(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022009183
(43)【公開日】2022-01-14
(54)【発明の名称】ポリマーの治療用組成物
(51)【国際特許分類】
A61L 27/16 20060101AFI20220106BHJP
A61L 27/50 20060101ALI20220106BHJP
A61K 49/00 20060101ALI20220106BHJP
A61P 9/14 20060101ALI20220106BHJP
A61K 31/78 20060101ALI20220106BHJP
C08F 20/00 20060101ALI20220106BHJP
【FI】
A61L27/16
A61L27/50
A61K49/00
A61P9/14
A61K31/78 ZNA
C08F20/00
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2021169622
(22)【出願日】2021-10-15
(62)【分割の表示】P 2020084677の分割
【原出願日】2013-10-15
(31)【優先権主張番号】61/714,102
(32)【優先日】2012-10-15
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】517416374
【氏名又は名称】マイクロベンション インコーポレイテッド
【氏名又は名称原語表記】MICROVENTION, INC.
【住所又は居所原語表記】35 Enterprise, Aliso Viejo, California 92656 (US)
(74)【代理人】
【識別番号】100095407
【弁理士】
【氏名又は名称】木村 満
(74)【代理人】
【識別番号】100132883
【弁理士】
【氏名又は名称】森川 泰司
(74)【代理人】
【識別番号】100148633
【弁理士】
【氏名又は名称】桜田 圭
(74)【代理人】
【識別番号】100147924
【弁理士】
【氏名又は名称】美恵 英樹
(72)【発明者】
【氏名】クルーズ、グレゴリー エム
(72)【発明者】
【氏名】コンスタント、マイケル ジェイ
(72)【発明者】
【氏名】キーリー、エドワード マイケル
(72)【発明者】
【氏名】グリーン、ロブ
(72)【発明者】
【氏名】ハリス、クレイトン
【テーマコード(参考)】
4C081
4C085
4C086
4J100
【Fターム(参考)】
4C081AB13
4C081CA081
4C081CA101
4C081CC07
4C081CE11
4C081DA12
4C085HH01
4C085HH13
4C085JJ01
4C085KA26
4C085KB18
4C085KB39
4C085KB68
4C085LL01
4C086AA01
4C086AA02
4C086FA02
4C086FA06
4C086MA01
4C086MA04
4C086MA65
4C086NA14
4C086ZA36
4C086ZA44
4J100AL08P
4J100AL09Q
4J100AM21P
4J100AM23P
4J100BA03P
4J100BA16P
4J100BA21P
4J100BA22P
4J100BB05P
4J100BC43P
4J100BC43Q
4J100FA03
4J100FA19
4J100JA53
(57)【要約】
【課題】塞栓形成に関連している危険を最小限に抑えるポリマー組成物の提供。
【解決手段】可視化剤への生分解性結合を有する生体適合性ポリマーと、非生理溶液と、を含むポリマー組成物であって、前記生体適合性ポリマーが、前記非生理溶液には溶解するが生理溶液には溶解しない、ポリマー組成物。
【選択図】
図2
【特許請求の範囲】
【請求項1】
可視化剤への生分解性結合を有する生体適合性ポリマーと、
非生理溶液と、
を含むポリマー組成物であって、
前記生体適合性ポリマーが、前記非生理溶液には溶解するが生理溶液には溶解しない、ポリマー組成物。
【発明の詳細な説明】
【技術分野】
【0001】
この出願は、2012年10月15日に提出された米国の仮特許出願番号61/714,102の利益を主張するものであり、その全体の開示が参照することによりここに組み込まれる。
【0002】
本発明は、概して、血管治療用の組成物及び該組成物を用いて血管の状態を治療する方法に関するものである。上記組成物は、生理的条件にさらされると液体から固体に転移するポリマーを一種又は複数種含むことができる。
【背景技術】
【0003】
動脈瘤、動静脈奇形、瘻、及び腫瘍等の血管の形成異常の治療には、塞栓形成が広く使用される。これらの形成異常は、金属コイル、ポリマー・金属ハイブリッドコイル、微粒子及び発泡体を含む様々な異なる製品によって治療できる。しかしながら、塞栓形成に関連している危険を最小限に抑える製品が依然として必要とされている。
【発明の概要】
【課題を解決するための手段】
【0004】
可視化剤への生分解性結合を含む生体適合性ポリマーと、非生理溶液とを含むポリマー組成物であって、上記生体適合性ポリマーが非生理溶液には溶解するが生理的条件では溶解しないポリマー組成物について記載する。
【0005】
可視化剤への生分解性結合を含む生体適合性ポリマーと、水混和性の有機溶媒とを含むポリマー組成物であって、上記生体適合性ポリマーが上記有機溶媒には溶解するが生理的条件では溶解しないポリマー組成物について記載する。
【0006】
また、上記ポリマー組成物を使用するための方法について記載する。一の実施態様においては、送達デバイス通して、生理環境中に、可視化剤への生分解性結合を含む生体適合性ポリマーと非生理溶液とを含む液体塞栓性組成物を注入することを含む方法について記載し、ここで、上記生体適合性ポリマーは、生理的条件に達すると沈殿する。
【0007】
一の実施態様においては、送達デバイスを通して、生理環境の血管中に、可視化剤への生分解性結合を含む生体適合性ポリマーと水混和性の有機溶媒とを含む液体塞栓性組成物を注入することを含む方法について記載し、ここで、上記生体適合性ポリマーは、生理的条件に達すると沈殿して血管障害を治療する。
【0008】
上記生分解性結合は、加水分解及び/又は酵素的開裂によって開裂できる。酵素的開裂を受けやすい生分解性結合は、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5、配列番号6、配列番号7、配列番号8、配列番号9、配列番号10、配列番号11、又は配列番号12等のエステル又はアミノ酸とすることができる。加水分解を受けやすい生分解性結合は、エステル、カーボネート、又はポリエステルとすることができる。
【0009】
生分解性結合した造影剤/可視化剤はヨウ素化合物とすることができる。
【0010】
上記生体適合性ポリマーは、2種以上の異なるモノマーの反応生成物とすることができ、また、約1%w/w~約50%w/wの濃度とすることができる。
【0011】
上記非生理溶液は、水性とすることができ、また、約5より小さいpH又は約8より大きいpHとすることができる。
【0012】
一の実施態様においては、血管の欠損を埋めるための組成物であって、非生理的なpHの水溶液;及びpH感受性成分と可視化剤への生分解性結合とを含み、濃度が約1%~50%w/wである、生体適合性ポリマーであって、非生理的なpHの水溶液には溶解するが生理的条件では溶解しない、生体適合性ポリマーを含む組成物について記載する。
【0013】
他の実施態様においては、可視化剤への生分解性結合を含む生体適合性ポリマーと非生理的なpHの水溶液とを含む液体塞栓性組成物であって、上記生体適合性ポリマーが非生理的なpHの水溶液には溶解するが生理的条件では溶解しない、液体塞栓性組成物を準備すること;送達デバイスを血管中に挿入すること;治療が必要である領域に上記送達デバイスを導くこと(ここで、該領域は生理的条件にある);上記送達デバイスを通して、血管中の治療が必要である領域に、上記液体塞栓性ポリマー組成物を注入し、それにより、上記ポリマーを速やかに沈殿させて固体のポリマー塊を形成させること;及び血管の状態を治療することを含む方法について記載する。
【0014】
一の実施態様においては、血管の欠損を埋めるための組成物であって、水混和性の有機溶媒;及び可視化剤への生分解性結合を含み、濃度が約1%~50%w/wである、生体適合性ポリマーであって、上記有機溶媒には溶解するが生理的条件では溶解しない、生体適合性ポリマーを含む組成物について記載する。
【0015】
他の実施態様においては、可視化剤への生分解性結合を含む生体適合性ポリマーと水混和性の有機溶媒とを含む液体塞栓性組成物であって、上記生体適合性ポリマーが上記有機溶媒には溶解するが生理的条件では溶解しない、液体塞栓性組成物を準備すること;送達デバイスを血管中に挿入すること;治療が必要である領域に上記送達デバイスを導くこと;上記送達デバイスを通して、血管中の治療が必要である領域に、上記液体塞栓性ポリマー組成物を注入し、それにより、上記ポリマーを速やかに沈殿させて固体のポリマー塊を形成させること;及び血管の状態を治療することを含む方法について記載する。
【図面の簡単な説明】
【0016】
【
図1】塞栓性ポリマーの一実施態様を使用する前のウサギの腎臓についての治療前血管造影図を示す。
【
図2】塞栓性ポリマーの一実施態様を使用した後のウサギの腎臓についての治療後血管造影図を示す。
【
図3】塞栓性ポリマーの一実施態様を使用した後のウサギの腎臓についての治療後CTスキャンを示す。
【
図4】塞栓性ポリマーの一実施態様を使用した後のウサギの腎臓についての治療後血管造影図を示す。
【
図5】塞栓性ポリマーの一実施態様を使用した後のウサギの腎臓についての治療後MRスキャンを示す。
【発明を実施するための形態】
【0017】
生体適合性ポリマーであって、生分解性結合によって該ポリマーに結合した可視化の種を含む、生体適合性ポリマーを含む治療用ポリマー組成物についてここに概して記載し、ここで、上記生体適合性ポリマーは、選択された溶媒システムには溶解するが、生理的条件又は選択された溶媒中の生理溶液/液には溶解しない。一部の実施態様において、上記可視化種は、インビボでの可視化を可能にできる1種又は複数種の不透明化剤とすることができる。他の実施態様において、上記溶液は、上記ポリマーを溶解できる混和性の溶媒を含むことができる。他の実施態様において、上記溶液は、非生理的なpHの溶媒を含むことができる。これら組成物は、送達デバイスを通して液体状態で導入でき、生理液と接触した時点で固体状態に移行する。
【0018】
ポリマーが溶液に溶解する場合、送達デバイス、例えばマイクロカテーテルを通した送達部位及び/又は治療部位への展開を容易に行うことができる。しかしながら、溶液から沈殿した時点で、ポリマーを展開することがずっと困難になり得る。例えば、ポリマーは、沈殿すると、場合により送達デバイスを通した展開がより困難になる可能性がある。ここに記載される組成物及び方法は、そのようなものとして、治療用ポリマー溶液を、当該溶液が送達デバイスを出る前には溶解していなければ、投与が容易ではないであろう部位に提供することができる。
【0019】
上記組成物は、非生理的条件(例えば非生理的なpH)の溶液を含むことができる。溶液は、該溶液には溶解するが生理的条件では溶解しないポリマーを含むことができる;ポリマーは、それに生分解可能なように付けられた可視化剤を含むことができる。一部の実施態様において、上記溶液は、非生理的なpHの水溶液には溶解するが生理的条件では溶解しないポリマーを含むことができる。他の実施態様において、上記ポリマーは、水混和性の有機溶媒には溶解するが、生理的条件(例えば水)では溶解しない。
【0020】
上記生体適合性ポリマー、例えば液体塞栓性ポリマーの機能は、血液や他の生理液と接触した状態になると沈殿することとすることができる。生理液のpHが溶解性のトリガーである場合、その生理的なpHは、約7.0、約7.1、約7.2、約7.3、約7.4、約7.5、約7.6、約7.7若しくは約7.8、約7.0と約7.8の間、約7.1と約7.7の間、約7.2と約7.6の間、又はこれらの値のいずれかによって境界づけられる範囲若しくはいずれかの間の任意の値のpHとすることができる。非生理的なpHは、約1.0と約6.9の間、又は約2.0と約6.0の間、約7.9と約12.0の間、約8.5と約10.0の間のpHとすることができる。或いは、溶解性のトリガーが水混和性の有機溶媒において溶解性であり生理的条件では不溶性であれば、どんな生理環境でも沈殿を起こすことができる。
【0021】
生理的条件でのポリマーの沈殿は、生物学的構造を塞ぐために使用できる。液体塞栓性ポリマーの溶解性の制御は、該ポリマーの組成の選択によって達成できる。上記ポリマーは、イオン性部分を有するモノマーを用いて調製できる。一部の実施態様において、上記ポリマーは、異なる2種のモノマー、異なる3種のモノマー、異なる4種のモノマー、異なる5種のモノマー、又はそれ以上の反応生成物とすることができる。pH感受性の溶解性のトリガーの場合、疎水性ポリマーが、該ポリマーを非生理的なpHの溶液に溶解させるのに最少量のイオン性部分で構築できる。イオン性部分を持つモノマーと他のモノマーの比は、モノマーの構造によって決めることができ、実験的に決定できる。
【0022】
アミノ含有液体塞栓性ポリマー等のpHに対して感受性があるポリマーは、pHが低い溶液に溶解することができ、そのアミンは、実質的にプロトン化でき、ポリマーの溶解性を高めることができる。得られる溶液は、生理的なpHの条件に置くことができ、そのアミンは、脱プロトン化でき、ポリマーを不溶性にする。反対に、カルボン酸含有ポリマーは、pHが高い溶液に溶解することができ、そのカルボン酸は、実質的に脱プロトン化でき、ポリマーの溶解性を高める。得られる溶液は、生理的なpHの条件に置くことができ、そのカルボン酸は、プロトン化でき、ポリマーを不溶性にする。
【0023】
1種のモノマー又は複数種のモノマーは、蛍光透視法、コンピュータ断層撮影法又は磁気共鳴技術等の医学関連画像化技術によって画像化する際に液体塞栓性ポリマーの可視性を与えるため、該モノマーに結合した少なくとも1種の可視化種を含むことができる。可視化種を持つモノマーの特性は、医学的関連画像化技術の下で目に見えるコア、及び該コアに付けられた生分解性結合を持つ重合可能な部分とすることができる。
【0024】
可視化剤は、反応性側基が重合前に重合混合物に加えられている場合、重合後にも結合できる。例となる反応性側基は、エポキシド側基(例えば酢酸グリシジル)又はヒドロキシルエチル側基を有するアクリレートモノマーとすることができる。当業者であれば、形成されるポリマーに加えることができる他の側基を想到することができる。
【0025】
蛍光透視法及びCT画像化でのポリマーの可視化は、ヨウ素を含有するコア、特には複数のヨウ素原子を持つ芳香環を持つモノマーの使用によって与えることができる。ヨウ素を含有するコアは、トリヨードフェノールとすることができる。蛍光透視法又はCT画像化によって液体塞栓性を目に見えるようにするヨウ素の濃度は、液体塞栓性溶液の約10%~約60%w/w、約20%~約50%w/w、又は約30%~約40%w/wの範囲とすることができる。磁気共鳴画像化でのポリマーの可視化は、ガドリニウムを含有するモノマーの組み込みによって与えることができる。磁気共鳴画像化用の可視化剤は、ガドリニウムジエチレントリアミン五酢酸アミノエチルメタクリレートとすることができる。磁気共鳴画像化によって液体塞栓性を目に見えるようにするガドリニウムの濃度は、液体塞栓性溶液の約0.1%~約1%w/w、約0.5%~約1%w/w、又は約0.1%~約0.5%w/wの範囲とすることができる。
【0026】
一部のモノマーは、重合可能な部分と、任意にはイオン性部分とを含有することができる。重合可能な部分は、フリーラジカル又はアニオン重合を可能にするものとすることができ、限定されるものではないが、アクリレート、メタクリレート、アクリルアミド、メタクリルアミド、ビニル基、及びそれらの誘導体が挙げられる。或いは、反応性のある他の化学作用を用いて液体塞栓性ポリマーを重合することができ、限定されるものではないが、求核試薬/N-ヒドロキシスクシンイミドエステル、求核試薬/ハロゲン化物、ビニルスルホン/アクリレート又はマレイミド/アクリレート等がある。好ましい重合可能な部分は、アクリレート及びアクリルアミドとすることができる。
【0027】
他のモノマーは、重合可能な部分を含有することができ、望ましい溶解度特性の助けとなる構造を有することができる。重合可能な部分は、フリーラジカル重合を可能にするものとすることができ、限定されるものではないが、アクリレート、メタクリレート、アクリルアミド、メタクリルアミド、ビニル基、及びそれらの誘導体が挙げられる。或いは、反応性のある他の化学作用を用いて液体塞栓性ポリマーを重合することができ、即ち、求核試薬/N-ヒドロキシスクシンイミドエステル、求核試薬/ハロゲン化物、ビニルスルホン/アクリレート又はマレイミド/アクリレートである。好ましい重合可能な部分は、アクリレート及びアクリルアミドとすることができる。一般に、他のモノマーは、可視化種を含むモノマーを補うことができる。
【0028】
ポリマーが水混和性の溶媒中での溶解に対してひどく疎水性である場合、その溶解性を変えるためにより親水性のモノマーを導入することができる。ポリマーが親水性すぎて水に溶解する場合、その溶解性を変えるためにより疎水性のモノマーを導入することができる。他のモノマーとしては、ヒドロキシエチルメタクリレート、t-ブチルアクリレート、t-ブチルアクリルアミド、n-オクチルメタクリレート、及びメチルメタクリレートを挙げることができる。かかるモノマーは、約1%w/w~約50%w/w、約1%w/w~約40%w/w、約1%w/w~約30%w/w、約1%w/w~約20%w/w、約1%w/w~約15%w/w、約1%w/w~約10%w/w、約2%w/w~約15%w/w、約2%w/w~約20%w/w、約2%w/w~約10%w/w、約1%w/w、約2%w/w、約3%w/w、約4%w/w、約5%w/w、約6%、約7%w/w、約8%、約9%w/w、約10%w/w、約11%w/w、約12%w/w、約13%w/w、約14%w/w、約15%w/w、約16%w/w、約17%w/w、約18%w/w、約19%w/w、約20%w/w、約21%w/w、約22%w/w、約23%w/w、約24%w/w、又は約25%w/wの濃度で存在することができる。
【0029】
一部のモノマーは、可視化種への生分解性結合を含むことができる。生分解性結合は、ポリマーから可視化コアの分離を可能にすることができる。ポリマーから分離した後、上記コアは、拡散及び/又はポリマーへの異物反応を含む細胞によって除去できる。生分解性結合は、2つのタイプに分けることができる。その2つのタイプとしては、加水分解を受けやすいものと、酵素作用を受けやすいものを挙げることができる。加水分解を受けやすい結合としては、一般に、エステル、ポリエステル、又はカーボネートを挙げることができる。
【0030】
上記生分解性結合は、モノマー又は形成後のポリマー中に導入できる。当業者は、生分解性結合をポリマー中に導入する両方の方法の利点を想到することができる。
【0031】
エステル結合は、ヒドロキシル基を、無水コハク酸や無水グルタル酸等の環状無水物と、又はラクチド、グリコリド、ε-カプロラクトン、及びトリメチレンカーボネート等の環状エステルと反応させることによって導入できる。分解速度は、エステルの選択及び生分解性結合中に挿入されるエステル数によって制御できる。
【0032】
酵素作用を受けやすい結合としては、酵素、限定されるものではないがマトリクスメタロプロテナーゼ、コラゲナーゼ、エラスターゼ、カテプシン又はそれらの組み合わせ等によって分解できるペプチドを挙げることができる。マトリクスメタロプロテナーゼによって分解されるペプチド配列としては、Gly-Pro-Gln-Gly-Ile-Ala-Ser-Gln(配列番号1)、Gly-Pro-Gln-Pro-Ala-Gly-Gln(配列番号2)、Gly-Pro-Gln-Gly-Ala-Gly-Gln(配列番号3)、Lys-Pro-Leu-Gly-Leu-Lys-Ala-Arg-Lys(配列番号4)、Gly-Pro-Gln-Ile-Trp-Gly-Gln(配列番号5)、及びGln-Pro-Gln-Gly-Leu-Ala-Lys(配列番号6)を挙げることができる。カテプシンによって分解されるペプチド配列としては、Gly-Phe-Gln-Gly-Val-Gln-Phe-Ala-Gly-Phe(配列番号7)、Gly-Phe-Gly-Ser-Val-Gln-Phe-Ala-Gly-Phe(配列番号8)、及びGly-Phe-Gly-Ser-Thr-Phe-Phe-Ala-Gly-Phe(配列番号9)を挙げることができる。コラゲナーゼによって分解されるペプチド配列としては、Gly-Gly-Leu-Gly-Pro-Ala-Gly-Gly-Lys及びAla-Pro-Gly-Leu(配列番号10)を挙げることができる。パパインによって分解されるペプチド配列としては、Gly-Phe-Leu-Gly(配列番号11)を挙げることができる。カスパーゼ-3によって分解されるペプチド配列としては、Asp-Glu-Val-Asp-Thr(配列番号12)を挙げることができる。分解速度は、ペプチド配列の選択によって制御できる。
【0033】
一の実施態様において、液体塞栓性ポリマーは、可視化種に結合したモノマーと任意には他のモノマーとからなる溶液から又は重合後のポリマーが可視化種に結合されるところのモノマーの溶液から重合できる。モノマーを溶解するのに使用される溶媒は、望ましいモノマーを溶解するあらゆる溶媒とすることができる。溶媒としては、メタノール、アセトニトリル、ジメチルホルムアミド、及びジメチルスルホキシドを挙げることができる。
【0034】
モノマーの重合を開始するために、重合開始剤を用いることができる。重合は、酸化還元、放射線、熱、又は当該技術分野において知られる他のあらゆる方法によって開始できる。モノマー溶液の放射線架橋は、適切な開始剤を用いた紫外線若しくは可視光又は開始剤なしの電離放射線(例えば電子ビーム又はガンマ線)によって達成できる。重合は、加熱溜め等の熱源を用いて溶液を従来のように加熱するか又はモノマー溶液に赤外線を適用するかによって、熱を適用することにより達成できる。
【0035】
一の実施態様において、重合開始剤は、アゾビスイソブチロニトリル(AIBN)又は水溶性AIBN誘導体(2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩)とすることができる。他の開始剤としては、N,N,N’,N’-テトラメチルエチレンジアミン、過硫酸アンモニウム、過酸化ベンゾイル、アゾビスイソブチロニトリル及びそれらの組み合わせを挙げることができる。開始剤濃度は、溶液中のモノマーの質量の約0.1%w/w~約5%w/w、約0.5%w/w~約3%w/w、約0.25%w/w、約0.5%w/w、約0.75%w/w、約1%w/w、約1.25%w/w、約1.50%w/w、約1.75%w/w、又は約2%w/w、約3%、約4%、又は約5%とすることができ、或いは記載したパーセンテージの範囲内のどんな範囲又は値とすることもできる。重合反応は、約30℃~約200℃、約50℃~約100℃、約50℃、約60℃、約70℃、約80℃、約90℃又は約100℃の昇温にて行うことができ、又は加熱せずに室温にて進行させることもできる。重合が完了した後に、ポリマーは、非溶媒中での沈殿によって回収でき、真空下で乾燥できる。
【0036】
水混和性の有機溶媒は、最終液体塞栓性ポリマーを溶解することができる。有機溶媒中における上記ポリマーの濃度は、約1%~約50%、約2.5%~約25%、約5%~約15%、約2.5%、約5%、約7.5%、約10%、約12.5%、約15%、約17.5%、約20%、約22.5%、約25%、約30%、約35%、約40%、約45%、若しくは約50%、任意のパーセンテージ又は上記パーセンテージによって境界づけられるパーセンテージの範囲とすることができる。溶媒としては、メタノール、アセトニトリル、ジメチルホルムアミド、ジメチルイソソルビド、及びジメチルスルホキシドを挙げることができる。
【0037】
また、pH感受性モノマーを上記ポリマー内に用いる場合には、非生理的なpHの水溶液がその液体塞栓性ポリマーを溶解することができる。水溶液中でのポリマー濃度は、約1%~約50%、約2.5%~約25%、約5%~約15%、約2.5%、約5%、約7.5%、約10%、約12.5%、約15%、約17.5%、約20%、約22.5%、約25%、約30%、約35%、約40%、約45%、若しくは約50%、任意のパーセンテージ又は上記パーセンテージにによって境界づけられるパーセンテージの範囲とすることができる。上記水溶液は、液体塞栓性ポリマーの溶解後に非生理的なpHを維持するために最少量の緩衝剤を含有することができるが、投与後の患者のpHには悪影響を及ぼさない。或いは、緩衝剤を必要としなくてもよい。緩衝剤濃度は、約1mM~約100mM、約20mM~約80mM、約30mM~約70mM、約40mM~約60mM、約45mM~約55mM、約10mM、約20mM、約30mM、約40mM、約50mM、約60mM、約70mM、約80mM、約90mM、約100mM、又は記載した値の範囲内のあらゆる濃度若しくは濃度の範囲とすることができる。
【0038】
アミンを含有する液体塞栓性ポリマーについて、緩衝剤としてはクエン酸塩及び酢酸塩を挙げることができ、溶液のpHは、約3~約6、約3~約5、約3、約4、約5又は約6とすることができる。カルボン酸を含有する液体塞栓性ポリマーについて、緩衝剤としてはカーボネート、N-シクロヘキシル-2-アミノエタンスルホン酸(CHES)、N-シクロヘキシル-2-ヒドロキシル-3-アミノプロパンスルホン酸(CAMPSO)、N-シクロヘキシル-3-アミノプロパンスルホン酸(CAPS)、3-[4-(2-ヒドロキシエチル)-1-ピペラジニル]プロパンスルホン酸(HEPPS又はEPPS)、3-(N-モルホリノ)プロパンスルホン酸(MOPS)、4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸(HEPES)、2-(N-モルホリノ)エタンスルホン酸(MES)及び2-アミノ-2-メチル-1-プロパノール(AMP)を挙げることができ、溶液のpHは、約8~約11、約8~約10、約8、約9、約10又は約11とすることができる。
【0039】
ここに記載される液体塞栓性ポリマー、溶液及び混合物は、そのポリマーを実質的に分解させることなく滅菌できる。滅菌後、ポリマーの少なくとも約50%、約60%、約70%、約80%、約90%、約95%、約99%又は約100%は、無傷のままであり得る。一の実施態様において、滅菌は、オートクレーブ処理によるものとすることができ、ポリマーの投与前に利用できる。
【0040】
液体塞栓性ポリマー製剤は、針及びシリンジを用いてバイアルから取り除くことができ、シリンジは送達デバイス又はカテーテルに後で接続できる。或いは、液体塞栓性ポリマー製剤は送達シリンジ中に予め包装され得る。
【0041】
早過ぎる液体塞栓性ポリマーの堆積を防ぐため、送達デバイス又はカテーテルに、液体塞栓性ポリマーを溶解するために使用したものと同一のフラッシング溶液或いは同様の水混和性有機溶媒及び/又は非生理的なpHの水溶液を急速投与により入れることができる。このフラッシングは、液体塞栓性ポリマーによる送達カテーテルの詰まりを防ぐことができる。次いで、液体塞栓性製剤を含有するシリンジを、マイクロカテーテル、カニューレ等の送達カテーテルの近接端部に接続でき、その望ましい解剖学的位置に設置できる。
【0042】
液体塞栓性製剤を注入するにつれて、マイクロカテーテルから溶媒フラッシング溶液を押し出すことができる。次いで、液体塞栓性ポリマーの溶解性は、生理的条件にさらされるので急速に変化し得る。送達カテーテル内部での液体塞栓性製剤の進行は、選択された共有結合している1種又は複数種の可視化剤に適合した画像化技術によって観察できる。注入を続けることで、液体塞栓性製剤は、標的の送達部位に固体の塊として入ることができる。
【0043】
生理的条件の水性は、液体塞栓性ポリマーの溶解性を低下させることができ、水混和性の有機溶媒から沈殿させることができる。代わりに又は上記生理的条件の水性に加えて、生体組織の大きな緩衝能力は、その液体のpHを急速に変えることができ、それ故に、液体塞栓性ポリマーの溶解性を低下させ、溶液から沈殿させる。沈殿した液体塞栓性ポリマーは、標的部位の閉塞を提供することができる。
【0044】
時間が経つにつれて、液体塞栓性ポリマーに可視化剤を結合する生分解性結合を切断でき、液体塞栓性ポリマーの可視化を減少できる。一部の実施態様においては、生分解可能なように結合した可視化剤の約40%、約50%、約60%、約70%、約80%、約90%、約95%、約99%又は約100%を約5日、約2週、約1月、約2月、約6月、約9月、約1年、約2年、約5年、約10年又は約20年後に無傷のままであり得る。ポリマーは、速く又はゆっくりと分解させるように微調整できる。
【0045】
沈殿し固化した液体塞栓性ポリマーは、標的部位の長期間閉塞を提供することができる。沈殿した液体塞栓性ポリマーは、埋め込まれた時点で実質的に安定な状態を保つことができる。例えば、液体塞栓性ポリマーは、少なくとも約5日、約2週、約1月、約2月、約6月、約9月、約1年、約2年、約5年、約10年又は約20年後に、60%、70%、80%、90%、95%若しくは99%より大きく又はほぼ100%無傷のままであり得る。
【0046】
一部の実施態様においては、沈殿した液体塞栓性ポリマー全体が時間と共に分解されるのが望ましい場合がある。かかる実施態様において、液体塞栓性ポリマーは、少なくとも約5日、約2週、約1月、約2月、約6月、約9月、約1年、約2年又は約5年後に、40%、30%、20%、10%、5%又は1%未満が無傷である状態に分解し得る。
【0047】
更に、液体塞栓性ポリマーは、沈殿した時点で、組織に固着し及び/又は組織との摩擦や循環血液の力によって適切な位置にとどまるのに十分な粘着性を有し得る。他の実施態様において、沈殿したポリマーは、血液の流れ及び圧力によって適切な位置に保持される血管の栓として作用することができる。
【0048】
ここに記載される一の実施態様においては、液体塞栓性ポリマーが、2-オキソ-2-(1-オキソ-1-(1-オキソ-1-(2,4,6-トリヨードフェノキシ)プロパン-2-イルオキシ)プロパン-2-イルオキシ)エトキシ)エチルアクリレートと、ヒドロキシエチルメタクリレートと、アゾビスイソブチロニトリルとの反応生成物を含む。他の実施態様においては、液体塞栓性ポリマーが、約75%~約98%の2-オキソ-2-(1-オキソ-1-(1-オキソ-1-(2,4,6-トリヨードフェノキシ)プロパン-2-イルオキシ)プロパン-2-イルオキシ)エトキシ)エチルアクリレートと、約2%~約25%のヒドロキシエチルメタクリレートと、約1%未満のアゾビスイソブチロニトリルとの反応生成物を含む。更に他の実施態様においては、液体塞栓性ポリマーが、約85%~約98%の2-オキソ-2-(1-オキソ-1-(1-オキソ-1-(2,4,6-トリヨードフェノキシ)プロパン-2-イルオキシ)プロパン-2-イルオキシ)エトキシ)エチルアクリレートと、約2%~約15%のヒドロキシエチルメタクリレートと、約1%未満のアゾビスイソブチロニトリルとの反応生成物を含む。
【0049】
ここに記載される他の実施態様においては、液体塞栓性ポリマーが、1-((2-(メタクリロイルオキシ)エトキシ)カルボニルオキシ)エチル3,5-ジアセトアミド-2,4,6-トリヨードベンゾエートと、ヒドロキシエチルメタクリレートと、アゾビスイソブチロニトリルとの反応生成物を含む。他の実施態様においては、液体塞栓性ポリマーが、約85%~約98%の1-((2-(メタクリロイルオキシ)エトキシ)カルボニルオキシ)エチル3,5-ジアセトアミド-2,4,6-トリヨードベンゾエートと、約2%~約15%のヒドロキシエチルメタクリレートと、約1%未満のアゾビスイソブチロニトリルとの反応生成物を含む。
【0050】
ここに記載される更に他の実施態様においては、液体塞栓性ポリマーが、1-((2-(メタクリロイルオキシ)エトキシ)カルボニルオキシ)エチル3,5-ジアセトアミド-2,4,6-トリヨードベンゾエートと、N-(3-アミノプロピル)メタクリルアミド塩酸塩と、アゾビスイソブチロニトリルとの反応生成物を含む。他の実施態様においては、液体塞栓性ポリマーが、約74%の1-((2-(メタクリロイルオキシ)エトキシ)カルボニルオキシ)エチル3,5-ジアセトアミド-2,4,6-トリヨードベンゾエートと、約26%のN-(3-アミノプロピル)メタクリルアミド塩酸塩と、約1%未満のアゾビスイソブチロニトリルとの反応生成物を含む。
【実施例0051】
実施例1
ヨウ素含有モノマーの調製
A.トルエン250mLに、2,4,6-トリヨードフェノール15g、3,6-ジメチル-1,4-ジオキサン-2,5-ジオン22.9g及び第一スズオクトエート25μLを加えた。その溶液を18時間還流させた。その溶液を25℃に冷却した後、トルエン50mLに溶解した塩化アクリロイル3mL及びトリエチルアミン5.2mLを加えた。その混合物を5時間撹拌し、ろ過し、水で洗浄し、真空下で乾燥させた。
【0052】
B.トルエン2400mLに、2,4,6-トリヨードフェノール120.0g、3,6-ジメチル-1,4-ジオキサン-2,5-ジオン73.2g、グリコリド29.4g及び第一スズオクトエート200μLを加えた。その溶液を24時間還流させた。その溶液を25℃に冷却した後、塩化アクリロイル24.8mL及びトリエチルアミン42.4mLを加えた。その混合物を18時間撹拌し、ろ過し、真空下で乾燥させた。
【0053】
実施例2
ガドリニウム含有モノマーの調製
ジメチルホルムアミド50mLに、ガドリニウムジエチレントリアミン五酢酸17.5g、3,6-ジメチル-1,4-ジオキサン-2,5-ジオン13g及び第一スズオクトエート25μLを加えた。その溶液を18時間還流させた。その溶液を10℃に冷却した後、ジメチルホルムアミド50mLに溶解した塩化アクリロイル3mL及びトリエチルアミン5.2mLを加えた。その混合物を18時間撹拌し、ろ過し、その溶媒を除去した。
【0054】
実施例3
他のヨウ素含有モノマーの調製
メタノール400mLに、ジアトリゾ酸104g(170mmol)を加え、次いで炭酸セシウム28g(65mmol)を加えた。45分間撹拌した後、メタノールを真空中で除去し、その固体をジエチルエーテル500mL中に懸濁させた。次いで、固体をブフナー漏斗上に集めて、真空中で乾燥させ、ジアトリゾ酸セシウム120g(95%)を得た。
【0055】
乾燥エーテル1000mL中におけるHEMA24mL(200mmol)に、ピリジン16.8mL(213mmol)をアルゴン下4~10℃にて加えた。この溶液に、1-クロロエチルクロロカーボネート21.3mL(200mmol)を、撹拌下0.5時間かけて滴下しながら加えた。4~10℃にて0.5時間撹拌した後、重い沈殿物をろ過により取り除き、ろ液を真空中でオイルに濃縮し、HEMA-1-クロロエチルカーボネート44g(100%)を得た。
【0056】
無水DMF400mL中におけるHEMA-1-クロロエチルカーボネート44g(200mmol)に、アルゴン下100℃にて適切に撹拌しながら、ジアトリゾ酸セシウム30g(40mmol)を加えた。15分後、Ar下100℃にて適切に撹拌しながら、ジアトリゾ酸セシウムを更に40g(54mmol)を加え、次いで、同じ条件下で最後に30g(40mmol)を加えた。合計110gのジアトリゾ酸セシウム(134mmol)であった。赤褐色の反応混合物を更に1時間100℃にて加熱し、その溶媒を真空中で除去した。赤褐色の固体の残留物を乾燥エーテル1000mL中に懸濁させて、ブフナー漏斗上に固体を集めた。固体を真空中で乾燥させた後、それを蒸留水500mL中に2000rpmで懸濁させ、その混合物のpHを炭酸セシウムによって8~9に調整した。10分間撹拌した後、その懸濁液をろ過し、その固体を蒸留水3×100mLで洗浄し、真空中で一晩乾燥させ、細かい粉末に粉砕した。固体の残留物を乾燥エーテル1000mL中に再度懸濁させて、ブフナー漏斗上に固体を集めた。固体を真空中で再度乾燥させ、細かい粉末に再度粉砕した後、それを1.5Kgカラムを用いたシリカゲルクロマトグラフィー及びジクロロメタン中のメタノールの勾配0~10%によって1時間かけて精製した。これにより、非常に薄い黄色の結晶性固体を26g(18%)得た。
【0057】
実施例4
ヨウ素含有ポリマーの調製
A.ジメチルスルホキシド3mLに、平均5つのラクチド単位で伸長され且つアクリレートでキャップしたトリヨードフェノール鎖1.8g、ヒドロキシエチルメタクリレート0.2g及びアゾビスイソブチロニトリル10mgを加えた。全成分を完全に溶解させ、その溶液を80℃にて4時間置いた。室温に冷却した後、エチルエーテル中での沈殿によってポリマーを回収し、真空下で乾燥させた。
【0058】
B.10mLバイアルにジメチルスルホキシド3mL、実施例1Bで調製されたヨウ素モノマー1.7g、ヒドロキシエチルメタクリレート0.3g、及びアゾビスイソブチロニトリル10mgを加えた。全成分を完全に溶解し、そのバイアルを脱気し、アルゴンを注入した。次いで、その溶液を80℃のオーブンに48時間置き、重合させた。室温に冷却した後、エチルエーテル中での沈殿によってポリマーを回収し、真空下で乾燥させた。次いで、それをTHF中に溶解し、シリカカラム上でフラッシュして、その後、THF中に再溶解した。次いで、それを水中で沈殿させ、その後、凍結乾燥し、乾燥ポリマー生成物を得た。
【0059】
実施例5
ヨウ素含有ポリマーの調製
ジメチルホルムアミド14gに、実施例3で調製されたヨウ素含有モノマー8g、ヒドロキシエチルメタクリレート1.4g及びアゾビスイソブチロニトリル47mgを加えた。全成分を完全に溶解し、その溶液を80℃にて48時間置いた。室温に冷却した後、エチルエーテル中での沈殿によってポリマーを回収し、真空下で乾燥させた。
【0060】
実施例6
ヨウ素含有ポリマーの調製
n-メチル-2-ピロリドン6gに、実施例3で調製されたヨウ素含有モノマー1.7g、アミノプロピルメタクリルアミド0.25g及びアゾビスイソブチロニトリル10mgを加えた。全成分を完全に溶解し、その溶液を80℃にて8時間置いた。室温に冷却した後、エチルエーテル中での沈殿によってポリマーを回収し、真空下で乾燥させた。
【0061】
実施例7
沈殿
ヨウ素含有ポリマーをそれぞれの溶媒に溶解した。例えば、水溶性ポリマーをpH3の緩衝溶液に溶解し、有機溶解性のヨウ素含有ポリマーをジメチルスルホキシドに溶解した。その溶液を0.1Mのリン酸緩衝生理食塩水中に分注した。形成された沈殿物を1~5にランク付けした。1が最も粘着性が低く、5が最も粘着性が高い。
【表1】
上記の例は、粘着性の変化が製剤の変化によって達成できることを示す。
【0062】
実施例8
流れ
流れモデルにおいて、0.017’’I.D.マイクロカテーテルを通して液体塞栓性製剤を送達した。粘着性、注入圧力、栓の形成及び沈殿速度について、視覚的に製剤を評価した。沈殿速度をゆっくり、中間及び速いにランク付けした。他のすべてを1~5にランク付けした。1が最も望ましくなく、5が最も望ましい。
【表2】
上記の例は、流れ特性の変化が製剤の変化によって達成できることを示す。
【0063】
実施例9
液体塞栓性製剤の調製
ジメチルスルホキシド9gに実施例3のポリマー1gを加えた。次いで、その液体塞栓性製剤をバイアル中にアリコートして蓋をした。そのバイアルに121℃で15分間オートクレーブ処理をした。
【0064】
実施例10
ポリマーのヨウ素含有量の滴定
実施例1及び3に記載される技術を用いて、表中に記載されるポリマーを調製した。誘導結合プラズマ-質量分析技術を用いてポリマーのヨウ素含有量を調べた。
【表3】
【0065】
上記表の結果は、ポリマーの調製に用いたヨウ素含有モノマーの量によって液体塞栓性ポリマーのヨウ素含有量をどのように制御できるかを示す。
【0066】
実施例11
液体塞栓性デバイスのインビボでの評価-ウサギの腎臓
実施例4、5及び6の技術に従って調製された液体塞栓性製剤をウサギの腎臓の塞栓に利用した。処置前(
図1)と処置後(
図2)双方の腎臓において血管造影法の閉塞が得られた。図に示されるように、腎臓への血流は、実質的に枯渇しており、
図2において塞栓性ポリマーに置換されている。
図2の血管は血管造影図において見ることができる。
【0067】
実施例12
液体塞栓性デバイスのCT評価
実施例1、2及び3の技術に従って調製された液体塞栓性製剤をウサギの腎血管系の塞栓に利用した。処置の終わりに、CTスキャナーを用いてウサギを画像化した。
図1における腎臓への血流を
図3におけるCTで見える塞栓性ポリマーで満たした血管系と比較すると、
図1の血流が
図3において塞栓性ポリマーに置換されたことが明らかである。
【0068】
実施例13
液体塞栓性デバイスのMR評価
実施例1、2及び3の技術に従って調製された液体塞栓性製剤をウサギの腎血管系の塞栓に利用した。処置の終わりに、MRスキャナーを用いてウサギを画像化した。
図4は、血管造影図で見える液体塞栓性ポリマーによる血流の目に見える置換を含む腎臓の血管造影図を示す。
図5は、MR血管造影法下での塞栓性ポリマーの視覚性を示す。
【0069】
別段の指示がない限り、明細書及び特許請求の範囲において使用される成分の量、分子量等の性質、反応条件等を表現するすべての数字は、すべての場合において「約(about)」の用語によって修飾されるものとして理解されることになる。従って、逆の指示がない限り、明細書及び添付の特許請求の範囲において示される数値パラメータは、本発明が得ようとする望ましい特性によって変わり得る近似値である。少なくとも、均等論の適用を特許請求の範囲の範囲に限定しようとする試みとしてではなく、それぞれの数値パラメータは、少なくとも、報告された重要な数字の数を考慮し、通常の丸め技術を適用することによって、解釈されるべきである。本発明の広範な範囲を示す数値範囲及びパラメータが近似値であるにもかかわらず、具体例に示される数値はできるだけ正確に報告される。しかしながら、どんな数値も、それぞれの試験測定で見られる標準偏差に必然的に由来する特定の誤差を本質的に含む。
【0070】
本発明を説明する文脈(特には以下に示す特許請求の範囲の文脈)で使用される「a」、「an」、「the」の用語及び類似の指示対象は、ここで別段の指示がない限り又は文脈によって明らかに矛盾しない限り、単数と複数の両方をカバーするものと解釈される。ここでの数値範囲の記載は、その範囲内にある個々の値を別々に指している簡単な方法としての役割を果たすことを目的としているにすぎない。ここで別段の指示がない限り、個々の値は、まるでここで個々に記載されるかのように、明細書中に組み込まれる。ここに記載されるすべての方法は、ここで別段の指示がないか又はそうでなければ文脈によって明らかに矛盾しない限り、適切な任意の順番で行うことができる。あらゆるすべての例、又はここに提供される例示の言葉(例えば「such as」)の使用は、本発明を更に説明することだけを目的とするものであり、他の形で請求される本発明の範囲に限定を課すものではない。明細書には、請求されていないが本発明の実施にとって欠くことのできないあらゆる要素を示すものとして解釈されるべき言葉はない。
【0071】
ここに開示される本発明の代わりの要素又は実施態様のクループ化は限定として解釈されるものではない。各グループのメンバーは、個々に又は該グループの他のメンバー若しくはここで見られる他の要素との任意の組み合わせで言及及び請求されてもよい。グループの1つ以上のメンバーを、利便性及び/又は特許性の理由で、グループに含めてもよいし、グループから削除してもよいと予期される。このような包含又は削除が起こる場合、その明細書は、修正されたグループを包含するものとみなされ、それ故に、添付の特許請求の範囲において使用されるすべてのマーカッシュグループの記載を満たす。
【0072】
特定の実施態様は、本発明者が知っている本発明を行うための最良の形態を含めて、ここに記載される。当然、これらの記載された実施態様の変化は、前述の記載を読むと、当業者にとって明らかになる。本発明者は、当業者に、必要に応じてこのような変化を用いることを期待しており、本発明者は、本発明がここに具体的に記載される以外の方法で実施されることを意図する。従って、本発明者は、適用法で認められるようにここに添付された特許請求の範囲に記載される特徴事項のすべての変更及び同等物を含む。更に、その見込まれるすべての変形における上述の要素のどんな組み合わせも、ここで別段の指示がないか又はそうでなければ文脈によって明らかに矛盾しない限り、本発明によって包含される。
【0073】
最後に、ここに開示される本発明の実施態様は本発明の原則を説明していると理解されるべきである。採用できる他の変更は本発明の範囲内にある。それ故、例として、限定ではないが、本発明の代わりの形態をここでの教示に従って利用してもよい。従って、本発明は、まさに示され記載されるようなものに限定されるものではない。
【0074】
[付記]
[付記1]
可視化剤への生分解性結合を有する生体適合性ポリマーと、
非生理溶液と、
を含むポリマー組成物であって、
前記生体適合性ポリマーが、前記非生理溶液には溶解するが生理溶液には溶解しない、ポリマー組成物。
【0075】
[付記2]
前記生分解性結合が、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5、配列番号6、配列番号7、配列番号8、配列番号9、配列番号10、配列番号11、又は配列番号12である、付記1に記載のポリマー組成物。
【0076】
[付記3]
前記生分解性結合がエステル又はポリエステルである、付記1に記載のポリマー組成物。
【0077】
[付記4]
前記可視化剤がヨウ素化合物である、付記1~3のいずれか一つに記載のポリマー組成物。
【0078】
[付記5]
前記生体適合性ポリマーが2種以上の異なるモノマーの反応生成物である、付記1~4のいずれか一つに記載のポリマー組成物。
【0079】
[付記6]
前記非生理溶液が水混和性である、付記1~5のいずれか一つに記載のポリマー組成物。
【0080】
[付記7]
水混和性の溶媒の濃度が約1%~約25%である、付記6に記載のポリマー組成物。
【0081】
[付記8]
イオン性の基を含むモノマーを更に含む、付記1~7のいずれか一つに記載のポリマー組成物。
【0082】
[付記9]
前記非生理溶液のpHが約5未満であるか又は約8より大きい、付記1~7のいずれか一つに記載のポリマー組成物。
【0083】
[付記10]
前記生体適合性ポリマーの濃度が約1%w/w~約50%w/wである、付記1~9のいずれか一つに記載のポリマー組成物。
【0084】
[付記11]
約75%~約98%の2-オキソ-2-(1-オキソ-1-(1-オキソ-1-(2,4,6-トリヨードフェノキシ)プロパン-2-イルオキシ)プロパン-2-イルオキシ)エトキシ)エチルアクリレートと、約2%~約25%のヒドロキシエチルメタクリレートと、約1%未満のアゾビスイソブチロニトリルとの反応生成物を含む、付記1~10のいずれか一つに記載のポリマー組成物。
【0085】
[付記12]
約85%~約98%の1-((2-(メタクリロイルオキシ)エトキシ)カルボニルオキシ)エチル3,5-ジアセトアミド-2,4,6-トリヨードベンゾエートと、約2%~約15%のヒドロキシエチルメタクリレートと、約1%未満のアゾビスイソブチロニトリルとの反応生成物を含む、付記1~11のいずれか一つに記載のポリマー組成物。
【0086】
[付記13]
第一の非生理水溶液と、
可視化剤への生分解性結合を有する、濃度が約1%~50%w/wである、生体適合性ポリマーであって、第一の水溶液には溶解するが第二の生理水溶液には溶解しない、生体適合性ポリマーと、
を含む、血管の欠陥を埋めるための組成物。
【0087】
[付記14]
送達デバイスを通して、生理環境中に、可視化剤への生分解性結合を有する生体適合性ポリマーと水混和性溶媒とを含む液体塞栓性組成物を注入することを含み、
前記生体適合性ポリマーが生理環境に達すると沈殿して血管障害を治療する、
血管障害を治療する方法。
【0088】
[付記15]
前記生分解性結合が、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5、配列番号6、配列番号7、配列番号8、配列番号9、配列番号10、配列番号11、又は配列番号12である、付記14に記載の方法。
【0089】
[付記16]
前記生分解性結合がエステル又はポリエステルである、付記14又は15に記載の方法。
【0090】
[付記17]
前記可視化剤がヨウ素化合物である、付記14~16のいずれか一つに記載の方法。
【0091】
[付記18]
前記生体適合性ポリマーが2種以上の異なるモノマーの反応生成物である、付記14~17のいずれか一つに記載の方法。
【0092】
[付記19]
前記水混和性溶媒の濃度が約1%~約25%である、付記14~18のいずれか一つに記載の方法。
【0093】
[付記20]
前記生体適合性ポリマーが、少なくとも一種のイオン性の官能基を有するモノマーを含む、付記14~19のいずれか一つに記載の方法。
【0094】
[付記21]
前記水混和性溶媒のpHが約5未満である、付記14~20のいずれか一つに記載の方法。
【0095】
[付記22]
前記水混和性溶媒のpHが約8より大きい、付記12~18のいずれか一つに記載の方法。
【0096】
[付記23]
前記生体適合性ポリマーの濃度が約1%w/w~約50%w/wである、付記14~22のいずれか一つに記載の方法。
【0097】
[付記24]
血管障害を治療する方法であって、
可視化剤への生分解性結合を有する生体適合性ポリマーと水混和性溶媒とを含む液体塞栓性組成物であって、前記生体適合性ポリマーが前記水混和性溶媒には溶解するが生理環境には溶解しない液体塞栓性組成物を準備することと、
送達デバイスを血管中に挿入することと、
治療が必要である領域に前記送達デバイスを導くことと、
前記送達デバイスを通して、血管中の治療が必要である領域に、液体塞栓性ポリマー組成物を注入し、それにより、前記生体適合性ポリマーを速やかに沈殿させて固体のポリマー塊を形成させることと、
血管の状態を治療することと、
を含む、方法。
【0098】
[付記25]
付記14~24に従う、血管障害を治療する方法。
【0099】
[付記26]
ここに記載される液体塞栓性ポリマーを作る方法。
【0100】
[付記27]
ここに記載される液体塞栓性ポリマー溶液を作る方法。
【0101】
[付記28]
ここに記載される液体塞栓性組成物。
【0102】
[付記29]
ここに記載されるポリマー組成物。