用される。プリントヘッドは、それぞれが、(例えば、プリントヘッドが「遅軸」に沿って左から右へ、およびその逆も同様に移動させられるにつれて、印刷セルの列の印刷を達成するように)ハーフトーン印刷イメージから導出される発射パターンによって別々に制御される、複数のノズル265を有することが分かる。5つだけのノズルが
図2Cで描写されているが、任意の数のノズルを使用することができ、例えば、典型的な工業用印刷実装では、何千ものノズルが存在する、複数のプリントヘッドがあり得ることに留意されたい。1つまたはそれを上回るプリントヘッドと基板との間の相対運動が高速軸(すなわち、y軸)の方向へ提供されると、印刷は、印刷セルの個々の行を辿る帯状の場所を表す。プリントヘッドはまた、有利なことには、(例えば、数字267による、1つまたはそれを上回るプリントヘッドの回転によって)有効ノズル間隔を変動させるように調節することもできる。所望に応じて、相互に対してx次元、y次元、および/またはz次元オフセットで配向される、複数のそのようなプリントヘッドをともに使用できることに留意されたい(
図2
Cの軸凡例269を参照)。印刷動作は、所望に応じて、標的領域(および任意の境界領域)全体がインクで印刷されるまで継続する。必要な量のインクの堆積に続いて、基板は、(例えば、熱プロセスを使用して)インクを乾燥させるように溶媒を蒸発させることによって、または紫外線硬化プロセス等の硬化プロセスの使用によってのいずれかで、仕上げられる。
【0062】
図2Dは、本明細書で特定されるような1つまたはそれを上回る層を有するデバイスを加工するために使用することができる、1つの装置(271)の種々のサブシステムを使用する、ブロック図を提供する。種々のサブシステムにわたる協調は、ソフトウェア(
図2Dに示されていない)によって提供される命令の下で作用する、プロセッサ273によって提供される。加工プロセス中に、プロセッサは、ハーフトーン印刷イメージによって提供される発射命令に応じて、プリントヘッドに種々の量のインクを放出させるように、データをプリントヘッド275に供給する。プリントヘッド275は、典型的には、行またはアレイに配列される複数のインクジェットノズルと、圧電または他の変換器の起動に応答してインクの噴出を可能にする関連貯留部とを有し、そのような変換器は、対応する圧電変換器に印加される電子発射波形信号によって統制される量において、それぞれのノズルに制御された量のインクを放出させる。他の発射機構も使用することができる。プリントヘッドは、ハーフトーン印刷イメージによって表されるように、種々の印刷セル内の格子座標に対応する種々のx-y位置でインクを基板277に適用する。位置の変動は、プリントヘッド運動システム279および基板取扱システム281(例えば、基板を横断する1つまたはそれを上回る帯状の場所を印刷に表させる)の両方によって達成される。一実施形態では、プリントヘッド運動システム279が、トラベラに沿って前後にプリントヘッドを移動させる一方で、基板取扱システムは、例えば、整合またはデスキューのために、安定した基板支持と、基板の「x」および「y」次元輸送(および回転)との両方を提供し、印刷中に、基板取扱システムが、1つの次元(例えば、
図2Cに対して「y」次元)で比較的速い輸送を提供する一方で、プリントヘッド運動システム279は、例えば、プリントヘッドオフセットのために、別の次元(例えば、
図2Cに対して「x」次元)で比較的遅い輸送を提供する。別の実施形態では、複数のプリントヘッドを使用することができ、主要な輸送が基板取扱システム281によって取り扱われる。任意の基準を位置付け、整合および/または誤差検出を支援するために、画像捕捉デバイス283を使用することができる。
【0063】
本装置はまた、インク送達システム285と、印刷動作を支援するプリントヘッド維持システム287とを備える。プリントヘッドは、周期的に較正するか、または維持プロセスを受けることができ、この目的を達成するために、維持シーケンス中に、プリントヘッド維持システム287は、特定のプロセスに対して、適宜、適切な下準備、インクまたはガスのパージ、試験および較正、ならびに他の動作を行うために使用される。そのようなプロセスはまた、例えば、以前に参照された出願者の同時係属PCT特許出願(第KAT 13-616CP号)で議論されるように、かつ数字291および292によって参照されるように、液滴体積、速度、および軌道等のパラメータの個別測定を含むこともできる。
【0064】
以前に紹介されたように、印刷プロセスは、制御された環境で、つまり、堆積層の有効性を劣化させ得る汚染物質のリスクの低減を提示する様式で、行うことができる。この趣旨で、本装置は、機能ブロック290によって表されるように、チャンバ内の雰囲気を制御するチャンバ制御サブシステム289を含む。随意的なプロセス変形例は、記述されるように、周囲窒素ガス雰囲気の存在下で堆積材料の噴出を行うことを含むことができる(または別の不活性環境では、不要な粒子状物質を除外するために、具体的に選択および/または制御されたガス)。最終的に、数字293によって表されるように、本装置はまた、ハーフトーンパターン情報またはハーフトーンパターン生成ソフトウェアを記憶するた
めに使用することができる、メモリシステムを含むことができ、すなわち、本装置は、各液滴の(およびタイミングの)発射を制御する印刷制御命令を内部で生成するため、前述の技術に従ってハーフトーン印刷イメージを得るために、レイアウトデータのレンダリングを直接装置に行うべきである。そのようなレンダリングが、他の場所で行われる場合、装置のタスクは、受信されたプリンタ命令に従って、デバイス層を加工することであり、次いで、ハーフトーン印刷イメージは、印刷プロセス中に使用するためのメモリサブシステム293内に記憶され得る。数字294によって表されるように、1つの随意的な実施形態では、個々の液滴詳細は、任意の所与のノズルに対する発射波形の変動を通して(例えば、ノズル異常を補正するために)変動することができる。一実施形態では、代替発射波形のセットが、共有または専用ベースで、事前に選択され、各ノズルに利用可能にされることができる。別の実施形態では、単一の波形が、事前に決定され(例えば、代替に対して選択される)、特定のノズルに関連する無限使用に対してプログラムされる。
【0065】
ノズル発射詳細を修正または調節するための構造および技法が、
図3A-3Cを参照して説明される。一実施形態では、波形は、例えば、デジタルデータによって定義される、一連の離散信号レベルとして事前定義することができ、駆動波形は、デジタル・アナログ変換器(DAC)によって生成される。
図3Aの数字301は、離散信号レベル304、305、306、307、308、309、および310を有する、波形303のグラフを識別する。一実施形態では、各ノズルドライバは、各波形が可変電圧および持続時間の一連の信号レベルとして定義される、複数の波形(例えば、最大16または別の数)を受信する回路を含むことができる。各波形は、それぞれマルチビット電圧およびマルチビット持続時間として表される、一連の最大16個のそのような信号レベルとして表すことができる。すなわち、そのような実施形態では、1つまたはそれを上回る信号レベルに対する異なる持続時間を定義することによって、パルス幅を効果的に変動させることができ、微妙な液滴径、速度、または軌道変動を提供するように選択される様式で、駆動電圧を波形成形することができ、例えば、液滴体積は、0.01pL単位等の特定の量漸進増分を提供するように計測される。したがって、そのような実施形態では、波形成形は、理想値に近くなるように液滴体積および飛行パラメータを調節する能力を提供する。これらの波形成形技法はまた、ムラを低減または排除するための方策も促進し、例えば、1つの随意的な実施形態では、全てのノズルが一様な液滴体積(例えば、可能な限り10.00pLに近い)を提供するように、単一の割り当てられたノズル駆動波形が、各ノズルに事前に合わせられる。別の実施形態では、短期間に印加される代替的な所定の波形のうちの「特定の1つ」を選択(例えば、プログラム)するために使用される動的較正(または別の較正)を用いて、随意に、代替的な所定の波形が各ノズルに利用可能にされる。他の可能性も存在する。
【0066】
典型的には、異なる駆動波形および結果として生じた液滴体積の効果は、事前に測定される。一実施形態では、各ノズルについて、最大16個の異なる駆動波形は、後に、ソフトウェアによって選択されるような離散体積変動を提供する際に選択的に使用するために、ノズル特有の専用1kスタティックランダムアクセスメモリ(SRAM)に記憶することができる。異なる駆動波形が手元にあると、次いで、各ノズルは、特定の駆動波形を達成するデータのプログラミングを介して、どの波形を適用するかに関して液滴毎に指示される。
【0067】
図3Bは、概して、数字321によって指定される、そのような実施形態に使用することができる回路を示す略図である。具体的には、プロセッサ323が、印刷される特定の材料の層を定義するデータを受信するために使用される。数字325によって表されるように、本データは、格子点または位置アドレスあたりの所望の厚さを定義する、レイアウトファイルまたはビットマップファイルであり得る。一連の圧電変換器327、328、329は、それぞれ、ノズル駆動波形、ノズル間およびプリントヘッド間製造変動を含む
、多くの要因に依存する、関連するそれぞれの液滴体積331、332、および333を生成する。較正動作中に、使用されるであろう特定のインクを考慮して、それぞれのノズルのための1つまたはそれを上回る駆動波形を判定するように、ノズル間変動を含む変数セットのそれぞれ1つを、液滴体積へのその影響について試験することができる。所望であれば、本較正動作は、例えば、温度、ノズルの詰まり、プリントヘッド寿命、または他のパラメータの変化に応答するように、動的にさせることができる。本較正は、印刷計画および次の印刷を管理する際に使用するために、測定データをプロセッサ323に提供する、液滴測定デバイス335によって表される。一実施形態では、本測定データは、(例えば、何千個ものプリントヘッドノズルおよび潜在的に多数の可能なノズル発射波形の各ノズルについて)数分、例えば、何千個ものノズルについてはわずか30分、好ましくはさらに少ない時間を要する、動作中に計算される。別の実施形態では、そのような測定は、反復して、つまり、異なる時点でノズルの異なる一部を更新するように、行うことができる。非撮像(例えば、干渉)技法を、随意に、例えば、前述の同時係属で同一出願人によるPCT特許出願で説明されるように、測定に使用することができ、これは潜在的に、毎秒何十から何百ものノズルを対象とする、ノズルにつき何十回もの液滴測定をもたらす。本データおよび任意の関連統計的モデル(および平均)は、受信されたときにレイアウトまたはビットマップデータ325を処理する際に使用するために、メモリ337に記憶することができる。ある実装では、プロセッサ323が、実際のプリンタから遠隔にあるコンピュータの一部である一方で、第2の実装では、プロセッサ323は、加工機構(例えば、ディスプレイを加工するためのシステム)またはプリンタのいずれか一方と統合される。
【0068】
液滴の発射を行うために、1つまたはそれを上回るタイミングまたは同期化信号339のセットが、基準として使用するために受信され、これらは、特定の圧電変換器(それぞれ、327、328、および329)のために、すなわち、ノズルにつき専用の圧電変換器を用いて(3つだけが
図3Bで図示されているが、典型的には、何千ものノズルが存在する)、駆動波形を生成するように、各ノズルドライバ343、344、および345に配信するためにクロックツリー341を通過させられる。各ノズルドライバは、それぞれ、プロセッサ323からマルチビットプログラミングデータおよびタイミング情報を受信する、1つまたはそれを上回るレジスタ351、352、および353を有する。各ノズルドライバおよびその関連レジスタは、それぞれ、レジスタ351、352、および353をプログラムする目的で、1つまたはそれを上回る専用書き込み許可信号(we
n)を受信する。一実施形態では、レジスタのそれぞれは、複数の所定の波形を記憶する1k SRAMを含む、かなりの量のメモリと、これらの波形の間で選択し、別様に波形生成を制御するプログラム可能レジスタとを備える。プロセッサからのデータおよびタイミング情報は、マルチビット情報として
図3Bで描写されるが、本情報は、代わりに、(以下で議論される
図3Cで見られるように)各ノズルへの直列接続を介して提供することができる。
【0069】
所与の堆積、プリントヘッド、またはインクについて、プロセッサは、液滴を生成するために選択的に(すなわち、「任意に」)選択することができる、16個の事前配列された駆動波形のセットを各ノズルのために選択する。この数は、恣意的であり、例えば、ある設計では、4つの波形を使用することができる一方で、別の設計では、4000個の波形を使用できることに留意されたい。これらの波形は、有利なことには、各ノズルに対する出力液滴体積の所望の変動を提供するように、例えば、略理想的な液滴体積(例えば、10.00pLの平均液滴体積)を生成する少なくとも1つの波形選択を各ノズルに行わせるように、および理想的な液滴径、放出速度、および飛行軌道を生成するために使用することができる各ノズルのための意図的な体積変動の範囲に適応するように、選択される。種々の実施形態では、16個の駆動波形の同一のセットが、ノズルの全てに使用されるが、描写された実施形態では、16個のおそらく一意の波形は、各ノズルについて別々に
事前に定義され、各波形は、それぞれの液滴体積(ならびに速度および軌道)特性を与える。
【0070】
印刷中に、各液滴の堆積を制御するために、次いで、事前定義された波形のうちの1つを選択するデータが、ノズル毎の基準で、各ノズルのそれぞれのレジスタ351、352、または353にプログラムされる。例えば、10.00pLの標的液滴体積を考慮すると、ノズルドライバ343は、レジスタ351へのデータの書き込みを通して、16個の異なる液滴体積のうちの1つに対応する、16個の波形のうちの1つを設定するように構成することができる。ノズル毎の(および波形毎の)液滴体積および関連分布がプロセッサ323によって登録され、メモリに記憶されると、各ノズルによって生成される体積は、液滴測定デバイス335によって測定されているであろう。プロセッサは、レジスタ351をプログラムすることによって、特定のノズルドライバ343に16個の波形のうちのプロセッサが選択した1つを出力させたいかどうかを定義することができる。加えて、プロセッサは、所与のスキャン線のためのノズルの発射へのノズルあたりの遅延またはオフセットを有するように(例えば、随意に、基板傾斜を補正するように、速度または軌道誤差を含む誤差を補正するように、および他の目的で)レジスタをプログラムすることができ、このオフセットは、各スキャンのためのプログラム可能な数のタイミングパルスによって特定のノズルの発射を遅延させる、カウンタによって達成される。実施例を提供するために、液滴測定の結果が、1つの特定のノズルの液滴が期待より低い速度を有する傾向があることを示す場合には、対応するノズル波形をより早くトリガする(例えば、圧電作動に使用されるアクティブ信号レベルの前の無駄時間を短縮することによって、時間的に前進させる)ことができ、逆に、液滴測定の結果が、1つの特定のノズルの液滴が比較的高い速度を有することを示す場合には、波形を後にトリガすることができる等である。他の実施例が明確に可能であり、例えば、いくつかの実施形態では、駆動強度(すなわち、所与のノズルの圧電アクチュエータを駆動するために使用される信号レベルおよび関連電圧)を増加させることによって、遅い液滴速度を妨げることができる。一実施形態では、全てのノズルに配信される同期信号は、同期化の目的で、定義された時間間隔(例えば、1マイクロ秒)で生じ、別の実施形態では、同期信号は、例えば、プリントヘッドと基板との間の1ミクロン毎の漸進的相対運動を発射するように、プリンタ運動および基板地形に対して調整される。高速クロック(φhs)が、例えば、100メガヘルツ、33メガヘルツ等で、同期信号より何千倍も速く作動させられ、一実施形態では、複数の異なるクロックまたは他のタイミング信号(例えば、ストロボ信号)を組み合わせて使用することができる。プロセッサはまた、随意に、印刷格子間隔(または同等にタイミング)を定義または調節する値もプログラムし、1つの実装では、印刷格子間隔は、利用可能なノズルの集合全体に共通し、ハーフトーン格子間隔に等しいが、これは各実装に当てはまる必要はない。例えば、場合によっては、基板傾斜または他の要因を補償するよう、各ノズルの液滴パターンのタイミング(例えば、位相)を調節する様式で、プリンタ格子を定義することができる。したがって、1つの随意的な実施形態では、(例えば、適正な印刷のために必要に応じて、回転させる、またはプリンタ命令を調節するソフトウェアを用いて)先験的に未知である基板地形に合致するようにハーフトーン格子を効果的に変換するために、ノズル発射パターンを変動させることができる。明確に、多くの設計代替案が可能である。描写された実施形態におけるプロセッサ323はまた、動作中に各ノズルのレジスタを動的に再プログラムすることもでき、すなわち、同期パルスは、そのレジスタの中で設定される任意のプログラムされた波形パルスを起動するトリガとして適用され、新しいデータが(例えば、液滴波形、ならびに潜在的に、液滴タイミング、軌道および/または体積を調節するように)次の同期パルスの前に描写された回路によって非同期的に受信される場合には、新しいデータが次の同期パルスとともに適用されるであろうことに留意されたい。プロセッサ323はまた、同期パルス生成(356)のためのパラメータを設定することに加えて、スキャン(355)の開始および速度を制御する。加えて、プロセッサは、上記で説明される種々の目的で、プリントヘッドの随意的な回転(357)を制御
する。このようにして、各ノズルは、任意の時間に(すなわち、任意の「次の」同期パルスとともに)各ノズルに対する16個の異なる波形のうちのいずれか1つを使用して、一斉に(または同時に)発射することができ、選択された発射波形を、1回のスキャン中に発射間で動的に、16個の異なる波形のうちのいずれか他のものと挟むことができる。
【0071】
図3Cは、各ノズルに対する出力ノズル駆動波形を生成するためにそのような実施形態で使用することができる、回路(361)の付加的な詳細を示し、出力波形は、
図3Cで「nzzl-drv.wvfm(ノズル駆動波形)」として表される。より具体的には、回路361は、同期信号、シリアルデータ(「データ」)を搬送するシングルエンドまたは差動線、専用書き込み許可信号(we)、および高速クロック(φ
hs)の入力を受信する。レジスタファイル363は、それぞれ、初期オフセット、格子定義値、および駆動波形IDを伝える、少なくとも3つのレジスタのデータを提供する。初期オフセットは、印刷格子の開始と整合するように各ノズルを調節する、プログラム可能な値である。例えば、複数のプリントヘッド、ノズルの複数の行、異なるプリントヘッド回転、ノズル発射速度およびパターン、ならびに他の要因等の実装変数を考慮すると、初期オフセットは、遅延、傾斜、および他の要因を考慮するように、各ノズルの液滴パターンを印刷格子の開始と整合させるために使用することができる。オフセットは、例えば、基板地形に対して格子またはハーフトーンパターンを回転させるように、もしくは基板の不整合を補正するように、複数のノズルにわたって異なる方法で適用することができる。有利には、これらの機能は、ソフトウェア、すなわち、非一過性の機械可読媒体上に記憶される命令によって、行うことができる。同様に、オフセットはまた、異常な速度または他の効果を補正するために使用することもできる。格子定義値は、(例えば、発射周波数を表す)プログラムされた波形がトリガされる前に「数えられる」同期パルスの数を表す数であり、フラットパネルディスプレイ(例えば、OLEDパネル)を印刷する実装の場合に、ハーフトーン格子発射点は、おそらく、規則的な(一定の間隔)または不規則的な(複数の間隔)格子に対応する、異なるプリントヘッドノズルに対して1つまたはそれを上回る規則的な間隔を有する。したがって、格子間隔値が2(例えば、2ミクロン毎)に設定された場合には、各ノズルをこの間隔で発射することができる。駆動波形IDは、各ノズルに対する事前に記憶された駆動波形のうちの1つの選択を表し、実施形態に応じて、多くの様式でプログラムして記憶することができる。一実施形態では、駆動波形IDは、4ビット選択値であり、各ノズルは、16×16×4Bエントリとして記憶される、最大16個の所定のノズル駆動波形を記憶するように、独自の専用1kバイトSRAMを有する。簡潔には、各波形に対する16個のエントリのそれぞれは、プログラム可能な信号レベルを表す4バイトを含有し、これらの4バイトは、高速クロックのパルスの数を数えるために使用される、2バイトの分解能電圧レベルおよび2バイトのプログラム可能な持続時間を表す。したがって、各プログラム可能な波形は、それぞれプログラム可能な電圧および持続時間の(例えば、33メガヘルツクロックの0~255個のパルスに等しい持続時間の)最大16個までの離散パルスから成ることができる。
【0072】
数字365、366、および367は、どのようにして所与のノズルに対して特定波形を生成することができるかを示す、回路の一実施形態を指定する。第1のカウンタ365は、新しい線スキャンの開始によってトリガされる、初期オフセットのカウントダウンを開始するように、同期パルスを受信する。第1のカウンタ365は、ミクロン増分でカウントダウンし、ゼロに達するとき、トリガ信号が第1のカウンタ365から第2のカウンタ366に出力される。このトリガ信号は、本質的に、各スキャン線に対する各ノズルの発射プロセスを開始する。次いで、第2のカウンタ366は、ミクロンの増分でプログラム可能な格子間隔を実装する。第1のカウンタ365が、新しいスキャン線と併せてリセットされる一方で、第2のカウンタ366は、その出力トリガに続いて、高速クロックの次のエッジを使用してリセットされる。第2のカウンタ366は、トリガされたとき、特定のノズルに対する選択された駆動波形形状を生成する、波形回路発生器367を起動す
る。発生器回路の下で見られる、鎖線のボックス368-370によって表されるように、この後者の回路は、高速クロック(φhs)に従って時期を決定される、高速デジタル・アナログ変換器368、カウンタ369、および高電圧増幅器370に基づく。第2のカウンタ366からのトリガが受信されると、波形発生器回路は、駆動波形ID値によって表される数のペア(信号レベルおよび持続時間)を取り出し、信号レベル値に従って所与のアナログ出力電圧を生成し、カウンタ369は、カウンタに従って持続時間のDAC出力を保持するために効果的である。次いで、関連出力電圧レベルが、高電圧増幅器370に適用され、ノズル・駆動波形として出力される。次いで、次の数のペアが、次の信号レベル値/持続時間等を定義するように、レジスタ363からラッチされる。
【0073】
描写された回路は、
図3Bからのプロセッサ323によって提供されるデータに従って、任意の所望の波形を定義する効果的な手段を提供する。ソフトウェアは、印刷命令を受信し、格子幾何学形状に準拠するか、または異常な速度もしくは飛行角度を伴うノズルを補正するように、必要に応じて、これらの命令を調節するか、それらと相互作用する。任意の特定の信号レベル(同期に対するオフセットを効果的に定義する、0ボルトの第1の「遅延」信号レベルを含む)と関連付けられる持続時間および/または電圧レベルを、この目的を達成するために調節することができる。記述されるように、一実施形態では、プロセッサは、事前に波形のセット(例えば、ノズルあたり16個の可能な波形)を決定し、次いで、これらの選択された波形のそれぞれの定義を、各ノズルのドライバ回路用のSRAMに書き込み、次いで、プログラム可能な波形の「発射時間」決定が、4ビット駆動波形IDを各ノズルレジスタに書き込むことによって達成される。
【0074】
個々の液滴(すなわち、ノズルあたりの液滴)を生成するための随意的な回路がこのようにして説明されており、ここで、本開示は、ハーフトーン生成技法および関連誤差補正技法についてさらに議論する。理解されるはずであるように、例えば、ノズルあたりの液滴平均体積(および予期される体積分布)の適格な理解、ならびに液滴飛行および軌道の類似理解とともに、ノズルあたりの波形、液滴タイミング、液滴体積、および他の詳細を変動させるための随意的な回路を用いた、ノズルあたりの液滴体積に対する精密制御は、上記で説明される技法を使用して、非常に正確なインク液滴の堆積を可能にする。
【0075】
図4Aは、ハーフトーニングを使用して層厚さを制御するための方法
図401を提供する。これらの技法は、随意に、上記で説明される波形調節技法および回路とともに使用することができる。より具体的には、数字403によって描写されるように、レイアウトデータ403が、最初に受信され、所望の格子を定義するために使用される(405)。本格子は、プリンタによって使用されるノズル間隔との関係を持ち(407)、したがって、ソフトウェアが、本関係を判定し、プリンタ制御命令を作成するように、スキャン経路等のハーフトーニングおよび印刷パラメータを計画するために本関係を使用する。ソフトウェアはまた、例えば、所望の層厚さを達成するために必要とされる単位面積あたりのインクの量を識別する、インク量データ(409)も受信する。一実施形態では、体積と厚さとの間の相関が、試験層形成後に(例えば、硬化または乾燥後に)測定されることに留意されたい。変形例では、相関は、1回またはそれを上回るプリントヘッド通過に続いて、湿潤インクの厚さに基づいて測定される。一実施形態では、次いで、ソフトウェアは、例えば、鎖線ボックス412内でも見られるような以下の式を使用して、液滴密度を格子ピッチにマップする(411)。
【数1】
インスキャンピッチは、プリントヘッドと基板との間の相対運動の第1の方向への落下機会の間の間隔を表し、クロススキャンピッチは、本第1の方向と略垂直な(または別様に独立した)方向への落下機会の間の間隔を表し、パラメータh(×100)は、百分率におけるグレースケール値である。一実施形態では、本関係は、経時的に変動することができ、したがって、プロセスまたは温度等の動的要因のため、特定の機械またはインク詳細のため、ノズル寿命のため、または他の要因のための経験的データ(413)を作成するために再測定することができる。
【0076】
所望の液滴密度が識別されると、次いで、ソフトウェアが、数字415によって表されるように、ハーフトーンパターン生成サブルーチン(または別個のソフトウェア計画プロセス)を起動する。一実施形態では、本計画を遠隔コンピュータによって行うことができる一方で、別の実施形態では、本プロセスは、プリンタと統合される。ハーフトーンパターン生成機能は、ハーフトーン格子上の点の選択に従って、各液滴が実質的に一様な体積を有する、液滴パターンを生成するよう、液滴堆積パターンを計画する。別の実施形態では、液滴変動は、必ずしも一様ではなく、むしろ、すなわち、液滴発射のための選択された格子点が、これらの点におけるノズル発射と関連付けられる特定の液滴体積(または軌道もしくは速度)を考慮し、ハーフトーニング生成がノズル間変動に適応する(かつそれを織り込む)ように、液滴測定がハーフトーンパターン生成に織り込まれる。理想的には、パターンは、インクの拡散が均質な厚さの材料の局所的連続層を生成するように定義される。(基板上に堆積させられる)層全体の面積を覆う単一のプロセスとして計画されると、目的とする堆積面積に及ぶ単一のハーフトーン格子に従って、インクは、理想的には、継ぎ目のない(416)様式で、すなわち、ムラを回避するように、堆積させられる。前述のように、一実施形態では、所望の層厚さは、各印刷セルに適用される厚さまたはグレースケール値を伴う異なる「印刷セル」に分配され、ハーフトーン生成ソフトウェアは、グレースケールイメージ(すなわち、グレースケール値のアレイ)を受信し、(例えば、個々の印刷セル値によって制御される局所インク体積変動を伴って、かつ所望の均質性を達成するように適宜依拠される誤差拡散を伴って)本グレースケールイメージに基づくハーフトーンパターンを作成する。記述されるように、別の実施形態では、ハーフトーンパターンを、隣接堆積面積の複数の「タイル」のそれぞれのために別々に(独立して)計画することができ(417)、各タイルのためのハーフトーン液滴パターンが計画されるが、再度、ムラを回避するために、液滴パターンが共通格子上で「ともにステッチされる」ように、ハーフトーニングが相補的に行われる(418)。これは、
図5Dに関連して以下で議論される。連続格子(420)の使用を通して、継ぎ目のないパターンインターフェース(例えば、「ステッチ」)を増進できることに留意されたい。そのような実施形態では、1つまたはそれを上回る印刷セル(例えば、「m」個の印刷セル)のグループは、プロセス419により、1つまたはそれを上回るタイル(例えば、「n」個のタイル)のグループと同等と見なし、各タイルのためのハーフトーンパターンを生成するために使用することができる。
【0077】
図4Bは、これらのプロセスと関連付けられる別のフロー
図421を提供する。以前の実施例と同様に、数字423により、所望の層のレイアウトを表すデータが最初に受信される。本データは、堆積させられる層の境界を特定し、層の全体を通した厚さを定義するために十分な情報を提供する。本データは、プロセス421が行われる同一の機械またはデバイス上で生成することができ、または異なる機械によって生成することができる。一実施形態では、受信したデータは、x-y座標系に従って定義され、提供された情報は、例えば、随意に、以前に紹介されたxミクロン×yミクロン×zミクロン実施例と一致する、層の全体を通して適用される単一の高さまたは厚さを特定する、任意の表されたx-y座標点における所望の層厚さを計算するために十分である。数字425により、本データは、層を受容するであろう堆積面積中の各印刷セルに対するグレースケール値に変換することができる。印刷セル面積が、レイアウトデータに合致するx-y座標系に本質的に
対応しない場合には、レイアウトデータは、各印刷セルに対するグレースケール値を得るように(例えば、複数の座標点の厚さデータを平均化すること、および/または補間を使用することによって)変換される。本変換は、例えば、上記で議論されるもの等の関係または方程式を使用して生成される、所定のマッピング情報に基づき得る。数字427により、均質な層を最終的に生成するために(または他の所望の効果のために)、随意に、補正をこの段階でグレースケール値に行うことができる。(以下でさらに議論されるであろう)一実施例を提供するために、所望の層の下に位置するであろう微小構造の様々な高さを補償することが所望される場合、随意的な技法が、堆積層の頂面を効果的に平坦化するように、特定の場所における目的とする層を「強化する」グレースケール値を選択するために、オフセットを追加する。例えば、所望の厚さ5.0ミクロンのカプセル化層が、堆積領域にわたって所望され、基礎的基板を定義する構造が、例えば、1ミクロンだけ厚さを変動させ、次いで、カプセル化層の最上面を生成しようとして、いくつかの面積中で厚さ6.0ミクロンのカプセル化を堆積させるように、グレースケール値を操作することができる。他の技法も可能である。一実施形態では、そのようなグレースケール値操作は、より多くのインク(例えば、特定のノズルまたはノズルのセットが不十分なインク体積を生成する場合)またはより少ないインク(例えば、特定のノズルまたはノズルのセットが過剰なインク体積を生成する場合)を堆積させるように、(例えば、インスキャン方向へ)ノズル発射異常を補正するために使用することもできる。そのような随意的なプロセスは、機能ブロック434により、較正プロセスおよび/または経験的に判定されたデータを前提とすることができる。次いで、グレースケール値は、数字429のように、局在的な層均質性を確保することに役立つように依拠される、ハーフトーン格子にわたる誤差拡散を伴って、ハーフトーンパターンに変換される。次いで、本ハーフトーニングプロセスに基づいて、数字430により、印刷イメージ(または他のプリンタ制御命令)が生成される。
【0078】
図4Bはまた、堆積層内の一様性を確保することに役立つように適用される、いくつかの随意的な誤差補正プロセス433の使用も示す。水/酸素障壁を生成するための十分なカプセル化の作成を確保するためであろうと、またはディスプレイパネルの高品質光生成もしくは光誘導要素を提供するためであろうと、または他の目的もしくは効果のためであろうと、そのような一様性は、デバイス品質にとって重要であり得る。上記のように、数字434のように、ノズル液滴変動または他の要因に起因するグレースケール値を補正するために、較正プロセスまたは経験的に判定された(推測された)データを使用することができる。代替として、数字435によって表されるように、誤差を補正するように、個々のノズル駆動波形を計画または調節することができる。さらに別の実施形態では、ノズルの正当性を立証するか、またはノズルを適格とすることができ(439)、各ノズルは、最小液滴生成閾値を満たすように判定されるか、または使用に不適格と見なされるかのいずれかである。特定のノズルが不適格と見なされる場合には、所望のハーフトーンパターンを生成するために、数字436により、そうでなければ不適格と見なされたノズルによって印刷されたであろう液滴を堆積させるために、異なるノズル(または容認可能なノズルの繰り返しの通過)を使用することができる。例えば、一実施形態では、1つのノズルが異常な場合、特定の格子点のために所望される液滴を堆積させるために、異なる冗長ノズルを使用することができるように、プリントヘッドは、行および列の両方に配列されたノズルを有する。随意に、また、そのような問題を考慮し、例えば、(これを可能にするようプリントヘッドが定位置に調節されている)異なるノズルを使用して、所望の液滴を堆積させることができるような様式でプリントヘッドをオフセットする、スキャン経路を調節するために使用することができる。これは、
図4Bの数字437によって表される。代替として、誤差を生成し(438)、(例えば、異なるノズルに依拠する)異なるハーフトーンパターンを選択するようにソフトウェアを促すために使用することができる。多くのそのような代替案が可能である。数字440および441によって表されるように、一実施形態では、各ノズルが、(ノズルあたりまたは駆動波形あたりの測定の分布を作
成するように)液滴パラメータを繰り返し測定する液滴測定デバイス(440)を使用して、事前に較正され、次いで、ソフトウェアが、体積、速度、および軌道のためのノズル液滴手段を理解し、かつこれらのパラメータのそれぞれに対する予期されるノズルあたりの分散を理解して、各ノズルのための統計的モデル(441)を構築する。本データは、記述されるように特定のノズル(および/または液滴)を適格とする/正当性を立証するために、もしくは各個別液滴を生成するために使用されるであろうノズルまたはノズル波形を選択するために使用することができる。それぞれのそのような測定/誤差補正プロセスは、すなわち、所望の層の性質を確保しながら印刷プロセスを最適化するよう、プリンタデータ(または印刷制御命令)が生成および/または更新されるように、スキャン経路計画を含む、印刷計画(431)に織り込むことができる。最終的に、数字445により、次いで、最終プリンタデータ(例えば、最終印刷イメージまたは他のプリンタ制御命令)が、加工時間にプリンタに送信するために生成される。
【0079】
記述されるように、誤差補正の必要性を査定するために、所望の材料の層を形成するために使用されるであろう、インク、機械、および、プロセスに特有の較正プロセスを行うことができる。したがって、一実施形態では、本明細書で紹介される技法は、液滴および/またはハーフトーンパラメータを試験するように、およびハーフトーンパターンまたは最終印刷イメージに最終的に影響を及ぼす入力を提供するように、適用することができる。例えば、そのような較正は、グレースケール値を計測するために(例えば、どのグレースケール値を特定の所望の厚さに適用するかを判定するために)、または生成されたハーフトーンパターンが割り当てられたグレースケール値を所望の厚さに確実にマップするように、ハーフトーン生成を較正するために、使用することができる。他の代替案も可能である。パターンに基づく例示的な技法が、概して、
図4Cの数字451によって指定される一方で、個別液滴測定およびノズル適格性に基づく例示的な技法は、
図4Dを参照して説明される。
【0080】
較正プロセスの一部として、層を表す印刷イメージ453を生成するように、ハーフトーンパターン(または関連ハーフトーニングパラメータ)を、厚さデータ(452)に割り当てることができる。層は、例えば、平坦な基板上の上に一様な層厚さを提供するように選択される、試験実行の一部であり得るが、代替として、予期される結果と事前に相関されるデータであり得る。一実施形態では、データは、「ライブ」印刷プロセスまたは生産実行で適用される規格を表すことができる。以前のように、印刷イメージは、複数の印刷セルのそれぞれに対する所望の層厚さを関連グレースケール値に変換することによって(すなわち、各印刷セルに対するグレースケール値を用いて)形成される。各印刷セルあたりのグレースケール値は、ハーフトーンパターンを選択するために使用される。本実施形態でも、ハーフトーンパターンは、随意に、(例えば、水または酸素による浸透に対して不浸透性であるか、または耐性を示す層を生成するよう)肉眼的連続フィルムを生成するように選択される。代替的なフロー経路455および457によって表されるように、ハーフトーン印刷イメージは、実際の堆積プロセスにおいてプリンタを制御するために使用することができるか、または任意の他の関連プロセスパラメータ(例えば、特定のインク調合のためのドットゲイン、測定された液滴体積等)を考慮して、仕上がった層の品質を模倣/推定する(すなわち、ソフトウェアプログラムによる)シミュレーションプロセスに適用することができるかのいずれかである。例えば、試験堆積では、スタイラス表面形状測定装置、光学干渉計、またはカメラを用いて、結果として生じたデバイスを測定することができ、結果が層品質を査定するために使用される。例えば、以下の
図7Aおよび7Dの議論を参照されたい。次いで、一様性、および欠陥、穴、または空隙の存在を査定するように、数字459により、任意の結果が分析される。より一般的には、結果は、偏差を判定するように、誤差プロセス(461)によって、予期される結果(462)と比較される。例えば、加工または模倣された層は、他の面積中よりいくつかの面積中で、より薄くあり得、これは、一様に平坦な層が予期された場合、ノズル発射パターンの不具合
を表し得る。誤差プロセス461は、そのような偏差を検出し、偏差を特定の種類の誤差と相関させる。いかなる偏差も検出されず、層が正確に正しい厚さを有する場合、本プロセスは、数字463および465により、選択されたグレースケール値を特定の厚さと暫定的に関連付け、適宜、記憶されたデータまたは他の設定を更新する。本関連は、構成方法451の別のループまたは通過を介して、必要に応じて後に調節/更新できることに留意されたい。次いで、方法451は、異なる選択可能なグレースケール値と所望の厚さとの間の包括的マッピングを完全に作成するために、他の所望の層厚さおよび/または勾配について繰り返すことができる(466)。数字467により、模倣または物理層と予期されるデータとの間の偏差が検出される場合、それに応答して、関連プロセスパラメータが調節される。数字468-472によって反映されるように、調節することができるパラメータの内のいくつかは、選択されたグレースケール値(例えば、試験層が厚すぎる、または薄すぎる場合、厚さに対するグレースケール値の関係が変更される)、ドットゲイン(例えば、インク粘度、表面張力、または他の要因)または液滴被覆(例えば、液滴形状、サイズ、ドライバ波形等)に影響を及ぼす要因、格子間隔またはマッピング、または任意の他の所望のパラメータを含む。本プロセスは、各設定を漸増的に調節(例えば、漸増または漸減)し、適宜、更新された調節データを記憶し(473)、随意に、新しい設定を試験するように方法451を繰り返すことができる。いったん任意の調節された設定が正しいと判定されると(すなわち、誤差プロセス461がいかなる誤差も検出しないとき)、参照数字465により、設定および任意の調節データが記憶される。(必ずしも全てではない)いくつかの用途では、少数(例えば、2)のみのデータ点を使用して、本較正プロセスを行うことができるように、所望の厚さまでのグレースケール値の拡大縮小が直線的であろうことに留意されたい。いったん本プロセスが完了すると、各許容グレースケール値を特定の層厚さに結び付ける、完全なマッピングが利用可能となるはずである。この時点で、本方法が終了する。例えば、複数の特定の機械またはプリントヘッドのそれぞれに適用されるハーフトーンパターンを得るように、複数の機械またはプリントヘッドにわたって全般的に使用するために、各異なる種類のインクまたは層材料のために、または堆積プロセスに影響を及ぼす任意の変数にプロセスをカスタマイズするように、方法451を複数回行うことができることに留意されたい。
【0081】
いくつかの用途では、電気的経路、トランジスタ、および他のデバイス等の基礎的構造にわたって材料の層を堆積させることが所望され得る。これは、所望の用途が、非限定的実施例として、ソーラパネルまたはOLED加工であり、材料層がこれらの構造を「覆う」ものである場合であり得る。例えば、上記で議論される技法は、例えば、交互の有機/無機障壁層ペアを含むカプセル化層スタックの一部として、1つまたはそれを上回る有機障壁またはカプセル化層を堆積させるように適用することができる。そのような場合において、基礎的構造によって作成される様々な地形にもかかわらず、そのようなカプセル化に比較的平坦な堆積後表面を生じさせることが所望され得る。この趣旨で、方法451はまた、随意に、プロセスブロック475によって表されるように、噴出されたインクを調節して基礎的構造の高さの変動に対処するように、印刷セル毎にカプセル化層の厚さを調節するために使用されるであろう、印刷セルレベル(例えば、グレースケール値)補正データを作成するように、所与の設計に行うこともできる。そのような補正データは、随意に、特定の設計のための所望の層厚さを調節するために使用することができる、補正イメージを作成するために、または代替として、堆積前にグレースケール値を修正することによって、もしくは第2の堆積を行うことによって、元の厚さデータを更新する/上書きするために、使用される。代替案として、多くの実施形態では、目的とする層を受容する前に基板を効果的に平らにするよう、従来の技法を使用したカプセル化に先立って、平滑化または障壁層も堆積させることができる。例えば、基板の頂面層を「埋め」て効果的に平らにするために、堆積プロセスを使用することができ、後に、本明細書で議論される印刷プロセスおよび関連データ変換を使用して、カプセル化を追加することができる。さらに別の変形例では、1つの誤差プロセスにおいて、あるノズルセットまたはグレースケール
値が標的外である体積を生成すると判定される場合、本誤差も補正するように、元のグレースケール値をグレースケール印刷イメージのレベルで調節することができる。別の実施形態では、補正をビットマップ(すなわち、印刷イメージ)レベルで適用することができる。これらのプロセスは、概して、例えば、堆積層の表面の任意の偏差を平らにするように、基板レベル「マップ」または補正値のセットの適用を介して、
図4Cで表される。動機が何であろうと、数字475は、層の均質性を得るようデータを調節するように(すなわち、正規化するように)、補正を、インクを堆積させるための命令に、または付加的な堆積後プロセスを介してのいずれかで、適用できることを表す。
【0082】
図4Dは、液滴測定およびノズル適格性に関するフロー
図481を提供する。一実施形態では、液滴測定が、各ノズルのため、および任意の所与のノズルに適用される各波形のため、液滴体積、速度、および軌道のそれぞれのための統計的モデル(例えば、分布および平均)を得るように、液滴測定デバイスを使用して、プリンタ内で行われる。つまり、前述のように、液滴体積および他の液滴パラメータは、ノズル間だけでなく、経時的にも変動し得、各液滴は統計的パラメータに従って変動する。したがって、液滴をモデル化し、統計的偏差に対処するために、繰り返しの測定が行われ、各ノズルに対するこれらのパラメータのそれぞれの平均(μ)および標準偏差(σ)の理解を深めるために使用される。例えば、較正動作(または保守動作)中に、所与のノズルからの液滴のいくつかの測定(例えば、6、12、18、または24回の測定)を行い、液滴の予期される体積、速度、および軌道の信頼できる指標を得るために使用することができる。そのような測定は、随意に、動的に、例えば、毎時間、毎日、または別の断続的もしくは周期的プロセスで行うことができる。上記で参照されるように、いくつかの実施形態は、各ノズルからわずかに異なるパラメータの液滴を生成する際に使用するための異なる波形を割り当てることができることに留意されたい(例えば、上記で議論される
図3A-3Cを参照)。したがって、例えば、12個のノズルのそれぞれのための波形の3つの選択がある場合、最大36個の波形・ノズルの組み合わせまたは対合、もしくはノズルの所与のセットから得ることができる、予期される液滴特性の36個の異なるセットがある。一実施形態では、各対合のためのロバストな統計的モデルを作成するために十分であり、かつ液滴値の高信頼の狭い分布を有するために十分である、各波形・ノズル対合に対する各パラメータについて、測定が行われる。計画にもかかわらず、所与のノズルまたはノズル・波形対合が、例外的に広い分布、または十分に異常であるため特別に扱われるべきである平均を生じ得ることが概念的に可能である。一実施形態で適用される、そのような処置が、
図4Dによって概念的に表される。
【0083】
より具体的には、参照数字481を使用して、一般的な方法が表される。液滴測定デバイス483によって記憶されたデータは、後に使用するためにメモリ484に記憶される。方法481の適用中に、このデータは、メモリから回収され、各ノズルまたはノズル・波形対合のデータは、抽出されて個別に処理されることができる(485)。一実施形態では、正規無作為分布が、平均、標準偏差、および測定される液滴の数(n)によって表されるように、または同等の尺度を使用して、各変数のために構築される。他の分布形式(例えば、スチューデントのT、ポアソン等)を使用できることに留意されたい。測定されたパラメータは、関連液滴を実践で使用することができるかどうかを判定するように、1つまたはそれを上回る範囲と比較される(487)。一実施形態では、使用から液滴を不適格と見なすように、少なくとも1つの範囲が適用される(例えば、液滴が所望の標的に対して十分に多いまたは少ない量を有する場合には、そのノズルまたはノズル・波形対合を短期間の使用から除外することができる)。実施例を提供するために、10.00pLの液滴が所望または予期される場合には、例えば、この標的から1.5%より多く離れた(例えば、<9.85pLまたは>10.15pL)液滴平均に結び付けられるノズルまたはノズル・波形を、使用から除外することができる。また、もしくは代わりに、範囲、標準偏差、分散、または別の拡散尺度を使用することができる。例えば、狭い分布(例
えば、3σ<平均の±0.5%)を伴う液滴の統計的モデルを有することが所望される場合には、この基準を満たさない測定値を伴う特定のノズルまたはノズル・波形対合からの液滴を除外することができる。また、複数の要因を考慮する、精巧/複雑な基準のセットを使用することも可能である。例えば、非常に狭い分布と組み合わせられた異常な平均が適切であり得、例えば、10.00pL±0.1pL以内の3σ量を伴う液滴を使用することが所望される場合には、±0.08pLの3σ値を伴う9.96pL平均を生成するノズル・波形対合が除外され得るが、±0.03pLの3σ値を伴う9.93pL平均を生成するノズル・波形対合は、容認可能であり得る。明確に、任意の所望の拒否/異常基準(489)に従って、多くの可能性が可能である。同一の種類の処理を、液滴あたりの飛行角度および速度に適用することができ、すなわち、ノズル・波形対合あたりの飛行角度および速度が、統計的分布を呈し、液滴測定デバイスから導出される測定および統計的モデルに応じて、いくつかの液滴を除外できることが期待されることに留意されたい。例えば、正規の5%外である平均速度または飛行軌道、もしくは特定の標的外の速度の分散を有する液滴を、仮定的に使用から除外することができる。異なる範囲および/または評価基準を、記憶装置484によって測定および提供される各液滴パラメータに適用することができる。
【0084】
拒否/異常基準489に応じて、液滴(およびノズル・波形の組み合わせ)を異なる様式で処理および/または処置できる。例えば、記述されるように、所望の規範を満たさない特定の液滴を拒否することができる(491)。代替として、特定のノズル・波形対合の次の測定反復のために付加的な測定(492)を選択的に行うことが可能であり、実施例として、統計的分布が測定誤差の関数として広すぎる場合、平均値の信頼を向上させるよう、特定のノズル・波形の付加的な測定を行うことが可能である(例えば、分散および標準偏差は、測定されたデータ点の数に依存する)。数字493により、例えば、より高いまたは低い電圧レベルを使用するために(例えば、より大きいまたは小さい速度、もしくはより一貫した飛行角度を提供するために)、または特定規範を満たす調節されたノズル・波形対合を生成するよう、波形を成形するために、ノズル駆動波形を調節することも可能である。数字494により、(例えば、特定のノズル・波形対合と関連付けられる異常な平均速度または液滴体積を補償するように)波形のタイミングも調節することができる。実施例として、前述のように、他のノズルに対して早い時間に、遅い液滴を発射することができ、より速い飛行時間を補償するように、速い液滴を後の時間に発射することができる。多くのそのような代替案が可能である。数字496により、印刷スキャン計画中に使用するために、任意の調節されたパラメータ(例えば、発射時間、波形電圧レベルまたは形状)を記憶することができる。随意に、所望であれば、1つまたはそれを上回る関連液滴を再測定する(例えば、正当性を立証する)ように、調節されたパラメータを適用することができる。(修正された、または別様な)各ノズル・波形対合が適格と見なされた(合格した、または拒否された)後に、次いで、本方法は、数字497により、次のノズル・波形対合に進む。
【0085】
図5Aは、ハーフトーンパターンおよび関連する仮説的格子の第1の実施例509を示す。
図5Aでは、格子は、(例えば、軸511によって表される)5つの垂直に分離された、または「y」座標と、(例えば、軸513によって表される)5つの水平に分離された、または「x」座標とを有することが分かる。典型的には、格子は、はるかに大きく、格子交差点の5×5アレイは、単純に例証目的で描写されていることに留意されたい。垂直軸と水平軸との間の各交差は、点515等の格子点を定義する。したがって、各点は、
図5Aでp(x,y,n)として表される、それと関連付けられる座標セットを有する。本実施例における値「n」は、プリントヘッドのn回目の通過を指し、すなわち、随意に、格子点を印刷プロセス中に繰り返すことができるか、または異なるプリントヘッドもしくはプリントヘッド通過に対して個別にすることができる。本座標系を考慮して、本実施例における格子の一番上の線の上で見られる点は、座標p(x,y,n)、p(x+1,
y,n)、p(x+2,y,n)、p(x+3,y,n)、およびp(x+4,y,n)を有し、したがって、本実施例における各描写された点は、単一のプリントヘッドの1回の通過と関連付けられる可能な液滴座標である。当然ながら、本座標系は、例示的にすぎず、任意の種類の座標系を使用することができる。
図5Aでは、(点515における等の)特定の格子点における黒いドットは、選択または計算されたハーフトーンパターンに従って、インクジェット液滴がその点で分注されるものであることを示す一方で、(点517における等の)格子点における白い丸は、いかなるインク液滴もその点で分注されないものであることを示す。
図5Aによって表されるハーフトーンパターンについて、例えば、インクは、点517ではなく、点515で分注されるであろう。記述されるように、一実施形態では、点515等の各格子点は、個別印刷セルに対応し、他の実施形態では、これが当てはまる必要はない。描写された格子座標および「ドット」システムは、基板の印刷可能表面上のインクからの面積被覆の最終的な範囲と混同されるべきではない。つまり、流体としてのインクが拡散し、
図5Aで見られるドット515および517によって表されるよりも広い表面積を覆い、その結果は、「ドットゲイン」と称される。ドットゲインが大きくなるほど、各インク液滴の拡散が大きくなる。
図5Aによって提示される実施例では、一貫した格子間隔を仮定すると、最小ドットゲインは、少なくとも、(例えば、インク粘度、製造業者の格子仕様、および他の詳細を考慮して)連続フィルムを生成する最小ハーフトーン液滴密度を可能にするために十分となるはずである。実践では、連続フィルムが所望される場合、ドットゲインは、典型的には、最も近い格子点の間の距離よりはるかに大きく、例えば、印刷セルの圧倒的多数において印刷されたインクがないことに対処するために十分となり、仕上がった層において均質性を提供するように依拠される(インク粘度を考慮した)誤差拡散を伴うであろう。例えば、全ての格子点がそれぞれの印刷セルに正確に対応する、仮説的な場合において、全ての印刷セルが同一のグレースケール値(例えば、「50%」)を割り当てられた場合には、均質な層厚さをもたらす誤差拡散(およびインク液滴拡散)を伴って、印刷セルの半分が印刷されたインクを受容し、半分が受容しないであろう。
【0086】
図5Aのハーフトーンパターン509を
図5Bで見られるハーフトーンパターン519と比較することによって、FMハーフトーニングの相対的効果を観察することができる。これらの図の場合において、放出された液滴が全て同一のサイズで描写されているため、より厚い層については、より高密度の液滴パターンが使用され(例えば、格子交差点におけるより多くの黒いドット)、より薄い層については、より低密度の液滴パターンが使用される(例えば、格子交差点におけるより少ない黒いドット)。
図5Aが、この効果を達成するであろう液滴の約50%密度を示す一方で、
図5Bは、(点515における等の)全ての格子座標が、特定の格子座標における液滴発射を示す、白い丸を有することを示す。したがって、
図5Aおよび5Bにおける描写は、(256個の可能な値を有するシステムにおいて)それぞれ、127および255というそれぞれのグレースケール値、または(百分率ベースのシステムにおいて)50%および100%に対応し得る。再度、他の番号付け方式も可能であり、層厚さと液滴密度との間の対応が、ドットゲインに依存し得る、および/または非直線的であり得ることを理解されたい。例えば、連続被覆を得るために必要とされる、描写された25個の格子点のための液滴の最小数が「5」である場合、
図5Aのハーフトーンパターンは、40%のグレースケール値に対応し得る((13-5)/20)。
【0087】
「格子」は、典型的には、インクジェットノズル群の全ての可能な発射位置を表し、ハーフトーン印刷イメージ内の各格子点は、液滴が放出されるものであるかどうかを示す、正確に1ビットを使用し、したがって、実施形態に応じた、異なる「x」分離が、異なるノズル発射時間および/または異なるプリントヘッドならびに/もしくは異なるプリントヘッド通過からの発射を表すであろうことに留意されたい。ノズル誤差(例えば、発射できないこと)は、規則的なパターンとして出現し、堆積層における誤差を通して検出する
ことができる。誤差補正に関係付けられる、以前の議論を振り返ると、特定のノズルが動作しないことが実践において判定される場合、描写された格子は、堆積層の厚さ変動として観察されるであろう誤差を伴って印刷され得る。本誤差を軽減するために、隣接格子位置のための放出されたインク体積を増加させるか、または別様に液滴形状、頻度、もしくは発射時間を変更するよう、ハーフトーンパターン(またはグレースケール値)を調節することができる。例えば、(隣接稼動ノズルからの)液滴535が、欠陥があるノズルによって印刷されたはずである欠落した液滴533に対処するように意図的により大きいことが留意される、
図5Eで、軽減が見られる。代替として、
図5Fにより、(例えば、
図5Aの実施例により)比較的まばらな液滴パターンが適用されるが、ノズルが不発であり、したがって、位置537において液滴を放出することができない場合、局所液滴密度を維持するように、稼働ノズルによって印刷される隣接線(539/541)の中へ液滴を移動させることができる。他の実施例も可能である。随意に、記述された技法のうちのいずれか、例えば、液滴径を増大または縮小させること、局所面積中の液滴を移動させること、ノズルのための電気発射パターンを調節すること、プリントヘッド通過を追加する、選択された液滴のサイズまたは形状を増大させること等を使用して、補正を適用することができる。
【0088】
図5Cは、第3の例示的ハーフトーンパターン実施例521を提供する。
図5Aで見られるパターン509と総合すると、
図5Cは、グレースケール値に応じて、液滴の可変濃度(またはクラスタ)を提供することによって、見掛けの液滴径が変動させられる、振幅変調(「AM」)ハーフトーニングの実施例を提供する。例えば、点525を中心とするドットの集中は、再度、個々の液滴が二分決定基準で発射されるが、液滴の相対濃度が局部的に変動させられている、
図5Aからのパターンと同一のインク体積を表す。したがって、AMハーフトーニングはまた、随意に、基板の面積にわたる層厚さを変動させるために使用することもできる。以前の実施例と同様に、所望の層の厚さデータをグレースケール値に変換することができ、次いで、グレースケール値をハーフトーンパターンにマップすることができ、AMハーフトーニングが使用される場合、より大きいグレースケール値は、より大きい見掛けの液滴を受容する、基板の略対応する面積をもたらす。
【0089】
図5Dは、ムラ効果を回避するように、基板の隣接タイルをともに「ステッチ」するハーフトーンパターンの随意的な変形例を図示するために使用される、格子の描写を提供する。そのような随意的な実施形態では、タイルを横断して継ぎ目のない液滴密度を提供するように隣接タイルのために選択されるパターンに依存して、複数の「タイル」のそれぞれのためのハーフトーンパターンを作製することができる。例えば、
図5Dは、第1の領域543が、
図5Aのパターン(約50%ハーフトーニング)に対応することが分かり、第2の領域545が、同様に50%密度を提供する類似ハーフトーンパターンを有する、仮説的液滴堆積パターン541を示す。一般的に言えば、本図は、基板の異なる領域が、独立して生成されたハーフトーンパターンを受容し、相補的である様式で、すなわち、ムラを回避するように、隣接パターンをともに「ステッチ」することが所望される、状況を表す。したがって、領域または「タイル」545について、ハーフトーンパターンは、タイル543および545の間の継ぎ目のない混合が起こるように、変動させられ(例えば、この場合は逆転させられ)、選択されることが分かる。実施例を提供するために、
図5Aからのパターンが両方の印刷領域またはタイル(すなわち、543および545)のために選択された場合には、液滴密度の局所増加に対応する、黒く塗りつぶされた丸を使用して、隣接格子座標ペアp(x+4,y,n)およびp(x+5,y,n)、p(x+4,y+3,n)およびp(x+5,y+3,n)、およびp(x+4,y+5,n)、p(x+5,y+5,n)のそれぞれが表されるであろう。タイル543のために選択されるパターンに依存する様式で、タイル545のためのハーフトーンパターンを選択することによって、タイルの間の液滴パターンの継ぎ目のない遷移を提供する、適切なパターンを選択することができる。また、(例えば、
図3A-Cに関連して上記で議論される技法
を使用した)ハーフトーンパターンの回転等の変動を達成するための他の技法もある。
図5Dで描写されるように、両方のタイルが、共通水平軸511によって表されるような共通格子を使用し、これは、タイルの間の欠陥の存在を回避するよう、継ぎ目のないステッチを促進することに留意されたい。タイル(すなわち、異なる隣接基板領域のための独立したハーフトーンパターン選択)は、一実施形態で使用することができるが、一般的に言えば、本明細書で説明される技法を実装するために必要とはされない。
【0090】
図5A-5Fについて上記で紹介される種々のハーフトーンパターンは、ハーフトーンパターン化の例証的実施例のみとして提供される。多くの付加的なパターンを、所与のグレースケール値(またはインク体積)のために構想することができる。誤差を補正し、加工された層において一様性を別様に助長するように、任意の特定のハーフトーンパターン(またはそれぞれのタイルのための複数のパターン)を調節することができる。
【0091】
図6Aは、印刷セル603等のいくつかの印刷セルを例示する表601を提供する。各セルが印刷セル603内で描写された値「203」等の「グレースケール」値を含有することに留意されたい。非ゼロ値を有する全ての印刷セルは、噴出される層材料を受容するものである堆積面積を表し、すなわち、各数値は、厚さがグレースケール値に変換されている、対応する印刷セルのx-y位置に対応する基板領域の層厚さを表す。本値は、所望の厚さに経験的に事前にマップする(仮説的実施例として1.0ミクロンの厚さを10%または「25.5」グレースケール値に)ことができ、そのようなマッピングは、おそらく、インク、プリンタ、温度、プロセス、および他のパラメータに依存して変動する。代替として、最終目標として、割り当てられたハーフトーンパターンが、所望の厚さに対応するであろうインク体積を提供するはずであるため、割り当てられたグレースケール値とハーフトーンパターン選択との間に可変マッピングを提供することができる。したがって、一実施形態では、種々の厚さに割り当てられたグレースケール値が固定される(例えば、このように提示されている仮説に従って、1ミクロンの厚さにつき最大値の10%)が、各グレースケール値とハーフトーンパターン選択との間に可変マッピングを伴う。他の変形例も可能である。
【0092】
以前に示唆したように、(すなわち、個々のノズル詳細の調節以外に)代替的な誤差補正技法が存在することに留意されたい。したがって、
図6Bは、
図6Aに類似するが、(すなわち、印刷セル603によって表される)最後の行が、すなわち、本仮説的実施では「5」だけ、そのグレースケール値を増加させている、グレースケールイメージ611を示す。
図6Bの配向に対する左から右のスキャン運動を仮定すると、本最後の行に対応するノズルが低体積液滴を生成する傾向があることが(例えば、経験的または自動的に)判定された場合、印刷されたときに層厚さの任意の異常が補正されるように、影響を受けた印刷セルについて、グレースケールデータを増加させることができる。逆に、印刷セルの特定の行が高い液滴体積を特色とした場合、結果として生じた層を平らにするよう、影響を受けた印刷セルに関するグレースケール値を人工的に減少させることが可能であろう。そのような技法は、印刷セルサイズがハーフトーン/印刷格子の各点に対応する場合に特に有用である。そのような調節は、行または列別に、またはスキャン経路別に行われる必要はなく、すなわち、印刷セルを選択するために割り当てられたグレースケール値を調節するように、印刷基板の全体または一部を表すマップに基づいて誤差調節を適用することが可能であることに留意されたい。以下および本明細書の他の場所で議論されるように、そのような技法はまた、縁蓄積を変動させるため、すなわち、堆積層の境界または縁に至るまで一様性を助長するために採用することもできる。
【0093】
図7Aは、
図4Cで見られる較正プロセスに関連して有用なスタイラス表面形状測定装置を用いて得られた加工フィルムの厚さプロファイルを示す、概して数字701によって指定されるグラフを提供する。材料の実際の試験層の生成、またはこれらの層のシミュレ
ーションに続いて、インク体積に対応するグレースケール値を層厚さの異なる段階と相関させることができる。例えば、厚さ1.0ミクロン層を表す第1の曲線703は、8%充填(または所与の通過または動作に対する最大印刷セルインク体積の8%)を表すグレースケール値と関連付けられる。フィルムが連続的である、すなわち、実質的に一様な厚さを有することが分かる、曲線703によって表される層の中心に間隙がないことに留意されたい。後続の加工プロセスについて、1.0ミクロンの層厚さが、堆積層の受信したレイアウトデータによって割り当てられた場合、この1.0ミクロンの量は、適宜、各印刷セルに対するグレースケール値に変換され、次いで、局所における印刷セルに対するグレースケール値は、(液滴拡散に続いて)一様な堆積層を達成するために、その局所と関係付けられる種々のハーフトーン格子点に液滴を分配するであろう、ハーフトーンパターンを選択するように適用されるであろう。同様に、第2の曲線705は、16%充填に対応する、一様な厚さ2.0ミクロンの層を表すことが分かる。特定のプロセスのそのような試験または較正データに基づいて、厚さ2.0ミクロンの層を生成するように、特定の基板領域のための16%インク体積に相関したハーフトーンパターンが生成されるであろう。本プロセスを使用して、層厚さの値および/またはグレースケール値および/またはハーフトーンパターン選択の間のマッピングも推定することができ、実施例として、レイアウトデータが厚さ1.5のミクロンのカプセル化層を要求した場合、これら2つの値のほぼ間の点に対応するように選択されるグレースケール値(12%)を適用することができる(例えば、8%と16%との中間)。それぞれ、厚さ3.0、4.0、5.0、および6.0ミクロンの層に対応する、他の図示された曲線707、709、711、および713は、それぞれ、24%、32%、40%、および50%のグレースケール値と関連付けられる。異なるグレースケール値をそれぞれの層厚さに特異的に合致させ、対応する量のインクを印刷セルに送達するために使用されるハーフトーンパターン化を関連付けることによって、設計者は、予測可能な結果につながるであろう様式でインク堆積を任意の所望の厚さにカスタマイズすることができ、これは、流体インクを介して堆積させられる材料の厚さに対する高い程度の制御を提供する。
【0094】
多くの用途では、境界領域において鮮明でまっすぐな縁を提供することも望ましい。例えば、低液滴密度を表すハーフトーンパターンが境界領域のために選択される場合には、インクおよび堆積性質を考慮して、堆積層が波形、先細、または断続縁を有するであろう可能性がある。本可能性を軽減するために、一実施形態では、ソフトウェアが、そのような縁を生成するであろう印刷セルを検出し、実際には堆積層を構成する鮮明でまっすぐな縁を提供するように(すなわち、グレースケール値勾配の関数として)ハーフトーニングを調節する。例えば、
図7Bは、格子点が示されていない、堆積層の角を表すボックス725を提供する。薄いフィルムを生成するために、ハーフトーンパターン化を領域727中で比較的まばらにすることができる。境界領域729、731、および733で使用された場合、本密度は、波形の縁を生成し得る。したがって、領域729、731、および733中の液滴の密度は、縁の直線性を向上させるように故意に増加させることができる。ボックス725が堆積層の中間の左縁に沿った印刷セルを表す場合、領域729中の密度を増加させることが十分であろう。
【0095】
境界領域に対するグレースケール値を調節することに加えて、そのような領域に適用されるハーフトーニングを調節することも可能であることに留意されたい。例えば、
図7Cは、(
図7Bのボックス733の場合のように)領域が堆積フィルムの角を表す、使用することができる例示的ハーフトーンパターン741を示す。
図7Cは、その格子および液滴放出点を表す黒く塗りつぶされた丸の使用が
図5A-5Fに類似することに留意されたい。
図7Cで表される特定のハーフトーンパターンは、
図5Aで見られるパターンと同一のインク体積を表す(すなわち、25個のうちの13個の可能な液滴が放出される)。しかしながら、
図7Cのパターンが、基板の上縁743およびフィルムの左縁745に沿った液滴の比較的高密度の使用を特色とする一方で、内部領域747は、すなわち、比較的
鮮明な左縁および上縁を生成するように、比較的まばらに残される。
【0096】
そのようなフレーミングまたは「フェンシング」技法の使用は、全ての実施形態に必要とされるわけではなく、特定の用途、インク、およびプロセス技術のための最良な方策を判定する当業者の能力内であることに留意されたい。
【0097】
図7Dは、層縁を成形するために、どのようにしてグレースケールイメージ調節を使用することができるかを図示する、グラフ751を表す。より具体的には、加工された6.0ミクロンのカプセル化層のスタイラス表面形状測定装置の測定を使用して得られた、3つの曲線753、755、および757が
図7Dで提示されている。これらの曲線の間の差異は、縁に隣接する印刷セルに適用されるグレースケール値を変動させることによって生成された。曲線753によって表される基線に対して、曲線755は、グレースケール値(および印刷セルのための関連インク体積)が、(例えば、カプセル化層周辺の前の)カプセル化層内の境界に接近すると減少させられる、プロセスを表す。対照的に、曲線757は、グレースケール値が同一の境界に隣接する印刷セルについて増加させられる、プロセスを表し、層厚さは、実際には、例えば、2000μおよび17000μのx位置において、境界の直前でわずかに増加することに留意されたい。境界領域に対するグレースケール値を調節することによって、設計者は、一様な層厚さまたは表面を提供する、または遷移を円滑化もしくは増進する目的を含む、所望の様式で、層境界における縁蓄積を調節することができる。層縁に隣接するインク蓄積の量は、大部分が表面張力(およびその温度への依存性)等のインク性質に依存するであろうことに留意されたい。例えば、いくつかのインクは、穴縁、またはいわゆる毛細管隆起(例えば、曲線757の点759で表されるような)を自然に形成し得る。そのような場合、本穴縁を除去するよう、例えば、恒久層の外形が曲線753により密接に合致するように、層縁に隣接する印刷セルに対するグレースケール値を減少させることによって、最終的な層の厚さを調整することに役立つように、このように説明されているグレースケール調節プロセスを適用することができる。
【0098】
縁強化の議論に簡潔に戻って(上記の
図7Cの議論を参照)、層の縁プロファイルを調整するために複数のプロセスを採用することも可能である。
図7Eは、一様な層厚さの中心領域763、(例えば、縁蓄積を回避するよう選択される)「調節された」液滴密度の境界領域765、および縁の一様性を提供するように選択されるフェンシングクラスタのセット767を有するものである基板761の一部分を示す。おそらく別様に記述すると、中心領域763は、実質的に一様なインク体積密度の領域を表し、境界領域765は、中心領域に対する調節されたインク密度(例えば、低減した密度)の領域を表し、フェンシングクラスタ767は、鮮明な明確に定義された層縁を提供するように選択される比較的高密度のインク密度を表す。提示された実施例では、ハーフトーニングは、(例えば、実施形態に応じて、おそらくノズル誤差補正または基礎的基板地形補正を受ける)中心領域中の一様なグレースケール値、および(例えば、
図7Aで見られる縁蓄積の「角状部分」715を回避するよう選択される)境界領域中の調節されたグレースケール値に基づいて行われ得る。ハーフトーニングは、収集全体、または例えば、中心および境界領域のみに基づき得る(すなわち、ハーフトーニングプロセスに続いて、かつハーフトーニングプロセスにかかわらず、フェンシングが実施される)。本実施例によって理解されるはずであるように、縁蓄積を調整する、および/または所望の縁特性を提供するために、グレースケールおよび/またはハーフトーン変形例に依拠する、多くの変形例が可能である。
【0099】
当然ながら、本実施例はカプセル化層に関して議論されているが、これらの同一の原理を任意の所望の層の形成に適用することができる。例えば、例証として、それぞれの印刷ウェルを用いて、または別のパターン化もしくは非パターン化基準で、例えば、OLEDデバイスのHIL、HTL、EML、ETL、または他の層のうちのいずれかを加工する
ために、説明された印刷原理を使用できることが明示的に考慮される。そのような実施例について以下でさらに議論する。
【0100】
図8A-8Eは、例示的な加工プロセスを叙述するために使用される。
図8Aによって示唆されるように、本叙述について、フラットパネルデバイスのアレイを加工することが所望されると仮定されたい。共通の基板が、数字801によって表され、ボックス803等の鎖線ボックスのセットは、各フラットパネルデバイスの幾何学形状を表す。好ましくは2次元特性を伴う基準が、基板上で形成され、種々の加工プロセスを位置付けて整合させるために使用される。これらのプロセスの最終的な完了に続いて、切断または類似プロセスを使用して、各パネル(803)が共通基板から分離されるであろう。パネルのアレイがそれぞれのOLEDディスプレイを表す場合、共通基板801は、典型的には、構造がガラスの上に堆積させられ、その後に1つまたはそれを上回るカプセル化層が続く、ガラスであろう。発光が、(設計に応じて)ガラスまたはカプセル化層を通して起こり得る。いくつかの用途については、他の基板材料、例えば、透明または不透明の可撓性材料を使用することができる。記述されるように、説明された技法に従って、多くの他の種類のデバイスを製造することができる。
【0101】
図8Bは、OLEDパネルの加工を図示することに役立つために使用される。具体的には、
図8Bは、構造が基板に追加された後の加工プロセスの後期における基板を示す。アセンブリは、概して、数字811によって表され、共通基板上のパネルのアレイを依然として特色とすることが分かる。1枚のパネルに特有の特徴は、それぞれの文字、例えば、第1のパネルには文字「A」、第2のパネルには「B」等が続く、数字を使用して指定されるであろう。各パネルは、例えば、基板のそれぞれの部分812A/812Bと、発光層を含有するアクティブ領域813A/813Bとを有する。一般的に言えば、それぞれのアクティブ領域は、ピクセレーション、ならびに制御および電力のため等の電気信号の関連ルーティングを提供するために必要な電極および発光層を含むであろう。本ルーティングは、端子ブロック817A/817Bと関連付けられるそれぞれの端子(例えば、815A/B、816A/B)とそれぞれのパネルのためのアクティブ領域との間で電力および制御情報を伝える。典型的には、カプセル化層は、端子ブロック817A/Bへの妨げられていない外部アクセスを可能にしながら、アクティブ領域のみを覆う(すなわち、電解発光材料を密閉するように)保護「ブランケット」を提供するはずである。したがって、印刷プロセスは、同時に端子ブロック817A/817Bを確実かつ一様に覆わずに、間隙、穴、または他の欠陥を伴わずにアクティブ領域(813A/813B)を確実かつ一様に覆う様式で、液体インクを堆積させるはずである。したがって、アクティブ領域は、所望の層を形成するように堆積インクを受容するであろう「標的領域」を形成すると言われる一方で、端子ブロックは、インクを受容しないであろう「露出領域」の一部を形成する。
図8Bでは、アレイのxおよびy次元で複製される任意の数のパネルの存在を示すためのxyz座標系を表す数字818の使用および楕円のそれぞれのセットを参照する数字819の使用に留意されたい。
【0102】
図8Cは、
図8Bからの線C-Cに沿って得られたアセンブリ811の断面図を示す。具体的には、本図は、パネルAの基板812A、パネルAのアクティブ領域813A、およびアクティブ領域への電子接続を達成するために使用されるパネルAの伝導性端子(815A)を示す。図の小さい楕円形領域821は、基板812Aの上方のアクティブ領域中の層を図示するように、図の右側で拡大されて見られる。これらの層は、それぞれ、アノード層829と、正孔注入層(「HIL」)831と、正孔輸送層(「HTL」)833と、放射または発光層(「EML」)835と、電子輸送層(「ETL」)837と、カソード層838とを含む。偏光板、障壁層、プライマー、および他の材料等の付加的な層を含むこともできる。描写されたスタックが、製造に続いて最終的に操作されるとき、電流がEMLから電子を除去し、発光を引き起こすように、カソードからこれらの電子を
再供給する。アノード層829は、典型的には、電子を引き付け、除去するように、いくつかの色成分および/またはピクセルに共通する1つまたはそれを上回る透明電極を備え、例えば、アノードは、インジウムスズ酸化物(ITO)から形成することができる。HIL831は、典型的には、意図しない漏出電流への障壁を形成するであろう、透明な高仕事関数材料である。HTL833は、EMLに電気「正孔」を残しながら、電子をEMLからアノードへ渡す別の透明な層である。OLEDによって生成される光は、電子およびEML材料835内の正孔の再結合から生じ、典型的には、EMLは、ディスプレイの各ピクセルのための3原色、すなわち、赤、緑、および青のそれぞれのための別々に制御されたアクティブ材料から成る。ひいては、ETL837は、カソード層から各アクティブ要素(例えば、各赤、緑、および青色成分)にEMLへの電子を供給する。最終的に、カソード層838は、典型的には、各ピクセルのための色成分に選択的制御を提供するように、パターン化電極から成る。ディスプレイの後部に位置すると、本層は、典型的には、透明ではなく、任意の好適な電極材料から作製することができる。
【0103】
記述されるように、アクティブ領域中の層は、酸素および/または湿気への暴露を通して劣化され得る。したがって、基板の反対側のこれらの層の面または側面(822)、ならびに数字823によって指定される外側縁上の両方で、これらの層をカプセル化することによって、OLEDの寿命を増進することが所望される。カプセル化の目的は、記述されるように、耐酸素および/または湿性障壁を提供することである。
【0104】
図8Dは、カプセル化840が基板に追加されている、凝集構造839を示す。ここで、カプセル化840は、基板812Aに対して面822および外側縁823を取り囲んでおり、カプセル化は、基礎的アクティブ層より広い堆積面積を占有するように横方向に延在し、本面積の終端において、カプセル化は、アクティブ領域813Aの外側縁を取り囲む/密閉することに役立つように勾配または境界領域を形成することに留意されたい。これは、拡大楕円形領域841内で
図8Dの左側において詳細に観察される。本拡大図で見られるように、カプセル化は、いくつかの薄い層、例えば、湿気および酸素に対する障壁を提供する、交互の有機および無機層を備える。有機カプセル化層は、有利なことには、上記で紹介される技法を使用して堆積させることができ、各個別層の厚さが、記述された技法を使用して調整される。特定の有機カプセル化層842に対して、第1の領域843は、記述された電極および上記で議論される他のOLED層等の基礎的構造の上を覆う。第2の領域845は、緩衝領域として、すなわち、第1の領域843とともに平面的である実質的に一様な表面846を維持するように動作する。随意に、堆積させられた厚さは、領域843および845の両方の中で同一であり得るが、これは全ての堆積プロセスに当てはまる必要はない。領域にかかわらず、層厚さを変換するためにハーフトーニングを使用する、インクジェット印刷プロセスは、厚さを制御し、特定のカプセル化層842の一様性を助長するために使用することができる。最終的に、第3の勾配または境界領域847は、(例えば、アクティブ領域のための電気端子を提供するように)基礎的基板の露出面積への遷移を表す。数字849は、露出基板へ遷移する際のカプセル化表面内の関連先細部を示す。
【0105】
図8Eは、OLEDパネルとの関連で層縁における材料厚さを調節する処理の使用を例証することに役立つために使用される。これらのプロセスは、概して、
図7B-7Eに関連して以前に紹介された。例えば、議論されるもの等のカプセル化プロセスでは、任意の基礎的感受性材料層の信頼できる縁密閉を提供するために、計画されたカプセル化周辺まで一貫した層厚さを確保することが望ましくあり得る。
図7Eで見られたような「フェンシング」の使用は、本図で別々に見られないが、同一のフェンシングプロセスをここで使用できることに留意されたい。
図8Eでは、基板は、平面図で、つまり、(電気端子の描写が省略されているが)
図8Aおよび8Bで見られるものと同一の視点から、再度観察される。有機カプセル化層が基礎的基板にわたって正しく印刷されるようにプロセスを整合
させるための基準851の使用に留意されたい。(カプセル化層が堆積させられるものである面積を表す)標的領域は、
図8Dからの領域843および845を備えることが分かる。堆積させられたインクの拡散、およびそのインクの表面エネルギー/張力の効果を考慮して、望ましくない縁効果を有するよりもむしろ、層の縁に沿った個々の印刷セルに対するグレースケール値を変更し、その際に、層周辺における縁プロファイルを変更するよう、(すなわち、印刷前に)グレースケールイメージを調節することができる。例えば、随意に、境界に接近する面積中のインク体積を増加させるよう、領域845内のグレースケール値を
図8Eで描写されるように増加させることができる。この点に関して、標的領域は、最初に、例えば、本実施例では仮説的グレースケール値「220」によって表される、特定の厚さと関連付けることができることに留意されたい。インク拡散により、(例えば、領域845および847の間の境界における)遷移が、不十分な被覆を提供することが経験的に判定される場合、例えば、層周辺を表す印刷セルの1つまたはそれを上回る行または列に対するグレースケール値を(例えば、
図8Eの「220」から「232」に)増加させることによって、軽減を提供するように、その面積中のグレースケール値を選択的に増加させることができる。以前に参照されたように、(例えば、補正が、用途に応じて、プロセス、温度、インク、および他の要因の関数として変動し得るため)補正を補正イメージとして記憶することができ、または随意に、レイアウトデータ、グレースケールイメージ、または他の記憶されたデータに組み込むことができる。複数の境界条件、例えば、2つの境界の交差が存在する場合、角の印刷セル863に対する「240」という描写されたグレースケール値等のさらなる調節を提供することが所望され得ることに留意されたい。明確に、多くの可能性が存在する。これらの境界領域中の液滴密度を調節することによって、上記で紹介される技法は、例えば、フラットパネルデバイスの縁密閉を促進するよう、問題になっている特定の堆積プロセスに好適な任意の様式で、層縁に対するカスタマイズされた制御を可能にする。また、ソフトウェアが層縁からの定義された距離内で印刷セルを検出するときはいつでも、選択された倍率に従って、ソフトウェアが調節された印刷セル充填を自動的に提供する(すなわち、グレースケール値を調節する)ことも可能であることに留意されたい。所望の実施形態または効果に応じて、グレースケールイメージがハーフトーン生成のために送信される前または後にフェンシングを追加することができる。
【0106】
図9は、概して数字901によって表される方法を提示する。本実施例では、フラットパネルディスプレイまたはソーラパネル等のデバイスのカプセル化プロセスの一部として層を堆積させることが所望されると仮定されたい。カプセル化は、湿気または酸素への暴露からデバイスの内部材料を保護し、したがって、デバイスの耐用年数を延長することに役立つために使用される。本用途は、開示される技法のための1つの用途にすぎず、材料の印刷層を受容するものである、ほぼあらゆる種類のデバイスのためのほぼあらゆる種類の層(有機または無機)が、本明細書の教示から利益を得ることができる。
【0107】
本議論について、層は、交互の有機および無機材料層の繰り返しスタックの一部として、基板を覆って堆積させられる有機材料となり、そのような層の多くのペアが構築されると、本スタックは、基板の特定の層に対して感受性材料をカプセル化するであろうことが仮定されるであろう。例えば、OLEDデバイスでは、電極、1つまたはそれを上回る放射層、第2の電極、および交互の有機/無機カプセル化層ペアを、ガラスの層を覆って堆積させることができ、(いったん完成すると)カプセル化は、ガラス層に対して放射層(放射層の外側縁を含む)を密閉する。典型的には、カプセル化が完了するまで、加工プロセス中の汚染物質へのアセンブリの暴露を最小限にすることが所望される。この趣旨で、以下で説明されるプロセスでは、種々の層が追加されている間に、基板は、カプセル化が完了するまで1つまたはそれを上回る制御された環境内で保たれる。カプセル化は、基板が有機および無機層ペアを形成するように交互堆積プロセスを受ける、多重チャンバプロセスを使用して形成することができる。本実施例では、上記で紹介される技法がカプセル
化スタック内で有機層を堆積させるように適用され、本層が、典型的には、液体形態で堆積させられ、次いで、次の(無機)層の追加に先立って、恒久層を形成するように硬質化または別様に硬化させられることが仮定される。有利なことには、上記で紹介される原理に従って本有機層を堆積させるために、インクジェット印刷プロセスを使用することができる。
【0108】
本明細書で使用されるような「制御された雰囲気」または「制御された環境」とは、周囲空気以外のものを指し、すなわち、堆積雰囲気の組成または圧力のうちの少なくとも1つが、汚染物質の導入を阻止するよう制御され、「制御されていない環境」は、不要な粒子状物質を除外する手段がない、通常の空気を意味することに留意されたい。
図9によって描写されるプロセスに関連して、不要な粒子状物質を含まず、特定圧力において、窒素ガス等の不活性物質の存在下で、堆積が起こるように、雰囲気および圧力の両方を制御することができる。一実施形態では、例えば、異なるプロセスを使用して、感受性材料のカプセル化の有機および無機層を交互に堆積させるために、マルチツール堆積機構を使用することができる。別の実施形態では、本明細書で紹介される原理を使用する印刷プロセスが異なるチャンバで適用されている間に、ある処理(例えば、アクティブ層または無機カプセル化層堆積)が1つのチャンバで起こるように、マルチチャンバ加工機構が使用され、以下で議論されるように、制御されていない環境に基板を暴露することなく、1つのチャンバから次のチャンバへの基板の輸送を自動化するために、機械的ハンドラを使用することができる。なおも別の実施形態では、制御された環境の連続性が中断され、すなわち、他の層が他の場所で加工され、基板が堆積チャンバの中へ装填され、制御された雰囲気が導入され、基板が清掃または浄化され、次いで、所望の層が追加される。他の代替案も可能である。これらの異なる実施形態は、
図9によって様々に表される。
図9は、(例えば、制御されていない雰囲気に暴露されていない)安全な環境内の有機カプセル化層の堆積との無機カプセル化層(および/またはアクティブ層等の1つまたはそれを上回る他の層)の加工の統合(903)、および/または有機カプセル化層を凝固させ、恒久構造として層を別様に仕上げるための後続の乾燥、硬化、または他のプロセスとの有機カプセル化層の堆積の統合(904)を含む、2つの随意的なプロセス統合を明示的に示す。各随意的統合プロセスについては、制御されていない環境(例えば、周囲空気)への暴露によって中断されていない1つまたはそれを上回る制御された環境内で、記述されたステップを行うことができる。例えば、記述されるように、堆積環境を制御するための手段を伴うマルチチャンバ加工デバイスを使用することができる。
【0109】
実施形態にかかわらず、基板は、適宜、パターン化および/または印刷のために位置付けられる。したがって、最初に、基板上の基準(または認識可能なパターン)を使用して、位置合わせが行われる(905)。典型的には、基準は、印刷されるものである各領域を識別する、1つまたはそれを上回る整合マークから成るであろう。実施例として、以前に紹介されたように(例えば、
図8Aからの要素805を参照)、いくつかのフラットパネルをともに加工し、1つの金型または共通基板から切断することができ、そのような場合、印刷機構および関連プロセスを各パネルのための任意の事前パターン化構造と正確に整合させることができるように位置付けられる、各パネルのための別個の基準があり得る。しかしながら、単一のパネルが加工されるものである場合でさえも、その基準を使用できることに留意されたい。以下でさらに議論されるように、堆積システムは、印刷機構に対して既知の位置関係を有する、撮像システムを含むことができ、基板のデジタル画像がプロセッサまたはCPUに供給され、基準を正確に識別するように画像分析ソフトウェアを使用して分析される。1つの随意的な変形例では、基板に追加された特別なマークがなく、すなわち、印刷システムは、単純に、任意の既存の構造(1つまたは複数の任意の以前に堆積させられた特定の電極等)を識別することによって、その標的を認識し、本パターンに整合する。また、有利なことには、各基準が、堆積に先立って位置および任意の基板傾斜の補正を可能にする、2次元パターンを表すことにも留意されたい。
【0110】
次いで、例えば、1つまたはそれを上回る放射層、電極層、電荷輸送層、無機カプセル化層、障壁層、および/または他の層もしくは材料から成る、1つまたはそれを上回る層が基板に追加される(906)。記述されるように、堆積は、一実施形態では、制御された環境(907)内で、随意に、窒素ガスまたは希ガス等の不活性雰囲気(909)中で行われる。本処理に続いて、有機カプセル化層が、数字911によって表されるように、液体インクとして堆積させられる。(例えば、マスク層を追加するために使用される)他の可能なプロセスと対比して、インクは、本実施形態では、硬化、硬質化等に続いて所望の層を形成するであろう材料を直接提供する。また、印刷プロセスはまた、有利なことには、不活性雰囲気中(909)等の制御された環境(907)内でも行われ、本プロセスは、接続矢印が双方向性であるという事実によって示されるように、繰り返して交互にすることができ、例えば、以前に紹介されたように、無機および有機カプセル化層ペアのスタックを構築できることにも留意されたい。
【0111】
図9はまた、プロセスボックス911の右側に種々のプロセスオプションも示す。これらのオプションは、
図7A-7Eに関連して上記で議論されるように、多重雰囲気プロセスの使用(913)、液体インクとしての有機カプセル化層の堆積(915)、非平面的基板の上の有機カプセル化層の堆積(917)、(カプセル化層を受容するであろう)基板の標的堆積領域および(カプセル化層によって取り囲まれないであろう)基板の露出領域の使用(919)、および(例えば、境界領域に特有のハーフトーニングまたは勾配フィルタリング921からの)任意の基礎的層の外側縁を密閉するであろう境界領域(または勾配領域)の生成を含む。
【0112】
上記で議論されるように、いったん各有機カプセル化層が堆積させられると、層は、層を恒久的にするように乾燥させられるか、または別様に硬化させられる(925)。一実施形態では、有機カプセル化層は、液体単量体またはポリマーとして堆積させられ、堆積に続いて、材料を硬化させ、それを硬質化して所望の厚さの層を形成するように、堆積されたインクに紫外線が印加される。別の可能なプロセスでは、基板は、懸濁材料のための任意の溶媒または担体を蒸発させるように加熱され、これが順に、所望の厚さを有する恒久層を形成する。他の仕上げプロセスも可能である。
【0113】
最終的に、いったん全てのカプセル化プロセス(所望の数の有機および無機層ペアを含む)が完了すると、数字927により、基板全体を制御された環境から除去することができる。
【0114】
説明されたプロセスは、上記で議論されるように、感受性材料のためのカプセル化を堆積させるために使用することができるが、無機層および非電子デバイスのための層を含む、多くの異なる他の種類の層も堆積させるために、同一のプロセスを使用することもできる。
【0115】
上記の説明によって示されるように、有利なことには、インク密度に対する印刷セル間および/またはノズル間制御を使用して、制御された厚さの層を加工するために、ハーフトーニングプロセスを使用することができる。より具体的には、説明された技法は、所望の厚さの層材料を堆積させるために液体インクが使用される場合に特に有用である。グレースケール値を選択し、(つまり、欠陥または穴を回避するために十分な密度の層を堆積させるように)完全な被覆を提供するハーフトーンパターンを生成することによって、例えば、液体堆積媒体および任意の後続の硬化プロセスにもかかわらず、厚さおよび一様性に対する局在的制御を用いて、安価で効率的に層を適用することができる。開示される技法は、ブランケットコーティング、カプセル化層、および任意の基礎的電子経路の幅および特徴定義と比較して、特徴サイズが比較的大きい(例えば、数十ミクロンまたはそれを
上回る)、他の層等の均質な層の堆積のために特に有用である。また、上記のように、開示される技法は、異なる形態で、例えば、ソフトウェア(非一過性の機械可読媒体上に記憶された命令)として、コンピュータ、プリンタ、または加工機構として、そのような層の加工を命令する際に有用な(非一過性の機械可読媒体上に記憶された)情報ファイルとして、または説明された技法の使用に依存して作製される製品(例えば、フラットパネル)で具現化することができる。随意に、また、個々のノズルからの液滴収差を補正するため、(例えば、隣接タイルのための)隣接ハーフトーンパターンを混合するため、堆積層を平らにするようにグレースケール値を補正するため、または他の効果のために、誤差補正技法を使用することができる。いくつかの実施形態は、層の均質性を確保し、隣接印刷セルに対するグレースケール値を平均化する様式で液滴パターンを分配するように、誤差拡散に依拠する。再度、多くの他の用途が当業者に想起されるであろう。
【0116】
前述の説明および添付の図面では、特定の用語および図面の記号が、開示された実施形態の徹底的な理解を提供するように記載されている。場合によっては、用語および記号は、これらの実施形態を実践するために必要とされない、具体的詳細を示唆し得る。「例示的な」および「実施形態」という用語は、選好または要件ではなく実施例を表すために使用される。上記で説明されるいくつかの要素は、特定の機能を果たす「ための手段」として説明できることに留意されたい。概して、そのような「手段」は、適用可能である場合、実行されたときに、少なくとも1つのプロセッサに特定の機能を果たさせるであろう様式で書かれる、非一過性の機械可読媒体上に記憶された命令(例えば、ソフトウェアまたは実行可能命令)を含む、上記で説明される構造を含む。限定ではないが、特定機能はまた、特殊用途アナログまたはデジタル機械等の専用機器によって果たすこともできる。
【0117】
示されるように、本開示のより広義の精神および範囲から逸脱することなく、本明細書で提示される実施形態に種々の修正および変更が行われ得る。例えば、実施形態のうちのいずれかの特徴または側面は、少なくとも実用的である場合、実施形態のうちのいずれか他方と組み合わせて、またはその対応特徴または側面の代わりに適用され得る。したがって、本明細書および図面は、制限的な意味よりもむしろ例証的な意味で見なされるものである。
【外国語明細書】