(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022091768
(43)【公開日】2022-06-21
(54)【発明の名称】非シアル化抗炎症ペプチド
(51)【国際特許分類】
C12N 15/13 20060101AFI20220614BHJP
C12N 15/63 20060101ALI20220614BHJP
C12N 1/15 20060101ALI20220614BHJP
C12N 1/19 20060101ALI20220614BHJP
C12N 1/21 20060101ALI20220614BHJP
C12N 5/10 20060101ALI20220614BHJP
C07K 16/00 20060101ALI20220614BHJP
C12P 21/08 20060101ALI20220614BHJP
A61K 39/395 20060101ALI20220614BHJP
A61P 29/00 20060101ALI20220614BHJP
A61K 48/00 20060101ALI20220614BHJP
【FI】
C12N15/13
C12N15/63 Z
C12N1/15
C12N1/19
C12N1/21
C12N5/10
C07K16/00
C12P21/08
A61K39/395 N
A61P29/00
A61K48/00
【審査請求】有
【請求項の数】19
【出願形態】OL
(21)【出願番号】P 2022033240
(22)【出願日】2022-03-04
(62)【分割の表示】P 2019211501の分割
【原出願日】2012-12-10
(31)【優先権主張番号】61/577,361
(32)【優先日】2011-12-19
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.TRITON
(71)【出願人】
【識別番号】592054292
【氏名又は名称】ザ ロックフェラー ユニバーシティー
(74)【代理人】
【識別番号】110000671
【氏名又は名称】八田国際特許業務法人
(72)【発明者】
【氏名】ラヴェッチ,ジェフリー,ヴイ.
(72)【発明者】
【氏名】ピンセティック,アンドリュー
(57)【要約】 (修正有)
【課題】シアル化されていない抗炎症ペプチドを提供する。
【解決手段】特定の配列番号からなる配列に対して少なくとも90%の同一性を有する改変配列を含むIgG Fc領域を有する、単離された抗体、またはその抗原結合部分であって、当該配列番号のF32(KabatシステムにおけるFc hIgG1のF241)に対応する位置で置換を有し、前記置換はAであり、前記抗体、またはその抗原結合部分は当該配列番号の配列を含む非シアル化親抗体のものよりも高い抗炎症活性を有する、単離された抗体、またはその抗原結合部分による。
【選択図】なし
【特許請求の範囲】
【請求項1】
配列番号:1に対して少なくとも90%の同一性を有する改変配列を含むIgG Fc領域を有する、単離された抗体、またはその抗原結合部分であって、配列番号1のF32(KabatシステムにおけるFc hIgG1のF241)に対応する位置で置換を有し、前記置換はAであり、前記抗体、またはその抗原結合部分は配列番号:1の配列を含む非シアル化親抗体のものよりも高い抗炎症活性を有する、単離された抗体、またはその抗原結合部分。
【請求項2】
前記改変配列はシアル化されていない、請求項1に記載の単離された抗体、またはその抗原結合部分。
【請求項3】
DC-SIGNに結合する能力を有する、請求項1または2に記載の単離された抗体、またはその抗原結合部分。
【請求項4】
hFcγRIIAまたはhFcγRIIBに結合する能力を有する、請求項1~3のいずれか1項に記載の単離された抗体、またはその抗原結合部分。
【請求項5】
2×10-5M以下のKD(すなわち、5.0×104M-1以上のKA)でhFcγRIIAまたはhFcγRIIBに結合する能力を有する、請求項1~4のいずれか1項に記載の単離された抗体、またはその抗原結合部分。
【請求項6】
前記改変配列が配列番号:2と少なくとも95%の同一性を有する、請求項1~5のいずれか1項に記載の単離された抗体、またはその抗原結合部分。
【請求項7】
前記改変配列が配列番号:2と少なくとも99%の同一性を有する、請求項6に記載の単離された抗体、またはその抗原結合部分。
【請求項8】
前記改変配列が配列番号:2を含む、請求項7に記載の単離された抗体、またはその抗原結合部分。
【請求項9】
前記改変配列が配列番号:2からなる、請求項8に記載の単離された抗体、またはその抗原結合部分。
【請求項10】
請求項1~9のいずれかに記載の前記抗体、またはその抗原結合部分をコードする配列を含む、単離された核酸。
【請求項11】
請求項10に記載の核酸を含む発現ベクター。
【請求項12】
請求項10に記載の核酸を含む宿主細胞。
【請求項13】
前記抗体、またはその抗原結合部分の発現を可能にする条件下で培地中で抗体、またはその抗原結合部分をコードする配列を含む核酸を含む宿主細胞を培養すること、および前記培養した細胞または前記細胞の前記培地から前記抗体、またはその抗原結合部分を精製することを含む、請求項1~9のいずれかに記載の抗体、またはその抗原結合部分を製造する方法。
【請求項14】
(i)請求項1~9のいずれかに記載の前記抗体、またはその抗原結合部分または請求項10に記載の核酸、ならびに(ii)薬学的に許容される担体、を含む医薬製剤。
【請求項15】
請求項1~9のいずれかに記載の抗体、またはその抗原結合部分または請求項10に記載の核酸の治療上の有効量を含む、炎症性疾患を治療する薬剤。
【請求項16】
炎症性疾患を治療するための医薬の製造における、請求項1~9のいずれかに記載の抗体、またはその抗原結合部分または請求項10に記載の核酸の使用。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2011年12月19日に出願された米国仮出願第61/577,361号の優先権を主張する。前記出願の内容はその全体が参照により本明細書に組み込まれる。
【0002】
政府の権利
本明細書に開示された発明は、少なくとも一部は、国立衛生研究所からの助成金番号NIH AI035875の下で政府の支援を受けて完成された。従って、米国政府は本発明において一定の権利を有する。
【0003】
発明の分野
本発明は、抗炎症剤、組成物、および炎症性疾患を治療するための方法に関する。
【背景技術】
【0004】
背景
自己免疫疾患を含む炎症性疾患は、白血球の異常な活性化およびその後の身体の患部への移動を伴う疾患である。これらの症状は、世界中の何百万人もの人々の生活に影響を与える広範囲の病気を包含する。様々な治療法が現在利用可能であるが、多くはかなりの副作用を持っているか、または全ての症状を緩和するほど十分に有効ではない。したがって、炎症性疾患を治療するための抗炎症剤に対する要求、およびそのような薬剤を同定し評価する方法に対する要求が存在する。
【0005】
免疫グロブリンG(IgG)は、そのFc断片によって媒介される相互作用を介して炎症促進および抗炎症活性(pro- and anti-inflammatory activities)の両方を媒介すると、長い期間認識されている。Fc-FcyR相互作用は免疫複合体および細胞毒性抗体の炎症促進性特性の原因であるが、静脈内ガンマグロブリン(IVIG)およびそのFc断片は抗炎症性であり、炎症性疾患を抑制するために広く使用される。IgGのグリコシル化がIgGの細胞毒性および炎症性能力の調節に重要であることが提案されている。例えば、IVIGの抗炎症活性は、Fc断片およびその結合グリカンの特性であり、端末α.2,6シアル酸結合を必要とし、免疫抑制のためには特定のポリペプチド骨格とグリカン構造とが複合的に要求されることを示している(アンソニーら,2008,Science 320:373-376、およびWO2007/117505)。
【0006】
しかしながら、IVIG中のIgGの小規模な集団のみが、α2,6シアル酸で終端したグリカン(sFc)および抗炎症活性を有する。その結果、様々な臨床状況において自己抗体によって引き起こされる炎症の抑制のためには、シアル化IgGを強化するために高用量(l~2g/kg)でIVIGを投与するか、そうでなかったらIgGのシアル化を高めなければならない(米国出願第20080206246、および20090004179、ならびにニマージャーン(Nimmerjahn)ら Annu Rev Immunol 26,513-533(2008))。
【0007】
本発明はシアル化されていない抗炎症ペプチドを同定することにより、上記の要求に取り組み、応える。
【発明の概要】
【0008】
概要
本発明は、炎症性疾患、例えば、自己免疫疾患を治療するためのポリペプチドおよび抗体のような薬剤、および方法に関する。
【0009】
従って、本発明の一態様は、IgG Fc領域と少なくとも75%(例えば、70%、80%、85%、90%、95%、99%、および100%を包括した、例えば、75%および100%間の任意の数字)相同な改変(modified)配列を含む単離されたポリペプチドを特徴とする。改変配列はシアル化されておらず、ポリペプチドは元(parent)ポリペプチドのものよりも高い抗炎症活性を有する。親ポリペプチドは、以下に示す配列番号:1の配列のようなIgG Fc領域を含み得る。いくつかの実施形態では、ポリペプチドは、DC-SIGNと結合する能力を有し、およびhFcγRIIAまたはRIIBに結合する能力を有する。一実施形態では、単離されたポリペプチドは、2×10-5M以下のKD(すなわち、5.0×104M-1以上のKA)でhFcγRIIAまたはRIIBに結合する能力を有する。好ましくは、改変配列は、FA241変異を有する。改変配列は、配列番号:2と少なくとも75%(例えば、70%、80%、85%、90%、95%、99%、および100%を包括した、例えば、75%および100%間の任意の数字)相同であり得る。いくつかの例において、改変配列は配列番号:2を含む、または本質的に配列番号:2からなる。
【0010】
別の態様において、本発明は、抗炎症活性を有するポリペプチドを作製する方法を提供する。この方法は、とりわけ、IgG Fc領域の配列を有する親ポリペプチド、または親ポリペプチドをコードする第1の核酸配列を提供する工程;および改変ポリペプチドを得るために、改変ポリペプチドがシアル化されておらず且つIgG Fc領域のシアル化形態の構造を模倣する(mimics)ように、親ポリペプチドを改変する工程を含む。改変する工程は、改変ポリペプチドをコードする第2の核酸を得るために、第1の核酸配列を改変することによって行われ得る。本発明はまた、直前に記載した方法により作製されたポリペプチドを提供する。
【0011】
第三の態様において、本発明は、上記ポリペプチドをコードする配列を含む、単離された核酸;当該核酸を含む発現ベクター;および当該核酸を含む宿主細胞を特徴とする。本発明はまた、ポリペプチドを製造する方法を特徴とする。当該方法は、核酸によってコードされるポリペプチドの発現を可能にする条件下で培地中で宿主細胞を培養すること、および培養した細胞または細胞の培地からポリペプチドを精製することを含む。
【0012】
第四の態様において、本発明は、(i)上記のポリペプチドまたは核酸、および(ii)薬学的に許容される担体、を含む医薬製剤を特徴とする。
【0013】
第五の態様において、本発明は、炎症性疾患を治療する方法を提供する。当該方法は、上記のポリペプチドまたはポリペプチドをコードする核酸の治療上の有効量を、それを必要とする被験体に投与することを含む。また、炎症性疾患を治療するための医薬の製造における、ポリペプチドまたは核酸の使用が提供される。本発明はまた、本明細書に実質的に示されおよび記載される、単離されたポリペプチド、核酸、発現ベクター、宿主細胞、組成物、または炎症性疾患を治療するための方法を特徴とする。
【0014】
本発明の一つ以上の実施形態の詳細は、以下の説明に記載されている。他の特徴、物(object)、および本発明の利点は、明細書および特許請求の範囲から明らかであろう。
【図面の簡単な説明】
【0015】
【
図1A】
図1a-cは、α2,6-結合シアル酸が、DC-SIGN結合活性を組換えヒトIgG1 Fcに与えたことを示す、図および写真である。
【
図1B】
図1a-cは、α2,6-結合シアル酸が、DC-SIGN結合活性を組換えヒトIgG1 Fcに与えたことを示す、図および写真である。
【
図1C】
図1a-cは、α2,6-結合シアル酸が、DC-SIGN結合活性を組換えヒトIgG1 Fcに与えたことを示す、図および写真である。
【
図2A1】
図2a-bは、Fc-グリカン相互作用を妨害することで、DC-SIGN結合活性を組換えヒトIgG1 Fcに与えたことを示す、図および写真である。
【
図2A2】
図2a-bは、Fc-グリカン相互作用を妨害することで、DC-SIGN結合活性を組換えヒトIgG1 Fcに与えたことを示す、図および写真である。
【
図2B】
図2a-bは、Fc-グリカン相互作用を妨害することで、DC-SIGN結合活性を組換えヒトIgG1 Fcに与えたことを示す、図および写真である。
【
図3】
図3は、hIgG1 FcでのFA241変異が、α2,6 sFcの抗炎症活性を再現することを示す、セットとしての図である。
【
図4】
図4a-dは、FA241抗炎症活性のための特徴的要件を示す図である。
【
図5A】
図5は、FA241変異がFcγ受容体結合を増加させたことを示す図のセットである。
【
図5B】
図5は、FA241変異がFcγ受容体結合を増加させたことを示す図のセットである。
【
図5C】
図5は、FA241変異がFcγ受容体結合を増加させたことを示す図のセットである。
【
図6】
図6a-bは、骨髄由来マクロファージにおけるFA241によるIL-33 mRNA誘導を示す写真である。
【発明を実施するための形態】
【0016】
詳細な説明
本発明は、少なくとも部分的には、非シアル化IgG Fc変異体(variants)が抗炎症活性を付与し、抗炎症性メディエーターとして2,6シアル化Fcの効果を模倣するという予想外の発見に基づく。
【0017】
IgGおよびFcシアル化
IgGは、主要な血清免疫グロブリンである。2つの同一の重鎖および2つの軽鎖からなる糖タンパク質であり、可変および定常ドメインで順番に構成される。IgGは、その2つの重鎖のそれぞれの上のCH2ドメイン内のAsn297において単一のN-結合グリカンを含む。共有結合した複合糖質は、N-アセチルグルコサミン(GlcNAc)およびマンノース(man)を含むコア、二分岐ペンタ-多糖で構成されている。フコース、分岐したGlcNAc、ガラクトース(gal)および可変的に見出される末端シアル酸(sa)部分の存在により、コア糖質構造のさらなる改変が血清抗体で観察される。40を超える異なる糖型が、このように、この単一のグリコシル化部位に共有結合されていることが検出されている(フジイら,J.Biol.Chem. 265,6009,1990)。IgGのグリコシル化は、2つの重鎖の開いたコンフォメーションを維持することによって、すべてのFcyRへの結合に必須であることが示されている。ジェフリーズ(Jefferis)とルンド(Lund),Immune.1 Lett. 82,57(2002)、 ソンダーマン(Sondermann)ら,J.Mol.Biol. 309,737(2001)。FcyR結合のためのこのIgGグリコシル化は、脱グリコシル化IgG抗体が、ADCC、食作用(phagocytosis)および炎症性メディエーターの放出などのインビボにおいて誘発される炎症反応を媒介することができないことについての主要因であると考えられている。ニマージャーン(Nimmerjahn)とラヴェッチ(Ravetch), Immunity 24,19(2006)。IgGの個々の糖型は炎症反応を調節することに寄与し得るというさらなる所見が、フコースを含むまたは欠くIgG抗体について報告された個々のFcyRに対する変化した親和性、および細胞毒性に対するそれらの結果的な影響によって、示唆されている。シールズ(Shields)ら,J.Biol.Chem. 277,26733(2002)、 ニマージャーン(Nimmerjahn)とラヴェッチ(Ravetch), Science 310,1510(2005)。自己免疫状態とIgG抗体の特定のグリコシル化パターンとの間の関連性が、IgG抗体の減少したガラクトシル化およびシアル化が報告されている関節リウマチおよびいくつかの自己免疫血管炎(vasculities)を有する患者において、観察されている。パレク(Parekh)ら,Nature 316,452(1985)、 ラーデマッヘル(Rademacher)ら,Proc.Natl.Acad.Sci.USA 91,6123(1994)、 マツモトら,128,621(2000)、 ホランド(Holland)ら,Biochim.Biophys.Acta,12月27日。IgG糖型の多様性はまた、加齢および免疫化の際に関連することが報告されているが、これらの変化のインビボでの重要性は究明されていない。シカタら,Glycoconj.J.15,683(1998)、 ラストラ(Lastra)ら,Autoimmunity 28,25(1998)。
【0018】
本明細書に開示されるように、特定の非シアル化IgG Fc変異体も、驚くべきことに抗炎症活性を与える。FA241変異体を含むこのような変異体は、シアル化Fcの構造的および生物学的特性を模倣することにより、シアル化を必要とせずに、抗炎症治療薬として開発され得る分子のより大きな属(genus)内の種(species)を表す。
【0019】
ポリペプチドおよび核酸
ポリペプチド
本明細書に開示されるように、本発明は、上記のAsn297でのα2,6結合を介してガラクトース部分に接続された末端シアル酸を有する多糖鎖を欠く、ヒトIgG Fcの変異体の配列を有する単離されたポリペプチドを提供する。このような非シアル化IgG Fc変異体は、天然に存在する抗体に由来するか、または細胞株において発現されてもよい。
【0020】
一実施形態において、Fc領域はhIgG1アミノ酸配列の1つ以上の置換を含む。これに限定されるものではないが、典型的なIgG1 Fc領域は以下のように提供される:
【0021】
【0022】
【0023】
【0024】
用語「ペプチド」、「ポリペプチド」および「タンパク質」は、本明細書においてはポリマー中のアミノ酸残基の配置(arrangement)を説明するために交換可能に使用される。ペプチド、ポリペプチド、またはタンパク質は、天然に存在する標準的な20個のアミノ酸に加えて、希少アミノ酸および合成アミノ酸類似体から構成され得る。それらは長さまたは翻訳後修飾(例えば、グリコシル化またはリン酸化)に関わらず、アミノ酸の任意の鎖であり得る。「本発明の」ペプチド、ポリペプチド、またはタンパク質は、DC-SIGN、FcγRIIAおよびFcγRIIBに結合する特定のドメインまたは部分を有する、組換え的にまたは合成的に産生された型(versions)を含む。この用語はまた、追加されたアミノ末端メチオニン(原核細胞における発現に有用)を有するポリペプチドを包含する。
【0025】
「単離された」ポリペプチドまたはタンパク質は、それが天然において結合されている他のタンパク質、脂質、および核酸から分離されているポリペプチドまたはタンパク質を指す。ポリペプチド/タンパク質は、精製された調製物の乾燥重量で少なくとも10%(すなわち、10%~100%の間の任意のパーセンテージ、例えば20%、30%、40%、50%、60%、70%、80%、85%、90%、95%、および99%)を構成することができる。純度は任意の適切な標準的方法により、例えば、カラムクロマトグラフィー、ポリアクリルアミドゲル電気泳動またはHPLC分析によって、測定され得る。本発明に記載の単離されたポリペプチド/タンパク質は、天然源から精製され、組換えDNA技術または化学的方法によって生産され得る。IgG Fcの機能的等価物は、IgG Fcポリペプチド誘導体を意味し、例えば、1つ以上の点変異、挿入、欠失(deletions)、切断(truncations)、融合タンパク質、またはそれらの組み合わせを有するタンパク質である。これは、IgG Fcの活性、すなわち、それぞれの受容体に結合しそれぞれの細胞応答を誘発する能力を、実質的に保持する。単離されたポリペプチドは、配列番号:2を含み得る。一般的に、機能的等価物は、配列番号:2と少なくとも75%(例えば、70%、80%、85%、90%、95%、および99%を包括した、例えば、75%および100%間の任意の数字)相同である。
【0026】
2つのアミノ酸配列のまたは2つの核酸の「相同性パーセント」は、カーリン(Karlin)およびアルトシュル(Altschul) Proc.Natl.Acad.Sci.USA 90:5873-77,1993において修正された、カーリン(Karlin)およびアルトシュル(Altschul) Proc.Natl.Acad.Sci.USA 87:2264-68,1990のアルゴリズムを用いて決定される。このようなアルゴリズムは、アルトシュル(Altschul)ら J.Mol.Biol. 215:403-10,1990のNBLASTおよびXBLASTプログラム(バージョン2.0)に組み込まれている。BLASTヌクレオチド検索は、本発明の核酸分子に相同なヌクレオチド配列を得るためには、NBLASTプログラム、スコア=100、ワード長-12によって行われ得る。BLASTタンパク質検索は、本発明のタンパク質分子に相同なアミノ酸配列を得るためには、XBLASTプログラム、スコア=50、ワード長=3によって行われ得る。2つの配列間にギャップが存在する場合は、アルトシュル(Altschul)ら, Nucleic Acids Res.25(17):3389-3402,1997に記載されるようにGapped BLASTが利用され得る。BLASTおよびGapped BLASTプログラムを利用する場合、それぞれのプログラム(例えば、XBLASTおよびNBLAST)の初期設定パラメーターが使用され得る。
【0027】
本明細書に記載のポリペプチドのアミノ酸組成は、それぞれの受容体に結合しそれぞれの細胞応答を誘発するポリペプチドの能力を破壊することなく、変化してもよい。例えば、1つ以上の保存的アミノ酸置換を含むことができる。「保存的アミノ酸置換」は、アミノ酸残基が類似の側鎖を有するアミノ酸残基で置換されたものである。類似の側鎖を有するアミノ酸残基のファミリーは、当技術分野において明らかにされている。これらのファミリーは、塩基性側鎖を有するアミノ酸(例えば、リジン、アルギニン、ヒスチジン)、酸性側鎖(例えば、アスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えば、グリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えば、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、ベータ-分岐側鎖(例えば、トレオニン、バリン、イソロイシン)および芳香族側鎖(例えば、チロシン、フェニルアラニン、トリプトファン、ヒスチジン)を含む。従って、例えば配列番号:2において予測される非必須アミノ酸残基は、好ましくは、同じ側鎖ファミリーからの別のアミノ酸残基で置換される。あるいは、変異は、飽和突然変異誘発などによって配列の全てまたは一部に沿ってランダムに導入されることができ、結果として生じる変異体は、実施例において後述するような活性を保持する変異体を同定するために、それぞれの受容体に結合しそれぞれの細胞応答を誘発する能力についてスクリーニングされることができる。
【0028】
本発明に記載されるようなポリペプチドは、組換えポリペプチドとして得られ得る。組換えポリペプチドを調製するため、それ(例えば、FA241、配列番号:2)をコードする核酸は、例えば、グルタチオン-S-トランスフェラーゼ(GST)、6×HisエピトープタグまたはM13遺伝子3タンパク質のような融合パートナーをコードする別の核酸に連結され得る。結果として得られる融合核酸は、当技術分野で公知の方法により単離され得る融合タンパク質を、適切な宿主細胞中で発現する。単離された融合タンパク質は、融合パートナーを除去し本発明の組換えポリペプチドを得るために、例えば酵素消化により、さらに処置され得る。
【0029】
核酸
本発明の別の態様は、上述のポリペプチドまたはタンパク質をコードする配列を含む単離された核酸を特徴とする。核酸は、DNA分子(例えば、cDNAまたはゲノムDNA)、RNA分子(例えば、mRNA)、またはDNAもしくはRNAの類似体(analog)を指す。DNAまたはRNA類似体は、ヌクレオチド類似体から合成され得る。核酸分子は一本鎖または二本鎖であり得るが、好ましくは二本鎖DNAである。「単離された核酸」は、天然に存在する核酸のいずれのものまたは天然に存在するゲノム核酸のいずれの断片とも相同ではない構造の、核酸を意味する。従って、この用語は、例えば、(a)DNAは、天然に存在するゲノムDNA分子の一部の配列を有するが、天然に存在する生物のゲノム中の分子のその部分に隣接する(flank)コード配列の両方によって、隣接されていない;(b)結果として得られる分子がいずれの天然に存在するベクターまたはゲノムDNAとも相同でないような方法で、ベクター中または原核生物もしくは真核生物のゲノムDNAに組み込まれた核酸;(c)cDNA、ゲノム断片、ポリメラーゼ連鎖反応(PCR)によって生成された断片または制限断片などの、分離された(separate)分子;および(d)ハイブリッド遺伝子、すなわち融合タンパク質をコードする遺伝子、の一部である組換えヌクレオチド配列である。上記の核酸は、本発明の融合タンパク質を発現するために使用され得る。この目的のためには、発現ベクターを作り出すため、適切な調節配列に作動的に核酸を連結することができる。
【0030】
ベクターは、それに連結された別の核酸を輸送できる核酸分子を指す。ベクターは、自己複製が可能であるか、または宿主DNAへ統合(integrate)できる。ベクターとしては、プラスミド、コスミド、またはウイルスベクターが挙げられる。ベクターは、宿主細胞において核酸の発現に適した形態で核酸を含む。好ましくは、ベクターは、発現されるべき核酸配列に作動的に連結された、1以上の調節配列を含む。
【0031】
「調節配列」は、プロモーター、エンハンサー、および他の発現調節因子(例えば、ポリアデニル化シグナル)を含む。調節配列は、ヌクレオチド配列の恒常的発現を導くもの、ならびに組織特異的調節および/または誘導性配列を含むものである。発現ベクターの設計は、形質転換される宿主細胞の選択、所望のタンパク質またはRNAの発現レベルなどのような因子に依存し得る。発現ベクターは、本発明のポリペプチドを産生する宿主細胞に導入され得る。プロモーターは、DNAに結合してRNA合成を開始するようにRNAポリメラーゼを導くDNA配列として定義される。強力なプロモーターは、mRNAを高頻度で開始させるものである。
【0032】
上記の任意のポリヌクレオチド、または同じ意図の目的のために当業者に利用可能な生物学的に等価なポリヌクレオチドは、適切な発現ベクターに挿入され、この受容体を発現する「組換えDNA分子」を形成するように他のDNA分子と連結されてもよい。これらのベクターは、DNAまたはRNAから構成されてもよく;ほとんどのクローニング目的のDNAベクターは好ましい。典型的なベクターは、プラスミド、改変ウイルス、バクテリオファージおよびコスミド、酵母人工染色体、ならびにエピソーム性のまたは統合DNAの他の形態を含む。これは、特定使用のための適切なベクターを決定するための、当業者にとっての知識の範囲内である。
【0033】
様々な哺乳類発現ベクターが、哺乳類細胞中で上記のIgG Fcを発現するために使用されてもよい。上述したように、発現ベクターは、適切な宿主中において、クローニングされたDNAの転写およびそれらのmRNAの翻訳に必要なDNA配列であり得る。そのようなベクターは、細菌、藍藻類、植物細胞、昆虫細胞および動物細胞のような様々な宿主において真核生物DNAを発現するために使用され得る。特別に設計されたベクターは、細菌-酵母または細菌-動物細胞のような宿主間のDNAの往復を可能にする。適切に構築された発現ベクターは:宿主細胞中での自己複製のための複製起点、選択マーカー、有用な制限酵素部位の限られた数、高コピー数の能力、および活性プロモーターを含むはずである。発現ベクターは、特に限定されないが、クローニングベクター、改変クローニングベクター、特別に設計されたプラスミドまたはウイルスを含んでも良い。好適であり得る市販の哺乳類発現ベクターは、限定されないが、pcDNA3.neo(インビトロジェン社)、pcDNA3.1(インビトロジェン)、pCI-neo(プロメガ)、pLITMUS28、pLITMUS29、pLITMUS38およびpLITMUS39(ニューイングランドバイオラボ)、pcDNAI、pcDNAIamp(インビトロジェン)、pcDNA3(インビトロジェン)、pMC1neo(ストラタジーン)、pXT1(ストラタジーン)、pSG5(ストラタジーン)、EBO-pSV2-neo(ATCC 37593) pBPV-1(8-2)(ATCC 37110)、pdBPV-MMTneo(342-12)(ATCC 37224)、pRSVgpt(ATCC 37199)、pRSVneo(ATCC 37198)、pSV2-dhfr(ATCC 37146)、pUCTag(ATCC 37460)、ならびにIZD35(ATCC 37565)が挙げられる。
【0034】
上記の核酸を含有する宿主細胞もまた、本発明の範囲内である。例としては、E.coli細胞、昆虫細胞(例えば、バキュロウイルス発現ベクターを用いる)、酵母細胞、または哺乳類細胞が挙げられる。例えば、ゲッデル(Goeddel),(1990)Gene Expression Technology: Methods in Enzymology 185, アカデミック・プレス,サンディエゴ,カリフォルニア州を参照。本発明のポリペプチドを製造するため、本発明の核酸によってコードされるポリペプチドの発現を可能にする条件下で培地中で宿主細胞を培養し、培養した細胞または細胞の培地からポリペプチドを精製することができる。あるいは、本発明の核酸は、例えば、T7プロモーター調節配列およびT7ポリメラーゼを用いて、インビトロで転写および翻訳され得る。
【0035】
天然に存在するIgG Fc、遺伝子操作されたIgG Fc、および化学的に合成されたIgG Fcは全て、本明細書に開示された発明を実施するために使用され得る。組換えDNA技術によって得られたIgG Fcは、[FA241]配列番号:2)と同じアミノ酸配列またはその機能的等価物を有していてもよい。用語「IgG Fc」はまた、化学的に改変された型を含む。化学的に改変されたIgG Fcの例としては、コンフォメーション変化を受けたIgG Fc、糖鎖の付加または欠失、およびポリエチレングリコールなどの化合物が結合されているIgG Fcが挙げられる。
【0036】
このようにして作られたポリペプチド/タンパク質の有効性を、以下に説明するように、トランスジェニックマウスなどの動物モデルを用いて、検証することができる。インビボでのIL-33好塩基球の発現やエフェクターマクロファージ上のFcγRIIB受容体の発現における任意の統計的に有意な増加は、ポリペプチド/タンパク質が後述する疾患を治療するための候補であることを示す。一実施形態では、上述のアッセイは、DC-SIGNタンパク質またはDC-SIGN(+)細胞への結合の測定に基づいてもよい。本技術は、DC-SIGNまたはDC-SIGN(+)細胞への化合物の能力、および例えばIL-33などのDC-SINGパスウェイによって調節される遺伝子の発現における関連した変化を測定することに適した、当業者が利用可能な様々な技術に富んでいる。当業者は、過度の実験なしにこれらの様々な研究ツールを組み合わせ、適合させることができるであろう。精製され、標準的方法または下記実施例に記載のアッセイおよび方法に従って試験された後、非シアル化IgG Fc変異体は、炎症性疾患を治療するための医薬組成物に含有させられることもできる。
【0037】
本明細書で使用される「抗体」は、最も広い意味で用いられ、具体的には、モノクローナル抗体(全長モノクローナル抗体を含む)、ポリクローナル抗体、多重特異性抗体(例えば、二重特異性抗体)および抗体断片を、それらが所望の生物学的活性を示す限り含む。
【0038】
本明細書で使用される「抗体断片」は、インタクトな抗体の一部を含んでもよく、一般的には、インタクトな抗体の抗原結合もしくは可変領域またはFcR結合能力を保持する抗体のFc領域を含む。抗体断片の例としては、線状抗体;一本鎖抗体分子;および抗体断片から形成される多重特異性抗体が挙げられる。抗体断片は、好ましくは、少なくともヒンジの部分、および任意にIgG重鎖のCH1領域を保有する。より好ましくは、抗体断片は、IgG重鎖の定常領域全体を保有し、およびIgG軽鎖を含む。
【0039】
本明細書で使用される用語「Fc断片」または「Fc領域」は、免疫グロブリン重鎖のC末端領域を定義するために使用される。「Fc領域」は、天然配列Fc領域または変異型Fc領域であってもよい。免疫グロブリン重鎖のFc領域の境界は変化してもよいが、ヒトIgG重鎖Fc領域は、通常は、Cys226位のアミノ酸残基から、またはPro230から、そのカルボキシル末端に伸長すると定義される。
【0040】
「天然配列Fc領域」は、自然界に見出されるFc領域のアミノ酸配列と相同なアミノ酸配列を含む。当業者によって理解されるように、「変異型Fc領域」は、少なくとも1つの「アミノ酸改変」によって天然配列Fc領域のものとは異なるアミノ酸配列を含む。好ましくは、変異型Fc領域は、天然配列Fc領域または親ポリペプチドのFc領域と比較して少なくとも1つのアミノ酸置換、例えば約1個~約10個のアミノ酸置換、好ましくは天然配列Fc領域または親ポリペプチドのFc領域において約1個~約5個のアミノ酸置換を有する。本明細書における変異型Fc領域は、好ましくは、天然配列Fc領域および/または親ポリペプチドのFc領域と少なくとも約75または80%の相同性を有し、より好ましくはそれらと少なくとも約90%の相同性を有し、より好ましくはそれらと少なくとも約95%の相同性を有し、さらにより好ましくはそれらと少なくとも約99%の相同性を有する。
【0041】
用語「Fc受容体」または「FcR」は、抗体のFc領域に対して結合する受容体を記述するために使用される。本発明の一実施形態では、FcRは天然配列ヒトFcRである。別の実施形態において、ヒトFcRを含むFcRは、IgG抗体に結合し(ガンマ受容体)、FcγRI、FcγRII、およびFcγRIIIサブクラスを含み、これらの受容体の対立遺伝子変異体および選択的スプライシング型を含む。FcγRII受容体は、その細胞質ドメインが主に異なる類似のアミノ酸配列を有するFcγRIIA(「活性化(activating)受容体」)およびFcγRIIB(「抑制性(inhibiting)受容体」)を含む。活性化受容体FcγRIIAは、その細胞質ドメインに免疫受容体チロシンベース活性化モチーフ(ITAM)を含む。抑制性受容体FcγRIIBは、その細胞質ドメインに免疫受容体チロシンベース抑制性モチーフ(ITIM)を含む。(ダロン(Daron),Annu Rev Immunol,15,203-234(1997)の総論を参照;FcRは、ラヴェッチ(Ravetch)とキネット(Kinet),Annu Rev Immunol,9,457-92(1991);カペル(Capel)ら,Immunomethods,4,25-34(1994)、およびデハース(de Haas)ら,J Lab Clin Med,126,330-41(1995)、ニマージャーン(Nimmerjahn)とラヴェッチ(Ravetch)2006,Ravetch Fc Receptors in Fundemental Immunology,ウィリアムポール編集第5版、にまとめられており、これら各々は参照により本明細書に組み込まれる)。
【0042】
用語「天然(native)」または「親(parent)」は、Fcアミノ酸配列を含む非改変ポリペプチドを指す。親ポリペプチドは、天然配列Fc領域または既存のアミノ酸配列改変(例えば、付加、欠失および/または置換のような)がされたFc領域を含んでもよい。
【0043】
組成物
適切な担体および非シアル化IgG Fc変異体のような上記の薬剤の1つ以上を含有する組成物は、本発明の範囲内である。組成物は、薬学的に許容される担体を含有する医薬組成物、または化粧品として許容される担体を含有する化粧品組成物であり得る。
【0044】
用語「医薬組成物」は、活性薬剤と不活性または活性な担体との組み合わせを指し、組成物をインビボまたはエキソビボでの診断または治療用途に特に適したものにする。「薬学的に許容される担体」は、被験体へまたは被験体上へ投与された後、望ましくない生理学的効果を生じさせない。医薬組成物中の担体は、活性成分と適合性であり、それを安定化することが可能であり得るという意味においても「許容され」なければならない。1つ以上の可溶化剤が、活性化合物のデリバリーのための薬学的担体として利用され得る。薬学的に許容される担体の例としては、剤形として使用可能な組成物を得るための、生体適合性のビヒクル、アジュバント、添加剤、および希釈剤が挙げられるが、これらに限定されない。他の担体の例としては、コロイド状酸化ケイ素、ステアリン酸マグネシウム、セルロース、およびラウリル硫酸ナトリウムが挙げられる。
【0045】
上記の組成物は、上述の形態のいずれかにおいても、炎症により特徴付けられる疾患を治療するために使用され得る。有効量は、治療される被験体に治療効果を与えるのに必要とされる活性化合物/薬剤の量を指す。当業者によって認識されるように、有効用量は、治療される疾患の種類、投与の経路、賦形剤の使用、および他の治療処置との併用の可能性に依存して、異なるであろう。
【0046】
本発明の医薬組成物は、非経口、経口、経鼻、経直腸、局所または口腔で投与され得る。本明細書で使用する用語「非経口」は、皮下、皮内、静脈内、筋肉内、関節内、動脈内、滑液嚢内、胸骨内、髄腔内、病巣内または頭蓋内注射、ならびに任意の適切な注入技術を指す。
【0047】
無菌の注射可能な組成物は、非毒性の非経口的に許容される希釈剤または溶媒中の溶液または懸濁液であり得る。このような溶液としては、これらに限定されないが、1,3-ブタンジオール、マンニトール、水、リンガー溶液、および等張性塩化ナトリウム溶液が挙げられる。さらに、固定油は、溶媒または懸濁媒体として従来用いられている(例えば、合成モノ-またはジ-グリセリド)。脂肪酸、これらに限定されないが、オレイン酸およびそのグリセリド誘導体などは、これらに限定されないが、オリーブ油もしくはヒマシ油のような天然の薬学的に許容される油、それらのポリオキシエチル化型として、注射剤の調製に有用である。これらの油溶液または懸濁液はまた、長鎖アルコール希釈剤、もしくは、限定されないがカルボキシメチルセルロースのような分散剤、または類似の分散薬剤を含み得る。これらに限定されないが、TWEENSもしくはSPANSのようなその他の一般的に使用される界面活性剤、または薬学的に許容される固体、液体もしくは他の剤形の製造に一般的に使用される他の同様の乳化剤もしくはバイオアベイラビリティ増強剤もまた、製剤化の目的のために使用され得る。
【0048】
経口投与のための組成物は、カプセル、錠剤、乳化物および水性懸濁液、分散液ならびに溶液を含む任意の経口的に許容される剤形であり得る。錠剤の場合、通常使用される担体としては、ラクトースおよびコーンスターチが挙げられるが、これらに限定されない。限定されないが、ステアリン酸マグネシウムのような潤滑剤もまた典型的に添加される。カプセル形態での経口投与の場合、有用な希釈剤としては、ラクトースおよび乾燥コーンスターチが挙げられるが、これらに限定されない。水性懸濁液または乳化物が経口投与される場合、活性成分は、乳化剤または懸濁化剤と組み合わされて、油相に懸濁されるかまたは溶解され得る。所望であれば、ある種の甘味料、香味料、または着色剤が添加され得る。
【0049】
記載された発明に係る局所投与のための医薬組成物は、溶液、軟膏、クリーム、懸濁液、ローション、粉末、ペースト、ゲル、スプレー、エアロゾルまたは油として製剤化され得る。代替的には、局所製剤は、活性成分(複数可)を含浸させたパッチまたは包帯の形態であり得、1つ以上の賦形剤または希釈剤を任意に含み得る。いくつかの好ましい実施形態では、局所製剤は、皮膚または他の患部を通って活性薬剤(複数可)の吸収または浸透を高めるであろう物質を含む。局所用組成物は、これらに限定されないが、湿疹、にきび、酒さ、乾癬、接触性皮膚炎およびツタウルシに対する反応を含む、皮膚の炎症性疾患を治療するのに有用である。
【0050】
局所用組成物は、皮膚への塗布に適した皮膚科学的に許容される担体の安全かつ有効量を含む。「化粧品として許容される」または「皮膚科学的に許容される」組成物または成分は、過度の毒性、不適合性、不安定性、アレルギー反応などを伴わずにヒトの皮膚と接触して使用するのに好適である組成物または成分を意味する。担体は、活性薬剤および任意成分が、適切な濃度(複数可)で皮膚にデリバリーされることを可能する。担体はそれゆえ、選択された標的上に適切な濃度で活性物質が塗布され、均一に広げられていることを確保するための、希釈剤、分散剤、溶媒などとして作用することができる。担体は、固体、半固体、または液体であり得る。担体は、ローション、クリームまたはゲルの形態、特に、活性物質が沈降することを防止するのに十分な厚さまたは降伏点を有するものであり得る。担体は不活性であるか、または皮膚科学的利点を有することがある。また、本明細書に記載された活性成分と物理的および化学的に適合可能であるべきであり、安定性、有効性または組成物に関連する他の使用利点を、過度に損なうべきではない。局所用組成物は、溶液、エアロゾル、クリーム、ゲル、パッチ、軟膏、ローションまたは泡状を含む、局所または経皮塗布のために当技術分野で公知の形態の化粧品または皮膚用製品であってもよい。
【0051】
治療方法
記載された発明は、被験体における炎症性疾患を治療するための方法を提供する。用語「炎症性疾患」は、自己免疫疾患などの異常なまたは望ましくない炎症により特徴づけられる疾患を指す。自己免疫疾患は、非活性化条件下での免疫細胞の慢性的活性化によって特徴付けられる疾患である。例としては、乾癬、炎症性腸疾患(例えば、クローン病および潰瘍性大腸炎)、関節リウマチ、乾癬性関節炎、多発性硬化症、狼瘡、I型糖尿病、原発性胆汁性肝硬変、および移植が挙げられる。
【0052】
本発明の方法によって治療することができる炎症性疾患の他の例としては、喘息、心筋梗塞、脳卒中、炎症性皮膚疾患(例えば、皮膚炎、湿疹、アトピー性皮膚炎、アレルギー性接触皮膚炎、蕁麻疹、壊死性血管炎、皮膚血管炎、過敏性血管炎、好酸球性筋炎、多発性筋炎、皮膚筋炎および好酸球性筋膜炎)、急性呼吸窮迫症候群、劇症肝炎、過敏性肺疾患(例えば、過敏性肺炎、好酸球性肺炎、遅延型過敏症、間質性肺疾患(ILD)、特発性肺線維症、および関節リウマチに関連したILD)、ならびにアレルギー性鼻炎が挙げられる。追加の例としてはまた、重症筋無力、若年発症糖尿病、糸球体腎炎、自己免疫性甲状腺炎、強直性脊椎炎、全身性硬化症、急性および慢性炎症性疾患(例えば、全身性アナフィラキシーまたは過敏性反応、薬物アレルギー、虫刺されアレルギー、同種移植片拒絶、および移植片対宿主病)、ならびにシェーグレン症候群が挙げられる。
【0053】
「被験体」は、ヒトおよび非ヒト動物を指す。非ヒト動物としては、すべての脊椎動物、例えば、非ヒト哺乳動物、非ヒト霊長類(特に高等霊長類)、イヌ、げっ歯類(例えば、マウスまたはラット)、モルモット、ネコおよびウサギのような哺乳動物、ならびに鳥類、両生類、爬虫類などのような非哺乳類が挙げられる。一実施形態では、被験体はヒトである。別の実施形態においては、被験体は、実験的な、非ヒト動物または疾患モデルとして適した動物である。
【0054】
炎症性疾患のために治療されるべき被験体は、疾患を診断するための標準的な技術によって同定され得る。任意に、被験体は、1つ以上のサイトカインまたは細胞のレベルまたはパーセンテージについて、被験体から得た試験試料が本分野で公知の方法によって調べられてもよい。レベルまたはパーセンテージが閾値(正常被験体から得られる)以下である場合、被験体は、本明細書に記載の治療のための候補である。阻害または治療を確認するために、治療後の被験体における1つ以上の上記サイトカインまたは細胞のレベルまたはパーセンテージを評価および/または確認することができる。
【0055】
「治療すること」または「治療」は、疾患、疾患に続発する病状、または疾患にかかりやすい素因を治癒し、緩和し、軽減し、取り除き、その発症を遅延させ、予防し、または改善する目的での、疾患を有する被験体への化合物または薬剤の投与を意味する。
【0056】
「有効量」または「治療上の有効量」とは、治療される被験体において医学的に望ましい結果を生じることができる化合物または薬剤の量を指す。治療方法は、インビボまたはエキソビボにおいて、単独でまたは他の薬剤もしくは治療法と組み合わせて行われ得る。治療上の有効量は、1回以上の投与、塗布または投薬で投与されることができ、特定の製剤または投与経路に限定されることを意図してはいない。
【0057】
薬剤は、インビボまたはエキソビボにおいて、単独で、または、他の薬剤または治療法と組み合わせた同時投与、すなわちカクテル療法で投与され得る。本明細書で使用される場合、用語「同時投与(co-administration)」または「同時投与された(co-administered)」は、少なくとも2つの薬剤または治療法の被験体への投与を指す。いくつかの実施形態では、2つ以上の薬剤/治療法の同時投与は同時である。他の実施形態では、第二の薬剤/治療法の前に、第一の薬剤/治療法が投与される。当業者は、使用される様々な薬剤/治療法の、製剤および/または投与経路が異なってもよいことを理解する。
【0058】
インビボでのアプローチにおいて、化合物または薬剤は、被験体に投与される。一般に、化合物または薬剤は、薬学的に許容される担体(例えば、制限されるものではないが、生理的食塩水など)中に懸濁され、経口でもしくは静脈内点滴によって投与され、または皮下、筋肉内、髄腔内、腹腔内、直腸内、膣内、鼻腔内、胃内、気管内もしくは肺内に注射されもしくは移植される。
【0059】
必要な用量は、投与経路の選択;製剤の性質;患者の病気の性質;被験体の大きさ、体重、表面積、年齢、および性別;他の薬剤が投与されていること;ならびに担当医の判断に依存する。適切な投与量は0.01~100mg/kgの範囲である。必要とされる用量の変動は、利用可能な化合物/薬剤および投与の様々な経路の異なる効率の種々の観点から予想される。例えば、経口投与は、静脈内注射による投与よりも、高い用量を必要とすると予想される。当技術分野でよく理解されているように、これらの用量レベルの変動は、最適化のための標準的経験的ルーチンを用いて調整され得る。適切なデリバリービヒクル中への化合物のカプセル化(例えば、ポリマー微粒子または埋め込み型装置)は、特に経口デリバリーのためには、デリバリーの効率を高めることができる。
【実施例0060】
実施例1:方法および材料
この実施例では、実施例2~7に用いられる一般的な方法および材料について説明する。
【0061】
マウス
野生型C57BL/6マウスは、ジャクソン研究所(Jackson Laboratories)から購入された。SIGNR1-/-マウスは、A.マッケンジー(McKenzie)によって提供された。CD11c-DC-SIGN+トランスジェニックマウスは、T.スパーワッセル(Sparwasser)によって提供された。SIGNR1-/-バックグラウンドでのhDC-SIGN BACトランスジェニックマウスは、以前に説明したように発明者らの研究室で作り出された。KRN TCR C57BL/6マウス(D.マティス(Mathis)およびC.ベノア(Benoist)からの贈り物)は、K/BxNマウスを作り出すために、NODマウスと交配させられた。K/BxNマウス(6~12週齢)からの血液が採取され、関節炎抗体を含む血清は一緒にプールされた。ナイーブマウス(8~12週齢)への静脈内注射による200μL K/BxN血清の受動輸送は、関節炎を誘導した。炎症は、各脚について0~3でスコア化され、マウス個体あたりの総臨床スコアために一緒に加算された。
【0062】
組換えFcの調製
IDEC-114、全長ヒトIgG1モノクローナル抗体の組換え源は、FabおよびFc断片を切断するため、37℃で一晩パパインにより消化された。消化後、反応は、2.5mg/mLヨードアセトアミド添加によって停止させられた。未消化の抗体から切断された断片を分離するため、試料は、HiPrep26/60 S-200HRサイズ排除カラム(GEヘルスケア)を通過させられた。Fc断片は、その後、プロテインGアガロースビーズで精製された。試料純度は、SDS-ポリアクリルアミドゲルのクーマシーブリリアントブルー染色により確認された。あるいは、組換えFcは、293T細胞へのヒトIgG1 Fc発現プラスミドの一過性発現によって産出され、続けて上清画分の硫酸アンモニウム沈殿およびプロテインG精製が行われた。ヒトIgG1のFc領域をコードする遺伝子配列は、標準PCRプロトコルによって4-4-20IgG1から増幅され、pSecTag2(インビトロジェン)にライゲーションされた。点突然変異が標準的な部位特異的突然変異誘発技術によってFcコード配列に導入され、DNAシーケンシングにより確認された。241位におけるPheからAlaへの置換(FA241)のためのPCRプライマーは
【0063】
【0064】
および
【0065】
【0066】
であった。
【0067】
タンパク質発現および純度は、抗ヒトFc抗体による免疫ブロッティングおよび/またはSDS-ポリアクリルアミドゲルのクーマシーブリリアントブルー染色により確認された。
【0068】
二段階インビトロシアル化反応
精製後、10~50mg/mL Fc断片は、ガラクトシル化反応緩衝液(50mM MOPS、pH7.2;20mM MnCl2)にバッファー交換され、50mg UDP-ガラクトースおよび0.75U β1,4-ガラクトース転移酵素と共に37℃で一晩インキュベートされた。ガラクトシル化は、末端ガラクトース残基を認識するため、ECLを用いたレクチンブロットによって確認された。ガラクトシル化Fcは次に、シアル化反応緩衝液(100mM MOPS、0.2mg/mL BSA、0.5%TRITON X-100、pH7.4)にバッファー交換され、50mg CMP-シアル酸および0.75U α2,6-シアル酸転移酵素と共に37℃で一晩インキュベートされた。シアル化は、α2-6結合を有する末端シアル酸残基を認識するSNAを用いたレクチンブロットによって確認された。
【0069】
骨髄由来マクロファージの適合移植
骨髄細胞がDC-SIGNtgまたはSIGNR1-/-マウスの脛骨および大腿骨から流出され、10%FBS、1%ペニシリン/ストレプトマイシン、IL-3(5ng/mL、ペプロテック)およびM-CSF(5ng/mL、ペプロテック)が補充されたRPMI1640増殖培地で、非組織培養処理された10-cmプレート中に播種された。37℃での一晩インキュベーション後、非接着細胞が回収され、IL-3/M-CSF補充RPMI増殖培地を入れた非組織培養処理された10-cmプレートに移され、37℃で5~7日間培養された。成熟したマクロファージはトリプシン処理され、6-ウェルプレートに2×106細胞/ウェルの密度で播種され、一晩付着させられた。翌日、マクロファージは、表示された(indicated)組換えFc調製物と共に、37℃で30分間パルスされた(pulsed)。細胞は回収され、冷PBSで洗浄され、1×106細胞が野生型C57BL/6マウスへ静脈内投与された。注射一時間後、レシピエントマウスは、K/BxN血清を負荷された(challenged)。
【0070】
可溶性ヒトDC-SIGNの発現および精製
ヒトDC-SIGNの細胞外ドメイン(ECD)のcDNA配列を含むプラスミドは、K.ドリッカマー(Drickamer)によって提供された。DC-SIGN ECDをコードする配列は、標準的なPCR技術によりN末端strepタグを導入するために改変され、pET28b(+)にライゲーションされた。pET28b-strepDCSIGNは大腸菌株BL21/DE3に形質転換され、細菌培養物がOD600 0.7~0.8に達するまで、37℃で3LのTB増殖培地中で増殖させられた。タンパク質発現が100mg/LのIPTGの添加によって誘導され、培養物は37℃で3.5時間インキュベートされた。細菌は、4℃で10分間4000xgの遠心分離によってペレット化された。細菌ペレットは、10mMトリス-HCl、pH7.8の中に再懸濁され、超音波処理により溶解させられた。封入体は、4℃で15分間10,000xgの遠心分離によってペレット化され、100mLの6Mグアニジン-HCl;100mMトリス-HCl、pH7.8;0.2%TRITON X-100に溶解させられた。粒子状物質は4℃で30分間20,000xgの遠心分離によって除去され、上清画分は250mM NaCl;25mMトリス-HCl、pH7.8;25mM CaCl2に対して透析された。透析後、不溶性の沈殿物が4℃で30分間20,000xgの遠心分離によって除去され、上清画分は、strepタグ化DC-SIGN ECDをプルダウンするためにstrep-tactin樹脂(ノバジェン)に適用された。結合したタンパク質は、製造業者(ノバジェン)によって供給される溶出緩衝液で樹脂から溶出させられた。画分はSDS-PAGEによって分析され、陽性画分は混合され、活性受容体を選択するためにマンノース-アガロースカラム上にロードされた。DC-SIGN ECDは、250mM NaCl;25mMトリス-HCl、pH7.8;5mM EDTAで溶出された。画分は、SDS-PAGEにより分析された。
【0071】
表面プラズモン共鳴
可溶性hDC-SIGNまたはhFcγRへの種々の組換えFc調製物の相互作用を測定するため、定常状態親和性測定(steady-state affinity measurements)が、ビアコアT100センサーで記録された。NaOAc pH5.0中で20~50μg/mLに希釈された受容体は、標準的なアミンカップリングにより、高密度(2000RU)でCM5チップ上に固定化された。hDC-SIGNの相互作用については、インジェクションは、pH9.0に調整され2mM CaCl2および500mM NaClが補充された市販のHBS-P+緩衝液により、20μL/分の流速で行われた。hFcγR相互作用については、インジェクションは、市販のHBS-EP+緩衝液により、20μL/分の流速で行われた。表面は、50mM NaOHの短いパルスにより再生された。Kd値は、ビアコア評価(Biacore Evaluation)ソフトウェアを用いて対照フローセルへのバックグラウンド結合を差し引いた後に算出された。
【0072】
RT-PCR
総RNAは、RNeasyミニキット(キアゲン)を用いて骨髄由来マクロファージから抽出された。1μgの総RNAが、OneStep RT-PCRキット(キアゲン)を用いたRT-PCRによりIL-33 mRNA発現を分析するために、用いられた。GAPDHの発現が、ローディングコントロールとしての役割を果たした。mIL-33についてのPCRプライマーは、5’-gaagatcccaacagaagacc-3’(配列番号:6)および5’-ttccggaggcgagacgtcac-3’(配列番号:7);であり、ならびに、mGAPDHについてのPCRプライマーは、5’-gccgcctggagaaacctgc-3’(配列番号:8)および5’-tgaggtccaccaccctgttg-3’(配列番号:9)であった。PCR条件は、94℃、30秒間;55℃、30秒間、;72℃、60秒間×35サイクル(IL-33)または25サイクル(GAPDH)であった。
【0073】
実施例2:
α2,6-結合シアル酸は、組換えヒトIgG1 FcにDC-SIGN結合活性を与えた IVIG調製物中の抗体の少数集団(minor population)が、自己抗体により誘導される炎症を抑制する。これらの抗体はFcグリカン上に末端α2,6-結合シアル酸を含み、辺縁帯マクロファージ上のSIGNR1、またはそのヒト相同分子種、骨髄細胞上のDC-SIGNに結合することによって、抗炎症反応を媒介する。
【0074】
DC-SIGNに対するsFcの相互作用を研究するため、DC-SIGNの細胞外ドメイン(DC-SIGN ECD)の可溶性形態が細菌から精製され、CM5チップ上に固定化された。sFcは、全長IDEC-114抗体から調製され、インビトロでシアル化され(
図1b)、DC-SIGNが接合された(conjugated)表面に特異的に結合された(
図1a)。定常状態親和性測定が実施され、この相互作用のK
D値は~1.3×l0
-6Mと計算された(
図1c)。対照的に、IDEC-114 Fcの非シアル化(asialylated)糖型はDC-SIGNへの結合活性を示さず、DC-SIGN結合部位を露出するためのFc骨格上のコンフォメーション変化を、このシアル化が誘導することを、示唆している。
【0075】
図1aに示されるように、組換えα2,6-sFcが可溶性DC-SIGNに結合することが、表面プラズモン共鳴(SPR)によって測定されて見出された。Fcは、全長ヒトモノクローナルIgG1抗体(IDEC-114)のパパイン切断により調製され、続けてインビトロでガラクトシル化およびシアル化反応がされた。実施例1で説明されたように、固定化DC-SIGNに結合する抗体についてのSPRセンサーグラムが、hIgG1 Fcのシアル化およびガラクトシル化糖型について示されている。DC-SIGN ECD上を流れるFc濃度は、3~0.8μΜの範囲であることが見出された。
図1bに示されるように、SNAによるレクチンブロットは、Fc上で2,6-結合を有するシアル酸の接続を確認した(上部パネル);クーマシー染色されたローディングコントロールは、下部パネルに示された。DC-SIGNに対するsFcの結合の定常状態K
D測定は(aに示されるように。)、ビアコア評価ソフトウェアによって算出された。
【0076】
実施例3
Fc-グリカン相互作用を破壊する変異は、組換えヒトIgG1 FcにDC-SIGN結合活性を与えた Asn297に接続するコアオリゴ糖は、Fcのアミノ酸骨格と広範な非共有結合相互作用を形成する。コアグリカンに接続した異なる糖残基によってもたらされるFcのコンフォメーション変化は、これらのタンパク質-糖質相互作用によって媒介される。Fc骨格とグリカン残基との重要な接触点を無効にするアラニン置換は、DC-SIGN結合活性を授けるように見える。
【0077】
図2Aに示されるように、FA241およびFA243変異は、インビトロ酵素処理せずにDC-SIGN結合活性を呈する。見かけのK
D値は、FA241についての6×10
-7Mから、FA243についての3×10
-7Mの範囲である。以前の報告では、哺乳類細胞で発現された場合、これらの変異は、おそらくグリカンが糖転移酵素にさらに接近しやすくすることにより、抗体のシアル化を高めることを示している。これを検証するため、DC-SIGNへのFA241およびFA243の結合が一過性に発現したタンパク質の増加したシアル化によるものであるかどうかを測定するため、レクチンブロットが実施された。
図2Bに示されるように、SNAブロットは精製されたFA241およびFA243中に末端シアル酸残基を検出せず、このことはDC-SIGN相互作用がシアル酸修飾とは無関係であったことを示す。
【0078】
より具体的には、IgG1 Fcのアミノ酸骨格に沿ってF241、F243、D265、およびR301残基は、オリゴ糖残基との非共有相互作用を破壊するためにアラニンに置換された。Fcが発現させられ、293T細胞から精製され、上述のように表面プラズモン共鳴によってDC-SIGN結合活性について分析された。変異FA241またはFA243を備えるFcは、sFcについての親和性測定と比較して、DC-SIGNに対する増加した親和性を呈すことが見出された(
図1a)。ECL(
図1b、中央パネル)およびSNA(上部パネル)を用いたレクチンブロットが、293T細胞から精製されたFc上の末端糖部分を測定するために実施された。シアル化Fcの陽性対照として、
図1aに説明されているようにFA241がインビトロでシアル化された。クーマシー染色されたローディングコントロールが、
図1bの下部パネルに示されている。
【0079】
実施例4 hIgG1 FcにおけるFA241変異は、α2,6sFcの抗炎症活性を反復した(recapitulated)
FA241およびFA243変異がsFcのDC-SIGN結合活性を模倣するのであれば、これらの変異がインビボでのsFcの抗炎症活性を再現できるのか調べるため、アッセイが実施された。年齢および性別が一致させられたSIGNR1-/-とhDC-SIGN+/SIGNR1-/-マウスは、関節炎K/BxN血清で負荷され、0.033g/kgの有効用量でsFc、FA241、またはFA243で治療された。これまでの知見と一致して、sFcはDC-SIGN+マウスの足底が腫れることを抑制したが、SIGNR1-/-では抑制されなかった。同様に、FA241は、hDC-SIGN+/SIGNR1-/-マウスにおいてsFcのそれに匹敵する抗炎症活性を示した。FA243が投与されたマウスは、関節炎の低下を示さなかった。これらの知見は、F241A変異(FA241)を有する組換えFcが、シアル酸修飾無しで、sFcのDC-SIGN結合および抗炎症活性を再現することを示唆している。
【0080】
図3に示しているように、hDC-SIGN
+/SIGNR1
-/-(白四角)およびSIGNR1
-/-マウス(黒四角)は、静脈内注射により0.7mg/マウスのsFc、FA241またはFA243が投与された。マウスは、続いて、1時間後にK/BxN血清で負荷された。足底の腫れは、数日間にわたって観察され、スコア化された。既報の通り、sFcの抗炎症作用は、DC-SIGN-依存的(左パネル)である。FA241もまた、K/BxNで負荷されたマウスにおいて、DC-SIGN-依存的に関節炎を抑制した。FA243は、6日目において測定の腫れを有意に減少させなかった。群あたり4-5匹のマウスの臨床スコアの平均およびSEMは、6日目にプロットされた。
【0081】
実施例5 FA241抗炎症活性についての必要条件の特徴づけ
FA241の抗炎症活性についての決定要因を特定するため、CD11c.DC-SIGN+およびSIGNR1-/-マウスからの骨髄由来マクロファージ(ΒΜΜΦ)はFA241または他のFc調製物で刺激され、K/BxN血清で負荷されたWT C57BL/6レシピエントマウスに移植された。
【0082】
つまり、CD11c.DC-SIGN
+およびSIGNR1
-/-マウスからの骨髄由来マクロファージは、IL-3(5ng/mL)およびM-CSF(5ng/mL)中で5~7日間培養された。
図4に示されるように、DC-SIGN
+ΒΜΜΦは、0.5mg/mLの表示されたFc調製物の非シアル化(黒棒)またはシアル化(白棒)糖型と共にパルスされた。Fc-処置ΒΜΜΦは、WT C57BL/6レシピエントマウスに移植され、続けてK/BxN負荷が行われた。
図4bに示されるように、SIGNR1
-/-(黒棒)およびDC-SIGN
+(白棒)ΒΜΜΦは、0.5mg/mLの表示されたFc調製物と共にパルスされ、WT C57BL/6レシピエントマウスに移植され、続けてK/BxN負荷が行われた。同様に、DC-SIGN
+ΒΜΜΦは、0.5mg/mLのFA241もしくは脱グリコシル化FA241(
図4c、白棒)またはPBS(
図4c、黒棒)のいずれかと共にパルスされ、WT C57BL/6レシピエントマウスに移植され、続けてK/BxN負荷が行われた。FA241はPNGアーゼFにより脱グリコシル化され、グリカン除去はレクチンブロッティングにより確認された。DC-SIGN
+ΒΜΜΦは、表示されたFc調製物またはPBS(
図4d、黒丸)と共にパルスされ、WT C57BL/6レシピエントマウスに移植され、続けてK/BxN負荷が行われた。全ての場合において、足底の腫れは、数日間にわたって観察され、スコア化された。群あたり4~5匹のマウスの臨床スコアの平均およびSEMがプロットされる。
*P<0.05、分散分析(ANOVA)によって決定され、続けてテューキーポストホックテストが行われた。
【0083】
図4Aに示されるように、非シアル化またはシアル化FA241調製物は、sFcと比べて、関節炎を抑制することに同様に有効であった。しかしながら、非シアル化WT FcでパルスされたDC-SIGN
+ΒΜΜΦが、レシピエントマウスへ保護(protection)を移植(transfer)しなかったことから、WT Fc調製物はα2,6-結合シアル酸を必要とした。
図3に示された結果と一致し、sFcおよびFA241の両方ともに、保護を移植するためにはΒΜΜΦ上でのDC-SIGN発現を必要とした(
図4B)。FA241は保護を移植するためにシアル酸を必要としないが、PNGアーゼFによる脱グリコシル化がFA241の抗炎症性を無効化したことは(
図4C)、Fcグリカンが依然として必要であることを示唆している。さらに、観察された抗炎症活性がF
241A変異に特異的であることを示すため、DC-SIGN
+ΒΜΜΦは、高められたDC-SIGN結合を付与しない代替的変異を有するFcと共に、パルスされた。FA241刺激されたΒΜΜΦのみが、K/BxN負荷されたレシピエントマウスを保護した。
【0084】
実施例6 FA241変異はFcγ受容体結合を増強した
241位でのアラニン置換がFcにおいてコンフォメーション変化を誘導するのであれば、おそらくヒトFcγ受容体に対する親和性が変更される。シアル化がFcγRに対するIgGの親和性を減少させ、結果として、インビボでのADCC活性を減弱させることが、以前に報告された。
【0085】
組換えIgG1
Fcの可溶性FcγRへの結合は、表面プラズモン共鳴(SPR)によって測定された。Fcは、上述した方法で調製された。固定化hFcγRIIA
131RおよびhFcγRIIBに対して抗体が結合することについてのSPRセンサーグラムが、WT hIgG1 Fcの非シアル化およびシアル化糖型について、ならびに非シアル化FA241 Fcについて、
図5に示されている。
【0086】
図5に示されるように、WT Fcの非シアル化糖型が、~2-3×10
-5Mの観測されたK
D値でhFcγRIIAおよびRIIBに結合した。sFcはしかしながら、hFcγRIIAまたはRIIBのいずれかにも結合しないようであった。驚くべきことに、FA241は、一桁分強い親和性(K
D=~2×10
-6M)でhFcγRIIAとRIIBの両方に結合すると思われる。
【0087】
実施例7 FA241による、骨髄由来マクロファージにおけるIL-33 mRNA誘導
sFcは、制御性(regulatory)マクロファージ上のFcγRIIBをアップレギュレートするために、FcεRI+白血球集団、おそらく好塩基球からのIL-4分泌を必要とするTH2-依存性の抗炎症パスウェイを、誘導する。インビボまたはインビトロにおいて、IL-33の投与は、好塩基球を刺激してIL-4の蓄えを放出させる。IL-33 mRNA発現は、sFcまたはIVIGによって処理されたWT C57BL/6マウスの脾臓中でアップレギュレートされるが、SIGNR1-/-マウスではされない。これは、sFcがSIGNR1+またはDC-SIGN+細胞においてIL-33発現を誘導する可能性を示唆している。この実施例においては、アッセイが実施され、FA241によってDC-SIGN+ΒΜΜΦを刺激すると、IL-33発現をアップレギュレートすると思われることを示す。
【0088】
より具体的には、CD11c.DC-SIGN
+およびSIGNR1
-/-マウスからの骨髄由来マクロファージは、上述の方法で培養された。ΒΜΜΦは、無血清RPMI培地中で12-ウェルプレートに播種され、37℃で一晩接着させられた。翌日、細胞は、37℃で1時間(
図6a)または4時間(
図6b)、無血清RPMI培地中の0.5mg/mLの表示されたFcと共にパルスされた。mRNAが特定の時点で細胞から採取され、1μg総RNAがIL-33 mRNAのRT-PCR増幅のために使用された(上部パネル)。GAPDH増幅が、ローディングコントロールとしての役割を果たした(下部パネル)。DA265 Fcおよびヒトシアル酸転移酵素(ST6Gal1)を共発現するプラスミドは、高度にシアル化された組換えFc(ST6-DA265)を生産する293T細胞に形質転換された。
【0089】
図6に示されるように、FA241によってDC-SIGN
+ΒΜΜΦを刺激すると、IL-33発現をアップレギュレートするように思われる。DC-SIGN
+ΒΜΜΦと比べてIL-33の基底発現レベルがより大きいにもかかわらず、SIGNR1
-/-ΒΜΜΦは、FA241処理に応答してIL-33 mRNA発現をダウンレギュレートした。
【0090】
好ましい実施形態の上記実施例および説明は、特許請求の範囲によって定義される本発明を限定するものというより、例示するものとして解釈されるべきである。本明細書で引用された全ての刊行物は、その全体が本明細書中に参照によって組込まれる。容易に理解されるように、上述した特徴の多数の変形および組み合わせは、特許請求の範囲に記載の本発明から逸脱することなく利用されることができる。そのような変形は、本発明の範囲からの逸脱とはみなされず、全てのそのような変形は、以下の特許請求の範囲内に含まれることが意図される。