IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社KELKの特許一覧

<>
  • 特開-熱電モジュール 図1
  • 特開-熱電モジュール 図2
  • 特開-熱電モジュール 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022098288
(43)【公開日】2022-07-01
(54)【発明の名称】熱電モジュール
(51)【国際特許分類】
   H01L 35/32 20060101AFI20220624BHJP
【FI】
H01L35/32 A
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2020211745
(22)【出願日】2020-12-21
(71)【出願人】
【識別番号】590000835
【氏名又は名称】株式会社KELK
(74)【代理人】
【識別番号】110002147
【氏名又は名称】特許業務法人酒井国際特許事務所
(72)【発明者】
【氏名】矢崎 穣
(57)【要約】
【課題】温調対象を適切に温度調節可能な熱電モジュールを提供する。
【解決手段】熱電モジュール1は、一対の基板である第1基板11及び第2基板12と、一対のである第1基板11及び第2基板12の間に配置された、形状及び材料の少なくともどちらかによって規定される種類が異なる複数の熱電変換素子と、を備える。
【選択図】図1
【特許請求の範囲】
【請求項1】
一対の基板と、
前記一対の基板の間に配置された、形状及び材料の少なくともどちらかによって規定される種類が異なる複数の熱電変換素子と、
を備える、熱電モジュール。
【請求項2】
前記種類が同じ前記熱電変換素子は、すべてが直列、すべてが並列、又は、一部が並列に電気的に接続されている、請求項1に記載の熱電モジュール。
【請求項3】
前記種類が同じ複数の前記熱電変換素子を熱電変換素子群として、
すべての前記熱電変換素子群は、すべてが直列、すべてが並列、又は、一部が並列に電気的に接続されている、請求項1又は2に記載の熱電モジュール。
【請求項4】
前記熱電変換素子は、冷却側温度、放熱側温度、吸熱量、放熱側熱抵抗、及び、冷却側熱抵抗との少なくともいずれかに基づいて、消費電力が小さい種類及び対数で配置されている、請求項1から3のいずれか一項に記載の熱電モジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱電モジュールに関する。
【背景技術】
【0002】
特許文献1には、波長可変レーザ素子をペルチェ効果によって温度調節する温度調節器が開示されている。この技術は、下基板と、下基板の上面に所定の距離だけ空けて異なる領域に設けられた複数の熱電変換素子と、この異なる領域に設けられた複数の熱電変換素子の各々の上面に設けられた複数の上基板と、を有する。複数の上基板の各々の上面に、波長可変レーザ素子を設ける。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2019-140306号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載では、一対の基板の間に配置される熱電変換素子は、形状及び材料が同じものである。複数の温調対象を温度調節する場合、複数の温度調節器に1つ以上の温調対象を配置するか、1つの温度調節器にすべての温調対象を配置する必要がある。複数の温度調節器を配置する場合、部品数が増加する。1つの温度調節器にすべての温調対象を配置する場合、熱電変換素子は同じであるので、温度調節器の消費電力及び吸熱能力が最適化されないおそれがある。
【0005】
本発明は、温調対象を適切に温度調節可能な熱電モジュールを提供する。
【課題を解決するための手段】
【0006】
本発明の態様に従えば、一対の基板と、前記一対の基板の間に配置された、形状及び材料の少なくともどちらかによって規定される種類が異なる複数の熱電変換素子と、を備える熱電モジュールが提供される。
【発明の効果】
【0007】
本発明の態様に従えば、温調対象を適切に温度調節可能な熱電モジュールを提供することができる。
【図面の簡単な説明】
【0008】
図1図1は、実施形態に係る熱電モジュールの一例を示す概略図である。
図2図2は、熱電変換素子の選択方法を説明する図である。
図3図3は、従来の熱電モジュールの一例を示す概略図である。
【発明を実施するための形態】
【0009】
以下、本開示に係る実施形態について図面を参照しながら説明するが、本開示はこれに限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
【0010】
実施形態においては、「左」、「右」、「前」、「後」、「上」、及び「下」の用語を用いて各部の位置関係について説明する。これらの用語は、熱電モジュール1の中心を基準とした相対位置又は方向を示す。左右方向と前後方向と上下方向とは直交する。
【0011】
(実施形態)
[熱電モジュール]
図1は、実施形態に係る熱電モジュールの一例を示す概略図である。熱電モジュール1は、ペルチェ効果により、吸熱又は発熱する。熱電モジュール1が吸熱又は発熱することにより、温調対象の温度が調整される。実施形態では、熱電モジュール1は、例えば光学素子などの複数の温調対象を温調する熱電冷却器として説明する。
【0012】
熱電モジュール1は、一対の基板である第1基板11及び第2基板12と、複数の種類の熱電変換素子と、第1電極31と、第2電極32とを備える。実施形態では、複数の種類の熱電変換素子が、2種類の熱電変換素子21と熱電変換素子22とであるとして説明する。複数の種類の熱電変換素子は、これに限定されない。
【0013】
第1基板11及び第2基板12は、板状の基板である。実施形態では、第1基板11及び第2基板12は、矩形状に形成されている。第1基板11及び第2基板12は、例えばセラミックスなどの電気絶縁材料で形成される。第1基板11及び第2基板12は、熱伝導性が高い材料で形成される。
【0014】
第1基板11は、下側に配置されている。第1基板11は、第2基板12と向かい合って配置された面11aと、面11aと反対側を向いて配置された面11bとを有する。面11aと面11bとは平行である。
【0015】
第2基板12は、第1基板11と向かい合った状態で、間隔を空けて配置されている。第2基板12は、第1基板11と平行である。第2基板12は、図1において、第1基板11より上側に配置されている。第2基板12は、第1基板11と向かい合って配置された面12aと、面12aと反対側を向いて配置された面12bとを有する。面12aと面12bとは平行である。第2基板12は、面12b上に温調対象が配置される。実施形態では、ペルチェ効果により、第2基板12から熱が奪われる。これにより、面12b上に配置された温調対象が冷却される。
【0016】
熱電変換素子21及び熱電変換素子22は、第1基板11の面11aと第2基板12の面12aとの間にそれぞれ複数配置される。熱電変換素子21及び熱電変換素子22の数は、同じでも異なってもよい。複数の熱電変換素子21を、熱電変換素子21群という。複数の熱電変換素子22を、熱電変換素子22群という。熱電変換素子21群及び熱電変換素子22群は、第1基板11の面11aと第2基板12の面12aとの間の異なる領域に配置される。熱電変換素子21群と熱電変換素子22群とは、間隔を空けて配置してもよい。間隔を空けることにより、熱電変換素子21群の熱と熱電変換素子22群の熱とが互いに干渉することが抑制される。
【0017】
熱電変換素子21及び熱電変換素子22は、ペルチェ効果により、吸熱または発熱する。熱電変換素子21及び熱電変換素子22は、軸方向の断面が矩形状の角柱形状である。
【0018】
熱電変換素子133は、熱電材料によって形成される。熱電変換素子21及び熱電変換素子22は、例えばビスマス(Bi)、アンチモン(Sb)、テルル(Te)及びセレン(Se)の少なくとも2種の元素を主成分とする熱電材料とドーパントとなる材料とを含んで構成される。熱電変換素子21及び熱電変換素子22は、例えばBi-Te系、Bi-Se系、Sb-Te系、Bi-Sb系、Sb-Se系の熱電材料で形成される。
【0019】
熱電変換素子21は、p型の半導体熱電材料で形成されたp型素子と、n型の半導体熱電材料で形成されたn型素子とを含む。p型素子を構成するBi-Te系熱電材料としては、例えば、Bi、Te及びSbを含む熱電材料が挙げられる。n型素子を構成するBi-Te系熱電材料としては、例えば、Bi、Te及びSeを含む熱電材料が挙げられる。p型素子及びn型素子のそれぞれは、所定面内に複数配置される。前後方向において、p型素子とn型素子とは交互に配置される。左右方向において、p型素子とn型素子とは交互に配置される。
【0020】
熱電変換素子22は、p型素子とn型素子とを含む。熱電変換素子22においても、p型素子とn型素子とは、交互に配置される。
【0021】
熱電変換素子21と熱電変換素子22は、形状及び材料の少なくともどちらかが異なる。熱電変換素子21及び熱電変換素子22の種類は、形状及び材料の少なくともどちらかによって規定される。熱電変換素子21及び熱電変換素子22を比較して、形状及び材料の少なくともどちらかが異なる場合を、「種類が異なる」とする。より詳しくは、熱電変換素子21及び熱電変換素子22を比較して、軸方向の長さ、軸方向と垂直な断面における一方の辺の長さ、他方の辺の長さの少なくともいずれかが、例えば0.01mm以上異なる場合を、「種類が異なる」とする。熱電変換素子21及び熱電変換素子22を比較して、熱電変換素子21及び熱電変換素子22の材料が異なる場合を、「種類が異なる」とする。
【0022】
種類が異なる熱電変換素子21と熱電変換素子22とは、同じ駆動電流で駆動させた際の消費電力及び吸熱能力が異なる。
【0023】
第1電極31及び第2電極32は、例えば、電気伝導性及び熱伝導性の高い金属で構成される。第1電極31及び第2電極32を形成する金属として、銅(Cu)、銅を含む合金、ニッケル(Ni)、ニッケルを含む合金、アルミニウム(Al)、及びアルミニウムを含む合金、パラジウム(Pd)、パラジウムを含む合金、金(Au)、金を含む合金が例示される。また、第1電極31及び第2電極32の構造は、Cu、Al、Ni、Pd、Auのうち2つ又は3つを組み合わせた2層又は3層構造でもよい。これらの第1電極31及び第2電極32の表面がニッケル膜で覆われてもよい。
【0024】
第1電極31は、第1基板11の面11a上に設けられる。第1電極31は、第1基板11の面11aと平行な所定面内に複数が整列されている。第2電極32は、第2基板12の面12a上に設けられる。第2電極32は、第2基板12の面12aと平行な所定面内に複数が整列されている。第1電極31及び第2電極32は、上下方向視において一部が重なるように位置をずらしながら互いに離間して対向して配置される。
【0025】
第1電極31と第2電極32とに間に、熱電変換素子21群及び熱電変換素子22群が配置されている。より詳しくは、第1電極31と第2電極32は、隣接する一対のp型素子及びn型素子のそれぞれに接続される。このようにして、p型素子及びn型素子が、第1電極31または第2電極32を介して電気的に接続されてpn素子対が構成される。回路の始端に配置されたn型素子には、第2電極32を介して図示しないリード線が電気的に接続される。回路の終端に配置されたp型素子には、第2電極32を介して図示しないリード線が電気的に接続される。
【0026】
熱電変換素子21群の複数のpn素子対は、直列、並列、または一部が並列に接続されて直列回路、並列回路、または一部に並列回路が構成される。熱電変換素子22群の複数のpn素子対は、直列、並列、または一部が並列に接続されて直列回路、並列回路、または一部に並列回路が構成される。言い換えると、種類が同じ熱電変換素子21、22は、すべてが直列、すべてが並列、又は、一部が並列に電気的に接続されている。
【0027】
さらに、熱電変換素子21群と熱電変換素子22群とは、直列に接続される。これにより、熱電変換素子21群と熱電変換素子22群とは、同じ電流によって駆動される。
【0028】
熱電変換素子21と第1電極31、熱電変換素子21と第2電極32、熱電変換素子22と第1電極31、熱電変換素子22と第2電極32は、半田によって接合されている。熱電変換素子21及び熱電変換素子22の軸方向の長さが異なる場合、半田の厚さまたは電極の厚さを調節する。これにより、軸方向の長さが異なる熱電変換素子21及び熱電変換素子22を一対の第1基板11及び第2基板12の間に配置可能である。
【0029】
[熱電モジュールの使用方法及び作用]
このように構成された熱電モジュール1は、熱電素子群に電力を加えると、熱電変換素子21及び熱電変換素子22のペルチェ効果によって、熱電モジュール1の第2基板12が冷却され、第1基板11が加熱される。熱電変換素子21及び熱電変換素子22は種類が異なるので、熱電変換素子21が配置されている第2基板12の領域121に位置する面12bと、熱電変換素子22が配置されている第2基板12の領域122に位置する面12bとは、それぞれ異なる温度に調整される。
【0030】
領域121に位置する面12b上には、熱電変換素子21によって温調する第1温調対象を配置する。領域122に位置する面12b上には、熱電変換素子22によって温調する第2温調対象を配置する。
【0031】
[熱電変換素子の選択方法]
次に、熱電モジュール1において、一対の基板である第1基板11と第2基板12との間に配置する熱電変換素子の選択方法の一例について説明する。熱電変換素子は、冷却側温度、放熱側温度、吸熱量、放熱側熱抵抗、及び、冷却側熱抵抗との少なくともいずれかを含む条件に基づいて、消費電力が小さくなるように種類及び対数が選択される。対数とは、熱電変換素子のpn素子対の対数である。
【0032】
熱電モジュール1の第2基板12の温度である冷却側温度をTc、第1基板11の温度である放熱側温度をThとする。熱電モジュール1の吸熱量をQcとする。第1基板11の熱抵抗である放熱側熱抵抗をθhとする。第2基板12の熱抵抗である冷却側熱抵抗をθcとする。冷却側温度Tc、放熱側温度Th、吸熱量Qc、放熱側熱抵抗θh、及び冷却側熱抵抗θcは、熱電モジュール1の温調対象に応じた冷却能力に基づいて設定される。
【0033】
図2を用いて、熱電変換素子の選択方法について詳しく説明する。図2は、熱電変換素子の選択方法を説明する図である。図2(1)及び図2(3)は、横軸が熱電変換素子のpn素子対の対数、縦軸が駆動電流(A)である。図2(2)及び図2(4)は、横軸が熱電変換素子のpn素子対の対数、縦軸が消費電力(W)である。図2(1)及び図2(2)は、条件例1を示す。図2(3)及び図2(4)は、条件例2を示す。条件例1及び条件例2ともに、種類A、種類B、種類C及び種類Dの4種類の熱電変換素子を候補とする。
【0034】
複数の温調対象がある場合、それぞれの温調対象に応じて、冷却側温度Tc、放熱側温度Th、吸熱量Qc、放熱側熱抵抗θh、及び冷却側熱抵抗θcを少なくともいずれかを含む条件が設定される。ここでは、2つの温調対象に応じた条件例1と条件例2とに適した熱電変換素子をそれぞれ選択する場合について説明する。また、条件例1と条件例2とにおいては、駆動電流は同じとする。
【0035】
条件例1は、Tc=Tc(℃)、Th=Th(℃)、Qc=Qc(W)とする。また、電流I(A)で駆動させるとする。条件例1においては、図2(1)より、電流Iでは、種類A、種類C、種類Dの熱電変換素子が選択可能である。種類Bの熱電変換素子は駆動されず対象外である。そして、図2(2)より、種類A、種類C、種類Dの熱電変換素子のうち、消費電力が最小であるのは種類Dの熱電変換素子である。このようにして、条件例1では、種類Dの熱電変換素子が選択される。また、図2(1)及び図2(2)より、条件例1における種類Dの熱電変換素子のpn素子対の対数も定まる。
【0036】
条件例2は、Tc=Tc(℃)(Tc>Tc)、Th=Th(℃)(Th=Th)、Qc=Qc(W)(Qc>Qc)とする。また、条件例1と同じ電流I(A)で駆動させるとする。条件例2においては、図2(3)より、種類A、種類B、種類C、種類Dの熱電変換素子が選択可能である。そして、図2(4)より、種類A、種類B、種類C、種類Dの熱電変換素子のうち、消費電力が最小であるのは種類Bの熱電変換素子である。このようにして、条件例2では、種類Bの熱電変換素子が選択される。また、図2(3)及び図2(4)より、この場合の種類Bの熱電変換素子のpn素子対の対数も定まる。
【0037】
このようにして、複数の温調対象に対して、冷却側温度、放熱側温度、吸熱量、放熱側熱抵抗、及び、冷却側熱抵抗との少なくともいずれかに基づいて、消費電力が小さくなるようにそれぞれ適切な熱電変換素子の種類と対数とを選択可能である。
【0038】
[効果]
実施形態は、一対の基板である第1基板11と第2基板12との間に、異なる種類の熱電変換素子を配置することができる。実施形態によれば、温調対象を適切に温度調節することができる。
【0039】
実施形態は、温調対象の接地面が第2基板12の面12bの1面となるので、接地面の平面度及び平行度を向上することができる。これにより、実施形態は、例えば光学素子である温調対象の設置時に、光軸ずれの影響を小さくすることができる。さらに、実施形態は、部品点数を削減して、コストを低減することができる。
【0040】
実施形態は、複数の温調対象に対して、それぞれ最適な消費電力及び吸熱能力を有する熱電変換素子の種類及び対数を選択することができる。実施形態によれば、複数の温調対象を適切に温度調節することができる、このように、実施形態によれば、消費電力を低減することができる。
【0041】
比較のために、従来の熱電モジュール1Xについて説明する。図3は、従来の熱電モジュールの一例を示す概略図である。従来の熱電モジュール1Xは、熱電変換素子22が、第1電極31と第2電極32Xとを介して、第1基板11と第2基板12Xとの間に配置されている。熱電素子23が、第1電極31と第2電極33Xとを介して、第1基板11と第2基板13Xとの間に配置されている。従来の熱電モジュール1Xは、第2基板12X及び第2基板13Xに、温調対象がそれぞれ配置される。第2基板12X及び第2基板13Xとは別部材であるので、接地面である面12Xbと面13Xbとは同一平面上ではない。これにより、例えば光学素子である温調対象の設置時に、光軸の調整に手間及び時間を要する。さらに、部品点数が増加する。
【0042】
上記では、例えば通信などに用いられる光学素子を含む光学機器の温調に用いる場合について説明したが、実施形態は、熱電発電装置にも適用可能である。
【符号の説明】
【0043】
1…熱電モジュール、11…第1基板、11a…面、11b…面、12…第2基板、12a…面、12b…面、21…熱電変換素子、22…熱電変換素子、31…第1電極、32…第2電極。
図1
図2
図3