IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ニデックの特許一覧

特開2023-100437眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラム
<>
  • 特開-眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラム 図1
  • 特開-眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラム 図2
  • 特開-眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラム 図3
  • 特開-眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラム 図4
  • 特開-眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラム 図5
  • 特開-眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラム 図6
  • 特開-眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラム 図7
  • 特開-眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラム 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023100437
(43)【公開日】2023-07-19
(54)【発明の名称】眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラム
(51)【国際特許分類】
   B24B 9/14 20060101AFI20230711BHJP
   G02C 13/00 20060101ALI20230711BHJP
【FI】
B24B9/14 A
B24B9/14 F
G02C13/00
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022001121
(22)【出願日】2022-01-06
(71)【出願人】
【識別番号】000135184
【氏名又は名称】株式会社ニデック
(72)【発明者】
【氏名】内門 裕紀
(72)【発明者】
【氏名】中子 裕也
【テーマコード(参考)】
2H006
3C049
【Fターム(参考)】
2H006DA02
2H006DA05
3C049AA03
3C049AB05
3C049BA09
3C049BB06
3C049CA01
3C049CB01
(57)【要約】
【課題】 加工具の耐久性を向上でき、眼鏡レンズへの損傷を低減する。また、装置コストの増加を抑える。
【解決手段】 レンズ保持軸に保持された眼鏡レンズの周縁を加工する眼鏡レンズ加工装置であって、眼鏡レンズの材質データを取得するレンズ材質取得手段と、眼鏡レンズの周縁を加工する加工領域を持つ加工具と、レンズ保持軸に保持された眼鏡レンズと加工具との相対的な位置関係を変える移動手段と、取得された材質データに基づき、加工領域内の領域を変えて眼鏡レンズを加工するように移動手段を制御する制御手段と、を備える。
【選択図】 図8
【特許請求の範囲】
【請求項1】
レンズ保持軸に保持された眼鏡レンズの周縁を加工する眼鏡レンズ加工装置であって、
眼鏡レンズの材質データを取得するレンズ材質取得手段と、
眼鏡レンズの周縁を加工する加工領域を持つ加工具と、
前記レンズ保持軸に保持された眼鏡レンズと前記加工具との相対的な位置関係を変える移動手段と、
取得された前記材質データに基づき、前記加工領域内の領域を変えて眼鏡レンズを加工するように前記移動手段を制御する制御手段と、
を備えることを特徴とする眼鏡レンズ加工装置。
【請求項2】
請求項1の眼鏡レンズ加工装置において、
前記制御手段は、前記材質データが熱可塑性の所定の第1レンズ材質である場合には、前記加工具の前記加工領域に設定された第1領域内で眼鏡レンズを加工し、前記材質データが熱硬化性の所定の第2レンズ材質である場合には、前記加工具の前記加工領域に設定された第2領域内であって、前記第1領域とは異なる領域に設定された第2領域内で眼鏡レンズを加工するように前記移動手段を制御することを特徴とする眼鏡レンズ加工装置。
【請求項3】
請求項2の眼鏡レンズ加工装置において、
少なくとも前記第2領域には熱硬化性の眼鏡レンズを加工した際に前記加工具の摩耗を低減するためのコーティングが施されていることを特徴とする眼鏡レンズ加工装置。
【請求項4】
請求項2又は3の眼鏡レンズ加工装置において、
前記レンズ保持軸の軸方向における眼鏡レンズの前屈折面及び後屈折面の少なくとも一方の屈折面位置データを取得する屈折面位置取得手段を備え、
前記制御手段は、前記屈折面位置取得手段によって取得された前記屈折面位置データに基づき、眼鏡レンズが前記第1レンズ材質である場合には前記第1領域内で眼鏡レンズを加工するように前記移動手段を制御し、前記眼鏡レンズが前記第2レンズ材質である場合には前記第2領域内で眼鏡レンズを加工するように前記移動手段を制御することを特徴とする眼鏡レンズ加工装置。
【請求項5】
請求項2~4の何れかの眼鏡レンズ加工装置において、
前記加工具の回転軸は、前記レンズ保持軸に対して前記加工具の先端側が近づくように傾斜して設けられ、
前記制御手段は、(a)前記第1領域及び第2領域の内で前記加工具の前側に位置する前側領域で眼鏡レンズを加工する場合には、前記前側領域内で後側寄りに設定された第1基準位置に眼鏡レンズの前屈折面位置が位置するように前記移動手段を制御し、(b)前記第1領域及び第2領域の内で前記前側領域より前記加工具の後側に位置する後側領域で眼鏡レンズを加工する場合には、前記後側領域内で前側寄りに設定された第2基準位置に眼鏡レンズの後屈折面位置が位置するように前記移動手段を制御することを特徴とする眼鏡レンズ加工装置。
【請求項6】
眼鏡レンズの周縁を加工する加工領域を持つ加工具と、レンズ保持軸に保持された眼鏡レンズと前記加工具との相対的な位置関係を変える移動手段と、眼鏡レンズの材質データを取得するレンズ材質取得手段と、を備える眼鏡レンズ加工装置で実行される眼鏡レンズ加工制御プログラムであって、
眼鏡レンズ加工装置の制御部によって実行されることで、
取得されたレンズ材質データに基づいて前記加工領域内の領域を変えて眼鏡レンズを加工するように前記移動手段を制御する制御ステップを眼鏡レンズ加工装置に実行させることを特徴とする眼鏡レンズ加工制御プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、眼鏡レンズを加工する眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラムに関する。
【背景技術】
【0002】
加工具を備え、眼鏡レンズの周縁を加工する眼鏡レンズ加工装置が知られている。例えば、加工具として複数のエンドミル又はカッターを備え、各加工具をそれぞれスピンドルで回転する機構を備える眼鏡レンズ加工装置(特許文献1参照)、複数の加工具を備え、選択的に加工具を切換えて使用する眼鏡レンズ加工装置(特許文献2参照)が知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2014―198360号公報
【特許文献2】特開2000―218487号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、眼鏡レンズの樹脂の材質は、熱硬化性と熱可塑性に大別される。熱硬化性レンズとしては、CR39の名で呼ばれる一般的なプラスチックの他、高屈折プラスチック、アクリル、等が使用されている。また、熱可塑性レンズとしては、トライベックス、ポリカーボネイト、等が使用されている。
【0005】
この様々な材質の眼鏡レンズに対し、加工具として1つのカッターを使用して粗加工すると、眼鏡レンズに損傷(レンズ割れ、ヒビ割れ等)が生じさせてしまう問題、加工具の耐久性が悪くなる問題、等があることが分かった。
【0006】
本開示は、上記従来技術の問題点に鑑み、加工具の耐久性を向上でき、眼鏡レンズへの損傷を低減できる眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラムを提供することを技術課題とする。また、装置コストの増加を抑えることができる眼鏡レンズ加工装置及び眼鏡レンズ加工制御プログラムを提供することを技術課題とする。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本開示は以下のような構成を備えることを特徴とする。
(1) 本開示の第1態様に係る眼鏡レンズ加工装置は、レンズ保持軸に保持された眼鏡レンズの周縁を加工する眼鏡レンズ加工装置であって、眼鏡レンズの材質データを取得するレンズ材質取得手段と、眼鏡レンズの周縁を加工する加工領域を持つ加工具と、前記レンズ保持軸に保持された眼鏡レンズと前記加工具との相対的な位置関係を変える移動手段と、取得された前記材質データに基づき、前記加工領域内の領域を変えて眼鏡レンズを加工するように前記移動手段を制御する制御手段と、を備えることを特徴とする。
(2) 本開示の第2態様に係る眼鏡レンズ加工制御プログラムは、眼鏡レンズの周縁を加工する加工領域を持つ加工具と、レンズ保持軸に保持された眼鏡レンズと前記加工具との相対的な位置関係を変える移動手段と、眼鏡レンズの材質データを取得するレンズ材質取得手段と、を備える眼鏡レンズ加工装置で実行される眼鏡レンズ加工制御プログラムであって、眼鏡レンズ加工装置の制御部によって実行されることで、取得されたレンズ材質データに基づいて前記加工領域内の領域を変えて眼鏡レンズを加工するように前記移動手段を制御する制御ステップを眼鏡レンズ加工装置に実行させることを特徴とする。
【図面の簡単な説明】
【0008】
図1】眼鏡レンズ加工装置における加工機構部の構成を説明する図である。
図2】実施例の粗加工具を説明する図である。
図3】粗加工具によって加工可能な眼鏡レンズの最小加工径を説明する図である。
図4】レンズ形状測定ユニットの概略構成図である。
図5】眼鏡レンズ加工装置に関する制御ブロック図である。
図6】加工条件を設定するときのディスプレイの画面例である。
図7】粗加工における加工軌跡の例を示す図である。
図8】レンズ材質に応じて加工具の後側領域及び前側領域を変える具体的な加工動作を説明する図である。
【発明を実施するための形態】
【0009】
以下、典型的な実施形態の1つについて、図面を参照して説明する。図1図5は本実施形態に係る眼鏡レンズ加工装置について説明するための図である。なお、以下の<>にて分類された項目は、独立又は関連して利用されうる。
【0010】
[概要]
例えば、眼鏡レンズ加工装置(例えば、眼鏡レンズ加工装置1)は、レンズ保持軸(例えば、レンズチャック軸102)に保持された眼鏡レンズの周縁を加工する。例えば、眼鏡レンズ加工装置は、加工具(例えば、粗加工具423、カッター、エンドミル)を備える。例えば、加工具は眼鏡レンズの周縁を加工する加工領域(例えば、加工領域PA)を持つ。例えば、加工具の回転軸(例えば、第2加工具回転軸412)は、レンズ保持軸に対して加工具の先端側が近づくように傾斜(すなわち、加工具の軸が傾斜)して設けられていてもよい。なお、加工具の回転軸の傾斜は、固定であってもよいし、変更可能にされていてもよい。
【0011】
例えば、眼鏡レンズ加工装置は、移動手段(例えば、移動ユニット300)を備える。例えば、移動手段は、レンズ保持軸に保持された眼鏡レンズと加工具との相対的な位置関係を変える。例えば、移動手段は、加工具に対してレンズ保持軸を移動させる移動機構であってもよいし、レンズ保持軸に保持された眼鏡レンズに対して加工具を移動させる移動機構であってもよいし、あるいは、両者の移動機構が組み合わされた構成であってもよい。
【0012】
例えば、眼鏡レンズ加工装置は、レンズ材質取得手段(例えば、データ取得ユニット10)を備える。レンズ材質取得手段は、眼鏡レンズの材質データを取得する。例えば、レンズ材質取得手段は、データ入力手段(例えば、入力ユニット13)によって眼鏡レンズの材質データが入力されることで材質データを取得してもよいし、眼鏡レンズの材質を検出するためのレンズ材質検出装置の検出結果に基づいて材質データを取得してもよい。例えば、レンズ材質検出装置は、特開2001―88014に開示された技術を利用でき、4眼鏡レンズにおける光の色分散を表すアッベ数と、眼鏡レンズの屈折率と、に基づいてレンズ材質を検出する。また、レンズ材質取得手段は、データベースから選択的に材質データが入力されることで材質データを取得してもよい。
【0013】
例えば、眼鏡レンズ加工装置は、屈折面位置取得手段(例えば、レンズ形状測定ユニット200)を備えていてもよい。例えば、屈折面位置取得手段は、レンズ保持軸の軸方向における眼鏡レンズの前屈折面及び後屈折面の少なくとも一方の屈折面位置データを取得する。例えば、屈折面位置取得手段は、眼鏡レンズの前屈折面及び後屈折面の少なくとも一方に接触させる測定子(例えば、測定子261、測定子262)を備え、レンズ保持軸の軸方向における測定子の位置の検知結果に基づいて屈折面位置データを取得する構成であってもよい。また、例えば、屈折面位置取得手段は、データ入力手段(例えば、入力ユニット13)によって屈折面のカーブデータが入力されることで屈折面位置データを取得してもよい。
【0014】
例えば、眼鏡レンズ加工装置は、制御手段(例えば、制御部50)を備える。例えば、制御手段は、レンズ材質取得手段によって取得された材質データに基づき、加工具が持つ加工領域内の領域を変えて眼鏡レンズを加工するように移動手段を制御する。例えば、制御手段は、加工具が持つ加工領域を複数の領域(例えば、第1領域、第2領域)に分割し、分割された領域を材質データに基づいて選択的に変えて眼鏡レンズを加工するように移動手段を制御する。これにより、1つの加工具で異なる材質の眼鏡レンズを加工可能となり、加工具の耐久性の向上を図り、眼鏡レンズへの損傷を低減できる。また、異なる材質の眼鏡レンズの加工に対して、専用の加工具をそれぞれ用意しなくて済むため、装置コストの増加を抑えることができる。なお、本開示において、例えば、加工具が持つ加工領域とは、1つの加工具内の領域である。また、例えば、加工具が持つ加工領域内で分割される複数の領域とは、共通の素材(例えば、超硬合金)で一体的に製作された領域である。
【0015】
例えば、制御手段は、材質データが所定の第1レンズ材質(例えば、トライベックス)である場合には、加工具の加工領域に設定された第1領域内(例えば、後側領域RPA)で眼鏡レンズを加工し、材質データが所定の第2レンズ材質(例えば、CR39の一般的なプラスチック、高屈折プラスチック、アクリルの少なくとも一つ)である場合には、加工具の加工領域に設定された第2領域内(例えば、前側領域FPA)であって、第1領域とは異なる領域に設定された第2領域内で眼鏡レンズを加工するように移動手段を制御する。例えば、第1レンズ材質は熱可塑性の材質に含まれるものであり、第2レンズ材質は熱硬化性の材質に含まれるものである。これにより、例えば、熱硬化性の第2レンズ材質の加工に使用される第2領域内は、第1レンズ材質(例えば、トライベックス)の加工に使用されないため、第2領域の耐久性の向上を図り、第2レンズ材質の熱硬化性レンズの損傷を低減できる。
【0016】
例えば、制御手段は、屈折面位置取得手段によって取得された屈折面位置データ(例えば、前屈折面及び後屈折面の少なくとも一方の屈折面位置データ)に基づき、眼鏡レンズが第1レンズ材質である場合には第1領域内で眼鏡レンズを加工するように移動手段を制御し、眼鏡レンズが第2レンズ材質である場合には第2領域内で眼鏡レンズを加工するように移動手段を制御する。これにより、加工具の有効刃長(加工領域PA)を長くすることなく、高カーブレンズの加工の場合でもレンズ材質に応じて適切に加工領域を分けて加工できる。
【0017】
例えば、制御手段は、第1領域及び第2領域の内で加工具の前側(例えば、先端側)に位置する前側領域(例えば、前側領域FPA)で眼鏡レンズを加工する場合には、前側領域内で後側寄りに設定された第1基準位置(例えば、加工基準位置Sfp)に眼鏡レンズの前屈折面位置が位置するように移動手段を制御する。例えば、制御手段は、第1領域及び第2領域の内で前側領域より加工具の後側(例えば、後端側、根元側)に位置する後側領域(例えば、後側領域RPA)で眼鏡レンズを加工する場合には、後側領域内で前側寄りに設定された第2基準位置(例えば、加工基準位置Srp)に眼鏡レンズの後屈折面位置が位置するように移動手段を制御する。これにより、後側領域で眼鏡レンズを加工する場合に、加工可能な眼鏡レンズの最小加工径をできるだけ小さくでき、前側領域でレンズを加工する場合に、加工具のブレをできるだけ抑えて眼鏡レンズを安定して加工できる。また、加工頻度が多い熱硬化性レンズが前側領域で加工されることにより、熱硬化性レンズの最小加工径を小さくできる。
【0018】
なお、加工具が持つ加工領域において、少なくとも第2領域には熱硬化性の眼鏡レンズを加工した際に加工具の摩耗を低減するためのコーティングが施されていてもよい。これにより、1つの加工具であっても、加工具の耐久性をより向上させることができ、また、眼鏡レンズに与える損傷を抑制でき、より多くの眼鏡レンズを加工できる。このコーティングは、加工具が持つ加工領域の全体に施されていてもよい。
【0019】
なお、上記において、眼鏡レンズのコバ方向(例えば、図1のX方向)の所定位置(例えば、前屈折面位置、後屈折面位置、前屈折面と後屈折面と中心位置、等)を加工領域内で位置させる基準位置(例えば、加工基準位置Srp、加工基準位置Sfp)を、単に、レンズ材質に基づいて加工具の加工領域内で異なる位置に設定する場合も、本開示における「取得された材質データに基づき、加工具が持つ加工領域内の領域を変える」という技術に含まれるものである。
【0020】
なお、本開示においては、本実施形態に記載した装置に限定されない。例えば、下記実施形態の機能を行う眼鏡レンズ加工制御プログラム(ソフトウェア)をネットワーク又は各種記憶媒体等を介して、システムあるいは装置に供給する。そして、システムあるいは装置の制御装置(例えば、CPU等)がプログラムを読み出し、実行することも可能である。
【0021】
例えば、眼鏡レンズ加工制御プログラムは、眼鏡レンズ加工装置の制御部によって実行されることで、レンズ材質データに基づいて加工領域内の領域を変えて眼鏡レンズを加工するように移動手段を制御する制御ステップを眼鏡レンズ加工装置に実行させる。
【0022】
[実施例]
本開示の典型的な実施例の一つについて、図面を参照して説明する。図1は、実施例に係る眼鏡レンズ加工装置1における加工機構部の構成を説明する図である。
【0023】
例えば、眼鏡レンズ加工装置1は、被加工レンズである眼鏡レンズ(以下、レンズLE)を保持するためのレンズ保持軸を持つレンズ保持手段の例であるレンズ保持ユニット100を備える。例えば、眼鏡レンズ加工装置1は、レンズLEの形状(レンズLEの屈折面形状、レンズLEの外形形状)を取得するために構成されたレンズ形状測定ユニット200を備える(図2参照)。本実施例においては、レンズ形状測定ユニット200は、眼鏡レンズ加工装置1のベース2に設けられている。
【0024】
例えば、眼鏡レンズ加工装置1は第1加工具ユニット150を備える。第1加工具ユニット150は、レンズLEの周縁を加工する加工具を回転させるために構成されている。例えば、眼鏡レンズ加工装置1は、第2加工具ユニット400を備える。第2加工具ユニット400は、レンズLEの周縁を粗加工する粗加工具(例えば、粗加工具423)、等を回転させるために構成されている。例えば、眼鏡レンズ加工装置1は、レンズ保持軸に保持されたレンズLEと加工具等の各種構成要素との位置関係を変更する(調整する)移動手段の例である移動ユニット300を備える。移動ユニット300は、レンズLEと第1加工具ユニット150が持つ加工具との相対的な位置関係を変える(調整する)ために使用される。また、移動ユニット300は、レンズLEと第2加工具ユニット400が持つ加工具との相対的な位置関係を変える(調整する)ために使用される。また、移動ユニット300は、レンズLEとレンズ形状測定ユニット200が持つ測定子との相対的な位置関係を変える(調整する)ために使用される。
【0025】
<レンズ保持ユニット>
例えば、レンズ保持ユニット100は、レンズLEを保持(挟持)するためのレンズ保持軸の例であるレンズチャック軸102と、キャリッジ101と、を備える。レンズチャック軸102は、一対のレンズチャック軸102L及び102Rを備える。キャリッジ101の左腕101Lにレンズチャック軸102Lが回転可能に保持され、キャリッジ101の右腕101Rにレンズチャック軸102Rが回転可能に保持されている。レンズチャック軸102(すなわち、レンズLE)は、レンズ回転手段の例であるモータ120によって回転される。また、右腕101Rには右チャック軸102Rを左チャック軸102L側に移動するためのモータ110が配置されている。右チャック軸102Rが左チャック軸102L側に移動されることにより、レンズLEが2つのレンズチャック軸102L、102Rによって保持される。
【0026】
<第1加工具ユニット>
第1加工具ユニット150は、加工具回転軸161を回転するためのモータ160を備える。加工具回転軸161は、レンズチャック軸102と平行な位置関係で、回転軸保持ユニット162によって回転可能に保持されている。回転軸保持ユニット162は、ベース2に取り付けられている。加工具回転軸161にレンズLEの周縁を加工するための複数の加工具163が取り付けられている。例えば、加工具163は、高カーブレンズの仕上げ用加工具163a、鏡面仕上げ用加工具163b、低カーブ用の仕上げ加工具163c、ガラス用の粗加工具163dの少なくとも何れか一つを備える。鏡面仕上げ用加工具163b及び仕上げ加工具163cは、それぞれヤゲン加工用のV溝と、平加工用の平仕上げ面と、の少なくとも何れかを備える。例えば、加工具163には砥石が利用されるが、カッターが使用されてもよい。
【0027】
<第2加工具ユニット>
例えば、第2加工具ユニット400は、キャリッジ101の後方に配置されている。第2加工具ユニット400は、レンズLEの周縁を粗加工するための粗加工具423を備える。例えば、粗加工具423はカッターが使用されるが、エンドミルが使用されてもよい。また、例えば、第2加工具ユニット400は、レンズLEのコバの角部を面取りするための面取り加工具415を備える。例えば、面取り加工具415は砥石が使用される。
【0028】
面取り加工具415は、第1加工具回転軸410に連結されている。第1加工具回転軸410は、第2回転軸A2の内部で回転可能に保持されている。また、第1加工具回転軸410は、モータ421の駆動軸400aと図示無き連結部材を介して連結される。モータ421が回転されることにより、面取り加工具413が回転される。
【0029】
粗加工具423は、第2加工具回転軸412に取り付けられている。第2加工具回転軸412は、保持部411に回転可能に保持されている。第2加工具回転軸412は、図示無き連結部材を介して、モータ421の駆動軸400aと連結される。実施例においては、第2加工具回転軸412は、モータ421の駆動軸400aとは異なる位置に配置される。すなわち、モータ421の駆動軸400aの回転が、ワンウェイクラッチ(図示を略す)、軸受け(例えば、ベアリング)、等を介して、第2加工具回転軸412へ伝達される。これにより、モータ421の回転が第2加工具回転軸412に伝達され、モータ421によって粗加工具423が回転される。
【0030】
図2は、実施例の粗加工具423を説明する図である。粗加工具423が持つ有効刃長である加工領域PAには、粗加工具423の先端側に位置する前側領域FPAと、粗加工具423の後端側(根元側)に位置する後側領域RPAが設定されている。本実施例では後側領域RPAは熱可塑性のトライベックスレンズを加工するための第1領域とされ、前側領域FPAは熱硬化性のCR39の名で呼ばれる一般的なプラスチックレンズ等を加工するための第2領域とされている。例えば、粗加工具423の加工領域PAの第1領域及び第2領域は、熱可塑性のレンズ材質の加工に適するように超硬合金の素材で一体的に製作されている。そして、少なくとも第2領域の前側領域FPAには、熱硬化性のレンズ材質を加工した際に加工具の摩耗を低減するためのコーティングが施されている。本開示でのコーティングはダイヤモンドライクカーボンであるが、これに限られない。コーティングは、加工具の摩耗を低減できるものであればよい。なお、コーティングは、第1領域の後側領域RPAを含むように加工領域PAの全域に施されていてもよい。加工領域PAにはコーティングが施されているとよいが、なくてもよい。
【0031】
また、後側領域RPAが第2領域とされ、前側領域FPAが第1領域とされていてもよい。なお、粗加工具423の直径Dtは、例えば、4mmである。
【0032】
また、粗加工具423の第2加工具回転軸412は、粗加工具423の先端側がレンズチャック軸102に近づくように、レンズチャック軸102に対して角度αで傾斜して設けられている。例えば、角度αは10~15度である。
【0033】
図3は、粗加工具423及び第2加工具回転軸412より径の大きい保持部411がレンズチャック軸102(及びレンズ固定用の治具が装着されるカップホルダー103であって、レンズチャック軸102Lの先端に取り付けられたカップホルダー103)に接触しない程度までに近づけた場合に、粗加工具423によって加工可能なレンズLEの最小加工径を説明する図である。図3(a)に示すように、第2加工具回転軸412がレンズチャック軸102と平行な場合、加工可能なレンズLEの最小加工径は半径RM1である。これに対し、図3(b)に示すように、粗加工具423の先端側がレンズチャック軸102に近づくように角度αで傾斜している場合に、加工可能なレンズLEの最小加工径は半径RM2であって、半径RM2は半径RM1より小さくなる。これにより、眼鏡レンズ加工装置1によって対応可能な眼鏡フレームのレンズ枠(玉型)の適用範囲を広げることができる。
【0034】
図1において、第2回転軸A2は、ベース部402の内部で回転可能に連結されている。第2回転軸A2は、第1回転軸A1とは異なる回転軸である。第2回転軸は、図示無き動力(例えば、モータ)の駆動によって回転される。第2回転軸A2の回転により、第2回転軸A2に連結された保持部411が第2回転軸A2を中心に回転移動される。これによって、保持部411に保持された第2加工具駆動軸412が第2回転軸A2を中心して旋回され、粗加工具423が所定の加工位置に移動される。
【0035】
なお、第2加工具ユニット400は、加工具423の位置(加工具回転軸412の傾斜の角度α)を変化させるための旋回機構を備えていてもよい。例えば、第1回転軸A1は、ベース部402の内部に配置され、支基ブロック401に固定されている。ベース部402は、第1回転軸A1と図示無き軸受け(例えば、ベアリング)を介して連結され、支基ブロック401に対して、第1回転軸A1を中心として、旋回可能に保持される。第1回転軸A1は、図示無きモータの駆動によって回転される。ベース部402は、第1回転軸A1の回転により、第1回転軸A1を中心に回転移動される。
【0036】
なお、第2加工具ユニット400の構成は、特開2017-177234号公報に記載された構成を採用できるので、詳細はこれを参照されたい。
【0037】
<移動ユニット>
移動ユニット300は、レンズチャック軸102の軸L1方向(以下、X方向とする)におけるレンズLEと加工具(加工具163、粗加工具423等)との位置関係を相対的に変える第1移動ユニット310を備える。また、移動ユニット300は、レンズチャック軸102と、加工具回転軸(加工具回転軸161及び第2加工具駆動軸412等)と、の軸間距離方向(以下、Y方向とする)の位置関係を相対的に変える第2移動ユニット330を備える。なお、第2移動ユニット330は、レンズ形状測定ユニット200が持つ測定子260及び測定子263(図4参照)と、レンズチャック軸102に保持されたレンズLEと、のY方向の位置関係を変えるためにも使用される。また、第1移動ユニット310は、レンズ形状測定ユニット200が持つ測定子260(図4参照)と、レンズチャック軸102に保持されたレンズLEと、のX方向の位置関係を変えるためにも使用される。なお、実施例では、Y方向はX方向に直交する方向である。
【0038】
第1移動ユニット310は、モータ315を備える。モータ315の回転により移動支基301がX方向に移動される。これにより、移動支基301に搭載されたキャリッジ101及びレンズチャック軸102(レンズLE)がX方向に移動される。なお、第1移動ユニット310の構成は、粗加工具423等の各加工具、測定子290等の各測定子をX方向に移動させる構成でもよい。
【0039】
第2移動ユニット330は、キャリッジ101(レンズチャック軸102)をY方向に移動するためのモータ335を備える。移動支基301にはY方向に延びるシャフト333が取り付けられている。移動支基301にはモータ335が固定されている。モータ335の回転はY方向に延びるボールネジ337に伝達され、ボールネジ337の回転によりキャリッジ101(レンズチャック軸102とレンズLE)はY方向に移動される。
【0040】
なお、実施例では第2移動ユニット330は、レンズチャック軸102をY方向に移動する構成であるが、粗加工具423等の各加工具、測定子290等の測定子をY方向に移動させる構成でもよい。
【0041】
<レンズ形状測定ユニット>
図4は、レンズ形状測定ユニット200の概略構成図である。レンズ形状測定ユニット200は、レンズLEの屈折面形状を測定するための測定子260を備える。実施例では、測定子260は、レンズLEの前面に接触させる測定子261と、レンズLEの後面に接触させる測定子262と、を備える。また、測定子262は円筒状の側面を有する。測定子262の側面は、レンズLEの外形形状を測定するために、レンズLEの外周に接触される測定子263として利用される。また、レンズ形状測定ユニット200は、測定子261、262のX方向の移動位置を検知するためのセンサ(検知器)271と、レンズチャック軸102から離れる方向への測定子263の移動位置を検知するためのセンサ(検知器)273を備える。
【0042】
測定子261、262は、X方向に移動可能なアーム265によって保持されている。実施例では、アーム265はU字上の形状を有する。また、実施例では、アーム265は支柱267に取付けられ、支柱267がX軸方向移動可能にブロック269に保持されている。支柱267は図示を略すバネ(付勢部材)によって、図2の状態を中立位置として、レンズLEの前面側方向及び後面側方向にそれぞれ付勢されている。測定子261、262のX方向の移動位置は、アーム265及び支柱267を介してセンサ271によって検知される。センサ271の構成は周知のものが使用される。
【0043】
レンズLEの屈折面形状の測定時には、レンズチャック軸102の回転によってレンズLEが回転され、玉型に基づいてレンズチャック軸102のY方向の移動が制御されることにより、玉型に対応したレンズLEの前面及び後面のX方向の位置がセンサ271によって検知される。なお、実施例の装置では、レンズチャック軸102のX方向の移動制御も利用してレンズLEの前面及び後面の屈折形状の測定が行われる。
【0044】
なお、レンズ形状測定ユニット200の構成は上記に限られず、レンズLEの前面及び後面の屈折面形状が測定可能な構成であればよい。例えば、前屈折面及び後屈折面に同時に測定子を接触させ、前屈折面及び後屈折面を同時に測定する構成であってもよい。
【0045】
また、支柱267はX方向に平行に延びる軸線S1を中心にして後方(レンズチャック軸102L、102Rから離れる方向)に傾斜可能に、ブロック269に取付けられている。支柱267は、図示を略すバネ(付勢部材)によって、常時、前側に付勢されている。支柱267は前方への傾斜は、図示を略す制限部材によって、図2の状態で制限されている。レンズLEの外形測定時には、測定子263がレンズLEの外周に接触され、レンズLEが回転されることによって、レンズLEの外形に応じて測定子263がレンズチャック軸102から離れる方向に移動される。すなわち、レンズLEの外形に応じて支柱267が軸線S1を中心に傾斜される。支柱267の傾斜は、センサ273によって検知される。すなわち、センサ273は、レンズチャック軸102から離れる方向への測定子263の移動位置を検知する。これにより、レンズチャック軸102を中心にしたレンズLEの外形形状が測定される。
【0046】
<制御系の構成>
図5は眼鏡レンズ加工装置1に関する制御ブロック図である。眼鏡レンズ加工装置1は制御部50を備える。制御部50に、図1及び図4に示した各ユニットの電気系構成要素(モータ、センサー等)が接続されている。制御部50は、各ユニットのモータを制御し、レンズLEの周縁加工を行う。
【0047】
眼鏡レンズ加工装置1は、データ取得ユニット10を備える。データ取得ユニット10は入力ユニットの機能を兼ねていてもよい。例えば、データ取得ユニット10は、ディスプレイ60を備える。例えば、データ取得ユニット10は入力ユニット13を備える。例えば、表示手段の例であるディスプレイ60はタッチパネルの機能を備え、入力ユニット13を含むように構成されていてもよい。例えば、制御部50は、データ取得ユニット10の一部を構成し、各種のデータを取得する。例えば、制御部50は、各種情報を出力する出力手段を兼ねる。制御部50にメモリ20が接続され、データ取得ユニット10によって取得された各種データがメモリ20に記憶される。また、メモリ20には、眼鏡レンズ加工装置1の動作を制御するための各種プログラムが記憶されている。例えば、メモリ20には、加工具によるレンズLEの加工時における加工負荷の予測値(後述する)を得るためのプログラムが記憶されている。例えば、メモリ20にはレンズLEの周縁加工に関するプログラムが記憶されている。
【0048】
データ取得ユニット10は、玉型形状測定装置30に接続されていてもよい。例えば、玉型形状測定装置30は、眼鏡フレームのリムを測定することで、レンズLEの玉型(レンズLEを周縁加工するための目標の外形形状)を得る。また、玉型はメモリ20に記憶されているものを使用してもよい。データ取得ユニット10は玉型形状測定装置30又はメモリ20から玉型データを取得する。なお、「玉型」は動径長と動径角で定義される二次元の形状である。また、データ取得ユニット10は、レンズLEの材質データを取得するレンズ材質取得手段を兼ねる。
【0049】
<動作>
以上のような構成を備える眼鏡レンズ加工装置1における動作を説明する。初めに、データ取得ユニット10によってレンズLEの玉型データTD(動径長r、動径角θ)が取得される。例えば、玉型形状測定装置30によって測定された眼鏡フレームのリムの輪郭形状がデータ取得ユニット10に入力される。玉型データTDはメモリ20に記憶されていたデータが呼び出されることで、データ取得ユニット10によって取得されてもよい。
【0050】
<加工条件の設定>
玉型データTDが取得されたら、操作者はレンズLEの周縁を加工するための加工条件をディスプレイ60によって設定(入力)する。図6は、加工条件を設定するときのディスプレイ60の画面例である。図6において、ディスプレイ60の画面610には右眼用玉型図形TGRと左眼用玉型図形TGLが表示されている。レンズLEの周縁加工のために、玉型に対するレンズLEの光学中心位置を配置するためのレイアウトデータが入力される。例えば、レイアウトデータは、左右の玉型中心間距離FPD(右眼用玉型TGRの幾何中心TCRと左眼用玉型TGLの幾何中心TCLとの中心間距離)と、瞳孔間距離PD(右眼用光学中心OCRと左眼用光学中心OCLとの距離)と、左右の玉型の幾何中心に対する光学中心の高さ距離と、を含む。これらの値は、画面上の表示欄がタッチされることで表示されるテンキーによって入力できる。
【0051】
また、加工条件として、入力欄621aによってレンズLEの材質を設定できる。例えば、熱硬化性レンズの材質として、CR39の名で呼ばれる一般的なプラスチック、高屈折プラスチック、アクリル、等が選択できる。また、熱可塑性レンズの材質として、トライベックス、ポリカーボネイト、等が選択できる。入力欄621aによって設定されたレンズLEの材質情報は、データ取得ユニット10によって取得される。
【0052】
また、その他の加工条件として、フレームのタイプ(メタル、セル、リムレス、等)、レンズ周縁加工モード(オートヤゲン加工、強制ヤゲン加工、平加工、等)、鏡面加工の有無、面取り加工の有無、レンズのチャッキングモード(枠心モード、光心モード)を入力欄621b、621c、621d、621e及び621fによって設定できる。
【0053】
加工条件の設定が完了したら、操作者はレンズチャック軸102にレンズLEを保持させ、眼鏡レンズ加工装置1の動作を開始させる。
【0054】
<レンズ形状測定>
レンズLEの周縁加工に先立ち、制御部50によって眼鏡レンズ形状測定プログラムが実行され、レンズ形状測定ユニット200によってレンズLEの形状が測定される。例えば、初めに、レンズLEの外形形状が測定される。制御部50によって、第1移動ユニット310が駆動され、レンズLEが測定子263の測定範囲の位置に移動される。その後、第2移動ユニット330が駆動され、測定子263にレンズLEの外周が接触するように、レンズLEがY方向(測定子263側)に移動される。測定子263にレンズLEが接触したことは、センサ273によって検知される。そして、測定子263にレンズLEが接触した状態で、レンズLEが1回転されることにより、レンズLEの外形形状が測定される。本実施例では、レンズチャック軸102のY方向の移動制御を利用し、Y方向のレンズチャック軸102の移動位置と、センサ273の検知結果と、に基づいてレンズLEの外形形状データが得られる。レンズLEの外形形状データは、メモリ20に記憶される。
【0055】
続いて、レンズ形状測定ユニット200によってレンズLEの前面形状及び後面形状が測定される。レンズLEの前面形状及び後面形状の測定は、例えば、玉型データに対応した2つの測定軌跡(第1測定軌跡、第2測定軌跡)に基づいて行われる。例えば、第1測定軌跡は、玉型の軌跡であってもよいし、玉型に対して動径方向(内側又は外側)に一定距離を変動させた軌跡であってもよい。例えば、第2測定軌跡は、第1測定軌跡に対して一定距離(例えば、0.8mm)だけ外側の軌跡とされる。
【0056】
例えば、初めにレンズ前面が測定される。制御部50により、移動ユニット300の駆動が制御され、Y方向における測定子261の位置が第1測定軌跡の位置となるように、レンズLE(レンズチャック軸102)がY方向に移動される。次に、レンズ前面が測定子261に接触するように、レンズLEがX方向に移動される。レンズ前面が測定子261に接触したことは、センサ271の出力信号を基に検知される。このときのレンズ前面のX方向の位置は、レンズチャック軸102をX方向に移動させた制御データ(モータ315の駆動データ)と、センサ271の検知データと、に基づいて得られる。その後、レンズLEが回転されると共に移動ユニット300の駆動が制御され、測定子261のY方向の位置が測定軌跡の位置となるように、レンズLEがY方向に移動される。また、X方向における測定子261の位置が所定の範囲内となるように、レンズ前面形状の測定済み結果に基づいてレンズLEがX方向に移動される。そして、レンズLEが1回転されることで、第1測定軌跡におけるレンズ前面のX方向の形状が、センサ271の検知結果とレンズチャック軸102のX方向における制御データとに基づいて取得される。なお、この測定時の制御動作は、特開2014-4678号公報に記載された技術を採用できるので、詳細はこれを参照されたい。
【0057】
なお、カッター又はエンドミルの粗加工具423による粗加工においては、レンズLEの外形周辺から玉型に対応した粗加工軌跡までの間において、複数個所でレンズLEの切断が行われる。この複数個所の切断の経路においても、レンズ形状測定ユニット200によってレンズLEの屈折面形状の測定が行われる。
【0058】
例えば、図7は、粗加工における加工軌跡の例を示す図である。図7では、レンズLEに対して相対的に粗加工具423が移動する図として示されている。図7において、経路M1,M2,M3,M4の順に粗加工具423が移動されるものとする。粗加工軌跡LM3は、玉型データTD(すなわち、仕上げ加工軌跡LF1)に対して、所定の仕上げ代(例えば、0.8mm)を残すように定められる。経路M1の加工軌跡LM1は、玉型の0度方向で、レンズLEの周辺から粗加工軌跡LM3に達するまでの軌跡とされる。経路M2の加工軌跡LM2は、加工軌跡LM1に対して180度反対方向で、レンズLEの周辺から粗加工軌跡LM3に達するまでの軌跡とされる。
【0059】
例えば、加工軌跡LM1に対応するレンズ前面の屈折面形状測定においては、測定子261が玉型の0度方向に位置したときにレンズLEの回転が停止され、測定子261がレンズ前面に接触したまま第1測定軌跡からレンズ外形側に向かうようにレンズLE(レンズチャック軸102)がY方向に移動される。測定子261がレンズLEの外形に達したことは、X方向の位置が急峻に変化されることにより、センサ271によって検知される。これにより、加工軌跡LM1に対応するレンズ前面の屈折面形状が得られる。
【0060】
同様に、加工軌跡LM2に対応するレンズ前面の屈折面形状測定においては、測定子261が玉型の180度方向に位置したときにレンズLEの回転が停止され、測定子261がレンズ前面に接触したままレンズLEがY方向に移動される。これにより、加工軌跡LM2に対応するレンズ前面の屈折面形状が得られる。
【0061】
次に、第2測定軌跡に基づき、レンズ前面が同様な制御によって測定される。なお、加工軌跡LM1、LM2の屈折面形状が得られていれば、第2測定軌跡の測定段階では加工軌跡LM1、LM2に基づく測定は行われなくてもよい。2つの測定軌跡に基づくレンズ前面の形状が得られることにより、レンズ前面のカーブ情報及び玉型付近の傾斜角が得られる。
【0062】
次に、レンズ後面が第1測定軌跡及び第2測定軌跡に基づいて同様に測定される。また、加工軌跡LM1、LM2に対応するレンズ後面の屈折面形状が測定される。そして、2つの測定軌跡に基づくレンズ後面の形状が得られることにより、レンズ後面のカーブ情報及び玉型付近の傾斜角が得られる。レンズ前面及び後面の屈折面形状データは、メモリ20に記憶される。
【0063】
なお、上記では屈折面形状の測定は、2つの測定軌跡(第1測定軌跡、第2測定軌跡)に基づいて行われるものとしたが、第1測定軌跡に対して部分的に動径方向に変動させた成分を持つように1つの測定軌跡を決定することで、レンズLEの1回転で測定が行われてもよい(詳細は、特開2021-133465号公報を参照)。
【0064】
<粗加工>
レンズ形状の測定が終了したら、粗加工工程に移行される。本開示の粗加工においては、データ取得ユニット10によって取得されたレンズ材質情報に基づき、図2に示された粗加工具423が持つ加工領域PAの内の第1領域(後側領域RPA)と第2領域(前側領域FPA)とが選択的に変えられる。
【0065】
ここで、レンズ材質情報に応じて第1領域(後側領域RPA)と第2領域(前側領域FPA)と変える理由を説明する。
【0066】
従来、例えば、特許文献1の特開2014―198360号公報等に示された眼鏡レンズ加工装置においては、熱可塑性レンズと熱硬化性レンズとの加工のために、切削性の観点から、それぞれ専用の粗加工具が準備されることがあった。すなわち、例えば、熱可塑性レンズの加工用には、超硬合金で製作された加工具がそのまま使用される。一方、熱硬化性レンズの加工用には、加工具の刃部に人工ダイヤモンドがロウ付けされたものが準備されていた。しかし、2種類の加工具を準備することは、加工具をそれぞれ回転する機構が必要となり、装置構成が複雑になると共に装置コストが高くなる。
【0067】
この問題の対応として、1つの加工具(例えば、カッター)で熱硬化性レンズに適するように、まず、超硬合金で製作された加工具の加工領域PAに、熱硬化性レンズを加工した際の加工具(刃部)の摩耗を低減するためのコーティング(例えば、ダイヤモンドライクカーボン)を施した加工具を準備した。加工具の刃部に人工ダイヤモンドがロウ付けされる場合、形状的に刃部が太くなってしまうが、コーティングは膜厚が数ミクロンであり、刃部(すなわち、加工具の径)を大きくせずに済む。
【0068】
ところが、1つの加工具でトライベックスレンズを少量(例えば、10枚程度)加工した後に、熱硬化性レンズ(例えば、一般的なCR39のプラスチックレンズ)を加工すると、レンズ割れ等の損傷が生じてしまことが分かった。これは、超硬合金の加工具で熱可塑性のトライベックスレンズを加工することで、加工具にダメージが生じ、割れやすい熱硬化性レンズにその影響を生じさせていることが分かった。加工具のダメージは、主に、トライベックスレンズを加工した際に、トライベックスの加工屑が加工具の刃部に溶着し、それが冷えて固まり、次のレンズを加工した際に溶着部分が剥がれ落ち、加工具の刃こぼれを生じさせていると考えられる。したがって、1つの加工具を通常通りにそのまま使用したのみでは、熱可塑性レンズ及び熱硬化性レンズの両者を支障なく加工することができなかった。
【0069】
そこで、本開示では、レンズ材質に応じて加工領域PAの内の第1領域(後側領域RPA)と第2領域(前側領域FPA)とが選択的に変えることにより、1つの粗加工具423であっても、熱可塑性レンズ及び熱硬化性レンズの両者の加工を可能にしている。なお、加工領域PAへのコーティングは必須ではないが、コーティングを施すことによって、加工具の耐久性をより向上させ、より多くの熱硬化性レンズが加工可能となった。そして、コーティングが施された加工具であっても、トライベックス等の熱可塑性レンズを加工する分には、眼鏡レンズに損傷を生じさせることなく、また、切削性をそれほど落とすことなく、一定枚数以上(例えば、1,000枚以上)の眼鏡レンズの加工を行えた。
【0070】
粗加工の動作の説明に戻る。制御部50は、第2回転軸A2を中心に第2加工具駆動軸412の保持部411を回転させ、粗加工具423を所定の加工位置に位置させる。その後、制御部50は、レンズ形状測定によって取得されたレンズLEの前屈折面及び後屈折面の少なくとも一方の屈折面位置データに基づき、レンズ材質が熱可塑性のトライベックスである場合には、粗加工具423の加工領域PAに設定された第1領域の後側領域RPA内でレンズLEを加工するように移動ユニット300を制御し、取得されたレンズ材質が熱硬化性のCR39の一般的なプラスチック、高屈折プラスチック、及びアクリルである場合には、粗加工具423の加工領域PAに設定された第2領域の前側領域FPA内でレンズLEを加工するように移動ユニット300を制御する。
【0071】
図8は、レンズ材質に応じて後側領域RPA及び前側領域FPAを変える具体的な加工動作を説明する図である。なお、粗加工具423による粗加工は、図7に示された経路M1,M2,M3,M4に対応する加工軌跡LM1,LM2,LM3の順に粗加工具423が移動されるものとする。
【0072】
<熱可塑性のトライベックスレンズの粗加工>
図8(a)は、レンズ材質が熱可塑性の所定レンズ材質の例であるトライベックスの場合の加工動作を説明する図である。図8(a)において、粗加工具423の後側領域RPAと前側領域FPAとの境界点Bpに対して、一定距離dr(例えば、3mm)だけ粗加工具423の後端側に離れた位置(言い換えれば、後側領域RPA内で前側寄りに設定された位置)に加工基準位置Srpが設定されている。なお、一定距離drは、加工を可能とするレンズLEの後屈折面LErの最大カーブと、加工可能とするレンズLEの最大径と、第2加工具回転軸412の傾斜の角度αと、粗加工具423の直径Dtと、に基づき、レンズチャック軸102から離れた側の粗加工具423の位置で加工されるレンズLEの加工位置が前側領域FPAに入らない距離として定められている。
【0073】
初めに、制御部50は、加工軌跡LM1でレンズLEを加工するために、加工軌跡LM1上におけるレンズLEの後屈折面LErに沿って加工基準位置Srpが位置するように、移動ユニット300の駆動を制御し、レンズLEをY方向及びX方向に移動する。次に、制御部50は、加工軌跡LM2でレンズLEを加工するために、粗加工具423からレンズLEを一旦離脱させた後、レンズLEを180度回転させる。その後、制御部50は、加工軌跡LM2上におけるレンズLEの後屈折面LErに沿って加工基準位置Srpが位置するように、移動ユニット300の駆動を制御し、レンズLEをY方向及びX方向に移動することで、粗加工具423が加工軌跡LM3に達するまで加工する。
【0074】
粗加工具423が加工軌跡LM3に達した後、制御部50は、レンズLEを回転しながら、粗加工軌跡LM3に対応するレンズLEの後屈折面LErが加工基準位置Srpに位置するように、移動ユニット300の駆動を制御し、レンズLEをY方向及びX方向に移動することで、相対的に粗加工具423を粗加工軌跡LM3に沿って移動させる。粗加工具423が先に加工した経路M1まで相対的に移動することで、経路M3外のレンズ部分が切り落とされる。さらに、相対的に粗加工具423が経路M2まで移動することで、経路M4外の残りのレンズ部分が切り落とされる。これにより、熱可塑性のトライベックスのレンズLEの粗加工が完了される。そして、このような制御により、熱可塑性のトライベックスのレンズLEは、後側領域RPA内で加工される(すなわち、熱可塑性のトライベックスレンズが、熱硬化性レンズの加工領域である第2領域内の前側領域FPAに食み出すことなく加工される)。
【0075】
以上のように、後側領域RPA内でレンズLEを加工する場合において、粗加工具423の加工領域PAの中央側(境界点Bpに近い側)に設定された加工基準位置Srpに後屈折面LErが位置するように移動ユニット300が制御されることにより、粗加工具423が角度αで傾斜されている場合には、加工可能なレンズLEの最小加工径を小さくできる。また、この制御により、後側領域RPA内でレンズLEの加工可能なコバ厚をできるだけ厚くできる。
【0076】
<熱硬化性レンズの粗加工>
図8(b)は、レンズLEが熱硬化性レンズ(例えばCR39の通常のプラスチックレンズ)である場合の加工動作を説明する図である。なお、粗加工具423による粗加軌跡は図7に示されたものと同じとする。
【0077】
図8(b)において、粗加工具423の境界点Bpに対して、一定距離df(例えば、2mm)だけ粗加工具423の前端側に離れた位置(言い換えれば、前側領域FPA内で後側寄りに設定された位置)に加工基準位置Sfpが設定され、熱硬化性のレンズLEは前側領域FPAで加工される。なお、一定距離dfは、レンズLEの前屈折面LEfのゼロカーブ(平坦)の場合を想定し、第2加工具回転軸412の傾斜の角度αと、粗加工具423の直径Dtと、に基づき、レンズチェク軸102から離れた側の粗加工具423の位置で加工されるレンズLEの加工位置が後側領域RPAに入らない距離として定められている。
【0078】
熱硬化性のレンズLEの場合、制御部50は、加工軌跡LM1、LM2及びLM3に対応する前屈折面LEfの位置情報に基づき、前屈折面LEfが加工基準位置Sfpに位置するように、移動ユニット300の駆動を制御し、レンズLEをY方向及びX方向に移動する。このような制御により、熱硬化性のレンズLEは、前側領域FPA内で加工される(すなわち、熱硬化性レンズが、熱可塑性レンズの加工領域である第1領域の後側領域RPAに食み出すことなく加工される)。
【0079】
以上のように、前側領域FPA内でレンズLEを加工する場合において、粗加工具423の加工領域PAの中央側(境界点Bpに近い側)に設定された加工基準位置Sfpに前屈折面LEfが位置するように移動ユニット300が制御されることにより、前側領域FPAの前側でレンズLEを加工する場合に比べ、粗加工具423のブレの影響が少なく、レンズLEの周縁を精度よく加工できる。また、この制御により、前側領域FPA内でレンズLEの加工可能なコバ厚をできるだけ厚くできる。
【0080】
また、以上のように、前屈折面LEf及び後屈折面LErの位置情報に基づき、レンズ材質がトライベックスの場合には、第1領域(後側領域RPA)でレンズLEを加工するように移動ユニット300が制御され、レンズ材質が熱可塑性の場合には、第2領域(前側領域FPA)でレンズLEを加工するように移動ユニット300が制御されることにより、粗加工具423の有効刃長(加工領域PA)を長くすることなく、レンズLEが高カーブレンズ(カーブが強いレンズ)の場合にもレンズ材質に応じて適切に加工領域を分けて加工できる。
【0081】
なお、本開示において、熱硬化性レンズを加工するための第2領域が前側領域FPAに設定されているのは、熱硬化性のトライベックスレンズと熱硬化性レンズが使用される割合に関し、一般的には、熱硬化性レンズの割合が多く、レンズLEの加工可能な最小加工径が小さくなる前側領域FPAの方が有利であるためである。
【0082】
なお、ポリカーボネイトレンズは熱可塑性であるが、トライベックスレンズに比べ、超硬合金の加工具に対するダメージは少なく、他の熱硬化性レンズの加工の場合と遜色がなかった。このため、ポリカーボネイトレンズは、熱硬化性レンズを加工するための第2領域(前側領域FPA)で加工されてもよいし、熱可塑性の所定レンズであるトライベックスレンズを加工するための第1領域(後側領域RPA)で加工されてもよい。本実施例では、レンズLEの加工可能な最小加工径を考慮し、ポリカーボネイトレンズは第2領域(前側領域FPA)で加工されるように設定されている。
【0083】
<仕上げ加工>
仕上げ加工の動作を簡単に説明する。粗加工が終了すると、仕上げ加工に移行される。例えば、レンズLEが低カーブレンズで、ヤゲン加工が設定されている場合、制御部50は、レンズ形状測定ユニット200の測定結果に基づき、玉型に対応するヤゲン頂点位置のX方向の位置を含む仕上げ加工軌跡LF1(図7参照)を所定の演算方法によって求める。その後、制御部50は、仕上げ加工軌跡LF1に基づいて移動ユニット300の駆動を制御し、粗加工されたレンズLEの周縁を仕上げ加工具163cによって加工させる。なお、レンズLEが高カーブレンズで、ヤゲン加工が設定されている場合、仕上げ加工は仕上げ用加工具163aによって行われる。また、平井仕上げ加工が設定されている場合には、仕上げ加工具163cの平加工用の平仕上げ面で行われる。
【0084】
<変容例>
上記の説明では、粗加工具423の第2加工具回転軸412が角度αで傾斜されている場合を説明したが、第2加工具回転軸412がレンズチャック軸102と平行であってもよい。この場合、加工領域PA内の何れの場所でレンズLEを加工しても、レンズLEを加工可能な最小加工径は同じであるので、熱可塑性レンズを加工するための第1領域が前側領域FPAに設定され、熱硬化性レンズを加工するための第2領域が後側領域RPAに設定されていてもよい。
【0085】
また、上記説明では、後側領域RPAによるレンズLEの加工においては、一定距離drだけ粗加工具423の後端側に離れた位置に加工基準位置Srpが設定され、その加工基準位置SrpにレンズLEの後屈折面LErが位置するように制御するものとしたが、この制御に限られない。すなわち、第2加工具回転軸412がレンズチャック軸102と平行である場合には、レンズLEの最小加工径を考慮する必要がないため、例えば、前側領域FPAによるレンズLEの加工と同様に、加工基準位置Srpが後側領域RPA内の後側に設定され、その加工基準位置SrpにレンズLEの前屈折面LEfが位置するように制御されてもよい。
【0086】
またさらに、レンズLEの最小加工径を考慮する必要がない場合には、後側領域RPAによるレンズ加工においては、加工基準位置Srpが後側領域RPA内の中央に設定され、その加工基準位置Srpに、レンズLEの前屈折面LEfと後屈折面LErの中心位置が位置するように制御されてもよい。前側領域FPAによるレンズ加工においても、加工基準位置Sfpが前側領域FPA内の中央に設定され、その加工基準位置Sfpに、レンズLEの前屈折面LEfと後屈折面LErの中心位置が位置するように制御されてもよい。
【0087】
また、第2加工具回転軸412の傾斜の角度αが変更可能に構成される場合には、角度αに応じて、加工基準位置Srpを定めるための一定距離dr、及び加工基準位置Sfpを定めるための一定距離dfが変更されてもよい。
【0088】
また、上記では、レンズ材質に応じて変える加工領域は、第1領域と第2領域の2つの例を説明したが、加工領域PAを3つ以上の領域に分け、3つ以上のレンズ材質に対応可能としてもよい。
【0089】
また、上記ではレンズLEの材質データに基づいて加工領域を選択的に変える加工具は粗加工具423としたが、これに限られない。例えば、仕上げ加工具がカッターである場合には、仕上げ加工具にも本開示の技術が適用されてもよい。
【0090】
以上、本開示の典型的な実施例を説明したが、本開示はここに示した実施例に限られず、本開示の技術思想を同一にする範囲において種々の変容が可能である。
【符号の説明】
【0091】
1 眼鏡レンズ加工装置
10 データ取得ユニット
50 制御部
102 レンズチャック軸
200 レンズ形状測定ユニット
300 移動ユニット
412 第2加工具回転軸
423 粗加工具
PA 加工領域
RPA 後側領域
FPA 前側領域

図1
図2
図3
図4
図5
図6
図7
図8