IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ミツバの特許一覧

<>
  • 特開-回転電機 図1
  • 特開-回転電機 図2
  • 特開-回転電機 図3
  • 特開-回転電機 図4
  • 特開-回転電機 図5
  • 特開-回転電機 図6
  • 特開-回転電機 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022094731
(43)【公開日】2022-06-27
(54)【発明の名称】回転電機
(51)【国際特許分類】
   H02K 29/08 20060101AFI20220620BHJP
   H02K 1/27 20220101ALI20220620BHJP
【FI】
H02K29/08
H02K1/27 501A
H02K1/27 501K
【審査請求】未請求
【請求項の数】3
【出願形態】OL
(21)【出願番号】P 2020207789
(22)【出願日】2020-12-15
(71)【出願人】
【識別番号】000144027
【氏名又は名称】株式会社ミツバ
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100126664
【弁理士】
【氏名又は名称】鈴木 慎吾
(74)【代理人】
【識別番号】100196689
【弁理士】
【氏名又は名称】鎌田 康一郎
(72)【発明者】
【氏名】安中 智彦
(72)【発明者】
【氏名】力石 真
(72)【発明者】
【氏名】荒居 雄作
【テーマコード(参考)】
5H019
5H622
【Fターム(参考)】
5H019BB01
5H019BB05
5H019BB20
5H019BB22
5H019CC03
5H019CC08
5H622AA03
5H622CA02
5H622CA07
5H622CA14
5H622CB03
5H622CB04
5H622CB05
5H622PP03
(57)【要約】
【課題】界磁マグネットがロータコアに埋め込まれ、軸方向から見てV字状に配置される場合において、センサの位置検出の精度を向上させるとともに、小型化できる回転電機を提供する。
【解決手段】本発明のモータは、ロータコア22内において周方向に並んで複数配置されるとともに、周方向で隣り合う一対の組で1つの磁極を形成する界磁マグネット25と、界磁マグネット25による磁界Hの磁束密度を検出するセンサと、を備え、各界磁マグネット25は、軸方向から見て長方形状に形成されており、一対の界磁マグネット25は、軸方向から見てV字状に配置され、センサは、ロータコア22のうち、軸方向から見て一対の界磁マグネット25における径方向内側の側面25aに接する2つの直線L同士の交点を通り、かつ回転軸21の中心軸Oを中心とした円Cの径方向内側の磁界Hが存在する領域22aと軸方向で対向する位置に配置されている。
【選択図】図4
【特許請求の範囲】
【請求項1】
回転軸と、
前記回転軸に固定される筒状のロータコアと、
前記ロータコア内において前記回転軸の周方向に並んで複数配置されるとともに、前記周方向で隣り合う一対の組で1つの磁極を形成する界磁マグネットと、
前記界磁マグネットによる磁界の磁束密度を検出するセンサと、
を備え、
各前記界磁マグネットは、前記回転軸の軸方向から見て長方形状に形成されており、
一対の前記界磁マグネットは、前記軸方向から見て前記回転軸の径方向内側に凸のV字状に配置され、
前記センサは、前記ロータコアのうち、前記軸方向から見て前記一対の界磁マグネットにおける前記径方向内側の側面に接する2つの直線同士の交点を通り、かつ前記回転軸の中心軸を中心とした円の前記径方向内側の前記磁界が存在する領域と前記軸方向で対向する位置に配置されていることを特徴とする回転電機。
【請求項2】
前記センサは、前記円の位置で前記ロータコアと前記軸方向で対向するように配置されていることを特徴とする請求項1に記載の回転電機。
【請求項3】
前記ロータコアは、各前記界磁マグネットにおける前記径方向内側の端部に隣り合うように形成された内側フラックスバリアを有し、
前記内側フラックスバリアは、前記界磁マグネットの前記径方向の最内側端よりも前記径方向外側に配置されていることを特徴とする請求項1または請求項2に記載の回転電機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転電機に関する。
【背景技術】
【0002】
回転電機の一種として、例えばブラシレスモータ等が挙げられる。
ブラシレスモータは、ロータの回転位置を検出する検出手段を備える。ブラシレスモータは、検出手段によって検出された回転位置信号に基づいてステータ側のコイルを順次励起してロータを回転駆動する。コイルの励起のタイミングがずれると、トルクの変動が大きく不安定な挙動となるため、検出手段によるロータの回転位置を精度よく検出する必要がある。
検出手段としては、例えばロータの回転軸(ロータ軸)の端部にセンサマグネットを設け、センサマグネットに対向する位置にセンサマグネットの回転位置を検出するセンサ(位置検出センサ)を設けた構成が開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平11-299206号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来技術では、ロータとセンサマグネットとは別体であるため、センサマグネットの組付け精度や着磁精度が低い場合、センサの位置検出の精度が低下する。また、センサがセンサマグネットに対して回転軸の軸方向に対向して配置されるため、モータが軸方向に大型化する傾向にある。
また、界磁マグネットをセンサマグネットとして位置検出に利用する手段も存在する。しかしながら、界磁マグネットがロータコアに埋め込まれ、軸方向から見てV字状に配置される場合、センサが検出する磁束の波形が複雑になり、界磁マグネットを位置検出に利用することは困難であった。
【0005】
そこで、本発明は、界磁マグネットがロータコアに埋め込まれ、軸方向から見てV字状に配置される場合において、センサの位置検出の精度を向上させるとともに、小型化できる回転電機を提供する。
【課題を解決するための手段】
【0006】
上記の課題を解決するために、本発明に係る回転電機は、回転軸と、前記回転軸に固定される筒状のロータコアと、前記ロータコア内において前記回転軸の周方向に並んで複数配置されるとともに、前記周方向で隣り合う一対の組で1つの磁極を形成する界磁マグネットと、前記界磁マグネットによる磁界の磁束密度を検出するセンサと、を備え、各前記界磁マグネットは、前記回転軸の軸方向から見て長方形状に形成されており、一対の前記界磁マグネットは、前記軸方向から見て前記回転軸の径方向内側に凸のV字状に配置され、前記センサは、前記ロータコアのうち、前記軸方向から見て前記一対の界磁マグネットにおける前記径方向内側の側面に接する2つの直線同士の交点を通り、かつ前記回転軸の中心軸を中心とした円の前記径方向内側の前記磁界が存在する領域と前記軸方向で対向する位置に配置されていることを特徴とする。
【発明の効果】
【0007】
本発明によれば、界磁マグネットがロータコアに埋め込まれ、軸方向から見てV字状に配置される場合において、センサの位置検出の精度を向上させるとともに、小型化できる。
【図面の簡単な説明】
【0008】
図1】本発明の実施形態に係るモータの斜視図。
図2】本発明の実施形態に係るモータの内部構造を軸方向から見た平面図。
図3】本発明の実施形態に係るロータとセンサ基板との位置関係を示す模式図。
図4】本発明の実施形態に係るロータを軸方向から見た拡大平面図。
図5】本発明の実施形態に係る各計測点における磁束密度の変化を示すグラフ。
図6】本発明の実施形態に係る円の径方向内側の各計測点における磁束密度の変化を示すグラフ。
図7】本発明の変形例に係るロータを軸方向から見た平面図。
【発明を実施するための形態】
【0009】
(モータ)
次に、本発明の実施形態に係るモータ1(請求項の回転電機の例示)について、図1から図6を参照して説明をする。
図1は、モータ1の斜視図である。
図2は、モータ1の内部構造を軸方向から見た平面図である。
図3は、ロータ20とセンサ基板5との位置関係を示す模式図である。
図1から図3に示すように、モータ1は、磁石埋込型のIPM(Inteterior Parmanent Magnet)モータである。モータ1は、モータハウジング2と、モータハウジング2内に収容されたステータ10と、ステータ10内に回転自在に収容されたロータ20と、モータハウジング2内に収容されたセンサ基板5と、を備えている。
以下の説明では、ロータ20の回転軸21の軸方向を単に「軸方向」と称し、回転軸21の周方向を単に「周方向」と称し、回転軸21の径方向を単に「径方向」と称して説明する場合がある。
【0010】
図1に示すように、モータハウジング2は、軸方向に分割自在に構成されたハウジング本体2aと、蓋部2bと、を有している。ハウジング本体2aは、有底円筒状に形成されている。蓋部2bは、ハウジング本体2aの開口を閉塞する円板状の部材である。ハウジング本体2aの外周面には、動力線接続部3が設けられている。動力線接続部3には、不図示の外部電源等が接続される。蓋部2bには、モータハウジング2の内部から引き出されたケーブル4が設けられている。モータハウジング2とは反対側のケーブル4の先端には、コネクタ4aが設けられている。コネクタ4aには、不図示のコントローラ等が接続される。
【0011】
(ステータ)
図2に示すように、ステータ10は、円筒状に形成されている。ステータ10の軸方向は、モータハウジング2の軸方向と一致している。ステータ10は、モータハウジング2に固定されている。ステータ10は、環状に並べられた分割ステータコア11の集合体である。環状に並べられた分割ステータコア11は、一体化されている。分割ステータコア11は、周方向に延びるコア本体11aと、コア本体11aにおける周方向中央から径方向内側に向かって突出するティース部11bと、が一体成形されたものである。ティース部11bの周囲を被覆するようにインシュレータ12が装着されている。各ティース部11bには、インシュレータ12の上から銅線が巻回されることによりコイル13が形成されている。すなわち、ステータ10には、環状に並ぶ複数のコイル13が設けられている。各コイル13は、不図示のバスバーを介して互いに電気的に接続されるとともに、外部電源と電気的に接続されている。
【0012】
(ロータ)
図1及び図2に示すように、ロータ20は、ステータ10の径方向内側に配置されている。ロータ20は、回転軸21と、回転軸21に固定されるロータコア22と、を有している。
【0013】
回転軸21の軸方向は、モータハウジング2の軸方向及びステータ10の軸方向と一致している。回転軸21の両端部は、不図示の軸受を介してモータハウジング2に回転自在に取り付けられている。回転軸21の一端は、ケーブル4が引き出されたモータハウジング2のハウジング本体2aの底部から不図示の軸受を介して軸方向外側へ突出している。
【0014】
図2に示すように、ロータコア22は、複数の金属板を軸方向に積層することにより形成されている。なお、ロータコア22は、複数の金属板を軸方向に積層して形成する場合に限られるものではなく、例えば、軟磁性粉を加圧成形することにより形成されてもよい。ロータコア22の径方向中央部には、軸方向に貫通する第1貫通孔23が形成されている。第1貫通孔23には、回転軸21が圧入されている。なお、第1貫通孔23に回転軸21を挿入し、接着剤等を用いて回転軸21にロータコア22を固定されてもよい。ロータコア22内における第1貫通孔23の径方向外側には、スリット24が複数(本実施形態では、16個)形成されている。
【0015】
複数のスリット24は、周方向に並んで形成されている。各スリット24は、ロータコア22を軸方向に貫通している。各スリット24は、軸方向から見て長方形状に形成されている。複数のスリット24のうち周方向で隣り合う一対のスリット24は、軸方向から見て径方向内側に凸のV字状に形成されている。スリット24は16個設けられているため、一対のスリット24は8組設けられていることになる。一対のスリット24は、周方向に等間隔で配置されている。各スリット24には、界磁マグネット25が収納されている。
【0016】
界磁マグネット25は、スリット24の個数に対応するように複数(本実施形態では、16個)設けられている。複数の界磁マグネット25は、ロータコア22内において周方向に並んで配置されている。各界磁マグネット25は、軸方向から見て長方形状に形成されている。界磁マグネット25として、フェライト系マグネットと希土類系マグネット等、さまざまなマグネットを使用できる。界磁マグネット25は、着磁前にロータコア22に組付けられてもよいし、着磁後にロータコア22に組付けられてもよい。以下、界磁マグネット25を軸方向から見た場合の長手方向、短手方向を界磁マグネット25の長手方向、短手方向という。また、界磁マグネット25の端面のうち、長手方向に沿う端面(短手方向の両端面)を側面25aと称する。
複数の界磁マグネット25のうち周方向で隣り合う一対の組で1つの磁極を形成している。界磁マグネット25は16個設けられているため、ロータコア22には磁極が8極形成されている。一対の界磁マグネット25は、軸方向から見て径方向内側に凸のV字状に配置されている。ロータコア22内の1つの磁極において、界磁マグネット25は、長手方向が短手方向よりも周方向に沿うように配置されている。
【0017】
図4は、ロータ20を軸方向から見た拡大平面図である。
図2及び図4に示すように、各界磁マグネット25は、対向する一対の側面25a同士で異極となるように形成されている。一対の界磁マグネット25は、径方向で同じ側にある側面25a同士で同極となるように配置または着磁されている。周方向で隣り合う一対の界磁マグネット25間において、磁極が互いに反転している。
ロータコア22内における界磁マグネット25の長手方向両端に隣り合う位置には、フラックスバリア26が形成されている。
【0018】
フラックスバリア26は、ロータコア22を軸方向に貫通する空隙である。フラックスバリア26は、界磁マグネット25による磁界Hの磁束が界磁マグネット25の長手方向両端から漏出することを防止する。このため、界磁マグネット25によって生じる磁界Hは、フラックスバリア26を回避するように、径方向外側及び径方向内側のいずれか一方から回り込むとともに、周方向で隣り合う一対の界磁マグネット25間を架け渡すように生じる。
フラックスバリア26は、界磁マグネット25における径方向外側の端部に隣り合うように設けられた外側フラックスバリア26aと、界磁マグネット25における径方向内側の端部に隣り合うように設けられた内側フラックスバリア26bと、を有している。
【0019】
外側フラックスバリア26aは、界磁マグネット25の径方向外側の端部よりも径方向外側に位置している。外側フラックスバリア26aは、スリット24と連通している。
内側フラックスバリア26bは、界磁マグネット25の径方向の最内側端よりも径方向外側に配置されている。内側フラックスバリア26bは、スリット24と連通している。
ロータコア22内における界磁マグネット25と第1貫通孔23との間には、第2貫通孔27が複数(本実施形態では、8個)形成されている。
【0020】
複数の第2貫通孔27は、周方向に等間隔に並んで形成されている。各第2貫通孔27は、一対の界磁マグネット25の周方向中間部と、径方向で隣り合う位置に設けられている。各第2貫通孔27は、ロータコア22を軸方向に貫通している。
図3に示すように、ロータコア22と軸方向に対向する位置には、センサ基板5が設けられている。
【0021】
(センサ基板)
図3及び図4に示すようにセンサ基板5は、軸方向と直交する基板部5aと、基板部5a上に設けられたセンサ5bと、を有している。基板部5aは、不図示のブラケットを介してモータハウジング2に固定されている。
【0022】
センサ5bは、ロータコア22と基板部5aとの間に設けられている。センサ5bは、界磁マグネット25による磁界Hの磁束密度を検出することにより、ロータ20の回転位置を検出する位置検出センサである。ここで、軸方向から見て、界磁マグネット25における径方向内側の側面25aに接する直線を直線Lとする。さらに、ロータコア22のうち、軸方向から見て一対の界磁マグネット25における2つの直線L同士の交点Pを通り、かつ回転軸21の中心軸Oを中心とした円Cの径方向内側の磁界Hが存在する領域を領域22aとする。センサ5bは、領域22aと軸方向で対抗する位置に配置されている。より具体的には、センサ5bは、円Cと軸方向で対向する位置に配置されている。
【0023】
(磁束密度の変化)
センサ5bの位置は、ロータ20に対して固定されている。このため、センサ5bによって検出される磁束密度は、ロータ20の回転に応じて変化する。
以下、参考例として、図4に示すロータコア22内の計測点A1,A2,A3,A4,A5,A6,A7,A8ごとに磁束密度の変化を計測した結果を示す。計測点A1-A8は、ロータコア22内において、この順に径方向の外側から内側に向けて並んでいる。計測点A6-A8は、円C内部の領域22a内に位置している。特に計測点A6は、円Cに径方向内側から接している。
【0024】
図5は、縦軸を磁束密度[T]とし、横軸をロータ20の回転の機械角[deg]としたときの各計測点A1-A8における磁束密度の変化を示すグラフである。
図6は、縦軸を磁束密度[T]とし、横軸をロータ20の回転の機械角[deg]としたときの円Cの径方向内側の各計測点A6-A8における磁束密度の変化を示すグラフである。図6では、計測点A6,A7,A8の計測結果を、それぞれ実線、一点鎖線、破線を用いて示している。各計測点A1-A8は、ロータ20に対して固定される仮想点であり、ロータ20の回転とともに回転移動することはない。
本実施形態では、ロータコア22内に磁極は8つ設けられているため、ロータ20が機械角で45度回転することにより、各計測点A1-A8に対向する磁極は反転する。
【0025】
図4から図6に示すように、計測点A6-A8では、磁束密度がロータ20の回転の機械角の変化に対して正弦波状に変化していることが確認できる。このため、計測点A6-A8で計測される磁束密度の波形において、磁極が反転する機械角45度の範囲には、ピークが1つ存在する。すなわち、電気角で180度の範囲には、ピークが1つ存在する。よって、センサ5bが計測点A6-A8における磁束密度の変化をロータ20の回転位置を把握するための回転位置信号として利用した場合、センサ5bは、ロータ20の回転位置を高精度に検出できる。
【0026】
一方、計測点A1-A5では、磁束密度がロータ20の回転の機械角の変化に対して正弦波とは異なる複雑な形状に変化していることが確認できる。このため、計測点A1-A5で計測される磁束密度の波形において、磁極が反転する機械角45度の範囲には、ピークが複数存在する。すなわち、電気角で180度の範囲には、ピークが複数存在する。すなわち、ピークの数と磁極の極数とが一致しない。よって、センサ5bが計測点A1-A5における磁束密度の変化をロータ20の回転位置を把握するための回転位置信号として利用した場合、センサ5bが有するロータ20の回転位置の検出精度は、センサ5bが計測点A6-A8における磁束密度の変化を回転位置信号として利用した場合と比較して低下する。
【0027】
また、計測点A6-A8の中では、計測点A6,A7,A8の順に磁束密度が大きくなっている。このため、円C内部の領域22aにおいて円Cに近い程磁束密度を検出し易い傾向にあると考えられる。
以上を踏まえて、センサ5bは、円C内部の領域22aの中でも円Cに接近した位置で磁束密度を検出している。
【0028】
(センサの作用)
次に、センサ5bの作用について説明する。
センサ5bは、円C内部の領域22aにおける磁束密度の変化を検出する。センサ5bは、検出した磁束密度の変化をロータ20の回転位置信号として利用する。センサ5bは、回転位置信号に基づいてステータ10側のコイル13を順次励起してロータ20を回転駆動する。
【0029】
(作用効果)
本実施形態のモータ1において、センサ5bは、ロータコア22内における円Cの径方向内側の領域22aと軸方向で対向する位置に配置されている。
この構成によれば、センサ5bは、領域22a内における磁束密度の変化を検出できる。領域22a内の磁束密度は、ロータ20の回転の機械角の変化に対して正弦波状に変化する。このため、センサ5bは、領域22a内の磁束密度の変化を検出し、ロータ20の回転位置信号として利用することにより、ロータ20の回転位置を精度良く検出できる。
【0030】
センサ5bは、界磁マグネット25による磁界Hの磁束密度の変化を検出し、ロータ20の回転位置信号として利用している。このため、ロータ20の回転位置を検出するために別途センサマグネットを設ける必要がないため、例えばセンサマグネットの組付け精度が低い場合に、センサ5bの位置検出の精度が低下することもない。よって、モータ1は、センサ5bの位置検出の精度を向上できる。
センサ5bは、ロータコア22対して軸方向に対向して配置されている。このため、モータ1は、センサ5bを回転軸21と軸方向に対向させることなく配置できる。したがって、モータ1を軸方向に小型できる。
【0031】
本実施形態のモータ1では、センサ5bは、円Cと軸方向で対向する位置に配置されている。
この構成によれば、センサ5bは、円Cにおける磁束密度の変化を検出できる。円C内部における領域22a内の磁束密度は、円Cに接近するほど大きくなる傾向にあるため、センサ5bは、磁束密度の変化をより精度良く検出できる。これにより、モータ1は、センサ5bの位置検出の精度をより一層向上できる。
【0032】
本実施形態のモータ1では、内側フラックスバリア26bは、界磁マグネット25の径方向の最内側端よりも前記径方向外側に配置されている。
この構成によれば、モータ1は、センサ5bを円Cにより近付けて配置できる。これにより、センサ5bは、磁束密度の変化をより精度良く検出できる。したがって、モータ1は、センサ5bの位置検出の精度をより一層向上できる。
【0033】
本実施形態のモータ1では、ロータコア22を軸方向に貫通する第2貫通孔27が設けられている。
この構成によれば、モータ1は、ロータコア22を軸方向に肉抜きできる。これにより、モータ1は、ロータコア22を軽量化できる。したがって、モータ1を軽量化できる。また、モータ1は、ロータコア22の原材料の使用量を抑えることができる。したがって、モータ1の製造費を削減できる。
【0034】
以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、及びその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。
【0035】
上述の実施形態では、界磁マグネット25の個数が16個、磁極の極数が8極である場合について説明したが、これに限られない。一対の界磁マグネット25が軸方向から見てV字状に配置されていればよく、界磁マグネット25の個数及び磁極の極数は適宜変更可能である。
【0036】
図7は、ロータ20Aを軸方向から見た平面図である。
図7に示すように、ロータ20Aのロータコア22には、界磁マグネット25の径方向外側に複数(図示の例では、8個)の第2界磁マグネット28が埋め込まれてもよい。この場合、各第2界磁マグネット28と各一対の界磁マグネット25とは、軸方向から見て三角形状に配置されている。第2界磁マグネット28によるロータコア22の径方向外側に延びる磁束は、一対の界磁マグネット25によるロータコア22の径方向外側に延びる磁束に重ね合わされる。これにより、ロータ20Aは、ロータコア22に第2界磁マグネット28が設けられていない場合と比較してロータコア22の有効磁束密度を大きくできる。
【0037】
上述の実施形態では、フラックスバリア26は、空隙である場合について説明したが、空隙を樹脂で埋めてもよい。
【0038】
その他、本発明の趣旨を逸脱しない範囲で、上述した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上述した各変形例を適宜組み合わせても構わない。
【符号の説明】
【0039】
1…モータ、2…モータハウジング、2a…ハウジング本体、2b…蓋部、3…動力線接続部、4…ケーブル、4a…コネクタ、5…センサ基板、5a…基板部、5b…センサ、10…ステータ、11…分割ステータコア、12…インシュレータ、13…コイル、20,20A…ロータ、21…回転軸、22…ロータコア、22a…領域、23…第1貫通孔、24…スリット、25…界磁マグネット、25a…側面、26…フラックスバリア、26a…外側フラックスバリア、26b…内側フラックスバリア、27…第2貫通孔、28…第2界磁マグネット、A1,A2,A3,A4,A5,A6,A7,A8…計測点、C…円、H…磁界、L…直線、O…中心軸、P…交点
図1
図2
図3
図4
図5
図6
図7