IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングの特許一覧

<>
  • 特開-センサ装置 図1
  • 特開-センサ装置 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022009738
(43)【公開日】2022-01-14
(54)【発明の名称】センサ装置
(51)【国際特許分類】
   A61B 5/02 20060101AFI20220106BHJP
   A61B 5/0245 20060101ALI20220106BHJP
   A61B 5/1455 20060101ALI20220106BHJP
【FI】
A61B5/02 310B
A61B5/0245 100B
A61B5/1455
【審査請求】有
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2021177515
(22)【出願日】2021-10-29
(62)【分割の表示】P 2018557844の分割
【原出願日】2017-05-23
(31)【優先権主張番号】102016109694.6
(32)【優先日】2016-05-25
(33)【優先権主張国・地域又は機関】DE
(71)【出願人】
【識別番号】599133716
【氏名又は名称】オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング
【氏名又は名称原語表記】Osram Opto Semiconductors GmbH
【住所又は居所原語表記】Leibnizstrasse 4, D-93055 Regensburg, Germany
(74)【代理人】
【識別番号】110002952
【氏名又は名称】特許業務法人鷲田国際特許事務所
(72)【発明者】
【氏名】ボシュケ ティム
(72)【発明者】
【氏名】ハスルベック シュテファン
【テーマコード(参考)】
4C017
4C038
【Fターム(参考)】
4C017AA02
4C017AA09
4C017AA12
4C017AC26
4C017FF17
4C038KK01
4C038KL05
4C038KL07
4C038KY10
(57)【要約】      (修正有)
【課題】反射型の光電式容積脈波記録法に従って心拍数および/または動脈血酸素飽和度を測定するセンサ装置を提供する。
【解決手段】第1のスペクトル領域の波長を有する光を放出するように設計されている第1の発光デバイス110と、第2のスペクトル領域の波長を有する光を放出するように設計されている第2の発光デバイス120と、第1のスペクトル領域の波長を有する光を検出する一方、第2のスペクトル領域の波長を有する光に感応しないように設計されている第1の光検出器210と、第1のスペクトル領域の波長を有する光および第2のスペクトル領域の波長を有する光を検出するように設計されている第2の光検出器220と、を備えているセンサ装置に関する。第1の発光デバイス110と第1の光検出器210との間の距離は、第2の発光デバイス120と第2の光検出器220との間の距離より短い。
【選択図】図1
【特許請求の範囲】
【請求項1】
センサ装置(10,20)であって、
第1の室(410)と、第2の室(420)と、第3の室(430)とに分割されているハウジング(400)であって、前記第2の室(420)は、前記第1の室(410)と前記第3の室(430)との間に配置されており、前記第1の室(410)と、前記第2の室(420)と、前記第3の室(430)とは、光不透過性の壁によって互いに区切られている、ハウジング(400)と、
第1のスペクトル領域の波長を有する光を放出する第1の発光素子(110)と、
第2のスペクトル領域の波長を有する光を放出する第2の発光素子(120)と、
前記第1のスペクトル領域の波長を有する光を検出する一方、前記第2のスペクトル領域の波長を有する光には感応しないように構成されている第1の光検出器(210)と、
前記第1のスペクトル領域の波長を有する光と、前記第2のスペクトル領域の波長を有する光とを検出するように構成されている第2の光検出器(220)と、
を備えており、
前記第1の発光素子(110)と、前記第2の発光素子(120)とは、前記ハウジング(400)の前記第1の室(410)に配置されており、前記第1の光検出器(210)は、前記ハウジング(400)の前記第2の室(420)に配置されており、前記第2の光検出器(220)は、前記ハウジング(400)の前記第3の室(430)に配置されており、
前記第1の発光素子(110)と前記第1の光検出器(210)との間の距離(310)は、前記第2の発光素子(120)と前記第2の光検出器(220)との間の距離(320)より短い、
センサ装置(10,20)。
【請求項2】
前記センサ装置(10,20)は、第3のスペクトル領域の波長を有する光を放出する第3の発光素子(130)を備え、
前記第1の光検出器(210)は、前記第3のスペクトル領域の波長を有する光に感応しないように構成されており、
前記第2の光検出器(220)は、前記第3のスペクトル領域の波長を有する光を検出するように構成されている、
請求項1に記載のセンサ装置(10,20)。
【請求項3】
前記第3のスペクトル領域は、赤外スペクトル領域である、
請求項2に記載のセンサ装置(10,20)。
【請求項4】
前記第1のスペクトル領域は、520nmから570nmまでの波長範囲である、
請求項1~3のいずれか1項に記載のセンサ装置(10,20)。
【請求項5】
前記第2のスペクトル領域は、赤色スペクトル領域である、
請求項1~4のいずれか1項に記載のセンサ装置(10,20)。
【請求項6】
前記第1の光検出器(210)は、前記第1の発光素子(110)と前記第2の光検出器(220)との間に配置されている、
請求項1~5のいずれか1項に記載のセンサ装置(10)。
【請求項7】
前記第1の光検出器(210)は、前記第2の発光素子(120)と前記第2の光検出器(220)との間に配置されている、
請求項1~6のいずれか1項に記載のセンサ装置(10)。
【請求項8】
前記センサ装置(10)は、前記第1のスペクトル領域の波長を有する光を放出する第4の発光素子(140)を備えている、
請求項1~7のいずれか1項に記載のセンサ装置(10)。
【請求項9】
前記第1の光検出器(210)は、前記第1の発光素子(110)と前記第4の発光素子(140)との間に配置されている、
請求項8に記載のセンサ装置(10)。
【請求項10】
前記第1の光検出器(210)は、フィルタ(215)を備え、
前記フィルタ(215)は、前記第2のスペクトル領域の波長を有する光を除去するように構成されている、
請求項1~9のいずれか1項に記載のセンサ装置(10,20)。
【請求項11】
前記第1の発光素子(110)および/または前記第2の発光素子(120)は、発光ダイオードチップとして構成されている、
請求項1~10のいずれか1項に記載のセンサ装置(10,20)。
【請求項12】
前記第1の光検出器(210)および/または前記第2の光検出器(220)は、受光素子として、特にフォトダイオードとして構成されている、
請求項1~11のいずれか1項に記載のセンサ装置(10,20)。
【請求項13】
前記センサ装置(10,20)は、反射型の光電式容積脈波記録法に従って心拍数を測定するように構成されている、
請求項1~12のいずれか1項に記載のセンサ装置(10,20)。
【請求項14】
前記センサ装置(10,20)は、患者の血液中の酸素飽和度を測定するように構成されている、
請求項1~13のいずれか1項に記載のセンサ装置(10,20)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、センサ装置に関する。
【背景技術】
【0002】
人の使用者の健康およびフィットネスに関連するデータを取得するためのセンサ装置が、従来技術から公知である。このようなセンサ装置は、一例として、心拍数および/または動脈血酸素飽和度を求めることができる。使用者の皮膚を通過するときの光の吸収を測定することによって、このようなパラメータを光学的に取得する方法が知られている。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本発明の目的は、センサ装置を提供することにある。この目的は、請求項1の特徴を有するセンサ装置によって達成される。従属請求項は、さまざまな発展形態を開示する。
【課題を解決するための手段】
【0004】
センサ装置は、第1のスペクトル領域の波長を有する光を放出する第1の発光素子と、第2のスペクトル領域の波長を有する光を放出する第2の発光素子と、第1のスペクトル領域の波長を有する光を検出する一方、第2のスペクトル領域の波長を有する光には感応しないように構成されている第1の光検出器と、第1のスペクトル領域の波長を有する光と、第2のスペクトル領域の波長を有する光とを検出するように構成されている第2の光検出器とを備えている。この場合、第1の発光素子と第1の光検出器との間の距離は、第2の発光素子と第2の光検出器との間の距離より短い。
【0005】
本センサ装置の発光素子によって放出される光を、本センサ装置の使用者の皮膚の上皮層に照射することができる。使用者の皮膚の表面または内部で反射された光を、本センサ装置の光検出器によって捕捉することができる。この場合、第1の光検出器は、第1の発光素子の光のみを捕捉する一方、第2の光検出器は、第1の発光素子の光と第2の発光素子の光を捕捉することができる。
【0006】
本センサ装置における第2の発光素子と、関連付けられる第2の光検出器との間の距離は、第1の発光素子と、関連付けられる第1の光検出器との間の距離より大きく、これは有利である。結果として、第2の発光素子によって放出された光が第2の光検出器によってこの光が検出される前にセンサ装置の使用者の皮膚の中を進む距離は、第1の発光素子によって放出された光が第1の光検出器によってこの光が検出される前に使用者の皮膚の中を進むよりも、長い。この結果として、使用者の皮膚における光の反射および吸収の程度(放出される光の波長に依存する)の違いを考慮に入れることができる。これによりセンサ装置の高い測定精度を得ることができ、これは有利である。
【0007】
第1の光検出器が、第1のスペクトル領域の波長を有する光にのみ感応し、第2のスペクトル領域の波長を有する光には感応しないように構成されている結果として、第1の光検出器を、第1のスペクトル領域の波長を有する光を特に高い精度で検出できるようにすることができる。この目的のため、一例として、第1の光検出器は、第2のスペクトル領域の波長を有する光を除去する一方、第1のスペクトル領域の波長を有する光を通過させるフィルタを備えていることができる。
【0008】
本センサ装置の実施形態においては、本センサ装置は、第3のスペクトル領域の波長を有する光を放出する第3の発光素子を備えている。この場合、第1の光検出器は、第3のスペクトル領域の波長を有する光に感応しないように構成されている。第2の光検出器は、第3のスペクトル領域の波長を有する光を検出するように構成されている。したがって本センサ装置においては、第3の発光素子によって放出されて本センサ装置の使用者の皮膚の表面または内部で反射された光は、第2の光検出器によって検出されるが、第1の光検出器によっては検出されない。第3の発光素子によって放出される光は、本センサ装置のさらなる測定機能を実施する役割を果たすことができる。しかしながらこの光は、例えば、第2の発光素子によって放出される光によって行われる測定を支援することもできる。第3の発光素子と第2の光検出器との間の距離も、第1の発光素子と第1の光検出器との間の距離より長くすることができる。第3のスペクトル領域の波長を有する光に第1の光検出器が感応しない結果として、第1の光検出器を、第1のスペクトル領域の波長を有する光を特に高い精度で検出するように実施することができる。
【0009】
本センサ装置の実施形態においては、第3のスペクトル領域は、赤外スペクトル領域である。結果として、第3の発光素子によって放出される光は、例えば、本センサ装置の使用者の血液中の動脈血酸素飽和度を本センサ装置によって求めるのに適する。
【0010】
本センサ装置の実施形態においては、第1のスペクトル領域は、520nm~570nmの波長範囲である。結果として、第1の発光素子によって放出される第1のスペクトル領域の波長を有する光は、例えば、本センサ装置の使用者の心拍数を求めるのに適する。
【0011】
本センサ装置の実施形態においては、第2のスペクトル領域は、赤色スペクトル領域である。結果として、第2の発光素子によって放出される第2のスペクトル領域の波長を有する光は、例えば、本センサ装置の使用者の血液中の動脈血酸素飽和度を求めるのに適する。
【0012】
本センサ装置の実施形態においては、第1の光検出器は、第1の発光素子と第2の光検出器との間に配置されている。この配置によって有利に達成される点として、第1の発光素子と第1の光検出器との間の距離が、第2の発光素子と第2の光検出器との間の距離より短い。この場合、センサ装置の構成要素の省スペースな配置が得られ、これにより本センサ装置をコンパクトな形状に構成することが可能になる。
【0013】
本センサ装置の実施形態においては、第1の光検出器は、第2の発光素子と第2の光検出器との間に配置されている。この配置によって同様に有利に達成される点として、第1の発光素子と第1の光検出器との間の距離が、第2の発光素子と第2の光検出器との間の距離より小さい。この場合、センサ装置の構成要素の省スペースな配置が得られ、これにより本センサ装置をコンパクトな形状に構成することが可能になる。
【0014】
本センサ装置の実施形態においては、本センサ装置は、第1のスペクトル領域の波長を有する光を放出する第4の発光素子を備えている。この場合、第4の発光素子は、例えば第1の発光素子に類似して構成することができる。これにより、本センサ装置によって放出される、第1のスペクトル領域の波長を有する光の合計の明るさを増大させることができ、これは有利である。さらに、第1の発光素子によって放出される第1のスペクトル領域の波長を有する光の成分と、第4の発光素子によって放出される第1のスペクトル領域の波長を有する光の成分が、異なる空間方向から本センサ装置の使用者の皮膚に当たるように、第1の発光素子と第4の発光素子を配置することができ、結果として、特に信頼性が高く正確な測定を促進することができる。
【0015】
本センサ装置の実施形態においては、第1の光検出器は、第1の発光素子と第4の発光素子との間に配置されている。この結果として、第1の発光素子によって放出される第1のスペクトル領域の波長を有する光の成分と、第4の発光素子によって放出される第1のスペクトル領域の波長を有する光の成分が、第1の光検出器によってこれらが検出される前に、本センサ装置の使用者の皮膚の異なる部分を通過し、この結果として、本センサ装置によって行われる測定を、特に信頼性が高く正確なものにすることができ、これは有利である。
【0016】
本センサ装置の実施形態においては、第1の発光素子は、第1の光検出器と第2の光検出器との間に配置されている。この配置構成も、センサ装置の構成要素の省スペースな配置を表しており、第1の発光素子と第1の光検出器との間の距離が、第2の発光素子と第2の光検出器との間の距離より短く、これは有利である。これにより、センサ装置のコンパクトな構造が促進され、これは有利である。
【0017】
本センサ装置の実施形態においては、第1の発光素子は、第2の発光素子と第2の光検出器との間に配置されている。この配置構成も、センサ装置の構成要素の省スペースな配置を表しており、第1の発光素子と第1の光検出器との間の距離が、第2の発光素子と第2の光検出器との間の距離より短く、これは有利である。これにより、コンパクトな外形寸法を有するセンサ装置を形成することが容易になり、これは有利である。
【0018】
本センサ装置の実施形態においては、本センサ装置は、第3の光検出器を備えており、この第3の光検出器は、第1のスペクトル領域の波長を有する光を検出する一方、第2のスペクトル領域の波長を有する光には感応しないように構成されている。したがって、本センサ装置における第3の光検出器も、第1の発光素子によって放出される第1のスペクトル領域の波長を有する光を検出するために設けられている。第3の光検出器は、第2のスペクトル領域の波長を有する光に感応しない結果として、第1のスペクトル領域の波長を有する光を特に高い精度で検出することが可能である。この目的のため、一例として、第3の光検出器は、第2のスペクトル領域の波長を有する光を除去する一方、第1のスペクトル領域の波長を有する光は除去しないフィルタを備えていることができる。このセンサ装置において、第1の発光素子によって放出されて第1の光検出器によって検出される光と、第1の発光素子によって放出されて第3の光検出器によって検出される光が、センサ装置の使用者の皮膚の相異なる部分を通過するように、第1の光検出器および第3の光検出器を配置することができる。これにより本センサ装置は、第1の発光素子によって放出される光を使用して行われる測定を特に高い信頼性および精度で実行することができ、これは有利である。
【0019】
本センサ装置の実施形態においては、第1の発光素子は、第1の光検出器と第3の光検出器との間に配置されている。結果として、第1の発光素子によって放出される第1のスペクトル領域の波長を有する光が、第1の光検出器によって検出される前と、第3の光検出器によって検出される前とで、本センサ装置の使用者の皮膚の異なる部分を通過する。さらにこの場合、第1の発光素子によって放出される光は、異なる空間方向からセンサ装置の使用者の皮膚に当たる。これにより本センサ装置は、第1の発光素子によって放出される光を使用して行われる測定を特に高い信頼性および精度で実行することができ、これは有利である。
【0020】
本センサ装置の実施形態においては、第1の光検出器は、第2のスペクトル領域の波長を有する光を除去するように構成されているフィルタを備えている。これにより第1の光検出器は、第2のスペクトル領域の波長を有する光(第1の光検出器に当たって測定信号を乱すことがある)なしに、第1のスペクトル領域の波長を有する光を特に高い精度で検出することができ、これは有利である。
【0021】
本センサ装置の実施形態においては、第1の発光素子は、発光ダイオードチップとして構成されている。これに代えて、またはこれに加えて、第2の発光素子を発光ダイオードチップとして構成することができる。これにより、センサ装置の発光素子を高い費用効果でかつコンパクトに実施することが容易になり、これは有利である。さらに、発光ダイオードチップとして構成されている発光素子は、極めて正確に設定された波長の光を放出するように構成することができる。
【0022】
本センサ装置の実施形態においては、第1の光検出器は、受光素子(photodetector)として(特に、フォトダイオードとして)構成されている。これに代えて、またはこれに加えて、第2の光検出器を、受光素子として(特に、フォトダイオードとして)構成することができる。この結果として、センサ装置の光検出器をコンパクトに構成することができ、かつ高い費用効果で取得可能とすることができ、また、高い精度での光の検出を容易にすることができ、これは有利である。
【0023】
本センサ装置の実施形態においては、本センサ装置は、反射型の光電式容積脈波記録法(reflective photoplethysmography)に従って心拍数を測定するように構成されている。したがって本センサ装置によって、センサ装置の使用者がこの目的のためにさらなる電極などを取り付ける必要なしに心拍数の光学的な測定が容易になり、これは有利である。
【0024】
本センサ装置の実施形態においては、本センサ装置は、患者の血液中の酸素飽和度を測定するように構成されている。この場合、本センサ装置によって、酸素飽和度の光学的な非侵襲的測定が容易になり、これは有利である。
【0025】
本発明の上述した特性、特徴、および利点と、これらを達成する方法は、以下に図面を参照しながらさらに詳しく説明する例示的な実施形態の記述に関連して、さらに明確かつ容易に理解されるであろう。各図には以下を概略図で示してある。
【図面の簡単な説明】
【0026】
図1】第1のセンサ装置の平面図を示している。
図2】第2のセンサ装置の平面図を示している。
【発明を実施するための形態】
【0027】
図1は、第1の実施形態に係る、概略的に図解したセンサ装置10の平面図を示している。センサ装置10は、センサ装置10の使用者の健康またはフィットネスに関連するデータを求める目的で提供される。一例として、センサ装置10の使用者の血液中の動脈血酸素飽和度を測定する目的で、センサ装置10を提供することができる。これに加えて、センサ装置10の使用者の心拍数(脈拍周波数)を反射型の光電式容積脈波記録法に従って求める目的で、センサ装置10を提供することができる。この場合、センサ装置10によって行われる測定は、光学的方法によって実行される。
【0028】
センサ装置10は、ハウジング400を備えている(図1には概略的にのみ示してある)。図1は、ハウジング400の上側の平面図を示している。ハウジング400は、その上側にカバー(図1には示していない)を備えていることができる。そのようなカバーが存在する場合、カバーの少なくとも一部は、センサ装置10によって放出することのできる光に対して透明である。センサ装置10は、一例として携帯機器(特に、例えば腕時計)に組み込むことができる。
【0029】
測定を行う目的のため、センサ装置10のハウジング400は、ハウジング400の上側がセンサ装置10の使用者の皮膚に面するように、使用者の皮膚に配置されなければならない。
【0030】
センサ装置10は、第1の発光素子110を備えている。第1の発光素子110は、第1のスペクトル領域の波長を有する光を放出するように構成されている。第1の波長領域は、一例として、520nm~570nmの波長範囲とすることができる。この場合、第1の発光素子110によって放出することのできる光は、緑色を有する。
【0031】
さらに、センサ装置10は、第2の発光素子120を備えている。第2の発光素子120は、第2のスペクトル領域の波長を有する光を放出するように構成されている。第2のスペクトル領域は、一例として、赤色スペクトル領域とすることができる。一例として、第2の発光素子120によって放出される光は、660nmの波長を有することができる。
【0032】
これに加えて、センサ装置10は、第3の発光素子130を備えている。第3の発光素子130は、第3のスペクトル領域の波長を有する光を放出するように構成されている。第3のスペクトル領域は、一例として、赤外スペクトル領域とすることができる。一例として、第3の発光素子130によって放出される光は、940nmの波長を有することができる。
【0033】
センサ装置10は、第4の発光素子140をさらに備えている。第4の発光素子140は、第1のスペクトル領域の波長を有する光を放出するように構成されている。第4の発光素子140は、第1の発光素子110と同じかまたはほぼ同じ波長の光を放出するように構成することができる。
【0034】
第1の発光素子110、第2の発光素子120、第3の発光素子130および第4の発光素子140は、それぞれ発光ダイオードチップ(LEDチップ)として構成することができる。
【0035】
さらに、センサ装置10は、第1の光検出器210を備えている。第1の光検出器210は、第1の光検出器210に当たる第1のスペクトル領域の波長を有する光を検出するように構成されている。さらに、第1の光検出器210は、第1の光検出器210に当たる第2のスペクトル領域の波長を有する光には感応しないように構成されている。第1の光検出器210は、第1の光検出器210に当たる第3のスペクトル領域の波長を有する光にも感応しない。この目的のため、第1の光検出器210は第1のフィルタ215を備えていることができ、第1のフィルタ215は、第2のスペクトル領域の波長を有する光と、第3のスペクトル領域の波長を有する光とを除去する一方、第1のスペクトル領域の波長を有する光を通過させるように構成されている。第1のフィルタ215は、一例として、干渉フィルタとして(特に、例えばブラッグミラーとして)構成することができる。
【0036】
センサ装置10は、第1の光検出器210に加えて、第2の光検出器220を備えている。第2の光検出器220は、第1のスペクトル領域の波長を有する光と、第2のスペクトル領域の波長を有する光と、第3のスペクトル領域の波長を有する光とを検出するように構成されている。第2の光検出器220は、一例として、広い波長領域(第1のスペクトル領域、第2のスペクトル領域および第3のスペクトル領域を含む)からの任意の波長の光を検出するように構成することができる。
【0037】
センサ装置10の第1の光検出器210および第2の光検出器220は、例えば受光素子として(特に、例えばフォトダイオードとして)実施することができる。
【0038】
第1の発光素子110、第4の発光素子140および第1の光検出器210は、センサ装置10の使用者の心拍数を、反射型の光電式容積脈波記録法によって光学的に求める役割を果たすことができる。この目的のため、第1の発光素子110および第4の発光素子140によって放出される第1のスペクトル領域の波長を有する光は、センサ装置10の使用者の皮膚の上皮層に照射される。第1のスペクトル領域の波長を有する光は、使用者の皮膚において一部が吸収され、一部が反射される。使用者の皮膚の表面または内部で反射された第1のスペクトル領域の波長を有する光は、第1の光検出器210に達することができ、この光が第1の光検出器210によって検出される。血液に含まれるヘモグロビンは、センサ装置10の使用者の皮膚における強い吸収体を形成する。使用者の皮膚における血管の体積が心臓の鼓動に応じて変化する結果として、使用者の皮膚において第1の光検出器210の方に反射される第1のスペクトル領域の波長を有する光の量も、心臓の鼓動に応じて変化する。センサ装置10の使用者の心拍数を求める目的で、この変化が第1の光検出器210によって検出される。
【0039】
第1の発光素子110によって放出された第1のスペクトル領域の波長を有する光と、第4の発光素子140によって放出された第1のスペクトル領域の波長を有する光は、異なる空間方向からセンサ装置10の使用者の皮膚に当たり、第1の光検出器210への経路において皮膚の異なる部分を通過する。結果として、センサ装置10によって行われる測定を、特に高い精度かつ特に低い誤り発生率(susceptibility to errors)で実行することができる。この場合、図1に示したように第1の光検出器210が第1の発光素子110と第4の発光素子140との間に配置されているならば、有利である。しかしながら、簡略化された実施形態においては、第1の発光素子110または第4の発光素子140のいずれかを省くこともできる。
【0040】
第1の発光素子110および第4の発光素子140によって放出されてセンサ装置10の使用者の皮膚の表面または内部で反射された第1のスペクトル領域の波長を有する光の、第1の光検出器210によって行われる検出は、第2の発光素子120によって放出される第2のスペクトル領域の波長を有する光によって、または第3の発光素子130によって放出される第3のスペクトル領域の波長を有する光によって妨げられない。なぜなら第2のスペクトル領域または第3のスペクトル領域の波長のこのような光は、第1の光検出器210の第1のフィルタ215によって除去されるためであり、これは有利である。
【0041】
センサ装置10の第2の発光素子120、第3の発光素子130および第2の光検出器220は、センサ装置10の使用者の動脈血酸素飽和度を測定する役割を果たすことができる。この目的のため、第2の発光素子120によって放出される第2のスペクトル領域の波長を有する光と、第3の発光素子120によって放出される第3のスペクトル領域の波長を有する光とが、センサ装置10の使用者の皮膚の上皮層に照射され、これらの光は上皮層において波長に応じて吸収および反射される。第2のスペクトル領域の波長を有する光の一部と、第3のスペクトル領域の波長を有する光の一部とは、センサ装置10に戻って第2の光検出器220に当たり、第2の光検出器220においてこれらの光が検出される。第2の光検出器220に達する第2のスペクトル領域の波長を有する光の量と、第2の光検出器220に達する第3のスペクトル領域の波長を有する光の量とから、センサ装置10の使用者の血液中の動脈血酸素飽和度を推定することができる。
【0042】
第2のスペクトル領域の波長を有する光と、第3のスペクトル領域の波長を有する光との、人の皮膚における散乱および吸収は、第1のスペクトル領域の波長を有する光の散乱および吸収より少ないため、良好な測定結果を得る目的のためには、第1の発光素子110および第4の発光素子140によって放出される第1のスペクトル領域の波長を有する光が、第2の発光素子120によって放出される第2のスペクトル領域の波長を有する光、および第3の発光素子130によって放出される第3のスペクトル領域の波長を有する光よりも、センサ装置10の使用者の皮膚の中を短い距離だけ進むならば、有利である。このことは、センサ装置10において、第1の発光素子110と第1の光検出器210との間の第1の距離310が、第2の発光素子120と第2の光検出器220との間の第2の距離320より短いことによって達成される。第4の発光素子140と第1の光検出器210との間の距離は、第1の発光素子110と第1の光検出器210との間の第1の距離310に実質的に一致する。同様に、第3の発光素子130と第2の光検出器220との間の距離も、第2の発光素子120と第2の光検出器220との間の第2の距離320に実質的に一致する。
【0043】
発光素子110,120,130,140と光検出器210,220との間の所望の距離310,320を、センサ装置10の構成要素の省スペースな配置によって達成する目的で、第1の光検出器210は、第1の発光素子110と第2の光検出器220との間に配置されている。さらに、第1の光検出器210は、第2の発光素子120と第2の光検出器220との間に配置されている。
【0044】
センサ装置10のハウジング400は、第1の室410と、第2の室420と、第3の室430とに分割されている。この場合、第2の室420は、第1の室410と第3の室430との間に配置されている。室410,420,430は、光不透過性の壁によって互いに区切られている。
【0045】
第1の発光素子110、第2の発光素子120および第3の発光素子130は、ハウジング400の第1の室410に配置されている。第1の光検出器210は、ハウジング400の第2の室420に配置されている。第4の発光素子140および第2の光検出器220は、ハウジング400の第3の室430に配置されている。光を透過させないように互いに密閉されている、センサ装置10のハウジング400の個別の室410,420,430に、発光素子110,120,130,140および光検出器210,220を配置することによって、発光素子110,120,130,140によって放出される光が、センサ装置10の使用者の皮膚の表面または内部で事前に反射されることなく直接的な経路に沿って光検出器210,220に達することが防止される。しかしながら、ハウジング400を個別の室410,420,430に分割することを省くこともできる。
【0046】
図2は、第2の実施形態に係るセンサ装置20の平面図を示している。センサ装置20は、大部分がセンサ装置10に対応している。図2において、センサ装置10に存在する構成要素に対応するセンサ装置20の構成要素には、図1と同じ参照符号を付してある。以下では、センサ装置20とセンサ装置10との相違点のみを説明する。それ以外に関しては、図1のセンサ装置10について上で行った説明が、図2のセンサ装置20にもあてはまる。
【0047】
センサ装置20は、第1のスペクトル領域の波長を有する光を放出する目的には、第1の発光素子110を備えているのみである。センサ装置20には、第4の発光素子140が存在しない。
【0048】
代わりに、センサ装置20は、第1の光検出器210および第2の光検出器220に加えて、第3の光検出器230を備えている。第3の光検出器230は、第1のスペクトル領域の波長を有する光を検出する一方、第2のスペクトル領域の波長を有する光と、第3のスペクトル領域の波長を有する光には感応しないように構成されている。この目的のため、第3の光検出器230は、さらなるフィルタ235を備えていることができ、さらなるフィルタ235は、第2のスペクトル領域の波長を有する光と、第3のスペクトル領域の波長を有する光を除去する一方、第1のスペクトル領域の波長を有する光を通過させるように構成されている。第3の光検出器230は、第1の光検出器210に類似して構成することができる。第3の光検出器230のさらなるフィルタ235は、第1の光検出器210の第1のフィルタ215に類似して構成することができる。
【0049】
センサ装置20の第1の発光素子110、第1の光検出器210および第3の光検出器230は、センサ装置20の使用者の心拍数を測定する役割を果たすことができる。この目的のため、第1の光検出器210および第3の光検出器230の両方が、第1の発光素子110によって放出される第1のスペクトル領域の波長を有する光を検出し、この光は、センサ装置20の使用者の皮膚の表面または内部で反射されたものである。この場合、第1の光検出器210によって検出される第1のスペクトル領域の波長を有する光と、第3の光検出器230によって検出される第1のスペクトル領域の波長を有する光は、センサ装置20の使用者の皮膚の相異なる部分を通過する。さらに、第1の光検出器210によって検出される光は、第3の光検出器230によって検出される第1のスペクトル領域の波長を有する光とは異なる空間方向から、センサ装置の使用者の皮膚に当たったものである。この結果として、センサ装置20においても、心拍数を高い精度かつ低い誤り発生率で測定することができる。
【0050】
図2に示した例のように、第1の発光素子110が第1の光検出器210と第3の光検出器230との間に配置されているならば有利である。これに付随して、図2に示したように、第1の発光素子110が第1の光検出器210と第2の光検出器220との間に配置されており、第1の発光素子110がさらに第2の発光素子120と第2の光検出器220との間に配置されているならば、センサ装置20の構成要素の省スペースな配置が得られる。このことは、第1の発光素子110がハウジング400の第2の室420に配置されており、第2の発光素子120、第3の発光素子130および第1の光検出器210がハウジング400の第1の室410に配置されており、第2の光検出器220および第3の光検出器230がハウジング400の第3の室430に配置されていることによって、達成することができる。
【0051】
この配置では、センサ装置20において、第1の発光素子110と第1の光検出器210との間の第1の距離310が、第2の発光素子120と第2の光検出器220との間の第2の距離320より短いことも確保される。第3の発光素子130と第2の光検出器220との間の距離は、この場合にも、第2の発光素子120と第2の光検出器220との間の第2の距離320にほぼ一致する。第1の発光素子110と第3の光検出器230との間の距離は、第1の発光素子110と第1の光検出器210との間の第1の距離310にほぼ一致する。
【0052】
ここまで本発明について、好ましい例示的な実施形態に基づいてさらに詳しく説明および図解してきた。しかしながら本発明は、開示されている例に限定されない。むしろ当業者には、本発明の保護範囲から逸脱することなく、これらの例から別の変形形態を導くことができるであろう。
【0053】
本特許出願は、独国特許出願第102016109694.6号の優先権を主張し、この文書の開示内容は参照により本明細書に組み込まれている。
【符号の説明】
【0054】
10 センサ装置
20 センサ装置
110 第1の発光素子
120 第2の発光素子
130 第3の発光素子
140 第4の発光素子
210 第1の光検出器
215 第1のフィルタ
220 第2の光検出器
230 第3の光検出器
235 さらなるフィルタ
310 第1の距離
320 第2の距離
400 ハウジング
410 第1の室
420 第2の室
430 第3の室
図1
図2