IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エヌ・ティ・ティ・コミュニケーションズ株式会社の特許一覧

特開2022-93001情報処理装置、情報処理方法および情報処理プログラム
<>
  • 特開-情報処理装置、情報処理方法および情報処理プログラム 図1
  • 特開-情報処理装置、情報処理方法および情報処理プログラム 図2
  • 特開-情報処理装置、情報処理方法および情報処理プログラム 図3
  • 特開-情報処理装置、情報処理方法および情報処理プログラム 図4
  • 特開-情報処理装置、情報処理方法および情報処理プログラム 図5
  • 特開-情報処理装置、情報処理方法および情報処理プログラム 図6
  • 特開-情報処理装置、情報処理方法および情報処理プログラム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022093001
(43)【公開日】2022-06-23
(54)【発明の名称】情報処理装置、情報処理方法および情報処理プログラム
(51)【国際特許分類】
   G06F 16/53 20190101AFI20220616BHJP
   G06Q 30/06 20120101ALI20220616BHJP
【FI】
G06F16/53
G06Q30/06 330
【審査請求】有
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2020206051
(22)【出願日】2020-12-11
(71)【出願人】
【識別番号】399035766
【氏名又は名称】エヌ・ティ・ティ・コミュニケーションズ株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】特許業務法人酒井国際特許事務所
(72)【発明者】
【氏名】田中 亮
【テーマコード(参考)】
5B175
5L049
【Fターム(参考)】
5B175DA02
5B175HB03
5B175JC04
5L049BB47
(57)【要約】
【課題】インターネットショッピングにおいて、より信頼度の高い商品レコメンドをユーザに提供することができる。
【解決手段】情報処理装置10は、ユーザの顔を含む画像に関わる情報を取得する取得部15aと、取得部15aによって取得された画像に関わる情報に基づいて、画像の特徴と類似している画像を検索する検索部15bと、検索部15bによって検索された画像に含まれる人物を特定する特定部15cと、特定部15cによって特定された人物に関する商品の情報を出力する出力部15dとを備える。
【選択図】図2
【特許請求の範囲】
【請求項1】
ユーザの顔を含む画像に関わる情報を取得する取得部と、
前記取得部によって取得された前記情報に基づいて、前記画像の特徴と類似している画像を検索する検索部と、
前記検索部によって検索された画像に含まれる人物を特定する特定部と、
前記特定部によって特定された人物に関する商品の情報を出力する出力部と
を備えることを特徴とする情報処理装置。
【請求項2】
前記検索部は、前記特徴として、前記ユーザの顔の部位ごとに類似している画像を検索することを特徴とする請求項1に記載の情報処理装置。
【請求項3】
前記検索部は、前記ユーザが指定した検索対象から前記類似している画像を検索することを特徴とする請求項1に記載の情報処理装置。
【請求項4】
前記検索部は、前記ユーザが指定した人物を含む画像を検索することを特徴とする請求項1に記載の情報処理装置。
【請求項5】
前記特定部は、前記特定した人物をさらに所定の方式で順位付けすることを特徴とする請求項1に記載の情報処理装置。
【請求項6】
前記特定部は、前記ユーザと前記特定した人物との差分をさらに特定し、
前記出力部は、前記特定部によって特定された前記差分に基づいて、前記商品の情報を出力することを特徴とする請求項1に記載の情報処理装置。
【請求項7】
情報処理装置によって実行される情報処理方法であって、
ユーザの顔を含む画像に関わる情報を取得する取得工程と、
前記取得工程によって取得された前記情報に基づいて、前記画像の特徴と類似している画像を検索する検索工程と、
前記検索工程によって検索された画像に含まれる人物を特定する特定工程と、
前記特定工程によって特定された人物に関する商品の情報を出力する出力工程と
を含むことを特徴とする情報処理方法。
【請求項8】
ユーザの顔を含む画像に関わる情報を取得する取得ステップと、
前記取得ステップによって取得された前記情報に基づいて、前記画像の特徴と類似している画像を検索する検索ステップと、
前記検索ステップによって検索された画像に含まれる人物を特定する特定ステップと、
前記特定ステップによって特定された人物に関する商品の情報を出力する出力ステップと
をコンピュータに実行させることを特徴とする情報処理プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理装置、情報処理方法および情報処理プログラムに関する。
【背景技術】
【0002】
近年、顔認識AI(Artificial Intelligence:人工知能)を利用することにより、個人の認証システムやイベント会場のセキュリティ強化等に活用されている。ここで、顔認識機能の仕組みは、まず、入力画像が顔認識アルゴリズムに送られ、次に、顔認識アルゴリズムが入力画像に対する顔の埋め込みを作成し、最後に、顔認識アルゴリズムが入力画像の顔の埋め込みをデータベース内の顔の埋め込みと比較するというものである。
【0003】
顔の埋め込みの作成では、アルゴリズムが顔を比較できるようにするために、顔画像をアルゴリズムが理解可能なデータに変換する必要がある。そのために、システムは顔の特徴やランドマーク(目印)に基づいた測定値を計算する。これらのランドマークを利用して、顔認識アルゴリズムは各画像独自の顔の埋め込みを作成することができる。
【0004】
従来、顔認識AIを活用した技術として、顧客(以下、適宜「ユーザ」)の性別や年齢層、感情を推定することにより、実店舗の環境下でも、売り場の客層や会話の中からユーザのニーズを効果的に把握する技術も存在する。
【0005】
一方、インターネットを利用したショッピング(以下、適宜「インターネットショッピング」)が増加することにより、ユーザに適切な商品をレコメンド(推奨)するレコメンド機能の必要性も増大している。ここで、商品のレコメンド機能の仕組みとして、レコメンドエンジンのベースとなる数パターンの技術が知られている。具体的には、ウェブアクセス履歴やユーザの行動履歴に基づいて商品をレコメンドする「協調フィルタリング」や、商品の属性情報とユーザの好みの関連性をベースにする「コンテンツベース・フィルタリング」や、複数の技術を組み合わせたレコメンデーションのシステムである「ハイブリッド・タイプ」等が用いられている。
【0006】
従来、インターネットショッピングにおけるレコメンド機能として、商品の価格やユーザの予算、ユーザの嗜好等を考慮することにより、ユーザの所持金に応じた有益なレコメンドコンテンツを提案する技術も存在する(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2013-109585号公開
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上述した従来技術では、インターネットショッピングにおいて、より信頼度の高い商品レコメンドをユーザに提供することができない。例えば、衣類やアクセサリーをインターネットで購入したい場合、ユーザに似合うかどうか、ユーザの好みに合うかどうかを効果的にレコメンドすることができない。また、ユーザの写真、ユーザの身長や体重、ユーザの好み等の情報を実店舗の店員に送信し、商品レコメンドを受けることも考えられるが、対応可能時間やレコメンドを受けるまでに時間がかかる等の時間的な制約がある。また、必ずしもユーザの要望が反映されるとは限らず、プライバシー保護の観点からも問題がある。
【課題を解決するための手段】
【0009】
上述した課題を解決し、目的を達成するために、本発明に係る情報処理装置は、ユーザの顔を含む画像に関わる情報を取得する取得部と、前記取得部によって取得された前記情報に基づいて、前記画像の特徴と類似している画像を検索する検索部と、前記検索部によって検索された画像に含まれる人物を特定する特定部と、前記特定部によって特定された人物に関する商品の情報を出力する出力部とを備えることを特徴とする。
【0010】
また、本発明に係る情報処理方法は、情報処理装置によって実行される情報処理方法であって、ユーザの顔を含む画像に関わる情報を取得する取得工程と、前記取得工程によって取得された前記情報に基づいて、前記画像の特徴と類似している画像を検索する検索工程と、前記検索工程によって検索された画像に含まれる人物を特定する特定工程と、前記特定工程によって特定された人物に関する商品の情報を出力する出力工程とを含むことを特徴とする。
【0011】
また、本発明に係る情報処理プログラムは、ユーザの顔を含む画像に関わる情報を取得する取得ステップと、前記取得ステップによって取得された前記情報に基づいて、前記画像の特徴と類似している画像を検索する検索ステップと、前記検索ステップによって検索された画像に含まれる人物を特定する特定ステップと、前記特定ステップによって特定された人物に関する商品の情報を出力する出力ステップとをコンピュータに実行させることを特徴とする。
【発明の効果】
【0012】
本発明では、インターネットショッピングにおいて、より信頼度の高い商品レコメンドをユーザに提供することができる。
【図面の簡単な説明】
【0013】
図1図1は、第1の実施形態に係る情報処理システムの構成例を示す図である。
図2図2は、第1の実施形態に係る情報処理装置の構成例を示すブロック図である。
図3図3は、第1の実施形態に係るレコメンド処理の一例を示す図である。
図4図4は、第1の実施形態に係るレコメンド処理の一例を示す図である。
図5図5は、第1の実施形態に係るレコメンド処理の一例を示す図である。
図6図6は、第1の実施形態に係る情報処理の流れの一例を示すフローチャートである。
図7図7は、プログラムを実行するコンピュータを示す図である。
【発明を実施するための形態】
【0014】
以下に、本発明に係る情報処理装置、情報処理方法および情報処理プログラムの実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下に説明する実施形態により限定されるものではない。
【0015】
〔第1の実施形態〕
以下に、本実施形態に係る情報処理システムの構成、情報処理装置の構成、レコメンド処理、情報処理の流れを順に説明し、最後に本実施形態の効果を説明する。
【0016】
[情報処理システムの構成]
図1を用いて、本実施形態に係る情報処理システム(適宜、本システム)100の構成を詳細に説明する。図1は、第1の実施形態に係る情報処理システムの構成例を示す図である。情報処理システム100は、情報処理装置10としてサーバ、ユーザPC(Personal Computer)20(適宜、ユーザ20)、ウェブサイト30A、SNS(Social Networking Service)30Bおよびデータベース30Cを有する。
【0017】
ここで、サーバ10、ユーザPC20、ウェブサイト30A、SNS30Bおよびデータベース30Cは、それぞれ通信ネットワークを介して接続されている。なお、検索対象であるウェブサイト30A、SNS30Bおよびデータベース30Cに共通の事項について説明する場合には、単に検索対象30と表記する。
【0018】
まず、ユーザPC20は、ユーザの顔を含む画像(適宜、「ユーザの画像」)21や画像以外のユーザの情報(適宜、「ユーザの情報」)22等を取得する。ここで、ユーザの顔を含む画像とは、少なくともユーザの顔全体が認識できるように含まれる画像であり、写真、描画データの他、動画データから取得される静止画像等も含まれる。また、ユーザの情報とは、ユーザの身長、体重等の身体的な情報の他、ユーザの好む衣類、アクセサリー等の種類、色彩、ブランド名等の個人的な嗜好や、購入に際しての予算等も含まれる。
【0019】
また、ユーザPC20は、ユーザの画像からユーザの顔を含む画像に関する情報(適宜、「ユーザの画像情報」)を抽出する(図1の(1)参照)。ここで、ユーザの顔を含む画像に関する情報とは、ユーザの画像データの他、顔の部位の特徴量、体形等の特徴量、着用している衣類やアクセサリーの種類や色彩等の情報である。
【0020】
さらに、ユーザPC20は、ユーザの画像情報21からユーザの情報22を取得することもできる。例えば、ユーザPC20は、ユーザの全身が写った写真データから、ユーザの身長、体重、好みの色等を予測して、ユーザの情報として取得することもできる。なお、ユーザPC20は、ユーザの画像やユーザの情報を直接入力や取込によって取得する他、他の端末から取得してもよい。
【0021】
次に、サーバ10は、ユーザの画像情報21やユーザの情報22等をユーザPC20から取得する(図1の(2)参照)。このとき、サーバ10は、ユーザPC20からユーザの画像を直接取得して、ユーザの画像情報21やユーザの情報22を抽出することもできる。なお、サーバ10は、ユーザの画像情報やユーザの情報等を、ユーザPC20以外の端末から取得してもよいし、後述のサーバ10の記憶部14から取得してもよい。
【0022】
続いて、サーバ10は、ユーザの画像情報やユーザの情報をもとに、検索対象30(ウェブサイト30A、SNS30B、データベース30C)からユーザに類似した有名人を含む画像を検索し、その人物を特定する(図1の(3)参照)。このとき、サーバ10は、上記の検索対象30に含まれる有名人の顔の部位の特徴量や体形等の特徴量を抽出し、当該特徴量とユーザの特徴量の数値を比較し、特徴量が近い有名人をユーザと類似していると判断する。なお、サーバ10は、抽出した有名人の顔の部位の特徴量を記憶部14に記憶してもよいし、他のデータベースに格納してもよい。
【0023】
また、サーバ10が検索し、特定する人物31は、ウェブサイト上で自らの写真を公開している芸能人やファッションモデル等の有名人の他にも、SNS上で自らの写真を公開している一般人でもよく、特に限定されない。なお、サーバ10は、ユーザに類似した有名人を含む画像を、上記の検索対象30以外から検索してもよいし、後述のサーバ10の記憶部14から検索してもよい。
【0024】
最後に、サーバ10は、特定した有名人の使用している商品を検索対象30から検索し、ユーザPC20にレコメンド商品32として表示する(図1の(4)参照)。ここで、レコメンドする商品は、特定した有名人がテレビコマーシャル等において使用している商品の他、SNS上の画像において使用している商品でもよく、特に限定されない。また、サーバ10は、有名人が仕事の際に使用している商品よりも、プライベートで使用している商品を優先して、商品を検索対象30から検索することもできる。
【0025】
なお、サーバ10は、特定した有名人の使用している商品を、上記の検索対象30以外から検索してもよいし、後述のサーバ10の記憶部14から検索してもよい。また、サーバ10は、ユーザPC20に商品の画像や商品名等のみを表示してもよいし、画像や商品名等とともに、当該商品を購入できるショッピングサイトへのリンクを表示してもよい。
【0026】
本実施形態に係る情報処理システム100では、ユーザは所有するユーザPC20からシステムを利用する。ユーザはユーザPC20にユーザの画像やユーザの情報を取り込ませる。ユーザPC20は、ユーザの画像を顔認識技術によって分析し、ユーザの画像からユーザの画像情報を抽出する。サーバ10は、ユーザの画像情報やユーザの情報を取得し、ウェブ上からユーザの顔に似ている有名人31の画像を検索し、その有名人31が使用している衣類やアクセサリー等の商品をレコメンド商品32としてユーザPC20に表示する。
【0027】
また、本システム100では、特定した人物31とユーザとの類似の度合いを判定したり、ユーザが指定した範囲で有名人を検索したり、商品のレコメンドとともに使用方法のアドバイスを表示したりすることもできる。このため、本システム100では、インターネットショッピングにおいて、利用する時間や利用する回数を気にすることなく、信頼性の高いレコメンドの提供を受けることができる。また、本システム100では、インターネットショッピングにおいて、直接ユーザの画像を送信する必要がないため、プライバシー等を気にすることなく、信頼度の高いレコメンドの提供を受けることができる。
【0028】
[情報処理装置の構成]
図2を用いて、本実施形態に係る情報処理装置10の構成を詳細に説明する。図2は、第1の実施形態に係る情報処理装置の構成例を示すブロック図である。情報処理装置10は、入力部11、表示部12、通信部13、記憶部14および制御部15を有する。
【0029】
入力部11は、情報処理装置10への各種情報の入力を司る。入力部11は、例えば、タッチパネル、音声入力デバイス、キーボードやマウス等の入力デバイスによって構成される。表示部12は、情報処理装置10からの各種情報の出力を司る。表示部12は、例えば、液晶ディスプレイ等の表示装置、プリンタ等の印刷装置、情報通信装置等によって構成される。
【0030】
通信部13は、他の装置との間でのデータ通信を司る。例えば、通信部13は、各通信装置との間でデータ通信を行う。また、通信部13は、図示しないオペレータの端末との間でデータ通信を行うことができる。
【0031】
記憶部14は、制御部15が動作する際に参照する各種情報や、制御部15が動作した際に取得した各種情報を記憶する。例えば、記憶部14は、ユーザPC20から取得したユーザの画像情報やユーザの情報、検索対象30から取得した画像や人物、商品の情報等を記憶する。ここで、記憶部14は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置等である。なお、図2の例では、記憶部14は情報処理装置10の内部に設置されているが、情報処理装置10の外部に設置されてもよい。また、複数の記憶部が設置されていてもよい。
【0032】
制御部15は、情報処理装置10全体の制御を司る。制御部15は、取得部15a、検索部15b、特定部15cおよび出力部15dを有する。ここで、制御部15は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等の電子回路やASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路である。
【0033】
取得部15aは、ユーザの顔を含む画像21に関する情報を取得する。また、取得部15aは、画像以外のユーザの情報を取得する。例えば、取得部15aは、ユーザの顔を含む画像に関する情報として、ユーザPC20のカメラによって撮影されたユーザの顔写真の情報の他、ユーザPC20によって抽出されたユーザの目、鼻、口、髪型等の特徴量を取得する。また、取得部15aは、画像以外のユーザの情報として、ユーザの身長、体重、好きな色、SNSのフォローリスト等の情報を取得する。さらに、取得部15aは、取得したユーザの画像やユーザの情報を記憶部14に格納する。
【0034】
検索部15bは、取得部15aによって取得された画像21に関する情報に基づいて、画像21の特徴と類似している画像を検索する。例えば、検索部15bは、取得された画像21の特徴として、ユーザの顔の部位ごとに類似している画像を検索する。ここで、ユーザの顔の部位とは、目、鼻、口、耳、眉毛、輪郭、髪型、髭等のパーツの他、肌の色、しわ、ほくろ、傷あと等の特徴や、眼鏡、髪飾り、イヤリング等のユーザが着用しているものも含まれる。また、検索部15bは、後述の特定部15cが特定した有名人の使用している商品を検索する。
【0035】
さらに、検索部15bは、ユーザが指定した検索対象30から類似している画像を検索する。ここで、検索対象とは、ウェブサイト、SNS、データベース等であるが、特に限定されず、特定の情報を提供するウェブ上のサービスであってもよい。また、検索部15bは、ユーザが指定した人物を含む画像を検索する。例えば、検索部15bは、ユーザがユーザPC20にアプリケーションをインストールしているSNSから類似した画像を優先して検索したり、ユーザがSNSにおいてフォローしている有名人の中から優先して画像を検索したりする。なお、検索部15bが画像、商品等を検索する範囲は、静的に、または動的に変更することができる。
【0036】
特定部15cは、検索部15bによって検索された画像に含まれる人物を特定する。例えば、特定部15cは、顔認識技術を用いて検索された画像に含まれる人物の顔とユーザの顔と比較し、顔の部位ごとの測定値が一定以上近いものを類似している人物として判定する。なお、特定部15cがユーザの顔と類似していると判定するために必要な設定は、静的に、または動的に変更することができる。
【0037】
また、特定部15cは、特定した人物31をさらに所定の方式で順位付けする。例えば、特定部15cは、顔の部位ごとの類似度を点数化し、総スコアが高い順に10人の人物を特定したり、ユーザが指定した有名人等の中で、類似度の最も高い人物をベストの人物、類似度の最も低い人物をワーストの人物として特定したりしてもよいし、総スコアを算出する際に、特定の顔の部位に重み付けすることによって、顔の部位ごとの優先度を変えたりしてもよい。
【0038】
さらに、特定部15cは、ユーザ20と特定した人物31との差分をさらに特定する。例えば、特定部15cは、ユーザの画像から抽出された顔の部位の特徴量等のユーザの画像情報に基づき、ユーザの顔とユーザが指定した人物の顔とを比較し、類似度が最も高い顔の部位と最も低い顔の部位を特定する。
【0039】
出力部15dは、特定部15cによって特定された人物31に関する商品の情報32を出力する。例えば、出力部15dは、特定部15cによって特定され、検索部15bによって商品を検索された有名人の着用している洋服の画像、ブランド名、価格、ホームページのアドレス等を出力する。
【0040】
ここで、商品の情報とは、商品名、商品の画像、価格、メーカー名、製造国名、製造年月日、保証期間、購入サイトのアドレス等の基本的な情報の他、商品の使用方法や保管方法、テレビコマーシャルの動画、購入者のレビュー等の付加的な情報も含まれる。また、当該商品に関わる有名人の独自の当該商品の使用方法や感想等を含んでもよく、特に限定されない。
【0041】
また、出力部15dは、特定部15cによって特定された、ユーザ20と特定された人物31との差分に基づいて、特定された人物31に関する商品の情報32を出力する。例えば、出力部15dは、ユーザ20が指定した有名人において、特定部15cが特定した類似度が最も低い顔の部位について、類似度を高くするために効果的な化粧品やその使用方法を出力する。
【0042】
[レコメンド処理1]
図3を用いて、本実施形態に係るレコメンド処理の一例を詳細に説明する。図3は、第1の実施形態に係るレコメンド処理の一例を示す図である。まず、ユーザ20は、ユーザ20の顔の画像を含むユーザの画像21を入力する(図3の(1)参照)。
【0043】
次に、サーバ等の情報処理装置10は、ユーザの画像21の特徴量をもとにユーザに類似する画像を検索し(図3の(2)参照)、顔の部位ごとに類似する人物を特定し、特定した人物31を表示する(図3の(3)参照)。このとき、情報処理装置10は、類似度の総スコアが高い順に人物を表示してもよいし、類似する顔の部位ごとに最も類似度が高い人物のみを表示してもよい。
【0044】
図3では、情報処理装置10は、ユーザ20の髪型、輪郭と類似している人物として「Aさん」の画像31aを表示し、ユーザ20の目、眉毛と類似している人物として「Bさん」の画像31bを表示し、ユーザ20の鼻、口と類似している人物として「Cさん」の画像31cを表示している。
【0045】
そして、ユーザ20は、表示された人物の中からレコメンド商品を表示したい人物を選択する(図3の(4)参照)。このとき、ユーザ20は、レコメンド商品を表示したい複数の人物を選択してもよい。また、情報処理装置10は、レコメンド商品を表示したい人物の選択を省略し、表示された全ての人物に関するレコメンド商品を表示してもよい。
【0046】
最後に、情報処理装置10は、ユーザ20が選択した人物に関わるレコメンド商品32を表示する(図3の(5)参照)。図3では、情報処理装置10は、ユーザ20が選択した「Aさん」の画像31aとともに、レコメンドする商品の画像32aとして「Aさん」が普段着用している洋服の画像を表示している。このとき、情報処理装置10は、複数の商品の画像を表示してもよい。
【0047】
また、商品の画像を表示する際に、商品の画像32とユーザの画像21を合成した画像を表示してもよい。例えば、レコメンドする商品が洋服であった場合、洋服の画像32とユーザの顔の画像21を合成し、ユーザ20が実際に当該洋服を着用したときのイメージを画像として表示してもよい。同様に、当該洋服を着用している人物の顔をユーザ20の顔に置き換えることによって、ユーザ20が実際に当該洋服を着用したときのイメージを画像として表示してもよい。また、上記のユーザの顔の画像は、顔の特徴量をもとに生成した画像であってもよい。
【0048】
[レコメンド処理2]
図4を用いて、本実施形態に係るレコメンド処理の一例を詳細に説明する。図4は、第1の実施形態に係るレコメンド処理の一例を示す図である。まず、ユーザ20は、ユーザ20の顔の画像を含むユーザの画像21を入力する(図4の(1)参照)。このとき、ユーザ20は、ユーザの情報22としてユーザが利用しているSNSのフォローリストの情報を入力する(図4の(2)参照)。
【0049】
次に、サーバ等の情報処理装置10は、ユーザの画像21の特徴量をもとにユーザ20が利用しているSNSからユーザに類似する画像を検索し(図4の(3)参照)、フォローリスト22に含まれる人物からユーザに類似する人物を特定し、特定した人物31を表示する(図4の(4)参照)。このとき、情報処理装置10は、類似度に関わらずフォローリスト22に含まれる人物を表示してもよい。
【0050】
図4では、情報処理装置10は、フォローリスト22に含まれ、ユーザ20の髪型、輪郭と類似している人物として「Aさん」の画像31aを表示し、フォローリスト22に含まれ、ユーザ20の目、眉毛と類似している人物として「Bさん」の画像31bを表示し、顔の部位がユーザ20に類似していてもフォローリスト22に含まれない人物は表示していない。
【0051】
そして、ユーザ20は、表示された人物の中からレコメンド商品を表示したい人物を選択する(図4の(5)参照)。最後に、情報処理装置10は、ユーザ20が選択した人物に関わるレコメンド商品を表示する(図4の(6)参照)。図4では、情報処理装置10は、ユーザ20が選択した「Aさん」の画像31aとともに、レコメンドする商品の画像32aとして「Aさん」が普段着用している洋服の画像を表示している。
【0052】
[レコメンド処理3]
図5を用いて、本実施形態に係るレコメンド処理の一例を詳細に説明する。図5は、第1の実施形態に係るレコメンド処理の一例を示す図である。まず、ユーザ20は、ユーザ20の顔の画像を含むユーザの画像21を入力する(図5の(1)参照)。このとき、ユーザ20は、ユーザの情報22としてユーザ20が利用しているSNSのフォローリストの情報を入力する(図5の(2)参照)。
【0053】
次に、サーバ等の情報処理装置10は、ユーザの画像21の特徴量をもとにユーザ20が利用しているSNSからユーザに類似する画像を検索し(図5の(3)参照)、フォローリストに含まれる人物からユーザ20に類似する人物を特定し、特定した人物31を表示する(図5の(4)参照)。
【0054】
そして、ユーザ20は、表示された人物の中からレコメンド商品32を表示したい人物を選択する(図5の(5)参照)。最後に、情報処理装置10は、ユーザ20が選択した人物に関わるレコメンド商品32とともに、商品の使用方法等のアドバイスを表示する(図5の(6)参照)。
【0055】
図5では、情報処理装置10は、ユーザ20が選択した「Bさん」の画像31bとともに、レコメンドする商品の画像32bとして「Bさん」の目元に近づけるために使用を提案するフェイスクリームの画像を表示している。このとき、情報処理装置10は、フェイスクリームの適切な使用量や使用頻度等の使用方法に関する表示をしてもよい。
【0056】
[情報処理の流れ]
図6を用いて、本実施形態に係る情報処理の流れを詳細に説明する。図6は、第1の実施形態に係る情報処理の流れの一例を示すフローチャートである。まず、サーバ等の情報処理装置10は、ユーザPC20等からユーザの画像情報21を取得する(ステップS101)。
【0057】
また、情報処理装置10は、ユーザの画像情報21以外のユーザの情報22があった場合(ステップS102:肯定)、ユーザの情報22を取得する(ステップS103)。次に、情報処理装置10は、検索対象の範囲に指定がある場合(ステップS104:肯定)、指定された範囲からユーザ20に類似する画像を検索する(ステップS105)。一方、情報処理装置10は、検索対象の範囲に指定がない場合(ステップS104:否定)、事前に定められた検索対象30の範囲からユーザ20に類似する画像を検索する(ステップS106)。
【0058】
そして、情報処理装置10は、検索された画像に含まれる人物を特定して表示する(ステップS107)。また、情報処理装置10は、表示された人物を絞り込む場合(ステップS108:肯定)、商品を表示したい人物を選択し(ステップS109)、選択された人物のみ商品を検索する対象にする。一方、情報処理装置10は、表示された人物を絞り込まない場合(ステップS108:否定)、表示された人物31に関わる商品を検索する。最後に、情報処理装置10は、表示された人物に関わるレコメンド商品32を表示し(ステップS110)、処理が終了する。
【0059】
[第1の実施形態の効果]
第1に、上述した本実施形態に係る情報処理システム100では、ユーザ20の顔を含む画像に関する情報を取得し、取得したユーザの画像21の特徴と類似している画像を検索し、検索した画像に含まれる人物を特定し、特定した人物31に関する商品の情報32を出力する。このため、本システム100は、インターネットショッピングにおいて、より信頼度の高い商品レコメンドをユーザに提供することができる。
【0060】
第2に、本システム100では、ユーザ20の顔を含む画像に関する情報に基づいて、ユーザ20の顔の部位ごとに類似している画像を検索する。このため、本システム100は、インターネットショッピングにおいて、より信頼度の高い、顔の部位ごとの商品レコメンドをユーザに提供することができる。
【0061】
第3に、本システム100では、ユーザ20が指定した検索対象からユーザの画像21の特徴と類似している画像を検索する。このため、本システム100は、インターネットショッピングにおいて、ユーザが強く興味を持つ範囲から情報を得ることができ、より信頼度の高い商品レコメンドをユーザに提供することができる。
【0062】
第4に、本システム100では、ユーザ20が指定した人物を含む画像を検索する。このため、本システム100は、インターネットショッピングにおいて、ユーザが強く興味を持つ人物に関する情報を得ることができ、より信頼度の高い商品レコメンドをユーザに提供することができる。
【0063】
第5に、本システム100では、特定した人物31をさらに所定の方式で順位付けする。このため、本システム100は、インターネットショッピングにおいて、より信頼度の高い商品レコメンドをより効率的にユーザに提供することができる。
【0064】
第6に、本システム100では、ユーザ20と特定した人物31との差分をさらに特定し、特定した差分に基づいて、商品の情報32を出力する。このため、本システム100は、インターネットショッピングにおいて、より信頼度の高い商品レコメンドをより効果的にユーザに提供することができる。
【0065】
〔システム構成等〕
上記実施形態に係る図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示のごとく構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
【0066】
また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
【0067】
〔プログラム〕
また、上記実施形態において説明した情報処理装置10が実行する処理をコンピュータが実行可能な言語で記述したプログラムを作成することもできる。この場合、コンピュータがプログラムを実行することにより、上記実施形態と同様の効果を得ることができる。さらに、かかるプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータに読み込ませて実行することにより上記実施形態と同様の処理を実現してもよい。
【0068】
図7は、プログラムを実行するコンピュータを示す図である。図7に例示するように、コンピュータ1000は、例えば、メモリ1010と、CPU1020と、ハードディスクドライブインタフェース1030と、ディスクドライブインタフェース1040と、シリアルポートインタフェース1050と、ビデオアダプタ1060と、ネットワークインタフェース1070とを有し、これらの各部はバス1080によって接続される。
【0069】
メモリ1010は、図7に例示するように、ROM(Read Only Memory)1011及びRAM1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、図7に例示するように、ハードディスクドライブ1090に接続される。ディスクドライブインタフェース1040は、図7に例示するように、ディスクドライブ1100に接続される。例えば、磁気ディスクや光ディスク等の着脱可能な記憶媒体が、ディスクドライブ1100に挿入される。シリアルポートインタフェース1050は、図7に例示するように、例えば、マウス1110、キーボード1120に接続される。ビデオアダプタ1060は、図7に例示するように、例えばディスプレイ1130に接続される。
【0070】
ここで、図7に例示するように、ハードディスクドライブ1090は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093、プログラムデータ1094を記憶する。すなわち、上記のプログラムは、コンピュータ1000によって実行される指令が記述されたプログラムモジュールとして、例えば、ハードディスクドライブ1090に記憶される。
【0071】
また、上記実施形態で説明した各種データは、プログラムデータとして、例えば、メモリ1010やハードディスクドライブ1090に記憶される。そして、CPU1020が、メモリ1010やハードディスクドライブ1090に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出し、各種処理手順を実行する。
【0072】
なお、プログラムに係るプログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1090に記憶される場合に限られず、例えば、着脱可能な記憶媒体に記憶され、ディスクドライブ等を介してCPU1020によって読み出されてもよい。あるいは、プログラムに係るプログラムモジュール1093やプログラムデータ1094は、ネットワーク(LAN(Local Area Network)、WAN(Wide Area Network)等)を介して接続された他のコンピュータに記憶され、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。
【0073】
上記の実施形態やその変形は、本願が開示する技術に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0074】
10 サーバ(情報処理装置)
11 入力部
12 表示部
13 通信部
14 記憶部
15 制御部
15a 取得部
15b 検索部
15c 特定部
15d 出力部
20 ユーザPC
21 ユーザの画像(ユーザの画像情報)
22 ユーザの情報
30 検索対象
30A ウェブサイト
30B SNS
30C データベース
31、31a、31b、31c 特定した人物
32、32a、32b 商品の情報
100 情報処理システム
図1
図2
図3
図4
図5
図6
図7
【手続補正書】
【提出日】2022-03-18
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
ユーザの顔を含む画像に関わる情報を取得する取得部と、
前記取得部によって取得された前記情報に基づいて、前記画像の特徴と類似している画像を検索する検索部と、
前記検索部によって検索された画像に含まれる人物を特定する特定部と、
前記特定部によって特定された人物に関する商品の情報を出力する出力部と
を備えることを特徴とする情報処理装置。
【請求項2】
前記検索部は、前記特徴として、前記ユーザの顔の部位ごとに類似している画像を検索することを特徴とする請求項1に記載の情報処理装置。
【請求項3】
前記検索部は、前記ユーザが指定した検索対象から前記類似している画像を検索することを特徴とする請求項1に記載の情報処理装置。
【請求項4】
前記検索部は、前記ユーザが指定した人物を含む画像を検索することを特徴とする請求項1に記載の情報処理装置。
【請求項5】
前記特定部は、前記特定した人物をさらに所定の方式で順位付けすることを特徴とする請求項1に記載の情報処理装置。
【請求項6】
前記特定部は、前記ユーザと前記特定した人物との差分をさらに特定し、
前記出力部は、前記特定部によって特定された前記差分に基づいて、前記商品の情報を出力することを特徴とする請求項1に記載の情報処理装置。
【請求項7】
コンピュータである情報処理装置によって実行される情報処理方法であって、
前記情報処理装置が、ユーザの顔を含む画像に関わる情報を取得する取得工程と、
前記情報処理装置が、前記取得工程によって取得された前記情報に基づいて、前記画像の特徴と類似している画像を検索する検索工程と、
前記情報処理装置が、前記検索工程によって検索された画像に含まれる人物を特定する特定工程と、
前記情報処理装置が、前記特定工程によって特定された人物に関する商品の情報を出力する出力工程と
を含み、上記の各工程をコンピュータが実行することを特徴とする情報処理方法。
【請求項8】
ユーザの顔を含む画像に関わる情報を取得する取得ステップと、
前記取得ステップによって取得された前記情報に基づいて、前記画像の特徴と類似している画像を検索する検索ステップと、
前記検索ステップによって検索された画像に含まれる人物を特定する特定ステップと、
前記特定ステップによって特定された人物に関する商品の情報を出力する出力ステップと
をコンピュータに実行させることを特徴とする情報処理プログラム。