IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ローム株式会社の特許一覧

特開2023-101937不揮発性メモリ、メモリ利用装置及び車両
<>
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図1
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図2
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図3
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図4
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図5
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図6
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図7
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図8
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図9
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図10
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図11
  • 特開-不揮発性メモリ、メモリ利用装置及び車両 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023101937
(43)【公開日】2023-07-24
(54)【発明の名称】不揮発性メモリ、メモリ利用装置及び車両
(51)【国際特許分類】
   G06F 12/02 20060101AFI20230714BHJP
   G06F 12/00 20060101ALI20230714BHJP
   G06F 12/04 20060101ALI20230714BHJP
【FI】
G06F12/02 510A
G06F12/00 597U
G06F12/04 510A
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022002186
(22)【出願日】2022-01-11
(71)【出願人】
【識別番号】000116024
【氏名又は名称】ローム株式会社
(74)【代理人】
【識別番号】110001933
【氏名又は名称】弁理士法人 佐野特許事務所
(72)【発明者】
【氏名】坂本 裕太
【テーマコード(参考)】
5B160
【Fターム(参考)】
5B160AA12
5B160DA00
(57)【要約】
【課題】不揮発性メモリの利便性を向上させる。
【解決手段】不揮発性メモリにおいて、所定記憶容量を有するメモリ領域と、設定データを保持するよう構成された設定データ保持回路と、保持された前記設定データに基づき、当該不揮発性メモリを複数の候補容量の何れかの記憶容量を有するメモリとして動作させるよう構成された制御回路と、を備え、前記複数の候補容量は、前記所定記憶容量以下であって且つ互いに異なる。
【選択図】図7
【特許請求の範囲】
【請求項1】
不揮発性メモリにおいて、
所定記憶容量を有するメモリ領域と、
設定データを保持するよう構成された設定データ保持回路と、
保持された前記設定データに基づき、当該不揮発性メモリを複数の候補容量の何れかの記憶容量を有するメモリとして動作させるよう構成された制御回路と、を備え、
前記複数の候補容量は、前記所定記憶容量以下であって且つ互いに異なる
、不揮発性メモリ。
【請求項2】
命令信号の入力を受けるよう構成された端子を更に備え、
前記制御回路は、保持された前記設定データに基づき前記複数の候補容量の何れかを対象容量として選択し、前記命令信号に応答して前記対象容量を有するメモリ空間に対してアクセスする
、請求項1に記載の不揮発性メモリ。
【請求項3】
前記制御回路は、保持された前記設定データに基づき、互いに異なる複数のプロトコルの何れかにて前記命令信号のデコードを行う
、請求項2に記載の不揮発性メモリ。
【請求項4】
前記命令信号は、前記メモリ空間内の対象アドレスに対してアクセスすることを指令する複数ビットの信号であり、
前記制御回路は、前記命令信号に含まれる、前記対象容量に応じたビット群のデータに基づき、前記対象アドレスを認識する
、請求項2又は3に記載の不揮発性メモリ。
【請求項5】
前記制御回路は、保持された前記設定データに基づき、前記複数の候補容量に対応する複数の動作モードの何れかにて動作し、
前記制御回路は、各動作モードにおいて前記命令信号中の対象ビット群のデータに基づき前記対象アドレスを認識し、
前記対象ビット群のビット長は前記複数の動作モード間で互いに異なる
、請求項4に記載の不揮発性メモリ。
【請求項6】
前記端子に対し特定の命令信号が入力されたとき、前記制御回路は、前記特定の命令信号に応じたデータを前記設定データとして前記設定データ保持回路に保持させる
、請求項2~5の何れかに記載の不揮発性メモリ。
【請求項7】
EEPROM又はフラッシュメモリである
、請求項1~6の何れかに記載の不揮発性メモリ。
【請求項8】
請求項2~6の何れかに記載の不揮発性メモリと、
前記不揮発性メモリに対して前記命令信号を出力するよう構成された命令信号出力回路と、を備えた
、メモリ利用装置。
【請求項9】
請求項8に記載のメモリ利用装置を搭載した
、車両。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、不揮発性メモリ、メモリ利用装置及び車両に関する。
【背景技術】
【0002】
不揮発性メモリを含んだセット装置を製造する製造メーカは、各セット装置の仕様に応じた記憶容量を有する不揮発性メモリを、セット装置の種類ごとに部品メーカから入手する。例えば、第1セット装置の製造に際して1キロビットの不揮発性メモリが200個必要であれば、1キロビットの不揮発性メモリを部品メーカから200個以上入手し、第2セット装置の製造に際して4キロビットの不揮発性メモリが500個必要であれば、4キロビットの不揮発性メモリを部品メーカから500個以上入手する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007-47993号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
製造メーカとしては、セット装置の製造に支障が生じないよう、不揮発性メモリの種類ごとに納期管理及び在庫管理を行う必要がある。これらの管理負担は大きい。仮に、或る種類の不揮発性メモリの供給が不足すると、当該不揮発性メモリを必要とするセット装置の製造に支障が生じる。このように、不揮発性メモリの利便性に関して改善の余地がある。
【0005】
本開示は、利便性向上に寄与する(具体的には例えば、部品の管理負担軽減又は不揮発性メモリを有する装置の安定生産に寄与する)不揮発性メモリ、並びに、当該不揮発性メモリを用いたメモリ利用装置及び車両を提供することを目的とする。
【課題を解決するための手段】
【0006】
本開示に係る不揮発性メモリは、所定記憶容量を有するメモリ領域と、設定データを保持するよう構成された設定データ保持回路と、保持された前記設定データに基づき、当該不揮発性メモリを複数の候補容量の何れかの記憶容量を有するメモリとして動作させるよう構成された制御回路と、を備え、前記複数の候補容量は、前記所定記憶容量以下であって且つ互いに異なる。
【発明の効果】
【0007】
本開示によれば、利便性向上に寄与する(具体的には例えば、部品の管理負担軽減又は不揮発性メモリを有する装置の安定生産に寄与する)不揮発性メモリ、並びに、当該不揮発性メモリを用いたメモリ利用装置及び車両を提供することが可能となる。
【図面の簡単な説明】
【0008】
図1図1は、本開示の実施形態に係る不揮発性メモリの概略構成図である。
図2図2は、本開示の実施形態に係る不揮発性メモリの外観斜視図である。
図3図3は、本開示の実施形態に係り、基板に対して不揮発性メモリ及びMPUが実装される様子を示した図である。
図4図4は、本開示の実施形態に係り、基板に対して複数の不揮発性メモリとMPUとが実装される様子を示した図である。
図5図5は、本開示の実施形態に係り、不揮発性メモリが有するメモリ領域に対しメモリ空間が設定される様子を示す図である。
図6図6は、本開示の実施形態に係り、不揮発性メモリが有する設定レジスタの構造を示す図である。
図7図7は、本開示の実施形態に係り、不揮発性メモリ及びMPUを含む装置の動作フローチャートである。
図8図8は、本開示の実施形態に属する第1実施例に係り、ライト命令の構造図である。
図9図9は、本開示の実施形態に属する第1実施例に係り、命令信号を形成する1つの単位信号の構造図である。
図10図10は、本開示の実施形態に属する第1実施例に係り、動作モードと単位信号(U1、U2)との関係を示す図である。
図11図11は、本開示の実施形態に属する第4実施例に係り、不揮発性メモリ及びMPUを有する装置が車両に搭載される様子を示す図である。
図12図12は、参考方法に係る複数種類の不揮発性メモリを示す図である。
【発明を実施するための形態】
【0009】
本開示の実施形態の説明に先立ち、不揮発性メモリの一般的な利用及び管理方法を参考方法として説明する。図12を参照する。図12には、参考方法に係る不揮発性メモリMM[1K]、MM[2K]、MM[4K]、MM[8K]及びMM[16K]が示されている。不揮発性メモリMM[1K]、MM[2K]、MM[4K]、MM[8K]、MM[16K]は、夫々、1、2、4、8、16キロビット分の記憶容量を有するEEPROM(Electrically Erasable Programmable Read-Only Memory)である。
【0010】
不揮発性メモリを含んだセット装置を製造する製造メーカは、不揮発性メモリを製造又は販売する部品メーカから必要な不揮発性メモリを入手(購入)してセット装置を製造する。例えば、不揮発性メモリMM[1K]を1つ備えた第1セット装置を200個製造し、不揮発性メモリMM[4K]を1つ備えた第2セット装置を500個製造し、不揮発性メモリMM[16K]を1つ備えた第3セット装置を300個製造する場合を考える。この場合、参考方法に係る製造メーカは、部品メーカから不揮発性メモリMM[1K]を200個以上入手し、不揮発性メモリMM[4K]を500個以上入手し、不揮発性メモリMM[16K]を300個以上入手する。
【0011】
このように、参考方法に係る製造メーカは、各セット装置の仕様に応じた記憶容量を有する不揮発性メモリを、セット装置の種類ごとに部品メーカから入手する。製造メーカとしては、セット装置の製造に支障が生じないよう、不揮発性メモリの種類ごとに納期管理及び在庫管理を行う必要がある。これらの管理負担は大きい。仮に、或る種類の不揮発性メモリ(例えばMM[4K])の供給が不足すると、当該不揮発性メモリを必要とするセット装置(例えば第2セット装置)の製造に支障が生じる。
【0012】
尚、或る記憶容量の不揮発性メモリが必要とされているときに、他の記憶容量の不揮発性メモリを代わりに用いることは難しい又は好ましくない。例えば、不揮発性メモリMM[4K]が必要なセット装置に対し、不揮発性メモリMM[1K]を適用することはできない(容量不足である)。不揮発性メモリMM[4K]が必要なセット装置に対し、不揮発性メモリMM[4K]の代用品として不揮発性メモリMM[16K]を用いることも検討されるが、このような代用を行うと、4キロビット超の部分の記憶領域の存在が予期せぬ不具合を発生させることがある。
【0013】
例えば、不揮発性メモリMM[4K]におけるアドレスは“0x000”から“0x1ff”までで表現されるが、メモリMM[4K]及びMM[16K]間でアドレスの指定方法(命令信号をデコードするためのプロトコル)が異なることもあって、上記代用を行った場合、アドレス“0x100”にアクセスしているつもりが、誤ってアドレス“0x300”(メモリMM[16K]におけるアドレス“0x300”)にアクセスすることもある。また例えば、不揮発性メモリMM[4K]を実際に使用していたならばアドレス“0x1ff”までアクセスした後、次のアクセスは最上位アドレス“0x000”となるはずである。しかしながら、上記代用を行った場合、アドレス“0x1ff”までアクセスした後、次のアクセスはアドレス“0x200”となる。このような意図しないアクセスを防止するには、不揮発性メモリに命令を出す側の回路及びソフトウェアを変更する必要が生じる。これは、製造メーカにとって負担が大きい、又は、そのような変更は現実的でないことがある。
【0014】
上記のような管理負担の軽減及びセット装置の安定生産等に寄与する本開示の実施形態の例を、以下、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、素子又は部位等を参照する記号又は符号を記すことによって、該記号又は符号に対応する情報、信号、物理量、素子又は部位等の名称を省略又は略記することがある。例えば、後述の“SCL”によって参照されるクロック端子は(図3参照)、クロック端子SCLと表記されることもあるし、端子SCLと略記されることもあり得るが、それらは全て同じものを指す。
【0015】
尚、本開示の実施形態の説明において、ラインとは電気信号が伝播又は印加される配線を指す。グランドとは、基準となる0V(ゼロボルト)の電位を有する基準導電部を指す又は0Vの電位そのものを指す。基準導電部は金属等の導体にて形成される。0Vの電位をグランド電位と称することもある。本開示の実施形態において、特に基準を設けずに示される電圧はグランドから見た電位を表す。
【0016】
図1は本開示の実施形態に係る不揮発性メモリ1(以下、単にメモリ1と称され得る)の概略構成図である。図2はメモリ1の外観斜視図である。メモリ1は、半導体基板上に形成された半導体集積回路を有する半導体チップと、半導体チップを収容する筐体(パッケージ)と、筐体からメモリ1の外部に対して露出する複数の外部端子と、を備えた電子部品である。半導体チップを樹脂にて構成された筐体(パッケージ)内に封入することでメモリ1が形成される。尚、図2に示されるメモリ1の外部端子の数及びメモリ1の筐体の種類は例示に過ぎず、それらを任意に設計可能である。
【0017】
本実施形態に係るメモリ1には、上記複数の外部端子として、設定端子A0、A1及びA2と、グランド端子GNDと、電源端子VCCと、ライトプロテクト端子WPと、クロック端子SCLと、データ端子SDAと、が設けられる。メモリ1は、上記半導体集積回路にて形成される機能部として、メモリ領域10、制御回路20及び設定レジスタ30を備える。本実施形態においてメモリ1はEEPROMであるとする。
【0018】
メモリ1は自身に接続された外部装置とシリアル通信を行う。図3を参照し、ここでは、メモリ1と演算処理装置の例であるMPU(Micro Processing Unit)2とが基板SUBに実装されることを想定する。MPU2は上記外部装置の例であって、メモリ1に接続される。MPU2は、メモリ1に類似する形態を持つ電子部品であり、MPU2が備える外部端子の一部として、電源端子VCC2、グランド端子GND2、クロック端子SCL2、データ端子SDA2のみが図3に示されている。
【0019】
基板SUBにおいてメモリ1の電源端子VCC及びMPU2の電源端子VCC2には電源電圧Vccが入力される。電源電圧Vccは所定の正の直流電圧値(例えば3.3V又は5.0V)を有する。基板SUBにおいてメモリ1のグランド端子GND及びMPU2のグランド端子GND2はグランドに接続される。メモリ1内の各機能部はグランド電位を基準に電源電圧Vccに基づいて動作する。MPU2についても同様である。特に図示しないが、メモリ1には電源電圧Vccから電源電圧Vccよりも高い電圧を生成する高電圧発生回路が設けられ、メモリ領域10は高電圧発生回路の生成電圧を用いて必要なデータの記憶動作等を行う。
【0020】
尚、本実施形態において、データ又は値の記憶とデータ又は値の格納は同義である。また本実施形態において、ハイレベルとは、所定の閾電圧より高い電位を指し、ローレベルとは所定の閾電圧より低い電位を指す。ここにおける閾電圧は0Vよりも高く且つ電源電圧Vccよりも低い電圧であり、例えば電源電圧Vccの半分である。以下では、ハイレベルは電源電圧Vccのレベルであって、ローレベルはグランドのレベルであるとする。
【0021】
本実施形態に係るメモリ1はMPU2とシリアル通信を行う。本実施形態では、シリアル通信のインターフェースとしてIC(Inter-Integrated Circuit)によるインターフェースを用いることを想定する。換言すれば、メモリ1及びMPU2間のシリアル通信としてICによるシリアル通信を行うことを想定する。基板SUBにおいて、クロック信号を伝送するためのクロックバスBSCLと、データ信号を伝送するためのデータバスBSDAと、が設けられる。特に図示しないが、クロックバスBSCL及びデータバスBSDAと電源電圧Vccが加わる電源ラインとの間に、夫々、プルアップ抵抗が設けられていて良い。メモリ1のクロック端子SCL及びMPU2のクロック端子SCL2はクロックバスBSCLに接続される。即ち、クロック端子SCLはクロックバスBSCLを介してクロック端子SCL2に接続される。メモリ1のデータ端子SDA及びMPU2のデータ端子SDA2はデータバスBSDAに接続される。即ち、データ端子SDAはデータバスBSDAを介してデータ端子SDA2に接続される。ICのシリアル通信において、MPU2がマスタとして機能し、メモリ1がスレーブとして機能する。
【0022】
図3にはメモリ1が1つしか示されていないが、図4に示す如く、基板SUBに複数のメモリ1が実装されて複数のメモリ1がMPU2に接続されることもある。この場合、各メモリ1のクロック端子SCLがクロックバスBSCLに接続されると共に各メモリ1のデータ端子SDAがデータバスBSDAに接続される。尚、MPU2に対してメモリ1が1つだけ接続される場合、クロックバスBSCL及びデータバスBSDAは存在せず、単に、クロック端子SCL及びSCL2が互いに接続され且つデータ端子SDA及びSDA2が互いに接続される、と考えて良い。
【0023】
メモリ1の端子A2~A0、WP、SCL及びSDAにはハイレベル又はローレベルの電圧が加わる。基板SUBにおいて、メモリ1の設定端子A2~A0に対し個別にハイレベル又はローレベルの電圧が固定的に入力される。但し、後述の動作モードによっては、設定端子A2~A0の何れか1以上が開放状態とされ得る。設定端子A2~A0に入力される電圧を、まとめて端子設定電圧と称し、“(A2,A1,A0)=(a,b,c)”にて表記する。或いは、設定端子A2及びA1に入力される電圧を、まとめて端子設定電圧と称し、“(A2,A1)=(a,b)”にて表記する。或いは、設定端子A2に入力される電圧を端子設定電圧と称し、“A2=a”にて表記する。
【0024】
表記“(A2,A1,A0)=(a,b,c)”、“(A2,A1)=(a,b)”又は“A2=a”における変数a、b及びcは、夫々に1又は0をとる。表記“(A2,A1,A0)=(a,b,c)”、“(A2,A1)=(a,b)”又は“A2=a”において、変数aが1であることは設定端子A2にハイレベルの電圧が加わることを意味し、変数aが0であることは設定端子A2にローレベルの電圧が加わることを意味する。同様に、表記“(A2,A1,A0)=(a,b,c)”又は“(A2,A1)=(a,b)”において、変数bが1であることは設定端子A1にハイレベルの電圧が加わることを意味し、変数bが0であることは設定端子A1にローレベルの電圧が加わることを意味する。同様に、表記“(A2,A1,A0)=(a,b,c)”において、変数cが1であることは設定端子A0にハイレベルの電圧が加わることを意味し、変数cが0であることは設定端子A0にローレベルの電圧が加わることを意味する。
【0025】
図3の例では、単一のメモリ1の設定端子A2~A0が全てグランドに接続され、故に、(A2,A1,A0)=(0,0,0)である。図4に示す如く、クロックバスBSCL及びデータバスBSDAに接続されたメモリ1が複数ある場合には、複数のメモリ1に対して互いに異なる端子設定電圧が入力される。端子設定電圧により、複数のメモリ1としての複数のスレーブが区別される。
【0026】
ライトプロテクト端子WPにはハイレベル又はローレベルの電圧が入力される。ライトプロテクト端子WPへの入力電圧がハイレベルであるとき、制御回路20はメモリ領域10へのデータの書き込みを禁止する。本実施形態では、ライトプロテクト端子WPへの入力電圧はローレベルに固定されているものとする(即ち、メモリ領域10へのデータの書き込みは許可されているものとする)。
【0027】
MPU2はクロック端子SCL2からクロック信号を出力する。クロック信号はクロックバスBSCLを介してメモリ1のクロック端子SCLに入力される。このように、クロック端子SCL2はクロック信号を出力するクロック出力端子として機能し、クロック端子SCLはクロック信号を受信するクロック入力端子として機能する。クロック信号は、ローレベル又はハイレベルの信号レベルを交互にとる矩形波信号である。
【0028】
データ端子SDA及びSDA2は、夫々に、データバスBSDAに対してデータ信号を出力するデータ出力端子として機能するときと、データバスBSDAにて伝送されるデータ信号を受信するデータ入力端子として機能するときと、がある。データバスBSDAに対してデータ信号を出力するデバイスをトランスミッタと称し、データバスBSDAにて伝送されるデータ信号を受信するデバイスをレシーバと称する。ここにおけるデバイスは、MPU2又はメモリ1である。ICの規定に従い、任意の時刻において、データバスBSDAに接続されたデバイスの内、1つのみがトランスミッタとなり得る。
【0029】
メモリ領域10は所定の記憶容量CREFを有する不揮発性の記憶領域である。記憶容量CREFは任意である。ここでは、説明の具体化のため、記憶容量CREFが16キロビットの記憶容量であるとする。1キロビットは1024ビットである。メモリ1では、ワード単位でメモリ領域10にデータを書き込むことができると共に、ワード単位でメモリ領域10からデータを読み出すことができる。本実施形態において1ワードは1バイトである。但し、複数バイトが1ワードに相当するようにしても良い。1バイトは8ビットから成る。
【0030】
制御回路20は、図5に示す如くメモリ領域10にメモリ空間MSを設定する(換言すれば定義する)。詳細は後述するが、制御回路20は、メモリ領域10の全体に対してメモリ空間MSを設定することもあるし、メモリ領域10の一部に対してメモリ空間MSを設定することもある。メモリ空間MSを実使用メモリ空間と称しても良い。メモリ空間MSにおいて8ビット(即ち1バイト)ごとに固有のアドレスが割り当てられる。以下の説明において、アドレスとはメモリ空間MSでのアドレスを指す。アドレスは数値にて表現され、或る注目アドレスから見て、より小さな数値にて示されるアドレスは注目アドレスの下位側のアドレスであり、より大きな数値にて示されるアドレスは注目アドレスの上位側のアドレスである。メモリ領域10の全領域に対してメモリ空間MSが設定されたとき、メモリ空間MSは16キロビットの記憶容量(即ち2キロバイトの記憶容量)に相当するので、メモリ空間MSにおける最下位アドレスは“0x000”であり、メモリ空間MSにおける最上位アドレスは“0x7ff”である。尚、本実施形態では、適宜、アドレスを16進数で表記する。アドレスを示す数値の先頭に付加される文字列“0x”は、文字列“0x”に続く数値が16進数であることを表す。故に、“0x000”は10進数表記では“0”を表し、“0x7ff”は10進数表記では“2047”を表す。
【0031】
MPU2はメモリ1に対して複数種類の命令を出力することができる。命令を表す信号を特に命令信号と称する。MPU2は、予め定められたプロトコルに従い、クロック端子SCL2からクロック信号を出力しつつデータ端子SDA2から任意の命令を表す命令信号を出力することで、メモリ1に対して当該命令を出力することができる。メモリ1は、クロック端子SCLにてクロック信号を受信しつつ、上記プロトコルに従い、データ端子SDAにて命令を表す命令信号を受信することで当該命令を受け取る。上記プロトコルは、ICにて定義された通信のプロトコルであると共に、メモリ1及びCPU2間で定められた通信のプロトコルである。
【0032】
複数種類の命令にライト命令及びリード命令が含まれる。ライト命令として複数種類のライト命令が存在しうる。但し、ここでは、ライト命令として、対象アドレスに1バイト分のライトデータを書き込むことを指令する命令を想定し、ライト命令の中で対象アドレスが指定されるものとする。ライト命令において対象アドレスは書き込みの対象となるアドレスを指す。ライトデータはライト命令の中で指定される1バイト分のデータである。リード命令として複数種類のリード命令が存在しうる。但し、ここででは、リード命令として、対象アドレスに格納された1バイト分のデータを読み出することを指令する命令を想定し、リード命令の中で対象アドレスが指定されるものとする。リード命令において対象アドレスは読み出しの対象となるアドレスを指す。
【0033】
制御回路20は、MPU2から受けた命令の内容に従ってメモリ空間MS(換言すればメモリ領域10)にアクセスする。制御回路20は、ライト命令を受けたとき(即ち端子SDAにてライト命令を表す命令信号を受けたとき)、メモリ空間MS内の対象アドレスに対してライトデータを書き込む。制御回路20は、リード命令を受けたとき(即ち端子SDAにてリード命令を表す命令信号を受けたとき)、メモリ空間MS内の対象アドレスに格納された1バイト分のデータを読み出して、読み出したデータをシリアルデータとして端子SDAから出力する。このようにライト命令及びリード命令は、メモリ空間MS内の対象アドレスに対してアクセスすることを指令する命令である。アクセスとして、メモリ空間MS内の対象アドレスに対してライトデータを書き込むライトアクセスと、メモリ空間MS内の対象アドレスに格納されたデータを読み出すリードアクセスと、がある。
【0034】
制御回路20は端子A0~A2、WP、SCL及びSDAに接続される(図1参照)。制御回路20は、ライトプロテクト端子WPにおける電圧に基づきライトアクセスを許可又は禁止する。制御回路20は、端子SCL及びSDAを通じてMPU2とICによるシリアル通信を行う。当該シリアル通信に際して端子A0~A2に対する設定端子電圧が参照される(これについては後にも説明を設ける)。
【0035】
設定レジスタ30は制御回路20に接続された記憶領域である。設定レジスタ30は制御回路20に内蔵されるレジスタであっても良い。図6に示す如く、設定レジスタ30は3ビット分の記憶領域31を有する。記憶領域31は不揮発性の記憶領域である。記憶領域31は第1~第3ビットから成り、記憶領域31の第1、第2、第3ビットの値を、夫々、X、Y、Zにて表す。設定レジスタ30は、記憶領域31に加えて他の記憶領域を含み得る。他の記憶領域に対して様々な設定情報を格納しておくことができる。制御回路20は、設定レジスタ30に記憶されたデータを読み出すことが可能であると共に、設定レジスタ30に対して必要なデータを書き込むことが可能である。
【0036】
制御回路20は、記憶領域31に格納されたデータに応じて、即ち、X、Y及びZの値に応じて、メモリ1を第1~第n候補容量の何れかの記憶容量を有するメモリ(不揮発性メモリ)として動作させる。X、Y及びZの値から成る3ビットデータは、メモリ1を第1~第n候補容量の何れの記憶容量を有するメモリ(不揮発性メモリ)として動作させるかを定めるための設定データである。nは2以上の任意の整数である。本実施形態では、具体例として“n=5”であって、第1、第2、第3、第4、第5候補容量は、夫々、1キロビット、2キロビット、4キロビット、8キロビット、16キロビットであるとする。MPU2はメモリ1に対して特定の命令を与えることで設定データ(X,Y,Z)を任意に書き換え可能である。
【0037】
このため、基板SUBを含むセット装置を製造する製造メーカは、メモリ1を購入しておくだけで、メモリ1を必要な記憶容量を有するメモリとしてセット装置に組み込むことができる。即ち例えば、1キロビットの不揮発性メモリを組み込む必要のあるセット装置を製造する場合には、1キロビットのメモリとして動作するように設定したメモリ1を当該セット装置に適用すれば良い。同様に例えば、4キロビットの不揮発性メモリを組み込む必要のあるセット装置を製造する場合には、4キロビットのメモリとして動作するように設定したメモリ1を当該セット装置に適用すれば良い。セット装置を製造する製造メーカは、不揮発性メモリに対する納期管理及び在庫管理として、1種類の部品であるメモリ1の納期管理及び在庫管理だけを行えば良く、結果、それらの管理負担が軽減される。また、納期管理及び在庫管理が必要な部品の種類が少なくなる分、セット装置の生産(量産)の安定化が図られる。
【0038】
制御回路20は、設定レジスタ30から設定データ(X,Y,Z)を読み出し、設定データ(X,Y,Z)に応じて第1~第n候補容量の何れか1つを対象容量として選択する。制御回路20はメモリ領域10に対象容量を有するメモリ空間MSを設定する。即ち、対象容量は図5に示すメモリ空間MSの容量である。対象容量は、命令信号に応答して実際にアクセスされる記憶領域の容量(実使用容量)に相当する。
【0039】
制御回路20は、設定データ(X,Y,Z)に応じて第1~第n動作モードの何れかにて動作する。本実施形態では“n=5”を想定しているため、第n動作モードは第5動作モードである。ここでは、制御回路20は、
“(X,Y,Z)=(0,0,0)”であるときに第1動作モードで動作し、
“(X,Y,Z)=(1,0,0)”であるときに第2動作モードで動作し、
“(X,Y,Z)=(0,1,0)”であるときに第3動作モードで動作し、
“(X,Y,Z)=(1,1,0)”であるときに第4動作モードで動作し、
“(X,Y,Z)=(0,0,1)”であるときに第5動作モードで動作するものとする。尚、X、Y及びZの初期値(メモリ1の製造又は出荷時点のX、Y及びZの初期値)は任意である。例に過ぎないが、X、Y及びZの初期値は0であって良い。
【0040】
第i動作モードは、第i候補容量を有するメモリ(不揮発性メモリ)としてメモリ1を動作させる動作モードである。iは任意の整数を表す。即ち例えば、第1動作モードは、メモリ1を1キロビット分の記憶領域を有するメモリ(不揮発性メモリ)として動作させる動作モードであり、第2動作モードは、メモリ1を2キロビット分の記憶領域を有するメモリ(不揮発性メモリ)として動作させる動作モードである。第3~第5動作モードについても同様である。
【0041】
制御回路20は、第1動作モードにおいては(詳細には第1動作モードにて動作するときにおいては)、メモリ領域10の全領域の1/16に対してメモリ空間MSを設定する。このため、第1動作モードにおけるメモリ空間MSは、(CREF×1/16)の記憶容量を持つ。故に、制御回路20は、第1動作モードにおいて、メモリ空間MSの最下位アドレス、最上位アドレスが、夫々、“0x00”、“0x7f”であると認識する。
制御回路20は、第2動作モードにおいては(詳細には第2動作モードにて動作するときにおいては)、メモリ領域10の全領域の1/8に対してメモリ空間MSを設定する。このため、第2動作モードにおけるメモリ空間MSは、(CREF×1/8)の記憶容量を持つ。故に、制御回路20は、第2動作モードにおいて、メモリ空間MSの最下位アドレス、最上位アドレスが、夫々、“0x00”、“0xff”であると認識する。
制御回路20は、第3動作モードにおいては(詳細には第3動作モードにて動作するときにおいては)、メモリ領域10の全領域の1/4に対してメモリ空間MSを設定する。このため、第3動作モードにおけるメモリ空間MSは、(CREF×1/4)の記憶容量を持つ。故に、制御回路20は、第3動作モードにおいて、メモリ空間MSの最下位アドレス、最上位アドレスが、夫々、“0x000”、“0x1ff”であると認識する。
制御回路20は、第4動作モードにおいては(詳細には第4動作モードにて動作するときにおいては)、メモリ領域10の全領域の1/2に対してメモリ空間MSを設定する。このため、第4動作モードにおけるメモリ空間MSは、(CREF×1/2)の記憶容量を持つ。故に、制御回路20は、第4動作モードにおいて、メモリ空間MSの最下位アドレス、最上位アドレスが、夫々、“0x000”、“0x3ff”であると認識する。
制御回路20は、第5動作モードにおいては(詳細には第5動作モードにて動作するときにおいては)、メモリ領域10の全領域に対してメモリ空間MSを設定する。このため、第5動作モードにおけるメモリ空間MSは、(CREF×1)の記憶容量を持つ。故に、制御回路20は、第5動作モードにおいて、メモリ空間MSの最下位アドレス、最上位アドレスが、夫々、“0x000”、“0x7ff”であると認識する。
【0042】
そして、メモリ1はデータ端子SDAにて命令を表す命令信号の入力を受け、制御回路20は、各動作モードにおいて、命令信号に応答してメモリ空間MSに対してアクセスする(詳細には、メモリ空間MS内の対象アドレスに対してライトアクセス又はリードアクセスする)。
【0043】
このため、参考方法に関連して述べたような不具合が生じることは無い。例えば、メモリ1が1キロビットの記憶容量を有するメモリとして動作するときには、MPU2にとってメモリ1は不揮発性メモリMM[1K]と全く同じように動作し、メモリ1が4キロビットの記憶容量を有するメモリとして動作するときには、MPU2にとってメモリ1は不揮発性メモリMM[4K]と全く同じように動作するからである。
【0044】
命令信号はエンコードされた信号であり、制御回路20は、設定データ(X,Y,Z)に基づき、互いに異なる複数のプロトコルの何れかにて命令信号のデコードを行う。
【0045】
これにより、メモリ空間MSのサイズに応じた正しいデコードを行うことができ、参考方法に関連して述べたような不具合が生じることは無い。
【0046】
上記複数のプロトコルはn種類のプロトコルであり、n種類のプロトコルを第1~第nプロトコルと称する。第i候補容量が対象容量として選択された状態のメモリ1に対して命令信号を出力する際、MPU2は第iプロトコルに従ったエンコードにより命令信号を生成する。制御回路20は、第i動作モードにおいては(詳細には第i動作モードにて動作するときにおいては)第iプロトコルにて命令信号のデコードを行う。即ち例えば、制御回路20は、第1動作モードにおいては(詳細には第1動作モードにて動作するときにおいては)第1プロトコルにて命令信号のデコードを行い、第2動作モードにおいては(詳細には第2動作モードにて動作するときにおいては)第2プロトコルにて命令信号のデコードを行う。第3~第5動作モードについても同様である。
【0047】
上述したようにライト命令又はリード命令を表す命令信号において対象アドレスが指定される。後にも説明されるよう、命令信号は複数ビットの信号(デジタル信号)である。制御回路20は、第i動作モードにおいては(詳細には第i動作モードにて動作するときにおいては)命令信号中の第iビット群のデータに基づき対象アドレスを認識する。即ち例えば、制御回路20は、第1動作モードにおいては(詳細には第1動作モードにて動作するときにおいては)命令信号中の第1ビット群のデータに基づき対象アドレスを認識し、第2動作モードにおいては(詳細には第2動作モードにて動作するときにおいては)命令信号中の第2ビット群のデータに基づき対象アドレスを認識する。第3~第5動作モードについても同様である。
【0048】
詳細には、制御回路20は、第i動作モードにおいては(詳細には第i動作モードにて動作するときにおいては)、第iプロトコルに従って命令信号をデコードし、これによって命令信号中の第iビット群のデータを対象アドレスを指定するデータとして認識する。第1動作モードは1キロビット(即ち128バイト)に対応し、128=2、であるので、第1ビット群のビット長は7である。即ち、第1動作モードでは命令信号中の7ビット分のデータにより対象アドレスが指定される。同様に考えて、第2動作モードは2キロビット(即ち256バイト)に対応し、256=2、であるので、第2ビット群のビット長は8である。即ち、第2動作モードでは命令信号中の8ビット分のデータにより対象アドレスが指定される。同様に考えて、第3ビット群のビット長、第4ビット群のビット長、第5ビット群のビット長は、夫々、9、10、11である。
【0049】
実際にアクセスの対象となるメモリ空間MSのサイズに応じて対象アドレスの認識方法を異ならせることにより、正しいデコードを行うことができる。
【0050】
上述したように、MPU2はメモリ1に対して特定の命令を与えることで設定データ(X,Y,Z)を任意に書き換え可能である。メモリ1に注目すれば、メモリ1は、特定の命令を受けたとき、特定の命令に従って設定データ(X,Y,Z)を変更する。当該特定の命令を、記憶容量指定命令と称する。図7に、基板SUBを備えたセット装置の動作フローチャートを示す。基板SUBを備えたセット装置は、例えば後述のメモリ利用装置310(図11参照)である。メモリ1及びMPU2が基板SUBに実装された後、ステップS1において、MPU2はメモリ1に対して記憶容量指定命令を出力する。ライト命令又はリード命令と同様、メモリ1は、クロック端子SCLにてクロック信号を受信しつつデータ端子SDAにて記憶容量指定命令を表す命令信号を受信することで記憶容量指定命令を受け取る。記憶容量指定命令において、X、Y及びZの値が指定される。制御回路20は、記憶容量指定命令を受けたとき、設定レジスタ30内の記憶領域31に記憶容量指定命令にて指定された値を書き込む。即ち、ステップS2において、制御回路20はMPU1から受信した記憶容量指定命令に基づき、X、Y及びZの値を設定する。これにより、記憶容量指定命令にて指定された設定データ(X,Y,Z)が記憶領域31に保持される。以後は、記憶領域31に保持された設定データ(X,Y,Z)に応じた動作モードにてメモリ1が動作する(ステップS3)。記憶領域31は不揮発性の記憶領域であるので、MPU1は初回起動時に記憶容量指令命令を1回出力するだけで良い。即ちステップS1及びS2の処理は1回だけ実行すれば足る。
【0051】
以下、複数の実施例の中で、幾つかの具体的な動作例、応用技術、変形技術等を説明する。本実施形態にて上述した事項は、特に記述無き限り且つ矛盾無き限り、以下の各実施例に適用される。各実施例において、上述の事項と矛盾する事項がある場合には、各実施例での記載が優先されて良い。また矛盾無き限り、以下に示す複数の実施例の内、任意の実施例に記載した事項を、他の任意の実施例に適用することもできる(即ち複数の実施例の内の任意の2以上の実施例を組み合わせることも可能である)。
【0052】
<<第1実施例>>
第1実施例を説明する。図8を参照する。ライト命令は図8に示すライト命令WCであって良い。ライト命令WCに注目して第1~第5プロトコル間の相違を説明する。
【0053】
ライト命令WCは3つの単位信号U1、U2及びU3を含む。MPU2からライト命令WCがメモリ1に入力される際、単位信号U1、U2及びU3の順番で単位信号がメモリ1に入力される。
【0054】
図9に単位信号の構造が示される。各単位信号は8ビットのシリアル信号であり、第1ビット~第8ビットのデジタル信号から成る。単位信号がMPU2からメモリ1に出力される際、第jビットの信号の次に第(j+1)ビットの信号が出力される(ここにおけるjは7以下の自然数)。1クロック区間において1ビットの信号が入出力される。1クロック区間とは、クロック信号における互いに隣接する2つのアップエッジ間の区間を指す。ここにおけるアップエッジは、クロック信号のレベルにおけるローレベルからハイレベルへの遷移を指す。データ端子(SDA、SDA2)における信号がハイレベルであるとき、当該信号は“1”の値を持ち、データ端子(SDA、SDA2)における信号がローレベルであるとき、当該信号は“0”の値を持つ。
【0055】
尚、ICによるシリアル通信では、スタートコンディションの確立後に命令の送信が開始され、ストップコンディションの確立により命令の送信が終了する。また、レシーバとして機能するデバイス(メモリ1又はMPU2)は、8ビット分の単位信号を受信すると、1クロック区間だけトランスミッタとして機能してデータ端子(SDA又はSDA2)から1ビットのアクノリッジ信号を出力する。スタートコンディション、ストップコンディション及びアクノリッジ信号については、ICの規定として周知であるため、ここでは、それらの存在を無視して説明を行う。
【0056】
ライト命令WCでは、メモリ空間MSのサイズに応じ、単位信号U2のみにて、又は、単位信号U1及びU2にて対象アドレスが指定される。ライト命令WCでは、単位信号U3にて対象アドレスに書き込むべき8ビットのライトデータが指定される。
【0057】
図10に、制御回路20の動作モードと単位信号U1及びU2との関係を示す。単位信号U1における第1~第4ビットの値は全動作モードにおいて共通である。単位信号U1における第1~第4ビットの値は、予め定められた固定値であって、メモリ1に固有のデバイスコードである。単位信号U1における第8ビットの値は、単位信号U1を含む命令がライト命令及びリード命令の何れであるのかを示す。ライト命令WCにおいて単位信号U1における第8ビットの値は“0”である。リード命令においては単位信号U1における第8ビットの値が“1”とされる。
【0058】
第1又は第2動作モードにおいて、単位信号U1における第5、第6及び第7ビットの値は、夫々、値a2、a1及びa0に相当する。第1又は第2動作モードにおいて値a2、a1及びa0は3ビットのスレーブ選択信号に相当する。基板SUBにおいて、第1又は第2動作モードで動作するメモリ1をMPU2に対し(換言すればバスBSCL及びBSDAに対し)最大8つまで並列接続することができる。
【0059】
バスBSCL及びBSDAに接続され且つ第1又は第2動作モードで動作するメモリ1の内、端子設定電圧(A2,A1,A0)が値(a2,a1,a0)に対応するメモリ1のみが命令信号に応答する。“a2=1”、“a1=1”、“a0=1”は、夫々、設定端子A2、A1、A0にハイレベルの電圧が加わることに対応する。“a2=0”、“a1=0”、“a0=0”は、夫々、設定端子A2、A1、A0にローレベルの電圧が加わることに対応する。
【0060】
従って例えば、第1又は第2動作モードで動作する第1及び第2メモリ1がバスBSCL及びBSDAに並列接続され、それらの内、第1メモリ1については“(A2,A1,A0)=(0,0,0)”であって且つ第2メモリ1については“(A2,A1,A0)=(0,0,1)”である第1ケースを考える。第1ケースにおいて、単位信号U1にて“(a2,a1,a0)=(0,0,0)”であれば第1メモリ1が命令信号に応答すべきデバイスとして選択され、第1メモリ1のみが応答信号に対して応答する。第1ケースにおいて、単位信号U1にて“(a2,a1,a0)=(0,0,1)”であれば第2メモリ1が命令信号に応答すべきデバイスとして選択され、第2メモリ1のみが応答信号に対して応答する。
【0061】
第3動作モードにおいて、単位信号U1における第5及び第6ビットの値は、夫々、値a2及びa1に相当する。第3動作モードにおいて値a2及びa1は2ビットのスレーブ選択信号に相当する。基板SUBにおいて、第3動作モードで動作するメモリ1をMPU2に対し(換言すればバスBSCL及びBSDAに対し)最大4つまで並列接続することができる。
【0062】
バスBSCL及びBSDAに接続され且つ第3動作モードで動作するメモリ1の内、端子設定電圧(A2,A1)が値(a2,a1)に対応するメモリ1のみが命令信号に応答する。従って例えば、第3動作モードで動作する第1及び第2メモリ1がバスBSCL及びBSDAに並列接続され、それらの内、第1メモリ1については“(A2,A1)=(0,0)”であって且つ第2メモリ1については“(A2,A1)=(0,1)”である第2ケースを考える。第2ケースにおいて、単位信号U1にて“(a2,a1)=(0,0)”であれば第1メモリ1が命令信号に応答すべきデバイスとして選択され、第1メモリ1のみが応答信号に対して応答する。第2ケースにおいて、単位信号U1にて“(a2,a1)=(0,1)”であれば第2メモリ1が命令信号に応答すべきデバイスとして選択され、第2メモリ1のみが応答信号に対して応答する。
【0063】
第4動作モードにおいて、単位信号U1における第5ビットの値は、値a2に相当する。第4動作モードにおいて値a2は1ビットのスレーブ選択信号に相当する。基板SUBにおいて、第4動作モードで動作するメモリ1をMPU2に対し(換言すればバスBSCL及びBSDAに対し)最大2つまで並列接続することができる。
【0064】
バスBSCL及びBSDAに接続され且つ第4動作モードで動作するメモリ1の内、端子設定電圧A2が値a2に対応するメモリ1のみが命令信号に応答する。従って例えば、第4動作モードで動作する第1及び第2メモリ1がバスBSCL及びBSDAに並列接続され、それらの内、第1メモリ1については“A2=0”であって且つ第2メモリ1については“A2=1”である第3ケースを考える。第3ケースにおいて、単位信号U1にて“a2=0”であれば第1メモリ1が命令信号に応答すべきデバイスとして選択され、第1メモリ1のみが応答信号に対して応答する。第3ケースにおいて、単位信号U1にて“a2=1”であれば第2メモリ1が命令信号に応答すべきデバイスとして選択され、第2メモリ1のみが応答信号に対して応答する。
【0065】
第5動作モードではスレーブ選択信号に相当する信号は定義されない。基板SUBにおいて、第5動作モードで動作するメモリ1をMPU2に対し(換言すればバスBSCL及びBSDAに対し)1つのみ接続できる。第5動作モードで動作するメモリ1は、命令信号を受けたとき、当該命令信号は常に自身に向けた命令信号であると解釈し、当該命令信号に常に応答する。
【0066】
制御回路20は、各動作モードにおいて命令信号中の対象ビット群のデータに基づき対象アドレスを認識する。対象ビット群のビット長は第1~第n動作モード間で互いに異なる。第i動作モードにおける対象ビット群は上述の第iビット群に相当する。これについて、以下、説明を加える。
【0067】
第1動作モードでは、単位信号U2の第2~第8ビットから成る第1ビット群のデータ(値)にて対象アドレスが指定される。第1ビット群のビット長は7である。第1動作モードにおいて、制御回路20は、第1ビット群のデータに基づき対象アドレスを認識する。即ち、第1プロトコルで命令信号のデコードを行う制御回路20は、第1ビット群のデータに基づき対象アドレスを認識する。第1動作モードにおいて、単位信号U2の第2~第8ビットは夫々ビットWA6~WA0に相当し、ビットWA6~WA0の値を7桁の2進数と捉えて得られる値が対象アドレスに相当する。例えば、第1動作モードにおいて、ビットWA6~WA0の値が全て0であるとき対象アドレスはメモリ空間MSの最下位アドレス“0x00”であり、ビットWA6~WA0の値が全て1であるとき対象アドレスはメモリ空間MSの最上位アドレス“0x7f”である。第1動作モードにおいて、単位信号U2の第1ビットは有意な値を持たない。
【0068】
第2動作モードでは、単位信号U2の第1~第8ビットから成る第2ビット群のデータ(値)にて対象アドレスが指定される。第2ビット群のビット長は8である。第2動作モードにおいて、制御回路20は、第2ビット群のデータに基づき対象アドレスを認識する。即ち、第2プロトコルで命令信号のデコードを行う制御回路20は、第2ビット群のデータに基づき対象アドレスを認識する。第2動作モードにおいて、単位信号U2の第1~第8ビットは夫々ビットWA7~WA0に相当し、ビットWA7~WA0の値を8桁の2進数と捉えて得られる値が対象アドレスに相当する。例えば、第2動作モードにおいて、ビットWA7~WA0の値が全て0であるとき対象アドレスはメモリ空間MSの最下位アドレス“0x00”であり、ビットWA7~WA0の値が全て1であるとき対象アドレスはメモリ空間MSの最上位アドレス“0xff”である。
【0069】
第3動作モードでは、単位信号U1の第7ビットと単位信号U2の第1~第8ビットとから成る第3ビット群のデータ(値)にて対象アドレスが指定される。第3ビット群のビット長は9である。第3動作モードにおいて、制御回路20は、第3ビット群のデータに基づき対象アドレスを認識する。即ち、第3プロトコルで命令信号のデコードを行う制御回路20は、第3ビット群のデータに基づき対象アドレスを認識する。第3動作モードにおいて、単位信号U1の第7ビットはビットWA8に相当し且つ単位信号U2の第1~第8ビットは夫々ビットWA7~WA0に相当し、ビットWA8~WA0の値を9桁の2進数と捉えて得られる値が対象アドレスに相当する。例えば、第3動作モードにおいて、ビットWA8~WA0の値が全て0であるとき対象アドレスはメモリ空間MSの最下位アドレス“0x000”であり、ビットWA8~WA0の値が全て1であるとき対象アドレスはメモリ空間MSの最上位アドレス“0x1ff”である。
【0070】
第4動作モードでは、単位信号U1の第6及び第7ビットと単位信号U2の第1~第8ビットとから成る第4ビット群のデータ(値)にて対象アドレスが指定される。第4ビット群のビット長は10である。第4動作モードにおいて、制御回路20は、第4ビット群のデータに基づき対象アドレスを認識する。即ち、第4プロトコルで命令信号のデコードを行う制御回路20は、第4ビット群のデータに基づき対象アドレスを認識する。第4動作モードにおいて、単位信号U1の第6及び第7ビットは夫々ビットWA9及びWA8に相当し且つ単位信号U2の第1~第8ビットは夫々ビットWA7~WA0に相当し、ビットWA9~WA0の値を10桁の2進数と捉えて得られる値が対象アドレスに相当する。例えば、第4動作モードにおいて、ビットWA9~WA0の値が全て0であるとき対象アドレスはメモリ空間MSの最下位アドレス“0x000”であり、ビットWA9~WA0の値が全て1であるとき対象アドレスはメモリ空間MSの最上位アドレス“0x3ff”である。
【0071】
第5動作モードでは、単位信号U1の第5~第7ビットと単位信号U2の第1~第8ビットとから成る第5ビット群のデータ(値)にて対象アドレスが指定される。第5ビット群のビット長は11である。第5動作モードにおいて、制御回路20は、第5ビット群のデータに基づき対象アドレスを認識する。即ち、第5プロトコルで命令信号のデコードを行う制御回路20は、第5ビット群のデータに基づき対象アドレスを認識する。第5動作モードにおいて、単位信号U1の第5~第7ビットは夫々ビットWA10~WA8に相当し且つ単位信号U2の第1~第8ビットは夫々ビットWA7~WA0に相当し、ビットWA10~WA0の値を11桁の2進数と捉えて得られる値が対象アドレスに相当する。例えば、第5動作モードにおいて、ビットWA10~WA0の値が全て0であるとき対象アドレスはメモリ空間MSの最下位アドレス“0x000”であり、ビットWA10~WA0の値が全て1であるとき対象アドレスはメモリ空間MSの最上位アドレス“0x7ff”である。
【0072】
ライト命令に注目して命令信号における対象アドレスの指定方法を説明したが、リード命令における対象アドレスの指定方法も、ライト命令と同様である。
【0073】
<<第2実施例>>
第2実施例を説明する。メモリ1に対して上述の記憶容量指定命令を出力(送信)する装置は、MPU2以外でも良い。例えば、基板SUBとは異なる基板であって、ソケットが実装された書き込み用基板(不図示)を用意し、書き込み用基板のソケットに対してメモリ1を装着する。この装着が成された状態で、書き込み用基板に実装された又は接続された演算処理装置(不図示)がソケットを通じて記憶容量指定命令をメモリ1に供給する。これにより、制御回路20は、設定レジスタ30内の記憶領域31に記憶容量指定命令にて指定された値を書き込むようにしても良い。この後、メモリ1が基板SUBに実装され、以後は、記憶領域31に保持された設定データ(X,Y,Z)に応じた動作モードにてメモリ1が動作する。
【0074】
<<第3実施例>>
第3実施例を説明する。メモリ1がEEPROMとして形成されることを上述したが、メモリ1は任意の種類の不揮発性メモリであって良い。例えば、メモリ1はフラッシュメモリであっても良い。
【0075】
<<第4実施例>>
第4実施例を説明する。
【0076】
MPU2は、メモリ1に対して命令信号を出力する命令信号出力回路の例である。メモリ1を利用する装置をメモリ利用装置と称する。メモリ利用装置は、メモリ1及びMPUが実装された基板SUBを有する任意の装置であり、メモリ1に必要なデータを記憶させる又はメモリ1の記憶データを読み出す。
【0077】
図11に示す如く、メモリ利用装置310を自動車等の車両300に搭載しても良い。車両300は、メモリ利用装置310に加えて、車両300を走行させるための動力を発生させるエンジン(不図示)、及び、二次電池から成るバッテリ(不図示)などを備える。エンジンは内燃機関又はモータを含む。上記バッテリの出力電圧に基づきメモリ利用装置310が駆動する。メモリ利用装置310は、車両300に搭載されたECU(Electronic Control Unit)であっても良い。メモリ利用装置310は、例えば、車両300の走行を制御する装置であっても良いし、車両300の任意の電装部品(オーディオ装置、空調機など)を制御する装置であっても良い。車両300の電装部品にメモリ利用装置310が組み込まれると解しても良い。
【0078】
但し、メモリ利用装置の適用先は任意である。例えば、メモリ利用装置は、スマートフォン、タブレット端末及びパーソナルコンピュータなどを含む情報端末装置であっても良いし、ゲーム機器又は家電機器などでも良い。
【0079】
上述の実施形態では、説明の具体化のため、“n=5”であって、且つ、第1~第5候補容量として1、2、4、8、16キロビットを挙げた。但し、既に述べたようにnは2以上の任意の整数であって良い。従って例えば、“n=7”であって、第1~第7候補容量を、夫々、1、2、4、8、16、32、64キロビットに設定しても良い。更に、ここで挙げた各候補容量は例示に過ぎず、第1~第n候補容量は、上記の記憶容量CREF以下であって、且つ、互いに異なる記憶容量であれば任意である。
【0080】
メモリ1及びMPU2間のシリアル通信のインターフェースとしてICを用いるときの構成及び動作を上述したが、当該インターフェースはICに限定されない。例えば、メモリ1及びMPU2間のシリアル通信のインターフェースとして、SPI(Serial Peripheral Interface)、又は、Microwireによるインターフェースを用いても良い。
【0081】
本開示の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本開示の実施形態の例であって、本開示ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。
【0082】
<<付記>>
上述の実施形態にて具体的構成例が示された本開示について付記を設ける。
【0083】
本開示の一側面に係る不揮発性メモリは、所定記憶容量(CREF)を有するメモリ領域(10)と、設定データを保持するよう構成された設定データ保持回路(30)と、保持された前記設定データ(X,Y,Z)に基づき、当該不揮発性メモリを複数の候補容量の何れかの記憶容量を有するメモリとして動作させるよう構成された制御回路(20)と、を備え、前記複数の候補容量は、前記所定記憶容量以下であって且つ互いに異なる構成(第1の構成)である。
【0084】
これにより、不揮発性メモリを必要とするユーザは、第1の構成に係る不揮発性メモリを入手するだけで、様々な容量の不揮発性メモリを必要とする複数種類の装置を形成(製造)することができ、利便性が高い。例えば、不揮発性メモリを含むセット装置を製造する製造メーカは、不揮発性メモリに対する納期管理及び在庫管理として、第1の構成に係る不揮発性メモリの納期管理及び在庫管理だけを行えば良く、結果、それらの管理負担が軽減される。また、納期管理及び在庫管理が必要な部品の種類が少なくなる分、セット装置の生産(量産)の安定化が図られる。
【0085】
上記第1の構成に係る不揮発性メモリにおいて、命令信号の入力を受けるよう構成された端子(SDA)を更に備え、前記制御回路は、保持された前記設定データに基づき前記複数の候補容量の何れかを対象容量として選択し、前記命令信号に応答して前記対象容量を有するメモリ空間(MS)に対してアクセスする構成(第2の構成)であっても良い。
【0086】
これにより、上記参考方法に関連して述べたような不具合が生じることは無い。命令信号を出力する回路は、第2の構成に係る不揮発性メモリを、対象容量を有する不揮発性メモリとして扱えば足る。
【0087】
上記第2の構成に係る不揮発性メモリにおいて、前記制御回路は、保持された前記設定データに基づき、互いに異なる複数のプロトコルの何れかにて前記命令信号のデコードを行う構成(第3の構成)であっても良い。
【0088】
これにより、メモリ空間のサイズに応じた正しいデコードを行うことができ、参考方法に関連して述べたような不具合が生じることは無い。
【0089】
上記第2又は第3の構成に係る不揮発性メモリにおいて、前記命令信号は、前記メモリ空間内の対象アドレスに対してアクセスすることを指令する複数ビットの信号であり、前記制御回路は、前記命令信号に含まれる、前記対象容量に応じたビット群のデータに基づき、前記対象アドレスを認識する構成(第4の構成)であっても良い。
【0090】
実際にアクセスの対象となるメモリ空間のサイズ(対象容量)に応じて対象アドレスの認識方法を異ならせることにより、正しいデコードを行うことができる。
【0091】
上記第4の構成に係る不揮発性メモリにおいて、前記制御回路は、保持された前記設定データに基づき、前記複数の候補容量に対応する複数の動作モードの何れかにて動作し、前記制御回路は、各動作モードにおいて前記命令信号中の対象ビット群のデータに基づき前記対象アドレスを認識し、前記対象ビット群のビット長は前記複数の動作モード間で互いに異なる構成(第5の構成)であっても良い。
【0092】
実際にアクセスの対象となるメモリ空間のサイズに応じて対象アドレスの認識方法(対象アドレスを表す対象ビット群のビット長)を異ならせることにより、正しいデコードを行うことができる。
【0093】
上記第2~第5の構成の何れかに係る不揮発性メモリにおいて、前記端子に対し特定の命令信号が入力されたとき、前記制御回路は、前記特定の命令信号に応じたデータを前記設定データとして前記設定データ保持回路に保持させる構成(第6の構成)であっても良い。
【0094】
これにより、当該不揮発性メモリを何れの記憶容量を持つメモリとして動作させるのかを任意に指定できる。
【0095】
上記第1~第6の構成の何れかに係る不揮発性メモリは、EEPROM又はフラッシュメモリである構成(第7の構成)であっても良い。
【0096】
本開示の一側面に係るメモリ利用装置は、上記第2~第6の構成の何れかに係る不揮発性メモリと、前記不揮発性メモリに対して前記命令信号を出力するよう構成された命令信号出力回路と、を備えた構成(第8の構成)である。
【0097】
本開示の一側面に係る車両は、上記第8の構成に係る不揮発性メモリを搭載した構成(第8の構成)である。
【符号の説明】
【0098】
1 不揮発性メモリ
2 MPU
10 メモリ領域
20 制御回路
30 設定レジスタ
31 記憶領域
A0、A1、A2 設定端子
GND グランド端子
VCC 電源端子
WP ライトプロテクト端子
SCL、SCL2 クロック端子
SDA、SDA2 データ端子
SUB 基板
SCL クロックバス
SDA データバス
MS メモリ空間
300 車両
310 メモリ利用装置
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12