(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022097559
(43)【公開日】2022-06-30
(54)【発明の名称】計測装置、計測システム
(51)【国際特許分類】
G01C 15/00 20060101AFI20220623BHJP
G01C 9/00 20060101ALI20220623BHJP
E21B 47/024 20060101ALI20220623BHJP
【FI】
G01C15/00 104D
G01C9/00 B
E21B47/024
【審査請求】有
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2022070995
(22)【出願日】2022-04-22
(62)【分割の表示】P 2017061633の分割
【原出願日】2017-03-27
(71)【出願人】
【識別番号】516031417
【氏名又は名称】株式会社新技術総研
(71)【出願人】
【識別番号】520104374
【氏名又は名称】システム建設株式会社
(74)【代理人】
【識別番号】100096091
【弁理士】
【氏名又は名称】井上 誠一
(72)【発明者】
【氏名】野沢 有
(57)【要約】
【課題】掘削機本体等の対象物の位置を容易に計測できる計測装置等を提供する。
【解決手段】計測装置1は、地盤7の掘削時の掘削機本体6の位置を計測するものであり、複数の棒状の計測ユニット10を上下に接続して構成され、一方の端部に取付けた掘削機本体6の位置を計測する。計測ユニット10は内部に空洞を有する筒体であり、計測ユニット10の傾斜を測定する傾斜測定装置と、傾斜測定装置の測定結果を送信するアンテナ部材を有する。上下の計測ユニット10を接続する接続箇所では、上下の計測ユニット10が相対回転可能である。この接続箇所については、上下の計測ユニット10が少なくとも所定の面内で相対回転可能な接続箇所と、上下の計測ユニット10が少なくとも所定の面と直交する面内で相対回転可能な接続箇所が存在している。
【選択図】
図1
【特許請求の範囲】
【請求項1】
複数の計測ユニットを上下に配置して構成され、下端部に取付けた対象物の位置を計測する計測装置であって、
前記計測ユニットは、前記計測ユニットの傾斜を測定する傾斜測定装置と、前記傾斜測定装置の測定結果を送信する送信部を有することを特徴とする計測装置。
【請求項2】
前記計測装置は地盤の掘削時の掘削機本体の位置を計測することを特徴とする請求項1に記載の計測装置。
【請求項3】
前記計測ユニットの筐体が920MHzの周波数帯の電波を透過可能な材料によって形成されることを特徴とする請求項1または請求項2に記載の計測装置。
【請求項4】
上下の前記計測ユニットの筐体を接続する接続箇所では、上下の前記計測ユニットの筐体が相対的に上下移動可能であることを特徴とする請求項1から請求項3のいずれかに記載の計測装置。
【請求項5】
上下の前記計測ユニットの前記傾斜測定装置の間で、電波が、上下の前記計測ユニットの筐体の接続箇所および筐体の内部を透過して伝送されることを特徴とする請求項1から請求項4のいずれかに記載の計測装置。
【請求項6】
請求項1から請求項5のいずれかに記載の計測装置と情報処理装置による計測システムであって、
前記情報処理装置は、
前記計測装置の下端部に取付けた対象物の位置を、
各計測ユニットの長さおよび傾斜を用いて算出することを特徴とする計測システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、対象物の位置を計測する計測装置および計測システムに関する。
【背景技術】
【0002】
地中連続壁を構築する際に用いる掘削機として、懸垂型掘削機が知られている。懸垂型掘削機は、ベースマシンからワイヤ等で掘削機本体を懸垂し、掘削機本体を吊下ろしながら掘削機本体に設けたカッタ等で地盤を掘削するものである。
【0003】
懸垂型掘削機により地盤を掘削する際には、掘削機本体の姿勢を制御し掘削方向を常に鉛直に保つことが望ましい。そのための手法として、特許文献1では計測用のワイヤを掘削機本体に取付けて、掘削時のワイヤの繰り出し長さを計測したり、ワイヤの水平位置をカメラで計測したりして掘削機本体の位置を計測している。
【0004】
また本発明者も、掘削機本体を懸垂するワイヤの位置をカメラ等で測定することによって掘削機本体の位置を計測するシステムを以前出願している(特許文献2参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001-234555号公報
【特許文献2】特開2016-075670号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1の方法ではワイヤの緩み防止の目的から多大なテンションをワイヤに付与する必要があり、そのために非常に大きなトルクモータが必要になり、トルクモータに要するコストやスペース、また安全性の面でも課題がある。
【0007】
一方、本出願人による特許文献2のシステムでは上記のようなトルクモータが不要であり、簡便且つ正確に掘削機本体の位置を計測することができる。
【0008】
しかしながら、このような懸垂型掘削機では、掘削機本体やこれを懸垂するワイヤが泥はね防止シートで覆われた状態で使用されることがあり、カメラ等でワイヤの位置を測定するのが困難である。また、ワイヤの絡み防止の目的からワイヤがプラスチック製のボックスで被覆されていることもあり、この場合もワイヤの位置をカメラ等で直接測定するのが困難になる。
【0009】
本発明は上記の問題に鑑みてなされたものであり、掘削機本体等の対象物の位置を容易に計測できる計測装置等を提供することを目的とする。
【課題を解決するための手段】
【0010】
前述した課題を解決するための第1の発明は、複数の計測ユニットを上下に配置して構成され、下端部に取付けた対象物の位置を計測する計測装置であって、前記計測ユニットは、前記計測ユニットの傾斜を測定する傾斜測定装置と、前記傾斜測定装置の測定結果を送信する送信部を有することを特徴とする計測装置である。
前記計測装置は例えば地盤の掘削時の掘削機本体の位置を計測するものである。
【0011】
本発明の計測装置は、計測ユニットの長さと傾斜から求まる計測ユニットごとの変位を積算して計測装置の両端部間の変位を計測することができ、計測装置の端部を対象物に外部から取付けることで、対象物の位置を容易に計測できる。そのため、例えば前記したように懸垂用のワイヤによる掘削機本体の位置測定ができない場合でも、計測装置を掘削機本体に外部から取付けてその位置が容易に計測できるようになる。
【0012】
上下の前記計測ユニットの筐体を接続する接続箇所では、上下の前記計測ユニットの筐体が相対的に上下移動可能であることが望ましい。
掘削溝内のソイルセメント等の流動体中に計測装置を配置する場合、上記の構成によって上下の計測ユニットの縁を切ることで、計測装置の下降開始時に計測装置全体に瞬間的に加わる静止摩擦抵抗が、計測装置と対象物の接続部に集中的に作用して接続部が破断するのを防ぐことができる。
【0013】
上下の前記計測ユニットの前記傾斜測定装置の間で、電波が、上下の前記計測ユニットの筐体の接続箇所および筐体の内部を透過して伝送されることが望ましい。また、前記計測ユニットの筐体が920MHzの周波数帯の電波を透過可能な材料によって形成されることも望ましい。
本発明では、上下の計測ユニットの接続箇所や計測ユニットの内部を、電波透過性を有する構成とすることで、上記のように傾斜測定装置の間で電波の伝送を行うことができ、各計測ユニットの傾斜測定装置の間でリレー形式による信号の送受信を行うことが可能になり、簡易な構成で各傾斜測定装置への測定指示や各傾斜測定装置の測定結果の収集を行うことができる。
【0014】
第2の発明は、第1の発明の計測装置と情報処理装置による計測システムであって、前記情報処理装置は、前記計測装置の下端部に取付けた対象物の位置を、各計測ユニットの長さおよび傾斜を用いて算出することを特徴とする計測システムである。
このように、本発明では計測ユニットの長さと傾斜から情報処理装置によって対象物の位置を好適に算出できる。
【発明の効果】
【0015】
本発明により、掘削機本体等の対象物の位置を容易に計測できる計測装置等を提供することができる。
【図面の簡単な説明】
【0016】
【
図1】計測装置1を懸垂型掘削機の掘削機本体6に取付けた状態を示す図。
【
図4】上下の計測ユニット10の接続箇所16における相対回転について説明する図。
【
図8】掘削機本体6による地盤7の掘削について示す図。
【
図9】計測装置1による位置計測について説明する図。
【
図11】上下の計測ユニット10aの接続箇所16aを示す図。
【
図12】上下の計測ユニット10aの傾斜測定装置30間の電波の伝送を示す図。
【発明を実施するための形態】
【0017】
以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。
【0018】
[第1の実施形態]
(1.懸垂型掘削機と計測装置1)
図1は、本発明の第1の実施形態に係る計測装置1を懸垂型掘削機の掘削機本体6に取付けた状態を示す図である。
【0019】
計測装置1は、地中連続壁の施工時等に掘削機本体6のカッタ61で地盤7を掘削して掘削溝71を形成する際に用いられる。本実施形態では、地盤7の掘削と並行して掘削機本体6からセメントスラリー等を吐出し、これを掘削土と原位置で撹拌混練してソイルセメント(流動体)を生成しながら地盤7を下方へと掘り進んでゆくものとする。地中連続壁の施工としては、こうして掘削溝71を形成した後、掘削溝71内のソイルセメントに芯材を建て込む手順となる。
【0020】
本実施形態では、掘削機本体6の立面の四隅に1つずつ計4つのカッタ61が設けられており、各カッタ61が水平軸を中心として独立に正逆回転することで地盤7の掘削ができるようになっている。また掘削機本体6の内部には、掘削機本体6の姿勢(傾斜)を計測するための光ファイバジャイロや傾斜計(不図示)が設けられる。ただし光ファイバジャイロは時間経過に伴って誤差が大きくなる傾向があるので、本実施形態では掘削機本体6の平面における向き(方位)をより正確に計測するため、さらに方位角センサ(不図示)なども設けている。
【0021】
掘削機本体6は吊材5によってベースマシン8から吊り下げられる。吊材5はワイヤ51をプラスチック製の箱状の複数の被覆材52によって連続的に覆った形となっており、これによりワイヤ51の絡みを防止している。吊材5は掘削機本体6の上面の左右両側に取付けられ、これらの吊材5の間には、カッタ駆動用の油圧を掘削機本体6に供給するための複数の油圧ホース9等も設けられる。
【0022】
なお、掘削機本体6の構成や掘削機本体6による地盤7の掘削方法はこれに限らない。掘削溝71内の流動体も掘削方法に応じて異なり、掘削溝71内に水(泥水)や安定液が満たされるケースもある。
【0023】
図1に示すように、本実施形態の計測装置1は複数の棒状の計測ユニット10を上下に接続して構成される。計測装置1の下端部は、ボールジョイント等の接続部15によって掘削機本体6(対象物)の外部に球面接続され、自由な挙動が確保される。計測装置1の上端部にはワイヤ3(線材)が接続されており、ワイヤ3を介して後述するカウンターウェイト4が取付けられる。
【0024】
図2はベースマシン8の上部を側方から見た図である。
図2に示すように、吊材5等(吊材5および油圧ホース9)はベースマシン8の上部に設けたドラム82に巻き付けられており、ドラム82から繰り出された吊材5等がベースマシン8の先頭に保持されたプーリ81に引掛けられて直下の掘削機本体6に接続される。
【0025】
プーリ81やドラム82の回転中心には滑車811、821が取付けられる。前記したワイヤ3はこれらの滑車811、821に引掛けられ、その先端にカウンターウェイト4(錘)が取付けられる。このカウンターウェイト4により計測装置1の緩みが防止される。
【0026】
(2.計測ユニット10)
図3は計測ユニット10を示す図であり、計測装置1のうち上下に並んだ3つの計測ユニット10を示したものである。なお、以下の説明では、必要に応じて、計測ユニット10を最下段のものから最上段のものへと順に10
1、10
2、…10
n-1、10
n、10
n+1、…10
m-1、10
mと下付き文字を付した符号を用いて区別することがある。
【0027】
図3に示すように、計測ユニット10は上下を塞いだ中空の筒体であり、内部に空洞を有する。そのため、計測ユニット10には掘削溝71内のソイルセメントに対する浮力によって上向きの力が働くようになっている。なお、計測ユニット10の外面には、地盤7の掘削時に土やセメントスラリー等が付着しないようにスプレー等により付着防止材が塗布される。
【0028】
計測ユニット10の筒体の材料や形状、大きさ等は、計測ユニット10に上記した上向きの力が働くように種々定めることができる。本実施形態では、比重1の水に対し筒体単体で浮力による上向きの力を確保できるように、筒体の材料や形状、大きさ等を定める。ただし、比重1以上(例えば1.3~1.4程度)のソイルセメントに対し筒体単体で浮力による上向きの力を確保できるように定めることもできる。
【0029】
筒体の形状は円筒状でもよいし、角筒状のものでもよい。また筒体の材料もある程度の軽さと筒体が自重で撓まない程度の強度を有していればよく、アルミ等の金属や、ポリカーボネイト、ABS(acrylonitrile butadiene styrene)樹脂、PVC(poly
vinyl chloride)樹脂等の樹脂、プラスチック系の各種の新素材などを用いることができる。本実施形態では特にポリカーボネイトを用いるものとする。ポリカーボネイトはアルミの比重の半分以下と軽量であり且つ高い強度を有しており、浮力による上向きの力が働きやすく耐衝撃性の面でも好ましい。なお、後述する電波の伝送路に当たる部分では特にアルミ等の金属は用いず、上記したポリカーボネイトのような電波透過性を有する材料を使用する必要がある。アルミ等の金属はそれ以外の部分に使用可能であるが、比重が大きいので浮力による上向きの力は働きにくくなる。
【0030】
計測ユニット10の内部の空洞は、上から順に3つの室11、12、13に区画される。また計測ユニット10の上端部の外面にはスライダ14が設けられる。
【0031】
計測ユニット10の最も上の室11には充填体20が設けられる。この室11やその下方の室12は内部に水分等が浸入しないように完全防水仕様となっているが、充填体20は、室11の内部空間を充填体20によって予め埋めておくことで、室11の内部に万が一水分等が浸入した際にも、室11の内部の浸水量を減らし、計測ユニット10に浮力による上向きの力を確保するために設けられる。
【0032】
充填体20の材料や形状、大きさ等は、例えば室11の内部に比重1の水が浸入した際にも計測ユニット10に浮力による上向きの力が働くように種々定めることができ、例えばその重量を体積で割った比重が比重1の水よりも小さくなるようにする。
【0033】
本実施形態では、充填体20として上下を塞いだ中空の円筒体または中実の円柱体を用いており、これを発泡スチロールによって形成している。しかしながら、充填体20の材料や形状、大きさ等はこれに限ることはなく、室11の内部に水分等が浸入した際に計測ユニット10に浮力による上向きの力を確保できればよい。例えば上記の充填体20を発泡スチロールの代わりにABS樹脂等で形成することも可能であり、この場合は強度を高めることができる。
【0034】
本実施形態では、浮力による上向きの力を確保するため、計測ユニット10において上記の室11が大部分を占めており、例えば計測ユニット10の長さの2/3以上を占めている。従って、この室11の下方の室12、13は、計測ユニット10の下部において、計測ユニット10の長さの下から1/3以下の範囲に配置される。しかしながら、室11、12、13の配置がこれに限ることはない。
【0035】
計測ユニット10の室12内には傾斜測定装置30が設けられる。傾斜測定装置30からは、上下の室11、13内にアンテナ部材41、42(送信部)が延びている。アンテナ部材41、42は室11、13内の空洞に配置されるが、例えばアンテナ部材41を充填体20の内部に通したりすることも可能である。傾斜測定装置30については後述する。
【0036】
計測ユニット10の最も下の室13、および前記したスライダ14は、上下の計測ユニット10同士を、鉛直面内(計測ユニット10の長手方向に沿った面内)で相対回転可能に接続するために設けられる。
【0037】
すなわち、室13の側壁には所定長さ(例えば100m程度)のスリット131が設けられ、このスリット131に下方の計測ユニット10のスライダ14が取付けられる。
【0038】
スライダ14は、軸141とその先端の頭部142を有し、計測ユニット10の外面に取付けた軸141が上記のスリット131に通され、その先端の頭部142が室13内に配置される。頭部142の幅はスリット131の幅より大きく、スライダ14がスリット131から外れないようになっている。
【0039】
これにより、計測ユニット10とその下方の計測ユニット10が、接続箇所16においてスライダ14の軸方向を中心として鉛直面内で相対回転可能となる。さらに、スライダ14はスリット131に沿って上下移動可能であるため、接続箇所16では、計測ユニット10とその下方の計測ユニット10が相対的に上下移動可能になっている。
【0040】
本実施形態では、
図4(a)に模式的に示すように、1つの計測ユニット10を見た時に、その平面におけるスライダ14の設置位置とスリット131の形成位置は、計測ユニット10の中心に対し90度異なっている。
【0041】
従って、
図4(b)に模式的に示すように、計測ユニット10
nのスライダ14をその上方の計測ユニット10
n+1のスリット131に取付け、計測ユニット10
nのスリット131にその下方の計測ユニット10
n-1のスライダ14を取付けると、計測ユニット10
n、10
n+1が接続箇所16において相対回転する面P1と、計測ユニット10
n、10
n-1が接続箇所16において相対回転する面P2とが直交することになる。
【0042】
その結果、本実施形態では、計測装置1の上下の計測ユニット10の接続箇所16については、ある接続箇所16で上下の計測ユニット10n、10n+1が所定の面内で相対回転可能に接続される場合、その下の接続箇所16では、上下の計測ユニット10n、10n-1が上記所定の面と直交する面内で相対回転可能に接続される、という関係になっている。
【0043】
このように、本実施形態では、上下の計測ユニット10を所定の面内で相対回転可能に接続する接続箇所16と、上下の計測ユニット10を上記所定の面と直交する面内で相対回転可能に接続する接続箇所16が存在するので、計測装置1全体を見た時に
図5に示すようにフレキシブルな動きが可能になっている。そのため掘削機本体6の位置に応じて変形したり、掘削溝71内の礫などの障害物73を避けて上方に延びたり、障害物73の衝突時の衝撃を和らげたりすることができる。
【0044】
(3.傾斜測定装置30)
図6は傾斜測定装置30の概略を示す図である。傾斜測定装置30は、中空の容器31の内部に傾斜センサ32、電源33、アンテナ部34等を収容したものである。傾斜測定装置30の容器31は完全に密封されており、万が一室12内に水分等が浸入した際にも容器31内への浸入は防止され、傾斜センサ32、電源33、アンテナ部34等の信頼性を確保することができる。
【0045】
傾斜センサ32は公知の傾斜センサであり、例えば、
図7に示すように、平面において直交するX、Y方向についての計測ユニット10の傾斜を測定可能なジャイロを適用可能である。計測ユニット10の傾斜は、鉛直方向をZ方向として、X-Z面における傾斜角αとY-Z面における傾斜角βで示される。なお、以下の説明では傾斜センサ32の動作を制御する制御部については説明を省略するが、傾斜センサ32は、その駆動やデータ変換を行う制御部を含むものとして説明する。
【0046】
電源33は傾斜センサ32に電力を供給するものである。アンテナ部34は傾斜センサ32からの信号を送受信するためのものである。
【0047】
傾斜測定装置30の容器31の上下面には凹部311が形成される。凹部311はアンテナ部材41、42の外形に対応した形状であり、
図6の矢印a、bに示すようにアンテナ部材41、42を挿入することで容易に傾斜測定装置30を組立てることができる。アンテナ部材41、42は傾斜測定装置30の外部に配置されるため、アンテナ部材41、42によって傾斜測定装置30の水密性が悪化することがない。アンテナ部材41、42は棒状の部材であり、例えば鋼棒または鋼管を用いることができる。
【0048】
容器31の内部において、アンテナ部34は例えば凹部311の周囲に巻き付けられる。そのため、容器31の内外にあるアンテナ部34とアンテナ部材41、42との間で確実に信号の送受信を行うことができる。
【0049】
図3に示すように、上下の計測ユニット10の接続箇所16では、下段の計測ユニット10のアンテナ部材41と上段の計測ユニット10のアンテナ部材42が非接触で近接する。これらのアンテナ部材41、42同士の間で電波が伝送され、非接触で信号を送受信することができる。
【0050】
本発明では、信号の送受信にマイクロ波を用いることが望ましい。例えば、周波数が300MHz~3THzの電波を用いることが望ましく、さらに望ましくは、0.9GHz以上である。このような高周波を用いることで、発振器およびアンテナ部をコンパクトにすることができる。一方、920MHz程度あるいはそれ以下とすることも望ましく、この場合は省電力とできる。
【0051】
(4.計測装置1による位置計測)
本実施形態では、
図8(a)、(b)に示すように掘削機本体6で地盤7を所定深さ掘り進めるごとに、計測ユニット10の上部に新たな計測ユニット10を継ぎ足してゆく。こうして掘削機本体6による掘削を行うが、その途中で適宜掘削を一旦停止し、計測装置1によって掘削機本体6の位置計測を行う。位置計測を行った後は、再び掘削を開始する。
【0052】
図9に示すように、計測装置1による位置計測を行う際は、情報処理装置2が、有線または無線によって最上部の計測ユニット10
mのアンテナ部材41を介して最上部の計測ユニット10
mの傾斜測定装置30に測定指示を送信する(矢印A参照)。
【0053】
なお、情報処理装置2は制御部、記憶部、入力部、表示部、通信部等を有する通常のコンピュータによって実現でき、本実施形態では情報処理装置2と計測装置1とで掘削機本体6の位置を計測する計測システム100が構成される。
【0054】
情報処理装置2からの測定指示を受信した傾斜測定装置30は、計測ユニット10mのアンテナ部材42、およびその下段の計測ユニット10m-1のアンテナ部材41を介して下段の計測ユニット10m-1の傾斜測定装置30に測定指示を送信する(矢印B参照)。以上を繰り返し、最上段の計測ユニット10mの傾斜測定装置30から最下段の計測ユニット101の傾斜測定装置30へと順に、アンテナ部材41、42を介して測定指示が伝達される(矢印A~F参照)。
【0055】
各計測ユニット10
1~10
mの傾斜測定装置30は、測定指示を受信するとその傾斜センサ32によって各計測ユニット10
1~10
mの傾斜(
図7の傾斜角α、β)を測定する。
【0056】
最下段の計測ユニット101の傾斜測定装置30は、計測ユニット101の傾斜を測定すると、計測ユニット101の傾斜をアンテナ部材41、およびその上段の計測ユニット102のアンテナ部材42を介して上段の計測ユニット102の傾斜測定装置30に送信する(矢印G参照)。
【0057】
計測ユニット101の傾斜を受信した上段の計測ユニット102の傾斜測定装置30は、自身の傾斜の測定結果を加えた計測ユニット101、102の傾斜を、計測ユニット102のアンテナ部材41、およびその上段の計測ユニット103のアンテナ部材42を介して上段の計測ユニット103の傾斜測定装置30へと送信する(矢印H参照)。
【0058】
このように、本実施形態では、計測ユニット10nの傾斜測定装置30が、それより下方にある全ての計測ユニット101~10n-1の傾斜をその下段の計測ユニット10n-1の傾斜測定装置30から受信し、これに自身の傾斜の測定結果を加えた計測ユニット101~10nの傾斜をその上段の計測ユニット10n+1に送信する。
【0059】
以上の処理を最下段の計測ユニット101の傾斜測定装置30から最上段の計測ユニット10mの傾斜測定装置30まで繰り返し、最終的に全ての計測ユニット101~10mの傾斜が最上段の計測ユニット10mの傾斜測定装置30から情報処理装置2に送信される(矢印G~L参照)。それぞれの計測ユニット101~10mの傾斜の値は、これを測定した傾斜測定装置30のIDと紐づけられており、識別が可能である。
【0060】
なお、各傾斜測定装置30の測定指示や測定結果の収集方法はこれに限らない。例えばタイマなどを用いて所定の間隔で自動的に傾斜の測定と測定結果の送信を行うようにしてもよい。また、測定指示と測定結果の送信を別系統で行ってもよい。
【0061】
情報処理装置2には予め各計測ユニット10
1~10
mの長さLが入力されており、それぞれの計測ユニット10
1~10
mの長さLと傾斜角α、βによって、各計測ユニット10
1~10
mの上端部に対する下端部の変位(
図7のΔX、ΔY、ΔZ参照)を求めることができる。
【0062】
一方、本実施形態では、計測装置1の上端部(最上段の計測ユニット10mの上端部)の位置および平面における向きを、所定の2方向から計測装置1の上端部を撮影するカメラ等を用いた既知の測量手法(例えば、特許文献2参照)によって取得し、計測装置1の上端部の位置を始点として、各計測ユニット101~10mの上記の変位を最上段の計測ユニット10mから最下段の計測ユニット101へと順に積算してゆくことで、計測装置1の下端部、すなわち掘削機本体6の位置を算出可能である。
【0063】
計測装置1の上端部の平面における向きは、前記したX方向、Y方向を現実空間で特定するために用いられるが、その測定は、
図10に示すように最上段の計測ユニット10
mの上端部に設けたマーキング17を用いて行うことができる。
【0064】
マーキング17は、計測ユニット10mの周方向の所定位置(例えば前記のX方向あるいはY方向に対応する位置)に形成された基準線171と、当該基準線171から方位が左右に所定角度ずれるごとに設けた計測線172を有し、測量用のカメラに計測線172がどの範囲まで映し出されているか確認することで、計測ユニット10mの(基準線171の)平面の向きを迅速に計測することができる。
【0065】
以上説明したように、本実施形態の計測装置1は、計測ユニット10の長さLと傾斜から求まる計測ユニット10ごとの変位を積算して計測装置1の両端部間の変位を計測することができ、計測装置1の下端部を掘削機本体6に外部から取付けることで、情報処理装置2によって掘削機本体6の位置を容易に計測できるようになる。そのため、例えば前記したように懸垂用のワイヤによる掘削機本体6の位置測定ができない場合でも、計測装置1を掘削機本体6に外部から取付けてその位置が容易に計測できるようになる。
【0066】
また、上下の計測ユニット10を接続する接続箇所16については、上下の計測ユニット10が所定の面内で相対回転可能な接続箇所16と、上下の計測ユニット10が所定の面と直交する面内で相対回転可能な接続箇所16が存在するので、計測装置1全体がフレキシブルな動きをすることが可能であり、掘削機本体6の位置に応じて変形したり、掘削溝71内の障害物73を避けて上方に延びたり、障害物73の衝突時の衝撃を和らげたりすることができる。
【0067】
また、計測ユニット10は内部に空洞を有する筒体であり、計測装置1を掘削溝71内のソイルセメント等の流動体中に配置する場合に、計測ユニット10に浮力による上向きの力を働かせて浮かせることができる。その結果、計測装置1の緩み防止のために前記した大きなトルクモータ等が不要になり、安価で省スペース且つ安全な構成となる。
【0068】
また空洞内の前記の室11に充填体20を設置することで、室11内に水分等が浸入した場合でも、計測ユニット10に浮力による上向きの力を確保することができる。
【0069】
また計測ユニット10の筒体をポリカーボネイトによって形成することで、軽量で浮力による上向きの力が働きやすく且つ耐衝撃性に優れたものとなり、筒体が破損して落下するのを防ぐことができる。
【0070】
また、本実施形態では計測ユニット10に浮力による上向きの力を働かせる結果、計測装置1の緩み防止のための構成は、浮力の働かない最上段の計測ユニット10にカウンターウェイト4をワイヤ3を介して取付けるだけの簡易なものとできる。なお、場合によってはカウンターウェイト4を省略することも可能である。
【0071】
また、本実施形態では上下の計測ユニット10の接続箇所16において上下の計測ユニット10を相対的に上下移動可能として縁を切ることで、掘削開始時(計測装置1の下降開始時)にソイルセメント等から計測装置1に瞬間的に加わる静止摩擦抵抗が、計測装置1と掘削機本体6の接続部15に集中して作用するのを防ぐことができる。すなわち、仮に計測装置1が一体のものであると掘削開始時の瞬間的な静止摩擦抵抗が接続部15に集中して作用し、掘削深度が深いと静止摩擦抵抗に伴う過大な引張力によって接続部15が破断する恐れがある。しかしながら、本実施形態では各計測ユニット10の縁を切ることで、計測ユニット1本毎に静止摩擦抵抗が発生するだけになり、上記の破断を防ぐことができる。なお、接続箇所16においてスライダ14の上部と室13の上面、あるいはスライダ14の下部と室13の下面との間にバネ等の弾性部材による緩衝材を設け、上記した静止摩擦抵抗による衝撃を吸収し、破断を防止することもできる。
【0072】
しかしながら、本発明は上記の実施形態に限ることはない。例えば本実施形態では計測装置1を掘削機本体6に取付けているが、計測装置1を取付ける対象物はこれに限らない。例えばバケット式の掘削機のバケットに取付けたり、クレーン等の吊下げ装置の先端のフックや吊荷に取付けたりして、これらの対象物の位置を計測することも可能である。
【0073】
さらに、本実施形態では接続箇所16において上下の計測ユニット10が1つの面内で相対回転可能に接続されるが、上下の計測ユニット10が1つの面(所定の面)とこれに直交する面の少なくとも2面内で相対回転可能に接続されてもよい。さらに、計測ユニット10の構成も上記に限らず、室12と室13を入れ替えて接続箇所16を傾斜測定装置30の上方とする構成も可能である。
【0074】
さらに、傾斜測定装置30の配置や形状も上記に限らない。例えば水密性が保たれれば傾斜測定装置30が計測ユニット10の外部に配置されていてもよく、メンテナンスや電源の交換等が容易になる。また、傾斜測定装置30の上下面に凹部311を設ける代わりに、傾斜測定装置30の側面に略U字状の凹部を設け、この凹部にアンテナ部材41、42を配置するようにしてもよい。
【0075】
[第2の実施形態]
次に、本発明の第2の実施形態として、上下の計測ユニット同士の接続箇所の構成と電波の伝送路が異なる例について説明する。第2の実施形態は第1の実施形態と異なる点について説明し、第1の実施形態と同様の点については説明を省略する。
【0076】
図11は、第2の実施形態に係る上下の計測ユニット10a同士の接続箇所16aを示す図である。
図11では傾斜測定装置や充填体等の図示を省略している。
【0077】
図11に示すように、本実施形態では上下の計測ユニット10a同士が一直線状に接続される。上下の計測ユニット10aの接続箇所16aでは、上段の計測ユニット10aの筒体の下端部に筒状の第1端部部材91がネジ97等によって取付けられ、下段の計測ユニット10aの筒体の上端部に有底筒状の第2端部部材92が同じくネジ97等によって取付けられる。
【0078】
接続箇所16aでは、第1端部部材91に挿入部材93の一端が挿入され、挿入部材93の他端が第2端部部材92にピン接続される。
【0079】
すなわち、挿入部材93の一端には挿入部931が設けられており、この挿入部931が第1端部部材91の孔911に挿入される。挿入部931には円柱状のピン933が取付けられ、ピン933は第1端部部材91の孔911の側面に設けられた上下方向の長穴912に通される。
【0080】
一方、挿入部材93の他端には突出部932が設けられており、この突出部932が第2端部部材92の凹部921に挿入される。突出部932には円柱状のピン934が取付けられ、このピン934が第2端部部材92の凹部921の側面に設けられた孔922に挿入される。
【0081】
挿入部材93と第1端部部材91はバネ95(圧縮バネ)によって接続される。バネ95は上記した挿入部931の根元部分の外周面に沿って設けられる。
【0082】
以上の構成により、本実施形態でも、上下の計測ユニット10aを接続する接続箇所16aにおいて、上下の計測ユニット10aが鉛直面内(計測ユニット10aの長手方向に沿った面内)で相対回転可能であり、且つ相対的に上下移動可能となっている。
【0083】
すなわち、下段の計測ユニット10aがピン934の軸方向を中心として回転することで上下の計測ユニット10aが鉛直面内で相対回転し、また挿入部材93の挿入部931が第1端部部材91の孔911内を上下移動することで、上下の計測ユニット10aが相対的に上下移動する。前記のバネ95は、この上下移動に応じて伸縮し、衝撃を吸収する役割を果たす。
【0084】
挿入部931が孔911内を上下移動する際は、挿入部931に取付けられたピン933も孔911の側面の長穴912に沿って上下移動し、
図11(b)に示すようにピン933が長穴912の端部に突き当たることで挿入部931の移動が停止する。
図11(b)は上下の計測ユニット10aが相対的に上下移動して計測ユニット10a間の距離が縮まった状態を示しており、このとき前記のバネ95は縮んでいる。
【0085】
以上の接続箇所16aの外面は1層又は複数層のゴムバンド等による弾性を有する被覆層96で覆われ、接続箇所16aの防水を確実にする構成となっている。被覆層96は樹脂やステンレス材等による結束バンド98を外側から巻くことにより両計測ユニット10aの筒体端部に固定される。
【0086】
また本実施形態では、
図12に概略を示す上下の計測ユニット10aの傾斜測定装置30の間で電波を伝送する(矢印R参照)ものとする。傾斜測定装置30および前記のアンテナ部材(不図示)は前記した室12(測定部)の中に配置されているが、アンテナ部材は必要に応じて長さを調整することが可能である。
【0087】
電波は、計測ユニット10aの内部の空洞あるいは充填体20、および、上下の計測ユニット10aの接続箇所16a(第1端部部材91、第2端部部材92、挿入部材93)を透過する。そのため、少なくとも電波が透過する部分ではアルミ等の金属は使用されず、電波透過性を有する材料を使用している。本実施形態では充填体20に発泡スチロールを使用し、計測ユニット10aの筒体並びに第1端部部材91、第2端部部材92、挿入部材93等にはポリカーボネイトを使用している。
【0088】
これにより、第2の実施形態でもリレー形式による信号の送受信を行うことが可能になり、簡易な構成で各傾斜測定装置30への測定指示や各傾斜測定装置30の測定結果の収集を行うことができる。
【0089】
以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【符号の説明】
【0090】
1:計測装置
2:情報処理装置
3、51:ワイヤ
4:カウンターウェイト
5:吊材
6:掘削機本体
7:地盤
8:ベースマシン
9:油圧ホース
10、10a:計測ユニット
11、12、13:室
14:スライダ
15:接続部
16、16a:接続箇所
17:マーキング
20:充填体
30:傾斜測定装置
31:容器
32:傾斜センサ
33:電源
34:アンテナ部
41、42:アンテナ部材
52:被覆材
61:カッタ
71:掘削溝
73:障害物
81:プーリ
82:ドラム
91:第1端部部材
92:第2端部部材
93:挿入部材
95:バネ
96:被覆層
97:ネジ
98:結束バンド
100:計測システム
131:スリット
141:軸
142:頭部
171:基準線
172:計測線
311:凹部
811、821:滑車
【手続補正書】
【提出日】2022-05-19
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
複数の計測ユニットを上下に配置して構成され、下端部に取付けた対象物の位置を計測する計測装置であって、
前記計測ユニットは、前記計測ユニットの傾斜を測定する傾斜測定装置と、前記傾斜測定装置の測定結果を送信する送信部を有し、
上側の前記計測ユニットが、下側の前記計測ユニットから送信された前記測定結果を受信し、当該測定結果と、上側の前記計測ユニットにおける前記測定結果とを送信するリレー形式により測定結果が伝送されることを特徴とする計測装置。
【請求項2】
前記計測装置は地盤の掘削時の掘削機本体の位置を計測することを特徴とする請求項1に記載の計測装置。
【請求項3】
前記計測ユニットの筐体が920MHz帯の電波を透過可能な材料によって形成されることを特徴とする請求項1または請求項2に記載の計測装置。
【請求項4】
3つ以上の前記計測ユニットが上下に接続され、
上下の前記計測ユニットを接続する接続箇所では、上下の前記計測ユニットが前記計測ユニットの長手方向に沿った面内で相対回転可能であり、且つ、
上下の前記計測ユニットが所定の面内のみで相対回転可能な接続箇所と、上下の前記計測ユニットが前記所定の面と直交する面内のみで相対回転可能な接続箇所が存在することを特徴とする請求項1から請求項3のいずれかに記載の計測装置。
【請求項5】
上下の前記計測ユニットの筐体を接続する接続箇所では、上下の前記計測ユニットの筐体が相対的に上下移動可能であることを特徴とする請求項1から請求項4のいずれかに記載の計測装置。
【請求項6】
上下の前記計測ユニットの前記傾斜測定装置の間で、電波が、上下の前記計測ユニットの筐体の接続箇所および筐体の内部を透過して伝送されることを特徴とする請求項1から請求項5のいずれかに記載の計測装置。
【請求項7】
前記計測ユニットの筐体の上下が塞がれていることを特徴とする請求項1から請求項6のいずれかに記載の計測装置。
【請求項8】
請求項1から請求項7のいずれかに記載の計測装置と情報処理装置による計測システムであって、
前記情報処理装置は、
前記計測装置の下端部に取付けた対象物の位置を、
各計測ユニットの長さおよび傾斜を用いて算出することを特徴とする計測システム。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0010
【補正方法】変更
【補正の内容】
【0010】
前述した課題を解決するための第1の発明は、複数の計測ユニットを上下に配置して構成され、下端部に取付けた対象物の位置を計測する計測装置であって、前記計測ユニットは、前記計測ユニットの傾斜を測定する傾斜測定装置と、前記傾斜測定装置の測定結果を送信する送信部を有し、上側の前記計測ユニットが、下側の前記計測ユニットから送信された前記測定結果を受信し、当該測定結果と、上側の前記計測ユニットにおける前記測定結果とを送信するリレー形式により測定結果が伝送されることを特徴とする計測装置である。
前記計測装置は例えば地盤の掘削時の掘削機本体の位置を計測するものである。
3つ以上の前記計測ユニットが上下に接続され、上下の前記計測ユニットを接続する接続箇所では、上下の前記計測ユニットが前記計測ユニットの長手方向に沿った面内で相対回転可能であり、且つ、上下の前記計測ユニットが所定の面内のみで相対回転可能な接続箇所と、上下の前記計測ユニットが前記所定の面と直交する面内のみで相対回転可能な接続箇所が存在することも望ましい。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0013
【補正方法】変更
【補正の内容】
【0013】
上下の前記計測ユニットの前記傾斜測定装置の間で、電波が、上下の前記計測ユニットの筐体の接続箇所および筐体の内部を透過して伝送されることが望ましい。また、前記計測ユニットの筐体が920MHz帯の電波を透過可能な材料によって形成されることも望ましい。前記計測ユニットの筐体の上下が塞がれていることも望ましい。
本発明では、上下の計測ユニットの接続箇所や計測ユニットの内部を、電波透過性を有する構成とすることで、上記のように傾斜測定装置の間で電波の伝送を行うことができ、各計測ユニットの傾斜測定装置の間でリレー形式による信号の送受信を行うことが可能になり、簡易な構成で各傾斜測定装置への測定指示や各傾斜測定装置の測定結果の収集を行うことができる。