(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022093691
(43)【公開日】2022-06-23
(54)【発明の名称】空気調和機
(51)【国際特許分類】
F25B 49/02 20060101AFI20220616BHJP
【FI】
F25B49/02 520C
【審査請求】未請求
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2022076482
(22)【出願日】2022-05-06
(62)【分割の表示】P 2020128371の分割
【原出願日】2020-07-29
(71)【出願人】
【識別番号】000006611
【氏名又は名称】株式会社富士通ゼネラル
(74)【代理人】
【識別番号】110002147
【氏名又は名称】特許業務法人酒井国際特許事務所
(72)【発明者】
【氏名】佐々木 寛
(57)【要約】
【課題】限られたセンサしか備えていない場合でも、残存冷媒量を推定する空気調和機を提供する。
【解決手段】空気調和機では、圧縮機、室外熱交換器及び膨張弁を有する室外機に、室内熱交換器を有する室内機が冷媒配管で接続されて構成される冷媒回路に所定量の冷媒が充填されている。空気調和機は、運転時の運転状態を示す運転状態量の内、少なくとも圧縮機の回転数、圧縮機の冷媒吐出温度、熱交換器温度、膨張弁の開度及び外気温度を用いて、冷媒回路に残存している残存冷媒量を推定する推定モデルを有する。室内熱交換器は、第1の室内熱交口部と第2の室内熱交口部とを繋ぐ室内熱交中間部に備え、室内熱交中間部を通過する冷媒の温度を検出するセンサと、第1の室外熱交口部と第2の室外熱交口部とを繋ぐ室外熱交中間部と、第2の室外熱交口部に備え、冷房運転時の第2の室外熱交口部の室外熱交出口を通過する冷媒の温度を検出するセンサとを有する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
圧縮機、室外熱交換器及び膨張弁を有する室外機に、室内熱交換器を有する室内機が冷媒配管で接続されて構成される冷媒回路を有し、前記冷媒回路に所定量の冷媒が充填された空気調和機であって、
前記空気調和機は、
空気調和運転時の運転状態を示す運転状態量のうち、少なくとも前記圧縮機の回転数、前記圧縮機の冷媒吐出温度、熱交換器温度、前記膨張弁の開度及び外気温度を用いて、前記冷媒回路に残存している残存冷媒量を推定する残存冷媒量推定モデルを有し、
前記室内熱交換器は、
前記冷媒が流通する第1の室内熱交口部と、前記冷媒が流通する第2の室内熱交口部と、前記第1の室内熱交口部と前記第2の室内熱交口部とをつなぐ室内熱交中間部と、前記室内熱交中間部に備え、前記熱交換器温度の内、前記室内熱交中間部を通過する前記冷媒の温度を検出する室内熱交中間センサとを有し、
前記室外熱交換器は、
前記冷媒が流通する第1の室外熱交口部と、前記冷媒が流通する第2の室外熱交口部と、前記第1の室外熱交口部と前記第2の室外熱交口部とをつなぐ室外熱交中間部と、前記第2の室外熱交口部に備え、前記熱交換器温度の内、冷房運転時の前記第2の室外熱交口部の室外熱交出口を通過する前記冷媒の温度を検出する室外熱交出口センサと
を有することを特徴とする空気調和機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、空気調和機に関する。
【背景技術】
【0002】
冷媒回路で検知できる運転状態量を用いて冷媒量の判定を行う空気調和機が提案されている。特許文献1では、例えば、冷房サイクル時の冷媒回路の蒸発器出口の過熱度や蒸発器の圧力を所定の値にした状態(以下、デフォルト状態という)で凝縮器出口の過冷却度を用いて冷媒量を判定している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
空気調和機では、過冷却度等の運転状態量を用いて冷媒量を判定する場合には運転状態量を測定するセンサが必要となる。例えば、1台の室外機に多数の室内機が接続されて商業施設やオフィスビルなどの大規模な建物に設置される業務用の空気調和機には、多数の室内機を制御する必要性から多くのセンサが搭載されているため、各センサ値を用いて運転状態量を算出することができる。例えば、室内熱交換器及び室外熱交換器の夫々に熱交中間及び熱交出口の温度センサのセンサ値を用いて過冷却度を算出できる。
【0005】
しかしながら、例えば、1台の室外機に1台の室内機が接続されて主に住居に設置される家庭用の空気調和機では、コストを抑制する観点から、搭載されるセンサは空気調和機の運転に必要な範囲内で最小限に限られることになる。例えば、家庭用の空気調和機では、室内熱交換器及び室外熱交換器について、室内熱交換器の中間部の冷媒温度を検出するセンサと室外熱交換器の冷媒出口側における冷媒温度を検出するセンサの2個の温度センサしかない場合があり、この場合は、凝縮器出口の過冷却度が算出できず、凝縮器出口の過冷却度を用いて冷媒量を判定できない。
【0006】
そこで、限られたセンサしか備えていない空気調和機であっても、冷媒量を推定できる方法が求められている。
【0007】
本発明ではこのような問題に鑑み、限られたセンサしか備えていない場合でも、冷媒回路に残存する冷媒量(以下、残存冷媒量)を推定できる空気調和機を提供することを目的とする。
【課題を解決するための手段】
【0008】
一つの態様の空気調和機は、圧縮機、室外熱交換器及び膨張弁を有する室外機に、室内熱交換器を有する室内機が冷媒配管で接続されて構成される冷媒回路を有し、前記冷媒回路に所定量の冷媒が充填されている。空気調和機は、空気調和運転時の運転状態を示す運転状態量のうち、少なくとも前記圧縮機の回転数、前記圧縮機の冷媒吐出温度、熱交換器温度、前記膨張弁の開度及び外気温度を用いて、前記冷媒回路に残存している残存冷媒量を推定する残存冷媒量推定モデルを有する。前記室内熱交換器は、前記冷媒が流通する第1の室内熱交口部と、前記冷媒が流通する第2の室内熱交口部と、前記第1の室内熱交口部と前記第2の室内熱交口部とをつなぐ室内熱交中間部と、前記室内熱交中間部に備え、前記熱交換器温度の内、前記室内熱交中間部を通過する前記冷媒の温度を検出する室内熱交中間センサとを有する。前記室外熱交換器は、前記冷媒が流通する第1の室外熱交口部と、前記冷媒が流通する第2の室外熱交口部と、前記第1の室外熱交口部と前記第2の室外熱交口部とをつなぐ室外熱交中間部と、前記第2の室外熱交口部に備え、前記熱交換器温度の内、冷房運転時の前記第2の室外熱交口部の室外熱交出口を通過する前記冷媒の温度を検出する室外熱交出口センサとを有する。
【発明の効果】
【0009】
一つの側面として、限られたセンサを用いて残存冷媒量を推定できる。
【図面の簡単な説明】
【0010】
【
図1】
図1は、本実施例の空気調和機の一例を示す説明図である。
【
図2】
図2は、室外機及び室内機の一例を示す説明図である。
【
図3】
図3は、室外機の制御回路の一例を示すブロック図である。
【
図4】
図4は、空気調和機の冷媒変化の状態を示すモリエル線図である。
【
図5】
図5は、推定処理に関わる制御回路の処理動作の一例を示すフローチャートである。
【
図6】
図6は、重回帰分析法に用いる教師データの一例を示す説明図である。
【
図7】
図7は、残存冷媒量が正常か異常かを分類する推定モデルの生成に用いる教師データの一例を示す説明図である。
【
図8】
図8は、実施例2の空気調和システムの一例を示す説明図である。
【発明を実施するための形態】
【0011】
以下、図面に基づいて、本願の開示する空気調和機等の実施例を詳細に説明する。尚、本実施例により、開示技術が限定されるものではない。また、以下に示す各実施例は、矛盾を起こさない範囲で適宜変形しても良い。
【実施例0012】
<空気調和機の構成>
図1は、本実施例の空気調和機1の一例を示す説明図である。
図1に示す空気調和機1は、1台の室外機2と、1台の室内機3とを有する、例えば、家庭用の空気調和機である。室外機2は、液管4及びガス管5で室内機3と接続される。そして、室外機2と室内機3とが液管4及びガス管5等の冷媒配管で接続されることで、空気調和機1の冷媒回路6が形成されている。
【0013】
<室外機の構成>
図2は、室外機2および室内機3の一例を示す説明図である。室外機2は、圧縮機11と、四方弁12と、室外熱交換器13と、膨張弁14と、アキュムレータ15と、室外機ファン16と、制御回路17とを有する。これら圧縮機11、四方弁12、室外熱交換器13、膨張弁14及びアキュムレータ15を用いて、以下で詳述する各冷媒配管で相互に接続されて冷媒回路6の一部を成す室外側冷媒回路を形成する。
【0014】
圧縮機11は、例えば、インバータにより回転数が制御される図示しないモータの駆動に応じて、運転容量を可変できる高圧容器型の能力可変型圧縮機である。圧縮機11は、その冷媒吐出側が四方弁12の第1のポート12Aと吐出管21で接続されている。また、圧縮機11は、その冷媒吸入側がアキュムレータ15の冷媒流出側と吸入管22で接続されている。
【0015】
四方弁12は、冷媒回路6における冷媒の流れる方向を切替えるための弁であって、第1のポート12A~第4のポート12Dを備えている。第1のポート12Aは、圧縮機11の冷媒吐出側と吐出管21で接続されている。第2のポート12Bは、室外熱交換器13の一方の冷媒出入口(後述する第1の室外熱交口部13Aに相当する)と室外冷媒管23で接続されている。第3のポート12Cは、アキュムレータ15の冷媒流入側と室外冷媒管26で接続されている。そして、第4のポート12Dは、室内熱交換器51と室外ガス管24で接続されている。
【0016】
室外熱交換器13は、冷媒と、室外機ファン16の回転により室外機2の内部に取り込まれた外気とを熱交換させる。室外熱交換器13は、前記一方の冷媒出入口としての第1の室外熱交口部13Aと、他方の冷媒出入口としての第2の室外熱交口部13Bと、前記第1の室外熱交口部13Aと第2の室外熱交口部13Bとの間をつなぐ室外熱交中間部13Cとを有する。第1の室外熱交口部13Aは、四方弁12の第2のポート12Bと室外冷媒管23で接続される。第2の室外熱交口部13Bは、膨張弁14と室外液管25で接続される。室外熱交中間部13Cは、第1の室外熱交口部13Aと第2の室外熱交口部13Bと接続される。室外熱交換器13は、空気調和機1が冷房運転を行う場合に凝縮器として機能し、空気調和機1が暖房運転を行う場合に蒸発器として機能する。
【0017】
膨張弁14は、室外液管25に設けられており、図示しないパルスモータで駆動する電子膨張弁である。膨張弁14は、パルスモータに与えられるパルス数に応じて開度が調整されることで、膨張弁14から冷媒回路6内を流れる冷媒量(室外熱交換器13から室内熱交換器51に流入する冷媒量、又は、室内熱交換器51から室外熱交換器13に流入する冷媒量)を調整するものである。膨張弁14の開度は、空気調和機1が暖房運転を行っている場合、圧縮機11の冷媒の吐出温度(冷媒吐出温度)が所定の温度である目標温度に到達させるように調整される。
【0018】
アキュムレータ15は、その冷媒流入側が四方弁12の第3のポート12Cと室外冷媒管26で接続されている。更に、アキュムレータ15は、その冷媒流出側が圧縮機11の冷媒流入側と吸入管22で接続されている。アキュムレータ15は、室外冷媒管26からアキュムレータ15の内部に流入した冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒のみを圧縮機11に吸入させる。
【0019】
室外機ファン16は、樹脂材で形成されており、室外熱交換器13の近傍に配置されている。室外機ファン16は、図示しないファンモータの回転に応じて、図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器13において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。
【0020】
また、室外機2には、複数のセンサが配置されている。吐出管21には、圧縮機11から吐出された冷媒の温度、すなわち吐出温度を検出する吐出温度センサ31が配置されている。室外熱交換器13と膨張弁14との間の室外液管25には、熱交換器温度の内、第2の室外熱交口部13Bに流入する冷媒の温度、又は、第2の室外熱交口部13Bから流出する冷媒の温度を検出するための室外熱交出口センサ32が配置されている。そして、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ33が配置されている。
【0021】
制御回路17は、後述する室内機3の制御回路18からの指示を受けて室外機2を制御する。室外機2の制御回路17は、図示しない通信部と、記憶部と、制御部とを有する。通信部は、室内機3の通信部と通信する通信インタフェースである。記憶部は、例えば、フラッシュメモリであって、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値等の運転状態量、圧縮機11や室外機ファン16の駆動状態、室外機2の定格能力及び各室内機3の要求能力、などを記憶する。
【0022】
<室内機の構成>
図2に示すように、室内機3は、室内熱交換器51と、ガス管接続部52と、液管接続部53と、室内機ファン54と、制御回路18とを有する。これら室内熱交換器51、ガス管接続部52及び液管接続部53は、後述する各冷媒配管で相互に接続されて、冷媒回路6の一部を成す室内機冷媒回路を構成する。
【0023】
室内熱交換器51は、冷媒と、室内機ファン54の回転により図示しない吸込口から室内機3の内部に取り込まれた室内空気とを熱交換させる。室内熱交換器51は、一方の冷媒出入口としての第1の室内熱交口部51Aと、他方の冷媒出入口としての第2の室内熱交口部51Bと、第1の室内熱交口部51Aと第2の室内熱交口部51Bとの間をつなぐ室内熱交中間部51Cとを有する。第1の室内熱交口部51Aは、ガス管接続部52と室内ガス管56で接続される。第2の室内熱交口部51Bは、液管接続部53と室内液管57で接続される。室内熱交中間部51Cは、第1の室内熱交口部51Aと第2の室内熱交口部51Bと接続される。室内熱交換器51は、空気調和機1が暖房運転を行う場合、凝縮器として機能する。これに対して、室内熱交換器51は、空気調和機1が冷房運転を行う場合、蒸発器として機能する。
【0024】
室内機ファン54は、樹脂材で形成されており、室内熱交換器51の近傍に配置されている。室内機ファン54は、図示しないファンモータによって回転することで、図示しない吸込口から室内機3の内部に室内空気を取り込み、室内熱交換器51において冷媒と熱交換した室内空気を図示しない吹出口から室内へ放出する。
【0025】
室内機3には各種のセンサが設けられている。室内熱交中間部51Cには、熱交換器温度の内、室内熱交中間部51Cを通過する冷媒の温度、すなわち室内熱交中間温度を検出する室内熱交中間センサ61が配置されている。室内機3の図示しない吸込口付近には、室内機3の内部に流入する室内空気の温度、すなわち吸込温度を検出する吸込温度センサ62が配置されている。
【0026】
制御回路18は、空気調和機1全体を制御する。
図3は、室内機1の制御回路18の一例を示すブロック図である。制御回路18は、取得部41と、通信部42と、記憶部43と、制御部44とを有する。取得部41は、前述した各種センサのセンサ値を取得する。通信部42は、室外機2の通信部と通信する通信インタフェースである。記憶部43は、例えば、フラッシュメモリであって、室内機3の制御プログラムや各種センサからの検出信号に対応した検出値等の運転状態量、室内機ファン54の駆動状態、室外機2から送信される運転情報(例えば、圧縮機11の運転・停止情報、室外機ファン16の駆動状態等を含む)、室外機2の定格能力及び各室内機3の要求能力、などを記憶する。
【0027】
また、記憶部43は冷媒回路6に残存する冷媒量を推定する推定モデルを記憶している。本実施例では、冷媒回路6に残存する冷媒量として、例えば相対的な冷媒量を用いている。具体的には、本実施例の記憶部43は冷媒回路6の冷媒不足率(規定量の冷媒が充填されているときを100%としたとき、この規定量からの減少分を指す。以下、同様)を推定する推定モデルを記憶している。推定モデルは、冷房用推定モデル43Aと、暖房用推定モデル43Bとを有する。
【0028】
制御部44は、各種センサでの検出値を定期的(例えば、30秒毎)に取り込む。制御部44は、これら入力された各種情報に基づいて、空気調和機1全体を制御する。更に、制御部44は、上述した各推定モデルを用いて冷媒不足率を推定する。
【0029】
<冷媒回路の動作>
次に、本実施形態における空気調和機1の空調運転時の冷媒回路6における冷媒の流れや各部の動作について説明する。
【0030】
空気調和機1が暖房運転を行う場合、四方弁12は、第1のポート12Aと第4のポート12Dとが連通し、第2のポート12Bと第3のポート12Cとが連通するように切替えている(
図2に実線で示す状態)。これにより、冷媒回路6は、室内熱交換器51が凝縮器として機能し、室外熱交換器13が蒸発器として機能する暖房サイクルとなる。尚、説明の便宜上、暖房運転時の冷媒の流れは、
図2に示す実線矢印で表記する。
【0031】
冷媒回路6がこの状態で圧縮機11が駆動すると、圧縮機11から吐出された冷媒は、吐出管21を流れて四方弁12に流入し、四方弁12から室外ガス管24を流れて、ガス管5へと流入する。ガス管5を流れる冷媒は、ガス管接続部52を介して室内機3に流入する。室内機3に流入した冷媒は、室内ガス管56を流れて室内熱交換器51に流入する。室内熱交換器51に流入した冷媒は、室内機ファン54の回転により室内機3の内部に取り込まれた室内空気との間で熱交換することで凝縮する。つまり、室内熱交換器51が凝縮器として機能し、室内熱交換器51で冷媒と熱交換することによって加熱された室内空気が図示しない吹出口から室内に吹き出されることで、室内機3が設置された室内の暖房が行われる。
【0032】
室内熱交換器51から室内液管57に流入した冷媒は、液管接続部53を介して液管4に流出する。液管4に流入した冷媒は、室外機2に流入する。室外機2に流入した冷媒は、室外液管25を流れ、膨張弁14を通過して減圧される。膨張弁14で減圧された冷媒は、室外液管25を流れて室外熱交換器13に流入し、室外機ファン16の回転によって室外機2の図示しない吸込口から流入した外気と熱交換を行って蒸発する。室外熱交換器13から室外冷媒管26へと流出した冷媒は、四方弁12、室外冷媒管26、アキュムレータ15及び吸入管22の順に流入し、圧縮機11に吸入されて再び圧縮され、四方弁12の第1のポート12A及び第4のポート12D経由で室外ガス管24に流出する。
【0033】
また、空気調和機1が冷房運転を行う場合、四方弁12は、第1のポート12Aと第2のポート12Bとが連通し、第3のポート12Cと第4のポート12Dとが連通するように切替えている。これにより、冷媒回路6は、室内熱交換器51が蒸発器として機能し、室外熱交換器13が凝縮器として機能する冷房サイクルとなる。尚、説明の便宜上、冷房運転時の冷媒の流れは、
図2に示す破線矢印で表記する。
【0034】
冷媒回路6がこの状態で圧縮機11が駆動すると、圧縮機11から吐出された冷媒は、吐出管21を流れて四方弁12に流入し、四方弁12から室外冷媒管23を流れて、室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外機ファン16の回転により室外機2の内部に取り込まれた室外空気との間で熱交換することで凝縮する。つまり、室外熱交換器13が凝縮器として機能し、室外熱交換器13で冷媒によって加熱された室内空気が図示しない吹出口から室外に吹き出す。
【0035】
室外熱交換器13から室外液管25へと流入した冷媒は、膨張弁14を通過して減圧される。膨張弁14で減圧された冷媒は、液管4を流れて室内機3に流入する。室内機3に流入した冷媒は、室内液管57を流れて室内熱交換器51に流入し、室内機ファン54の回転によって室内機3の図示しない吸入口から流入した室内空気と熱交換を行って蒸発する。つまり、室内熱交換器51が蒸発器として機能し、室内熱交換器51で冷媒と熱交換することによって冷却された室内空気が図示しない吹出口から室内に吹き出されることで、室内機3が設置された室内の冷房が行われる。
【0036】
室内熱交換器51からガス管接続部52を介してガス管5へ流れる冷媒は、室外機2の室外ガス管24に流れて四方弁12の第4のポート12Dに流入する。四方弁12の第4のポート12Dに流入した冷媒は、第3のポート12Cからアキュムレータ15の冷媒流入側に流入する。アキュムレータ15の冷媒流入側から流入した冷媒は、吸入管22を介して流入し、圧縮機11に吸入されて再び圧縮されることになる。
【0037】
制御回路18内の取得部41は、吐出温度センサ31、室外熱交出口センサ32及び外気温度センサ33のセンサ値を室外機2の制御回路17を介して取得する。更に、取得部41は、室内機3の室内熱交中間センサ61及び吸込温度センサ62のセンサ値を取得する。
【0038】
図4は、空気調和機1の冷凍サイクルを示すモリエル線図である。空気調和機1の冷房運転時は、室外熱交換器13が凝縮器として機能し、室内熱交換器51が蒸発器として機能する。また、空気調和機1の暖房運転時は、室外熱交換器13が蒸発器として機能し、室内熱交換器51が凝縮器として機能する。
【0039】
圧縮機11は、蒸発器から流入する低温低圧のガス冷媒(
図4の点Aの状態の冷媒)を圧縮して高温高圧のガス冷媒(
図4の点Bの状態になった冷媒)を吐出する。尚、圧縮機11が吐出するガス冷媒の温度が吐出温度であり、吐出温度は、吐出温度センサ31で検出する。
【0040】
凝縮器は、圧縮機11からの高温高圧のガス冷媒を空気と熱交換して凝縮させる。この際、凝縮器では、潜熱変化によってガス冷媒が全て液冷媒となった後は顕熱変化によって液冷媒の温度が低下して過冷却状態となる(
図4の点Cの状態)。尚、ガス冷媒が潜熱変化で液冷媒へと変化している際の温度が凝縮温度であり、凝縮器の出口における過冷却状態となっている冷媒の温度が熱交出口温度である。熱交換器温度の内、熱交出口温度は、冷房運転時の室外熱交出口センサ32で検出する。なお、暖房運転時は冷媒の流れが冷房運転時と逆になり、室外熱交換器13は蒸発器として機能する。暖房運転時には、室外熱交出口センサ32は室外熱交換器13の温度を検出して結氷を検知したり、除霜運転を制御したりする際に用いられる。
【0041】
膨張弁14は、凝縮器から流出した低温高圧の冷媒を減圧する。膨張弁14で減圧された冷媒は、ガスと液とが混合した気液二相冷媒(
図4の点Dの状態になった冷媒)となる。
【0042】
蒸発器は、流入した気液二相冷媒を空気と熱交換して蒸発させる。この際、蒸発器では、潜熱変化によって気液二相冷媒が全てガス冷媒となった後は顕熱変化によってガス冷媒の温度が上昇して過熱状態(
図4の点Aの状態)となり、圧縮機11に吸入される。尚、液冷媒が潜熱変化でガス冷媒へと変化している際の温度が蒸発温度である。蒸発温度は、冷房運転時の室内熱交中間センサ61で検出する室内熱交中間温度である。また、蒸発器で過熱されて圧縮機11に吸入される冷媒の温度が吸入温度である。なお、暖房運転時は冷媒の流れが冷房運転時と逆になり、室内熱交換器51は凝縮器として機能する。暖房運転時には、室内熱交中間センサ61の検出結果は目標吐出温度の算出に用いられる。
【0043】
<推定モデルの構成>
推定モデルは、複数の運転状態量の内、任意の運転状態量(特徴量)を用いて回帰分析法の一種である重回帰分析法で生成されている。重回帰分析法では、実際の空気調和機(以下、実機)を用いた試験結果(実機を用いて冷媒回路に残存する冷媒量を変化させた場合に、運転状態量がどのような値となるかを試験した結果)や複数のシミュレーション結果(数値計算により冷媒回路を再現して、残存する冷媒量に対して運転状態量がどのような値となるかを計算した結果)から得られた回帰式のうち、P値(生成した推定モデルの精度に運転状態量が与える影響度合いを示す値(所定の重みパラメータ))が一番小さく、かつ、補正値R2(生成した推定モデルの精度を示す値)が0.9以上1.0以下の間のできるだけ大きい値となる回帰式を選択して推定モデルとして生成する。ここで、P値および補正値R2は、重回帰分析法で推定モデルを生成する際に、当該推定モデルの精度に関わる値であり、P値が小さいほど、また、補正値R2が1.0に近い値であるほど、生成された推定モデルの精度が高くなる。
【0044】
推定モデルは、冷媒回路6に残存している残存冷媒量を推定する残存冷媒量推定モデルである。例えば残存冷媒量推定モデルは、冷房用推定モデル43Aと、暖房用推定モデル43Bとを有する。本実施例では、これら各推定モデルは、後述するように実機を用いた試験結果を用いて生成されて、予め空気調和機1の制御回路18に記憶されている。
【0045】
冷房用推定モデル43Aは、冷房運転時の冷媒不足率を高精度に推定できる第1の回帰式である。
【0046】
【0047】
係数α1~α6は、推定モデル生成の際に決定されるものとする。制御部44は、第1の回帰式に、取得部41にて取得された現在の圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度、室外熱交出口温度及び外気温度を代入することで、現時点での冷媒回路6の冷媒不足率を算出する。尚、圧縮機11の回転数、膨張弁の開度、圧縮機11の吐出温度、室外熱交出口温度及び外気温度を代入する理由は、冷房用推定モデル43Aの生成時に使用した特徴量を使用するためである。圧縮機11の回転数は、例えば圧縮機11の図示しない回転数センサで検出する。膨張弁の開度は、例えば制御部44から膨張弁のステッピングモータ(図示しない)に入力されるパルス信号によって調整される。圧縮機11の吐出温度は、吐出温度センサ31で検出する。熱交換器温度の内、熱交出口温度は、室外熱交出口センサ32で検出する。外気温度は、外気温度センサ33で検出する。
【0048】
暖房用推定モデル43Bは、暖房運転時の冷媒不足率を高精度に推定できる第2の回帰式である。
【0049】
【0050】
係数α11~α15は、推定モデル生成の際に決定されるものとする。制御部44は、第2の回帰式に、取得部41にて取得された現在の圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度及び室内熱交中間温度を代入することで、現時点での冷媒回路6の冷媒不足率を算出する。尚、圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度及び室内熱交中間温度を代入する理由は、暖房用推定モデル43Bの生成時に使用した特徴量を使用するためである。圧縮機11の回転数は、圧縮機11の図示しない回転数センサで検出する。膨張弁の開度は、例えば制御部44から膨張弁のステッピングモータ(図示しない)に入力されるパルス信号によって調整される。圧縮機11の吐出温度は、吐出温度センサ31で検出する。熱交換器温度の内、室内熱交中間温度は、室内熱交中間センサ61で検出する。
【0051】
以上に説明したように、冷房運転時は、第1の回帰式を使用して冷媒不足率を推定する。また、暖房運転時は、第2の回帰式を使用して冷媒不足率を推定する。
【0052】
<推定処理の動作>
図5は、推定処理に関わる制御回路18の処理動作の一例を示すフローチャートである。尚、制御回路18は、本実施形態の場合、事前に生成された冷房用推定モデル43A及び暖房用推定モデル43Bを保持しているものとする。
図5において制御回路18内の制御部44は、取得部41を通じて運転状態量を運転データとして収集する(ステップS11)。制御部44は、収集した運転データから任意の運転状態量を抽出するデータフィルタリング処理を実行する(ステップS12)。また制御部44は、異常値や突出値を除いたデータクレンジング処理を実行する(ステップS13)。制御部44は、各回帰式を用いて、現時点の冷媒回路6の冷媒不足率を算出し(ステップS14)、
図5に示す処理動作を終了する。
【0053】
データフィルタリング処理は、複数の運転状態量の全てを使用するのではなく、所定フィルタ条件に基づき、複数の運転状態量の内、冷媒不足率を算出するのに必要な一部の運転状態量のみを抽出する。生成された推定モデルの各回帰式に、データクレンジング処理を行った(異常値や突出値を除いた)運転状態量を代入することで、より正確に冷媒不足率を推定できる。
【0054】
所定のフィルタ条件は、第1のフィルタ条件と、第2のフィルタ条件と、第3のフィルタ条件とを有する。第1のフィルタ条件は、例えば、空気調和機1の全運転モード共通に抽出するデータのフィルタ条件である。第2のフィルタ条件は、冷房運転時に抽出するデータのフィルタ条件である。第3のフィルタ条件は、暖房運転時に抽出するデータのフィルタ条件である。
【0055】
第1のフィルタ条件は、例えば、圧縮機11の駆動状態、運転モードの識別、特殊運転の排除、取得した値における欠損値の排除、各回帰式の生成に際し与える影響の大きい運転状態量について変化量が小さい値の選択、等である。圧縮機11の駆動状態は、圧縮機が安定して運転していることで冷媒回路6に冷媒が循環していないと冷媒不足率を推定できないために判断する必要のある条件であり、圧縮機11の立ち上がり時等の過渡期に検出した運転状態量を除外し、例えば、吐出温度が所定の温度である目標温度に到達した運転状態量のみを抽出するフィルタ条件である。フィルタ条件として、例えば吐出温度と目標温度との差の絶対値が所定値より大きいときの運転状態量を除外し、吐出温度と目標温度との差の絶対値が所定値以下のときの運転状態量を抽出する。前記所定値としては、目標吐出温度と検出した吐出温度との差の絶対値が例えば2℃以下である。
【0056】
運転モードの識別とは、冷房運転時及び暖房運転時に取得した運転状態量のみを抽出するためのフィルタ条件である。従って、除湿運転時や送風運転時に取得した運転状態量は除外される。特殊運転の排除とは、例えば、油回収運転や除霜運転といった冷房運転時や暖房運転時と比べて冷媒回路6の状態が大きく異なる特殊運転時に取得した運転状態量を除外するフィルタ条件である。欠損値(取得できなかった値のこと)の排除とは、冷媒不足率の判定に使用する運転状態量に欠損値があった場合、当該運転状態量を用いて各回帰式を生成すれば精度が落ちる可能性があるため、欠損値を含む運転状態量を除外するフィルタ条件である。
【0057】
各回帰式に代入する運転状態量について変化量が小さい値の選択とは、空気調和機1の運転状態が安定している状態の運転状態量のみを抽出するフィルタ条件であり、各回帰式による推定精度を上げるために必要な条件である。
【0058】
第2のフィルタ条件には、例えば、熱交出口温度の排除、吐出温度の異常等がある。
【0059】
熱交出口温度の排除は、外気温度センサ33と室外熱交出口センサ32とが近い場所に配置されていることにより、冷房運転時に室外熱交出口センサ32で検出した熱交出口温度が外気温度センサ33で検出した外気温度より低くなることがないことを考慮したフィルタ条件であり、外気温度より低い熱交出口温度を除外するフィルタ条件である。
【0060】
吐出温度の異常は、冷房負荷が小さいことに起因して圧縮機11に吸入される冷媒量が減少する吸入冷媒減少状態時に検出した吐出温度を除外するフィルタ条件である。
【0061】
第3のフィルタ条件は、例えば、吐出温度の異常等である。暖房運転時に暖房負荷の大きさに起因して吐出温度が高くなって吐出温度保護制御が実行されると、例えば、圧縮機11の回転数を低下させることで吐出温度が低下するため、このときに検出した吐出温度を除外するフィルタ条件である。
【0062】
データクレンジング処理は、取得した全ての運転状態量を冷媒不足率の推定に使用するのではなく、誤った推定を行うおそれがある運転状態量を除外するための処理である。具体的には、取得した運転状態量を平滑化してノイズ抑制やデータ数制限等がある。データの平滑化によるノイズ抑制とは、該当区間の平均値を算出し、各モデルにおいて例えば吸入温度の移動平均をとることで、ノイズを抑える処理である。データ数制限とは、例えば、データ数が少ないものは信頼性が低いため排除する処理である。例えば、1日分の入力データをフィルタリング処理して残ったデータ数がX個以上であれば冷媒不足率の推定に使用、それより少なければ、その日のデータはすべて使用しない。つまり、データクレンジング処理では、推定モデルの各回帰式に異常値や突出値を除いた運転状態量を代入することで、より正確に冷媒不足率を推定できる。
【0063】
制御回路18は、例えば、データフィルタリング処理及びデータクレンジング処理後の現在の運転状態量(センサ値)を推定モデルの各回帰式や各冷媒不足率算出式に代入することで、現時点の冷媒回路6の冷媒不足率を算出する。制御回路18内の制御部44は、現在が冷房運転中であるか否かを判定する。制御部44は、現在が冷房運転中の場合、冷房用推定モデル43Aに現在の運転状態量を代入し、現時点での冷媒不足率を算出する。
【0064】
制御部44は、現在が冷房運転中でない場合、すなわち暖房運転中の場合、暖房用推定モデル43Bに現在の運転状態量を代入し、現時点での冷媒不足率を算出する。
【0065】
<回帰式の生成方法>
次に第1の回帰式及び第2の回帰式の生成に使用する特徴量について説明する。第1の回帰式を使用する冷房運転時では、重回帰分析法により第1の回帰式の生成を行う際に使用する特徴量として、例えば、圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度、室外熱交出口温度及び外気温度の各運転状態量を用いる。そして、これら各運転状態量は、実機を用いた試験結果を使用する。また、第2の回帰式を使用する暖房運転時では、重回帰分析の特徴量として、例えば、圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度及び室内熱交中間温度の各運転状態量を用いる。そして、これら各運転状態量は、実機を用いた試験結果を使用する。
【0066】
具体的には、空気調和機1の設計段階で、一例として室内機3が運転している場合に外気温度、室内温度や冷媒充填量を異ならせて実機を用いた試験を行い、特徴量と冷媒不足率との関係を取得する。実機を用いた試験を行う際の条件としては、例えば、外気温度を20℃、25℃、30℃、35℃及び40℃と変化させる。なお、実機を用いた試験を行うに際しては、外気温度の他のパラメータを加えてもよい。
【0067】
複数の運転状態量の内、推定モデルに使用する任意の運転状態量(特徴量)は、複数の運転状態量と冷媒充填量との関係を示す試験結果(以下、教師データ)から得ることになる。尚、教師データとしては、残存冷媒量と各運転状態量とを紐づけた教師データ(重回帰分析法での推定モデル生成に用いる教師データ)と、残存冷媒量が不足し過ぎていない状態(例えば、残存冷媒量が初期の冷媒充填量よりも減少していてもユーザーが求める冷房能力や暖房能力は維持できている状態(正常な状態))であるか残存冷媒量が不足している状態(ユーザーが求める冷房能力や暖房能力が維持できない状態(異常な状態))であるかを各運転状態量と紐づけた教師データ(正常と異常を分類する推定モデル生成に用いる教師データ)とがある。
【0068】
重回帰分析法では、例えば、冷媒充填量を異ならせて実機を用いた試験を行い、外気温度毎に異なる各運転状態量を取得し、冷媒充填量毎のデータに分類する。
図6は、重回帰分析法に用いる教師データの一例を示す説明図である。教師データに使用する運転状態量としては、例えば、圧縮機11、室内機3及び室外機2の運転状態量がある。圧縮機11の運転状態量としては、例えば、回転数、目標回転数、運転時間、吐出温度、目標吐出温度、出力電圧等がある。また、室内機3の運転状態量としては、例えば、ファン回転数、ファン目標回転数や熱交換器中間センサ温度等がある。また、室外機2の運転状態量としては、例えば、ファン回転数、ファン目標回転数、膨張弁開き度、膨張弁目標開き度や熱交換器出口センサ温度等がある。そして、
図6に示すように、冷媒充填量毎のデータを教師データとして機械学習を行うことで、残存冷媒量を推定するための任意の運転状態量(特徴量)を抽出すると共に係数を導出して、推定モデルを生成する。
【0069】
図7は、残存冷媒量が正常か異常かを分類する推定モデルの生成に用いる教師データの一例を示す説明図である。
図7に示すように教師データを用いて機械学習を行うことで、残存冷媒量が正常か否かを推定するための任意の運転状態量(特徴量)を抽出すると共に係数を導出して、推定モデルを生成する。
【0070】
<実施例1の効果>
実施例1の空気調和機1では、冷媒回路6に充填された冷媒の冷媒不足率の推定に関わる運転状態量を用いて重回帰分析法で生成された推定モデルと、限られたセンサで得た現在の運転状態量(圧縮機の回転数、圧縮機の冷媒吐出温度、熱交換器温度(室内熱交中間温度、室外熱交出口温度)、膨張弁の開度及び外気温度)とを用いて、冷媒不足率を推定する。推定モデルを生成する際に使用する運転状態量は、前述したように空気調和機1を様々な環境下で実機を試験的に運転させることによって求められたものであるため、この推定モデルを用いた冷媒不足率の推定は、空気調和機1を利用者が通常運転(冷房運転や暖房運転など)させた状態で得られる運転状態量を用いて推定が行える。その結果、家庭用の空気調和機1であっても、冷媒回路6をデフォルト状態に整えることなく、現時点の冷媒不足率を推定できる。
【0071】
空気調和機1に搭載される推定モデルは、複数の運転状態量の内、冷媒回路6に充填された冷媒の冷媒不足率の推定に与える影響の大きい運転状態量を用いて回帰分析法で予め生成される。この推定モデルでは、全ての運転状態量を使用するのではなく、推定モデルに与える影響の大きい運転状態量を選択して推定モデルを生成するため、高精度な推定モデルを生成できる。
【0072】
空気調和機1は、冷房運転時の影響の大きい運転状態量として、圧縮機11の回転数、膨張弁の開度、圧縮機11の吐出温度、熱交出口温度及び外気温度を用いて回帰分析法で生成される。その結果、冷房運転時の高精度な冷房用推定モデルを生成できる。
【0073】
空気調和機1は、暖房運転時の影響の大きい運転状態量として、圧縮機11の回転数、膨張弁14の開度、圧縮機11の吐出温度及び室内熱交中間温度を用いて回帰分析法で生成される。その結果、暖房運転時の高精度な暖房用推定モデルを生成できる。
【0074】
空気調和機1は、冷房用推定モデルと、冷房運転時の現在の運転状態量とを用いて、冷房運転時の冷媒不足率を推定すると共に、暖房用推定モデルと、暖房運転時の現在の運転状態量とを用いて、暖房運転時の冷媒不足率を推定する。その結果、家庭用の空気調和機1であっても、運転状態毎に異なる推定モデルを使用することで、冷媒不足率を高精度に推定できる。
【0075】
重回帰分析処理において、データフィルタリング処理及びデータクレンジング処理後の現在の運転状態量(センサ値)を推定モデルの各回帰式に代入する。本実施例では、推定モデルの各回帰式の生成は、シミュレーションで得た特徴量を用いており、シミュレーションで得た特徴量には異常な値や他と比べて突出して大きいあるいは小さい値は含まれていない。このような、異常値や突出値を含まない特徴量を用いて生成された推定モデルの各回帰式に、データフィルタリング処理及びデータクレンジング処理を行って異常値や突出値を除いた運転状態量を代入することで、より正確に冷媒不足率を推定できる。
【0076】
尚、以上に説明した実施例では、空気調和機1の設計段階で各運転状態量を実機を用いた試験により求め、学習機能を有するサーバなどの端末に試験結果を学習させて得られた推定モデルを制御回路18が予め記憶している場合を例示した。これに代えて、シミュレーション結果を学習させて得られた推定モデルを予め記憶してもよい。さらに、空気調和機1との間を通信網110で接続するサーバ120が存在し、このサーバ120が第1の回帰式及び第2の回帰式を生成して空気調和機1に送信するようにしてもよい。この実施の形態につき、以下に説明する。
サーバ120は、生成部121と、送信部122とを有する。生成部121は、冷媒回路6に充填された冷媒の冷媒不足率の推定に関わる運転状態量を用いて重回帰分析法で推定モデルを生成する。尚、推定モデルは、例えば、第1の実施例で説明した冷房用推定モデル43Aと、暖房用推定モデル43Bとを有する。送信部122は、生成部121にて生成した各推定モデルを通信網110経由で空気調和機1に送信する。空気調和機1内の制御回路18は、受信した各推定モデルを用いて空気調和機1の冷媒回路6における冷媒不足率を算出する。
サーバ120内の生成部121は、冷媒回路6における冷媒不足率を実測できる空気調和機1の標準機(製造メーカの試験室などに設置されている)から定期的に冷房運転時の運転状態量を収集し、各推定モデルで推定した冷媒不足率と実測した冷媒不足率との比較結果と収集した運転状態量とを用いて、冷房用推定モデル43Aを生成あるいは更新する。そして、サーバ120内の送信部122は、生成あるいは更新した冷房用推定モデル43Aを空気調和機1に定期的に送信する。なお、実施例1のように、各推定モデルの生成に使用する運転状態量をシミュレーションで得て、生成部121がシミュレーションで得た運転状態量を用いて各推定モデルを生成してもよい。
サーバ120内の生成部121は、上述した空気調和機1の標準機から定期的に暖房運転時の運転状態量を収集し、推定モデルで推定した冷媒不足率と実測した冷媒不足率との比較結果と収集した運転状態量とを用いて、暖房用推定モデル43Bを生成する。そして、サーバ120内の送信部122は、生成した暖房用推定モデル43Bを空気調和機1に定期的に送信する。なお、実施例1のように、各推定モデルの生成に使用する運転状態量をシミュレーションで得て、生成部121がシミュレーションで得た運転状態量を用いて各推定モデルを生成してもよい。
また、本実施例では、冷媒回路6に残存する冷媒量を表すものとして相対的な冷媒量を推定する場合を説明した。具体的には、冷媒回路6に冷媒を充填した際の充填量(初期値)に対する、冷媒回路6から外部に漏洩した冷媒量の割合である冷媒不足率を推定して提供する場合を説明した。しかし、本発明はこれに限られるものではなく、推定した冷媒不足率に初期値を乗じて、冷媒回路6から外部に漏洩した冷媒量を提供するようにしてもよい。また、冷媒回路6から外部に漏洩した絶対的な冷媒量あるいは冷媒回路6に残留する絶対的な冷媒量を推定する推定モデルを生成し、この推定モデルによる推定結果を提供するようにしてもよい。冷媒回路6から外部に漏洩した絶対的な冷媒量あるいは冷媒回路6に残留する絶対的な冷媒量を推定する推定モデルを生成する場合は、ここまでに説明した各運転状態量に加えて、室外熱交換器13及び室内熱交換器51の容積や液管4の容積を考慮すればよい。
また、図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
更に、各装置で行われる各種処理機能は、CPU(Central Processing Unit)(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしても良い。また、各種処理機能は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしても良いことは言うまでもない。
また、以上に説明した各実施例では、冷媒不足率を、冷媒が規定量充填されているときを100%としたとき、この規定量からの減少分とした。これに代えて、冷媒回路6に冷媒を規定量充填した直後に、本実施例に記載した方法で冷媒不足率を推定し、この推定結果を100%としてもよい。例えば、冷媒回路6に冷媒を規定量充填した直後に推定した冷媒不足率が90%である場合、つまり、冷媒回路6に充填されている冷媒量が規定量充填より10%少ないと推定した場合、この規定量充填より10%少ない冷媒量を100%としてもよい。このように100%とする冷媒量を推定結果に合わせることで、これ以降の冷媒不足率をより正確に推定できる。