(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023106520
(43)【公開日】2023-08-01
(54)【発明の名称】モバイルデバイスを用いて認知機能低下を検出するためのシステムおよび方法
(51)【国際特許分類】
G16H 50/20 20180101AFI20230725BHJP
【FI】
G16H50/20
【審査請求】有
【請求項の数】10
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2023083790
(22)【出願日】2023-05-22
(62)【分割の表示】P 2022501048の分割
【原出願日】2020-07-09
(31)【優先権主張番号】20190100293
(32)【優先日】2019-07-10
(33)【優先権主張国・地域又は機関】GR
(31)【優先権主張番号】62/875,623
(32)【優先日】2019-07-18
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.iPhone
2.iPad
3.Apple Watch
4.iPad pro
5.Beddit
(71)【出願人】
【識別番号】594197872
【氏名又は名称】イーライ リリー アンド カンパニー
(74)【代理人】
【識別番号】100092783
【弁理士】
【氏名又は名称】小林 浩
(74)【代理人】
【識別番号】100095360
【弁理士】
【氏名又は名称】片山 英二
(74)【代理人】
【識別番号】100120134
【弁理士】
【氏名又は名称】大森 規雄
(74)【代理人】
【識別番号】100147762
【弁理士】
【氏名又は名称】藤 拓也
(72)【発明者】
【氏名】チェン,リチャード,ジア チュアン
(72)【発明者】
【氏名】フォッシーニ,ルカ
(72)【発明者】
【氏名】ジャンコヴィック,フィリップ,アレクサンダー
(72)【発明者】
【氏名】ジュング,ヒュン,ジューン
(72)【発明者】
【氏名】コーティス,ランプロス
(72)【発明者】
【氏名】マリコビッチ,ヴェラ
(72)【発明者】
【氏名】マリンセック,ニコル,リー
(72)【発明者】
【氏名】ピュー,メリッサ,アンナ マリア
(72)【発明者】
【氏名】シェン,ジー
(72)【発明者】
【氏名】シニョリーニ,アレッシオ
(72)【発明者】
【氏名】ソン,ハン,ヒー
(72)【発明者】
【氏名】サンガ,マーク,オーランド
(72)【発明者】
【氏名】トリスター,アンドリュー,ダニエル
(72)【発明者】
【氏名】ツェン,ベル
(72)【発明者】
【氏名】ヤーリ,ロイ
(57)【要約】 (修正有)
【課題】少なくとも1つのモバイルデバイスから受動的に取得されたデータを使用して、被験者の認知機能低下を検出するためのシステムおよび方法を提供する。
【解決手段】コンピュータ実装方法は、少なくとも1つのモバイルデバイスから受動的に取得されたデータを受信することと、受動的に取得されたデータからデジタルバイオマーカーデータを生成することと、デジタルバイオマーカーデータを分析して、被験者が認知機能低下の兆候を示しているかどうかを判定することと、を含む。
【選択図】
図6
【特許請求の範囲】
【請求項1】
被験者の認知機能低下を検出するためのコンピュータ実装方法であって、
複数日の観察期間にわたって前記被験者の少なくとも1つのモバイルデバイスによって記
録された、受動的に取得されたデータを受信することであって、前記受動的に取得された
データが、(i)前記モバイルデバイスによって受信された着信メッセージの数および(
ii)前記モバイルデバイスによって送信された発信メッセージの数のうちの少なくとも
1つに関するデータを含む、受信することと、
前記受動的に取得されたデータを処理して、デジタルバイオマーカーデータを生成するこ
とと、
前記デジタルバイオマーカーデータを分析して、前記被験者が認知機能低下を経験してい
るかどうかを判定することと、
前記分析の前記結果に関して、前記被験者および別のユーザのうちの少なくとも1人に対
してユーザ通知を生成することと、を含む、方法。
【請求項2】
各メッセージが、SMSテキストメッセージ、電子メール、チャットメッセージ、音声
通話、およびビデオ電話会議通話、のうちの少なくとも1つである、請求項1に記載のコ
ンピュータ実装方法。
【請求項3】
前記受動的に取得されたデータを処理することが、前記観察期間の各日にわたって受信
されたすべての着信メッセージを合計して、着信メッセージの総数を生成することを含み
、前記デジタルバイオマーカーデータが、前記着信メッセージの総数を含む、請求項1ま
たは2に記載のコンピュータ実装方法。
【請求項4】
前記受動的に取得されたデータを処理することが、前記観察期間中の各日にわたって前
記モバイルデバイスによって送信された前記発信メッセージの数の変動性の統計的測度を
計算することを含み、前記デジタルバイオマーカーデータが、前記発信メッセージの数の
変動性の前記計算された統計的測度を含む、請求項1~3のいずれか一項に記載のコンピ
ュータ実装方法。
【請求項5】
前記計算された統計的測度が、四分位範囲である、請求項4に記載のコンピュータ実装
方法。
【請求項6】
前記受動的に取得されたデータを処理することが、前記観察期間中に1日当たりに受信
された着信メッセージの中央値を計算することを含み、前記デジタルバイオマーカーデー
タが、前記着信メッセージの計算された中央値を含む、請求項1~5のいずれか一項に記
載のコンピュータ実装方法。
【請求項7】
被験者の認知機能低下を検出するためのコンピュータ実装方法であって、
複数日の観察期間にわたって前記被験者の少なくとも1つのモバイルデバイスによって記
録された、受動的に取得されたデータを受信することであって、前記受動的に取得された
データが、(i)前記観察期間中の各日の最初に観察された被験者の動きの時刻(ToD
)、(ii)前記観察期間中の各日の最初に観察された被験者のペースのToD、(ii
i)前記観察期間中の各日の最後に観察された被験者の動きのToD、および(iv)前
記観察期間中の各日の最後に観察された被験者のペースのToD、のうちの少なくとも1
つを含む、受信することと、
前記受動的に取得されたデータを処理して、デジタルバイオマーカーデータを生成するこ
とと、
前記デジタルバイオマーカーデータを分析して、前記被験者が認知機能低下を経験してい
るかどうかを判定することと、
前記判定の前記結果に関して、被験者および別のユーザのうちの少なくとも1人に対して
ユーザ通知を生成することと、を含む、方法。
【請求項8】
前記受動的に取得されたデータを処理することが、前記観察期間中に最初に観察された
被験者のペースの中央値ToDを計算することを含み、前記デジタルバイオマーカーデー
タが、最初に観察された被験者のペースの前記計算された中央値ToDを含む、請求項7
に記載のコンピュータ実装方法。
【請求項9】
前記受動的に取得されたデータを処理することが、前記観察期間中に最後に観察された
被験者の動きの前記ToDの統計的変動性の測度を計算することを含み、前記デジタルバ
イオマーカーデータが、最後に観察された被験者の動きの前記ToDの統計的変動性の前
記計算された測度を含む、請求項7または8に記載のコンピュータ実装方法。
【請求項10】
前記統計的変動性の測度が、四分位範囲である、請求項9に記載のコンピュータ実装方
法。
【請求項11】
前記受動的に取得されたデータを処理することが、前記観察期間中に最初に観察された
被験者の動きの前記ToDの統計的変動性の測度を計算することを含み、前記デジタルバ
イオマーカーデータが、最初に観察された被験者の動きの前記ToDの統計的変動性の前
記計算された測度を含む、請求項7~10のいずれか一項に記載のコンピュータ実装方法
。
【請求項12】
前記統計的変動性の測度が、四分位範囲である、請求項11に記載のコンピュータ実装
方法。
【請求項13】
前記受動的に取得されたデータを処理することが、前記観察期間中に最後に観察された
被験者の動きの中央値ToDを計算することを含み、前記デジタルバイオマーカーデータ
が、最後に観察された被験者の動きの前記計算された中央値ToDを含む、請求項7~1
1のいずれか一項に記載のコンピュータ実装方法。
【請求項14】
被験者の認知機能低下を検出するためのコンピュータ実装方法であって、
複数日の観察期間にわたって前記被験者の少なくとも1つのモバイルデバイスによって記
録された、受動的に取得されたデータを受信することであって、前記受動的に取得された
データが、前記被験者の観察された歩幅に関するデータを含む、受信することと、
前記受動的に取得されたデータを処理して、デジタルバイオマーカーデータを生成するこ
とと、
前記デジタルバイオマーカーデータを分析して、前記被験者が認知機能低下を経験してい
るかどうかを判定することと、
前記分析の前記結果に関して、前記被験者および別のユーザのうちの少なくとも1人に対
してユーザ通知を生成することと、を含む、方法。
【請求項15】
前記受動的に取得されたデータを処理することが、前記観察期間中に前記被験者の前記
観察された歩幅の統計的スキューを計算することを含み、前記デジタルバイオマーカーデ
ータが、前記計算された統計的スキューを含む、請求項14に記載のコンピュータ実装方
法。
【請求項16】
被験者の認知機能低下を検出するためのコンピュータ実装方法であって、
複数日の観察期間にわたって前記被験者の少なくとも1つのモバイルデバイスによって記
録された、受動的に取得されたデータを受信することであって、前記受動的に取得された
データが、前記観察期間中の運動動作の数に関するデータを含む、受信することと、
前記受動的に取得されたデータを分析して、前記被験者が認知機能低下を経験しているか
どうかを判定することと、
前記分析の前記結果に関して、前記被験者および別のユーザのうちの少なくとも1人に対
してユーザ通知を生成することと、を含む、方法。
【請求項17】
被験者の認知機能低下を検出するためのコンピュータ実装方法であって、
複数日の観察期間にわたって前記被験者の少なくとも1つのモバイルデバイスによって記
録された、受動的に取得されたデータを受信することであって、前記受動的に取得された
データが、前記被験者が前記少なくとも1つのモバイルデバイス上の時間を判断するため
にモバイル時計アプリケーションを閲覧した回数に関するデータを含み、前記被験者が前
記モバイル時計アプリケーションを閲覧した各時間が、閲覧持続時間に関連付けられる、
受信することと、
前記受動的に取得されたデータを処理して、デジタルバイオマーカーデータを生成するこ
とと、
前記受動的に取得されたデータを分析して、前記被験者が認知機能低下を経験しているか
どうかを判定することと、
前記分析の前記結果に関して、前記被験者および別のユーザのうちの少なくとも1人に対
してユーザ通知を生成することと、を含む、方法。
【請求項18】
前記受動的に取得されたデータを処理することが、前記観察期間中に前記被験者が前記
モバイル時計アプリケーションを閲覧した各時間に関連付けられた前記閲覧持続時間の目
標パーセンテージ以上である閲覧持続時間を計算することを含み、前記デジタルバイオマ
ーカーデータが、前記計算された閲覧持続時間を含む、請求項17に記載のコンピュータ
実装方法。
【請求項19】
前記目標パーセンテージが、90%~100%である、請求項18に記載のコンピュー
タ実装方法。
【請求項20】
前記目標パーセンテージが、93%~97%である、請求項18または19に記載のコ
ンピュータ実装方法。
【請求項21】
前記目標パーセンテージが、95%である、請求項18~20のいずれか一項に記載の
コンピュータ実装方法。
【請求項22】
前記受動的に取得されたデータを処理することが、前記観察期間中に前記被験者が前記
モバイル時計アプリケーションを閲覧した各時間に関連付けられた前記閲覧持続時間の統
計的変動性の測度を計算することを含み、前記デジタルバイオマーカーデータが、前記閲
覧持続時間の統計的変動性の前記計算された測度を含む、請求項17~21のいずれか一
項に記載のコンピュータ実装方法。
【請求項23】
前記統計的変動性の測度が、四分位範囲である、請求項22に記載のコンピュータ実装
方法。
【請求項24】
前記受動的に取得されたデータを処理することが、前記観察期間中に前記被験者が前記
モバイル時計アプリケーションを閲覧したすべての前記時間に関連付けられたすべての閲
覧持続時間を合計して、総閲覧持続時間を生成することを含み、前記デジタルバイオマー
カーデータが、前記総閲覧持続時間を含む、請求項17~23のいずれか一項に記載のコ
ンピュータ実装方法。
【請求項25】
前記受動的に取得されたデータを処理することが、前記観察期間中の各それぞれの日に
ついて、前記それぞれの日の間に前記被験者が前記モバイル時計アプリケーションを閲覧
したすべての前記時間に関連付けられたすべての閲覧持続時間の前記合計に等しい日々の
総閲覧持続時間を計算し、前記計算された日々の総閲覧持続時間の統計的変動性の測度を
計算することを含み、前記デジタルバイオマーカーデータが、前記計算された日々の総閲
覧持続時間の統計的変動性の前記計算された測度を含む、請求項17~24のいずれか一
項に記載のコンピュータ実装方法。
【請求項26】
前記統計的変動性の測度が、四分位範囲である、請求項25に記載のコンピュータ実装
方法。
【請求項27】
被験者の認知機能低下を検出するためのコンピュータ実装方法であって、
複数日の観察期間にわたって前記被験者の少なくとも1つのモバイルデバイスによって記
録された、受動的に取得されたデータを受信することであって、前記受動的に取得された
データが、通信デバイスによって送信される発信メッセージを構成しながら前記ユーザが
タイプする方法を特徴付けるデータを含む、受信することと、
前記受動的に取得されたデータを処理して、デジタルバイオマーカーデータを生成するこ
とと、
前記デジタルバイオマーカーデータを分析して、前記被験者が認知機能低下を経験してい
るかどうかを判定することと、
前記分析の前記結果に関して、前記被験者および別のユーザのうちの少なくとも1人に対
してユーザ通知を生成することと、を含む、方法。
【請求項28】
前記受動的に取得されたデータを処理することが、休止を除くタイピング速度を計算す
ることを含み、前記デジタルバイオマーカーデータが、前記計算されたタイピング速度を
含む、請求項27に記載のコンピュータ実装方法。
【請求項29】
前記受動的に取得されたデータを処理することが、文当たりの平均単語数を計算するこ
とを含み、前記デジタルバイオマーカーデータが、前記計算された平均単語数を含む、請
求項27または28に記載のコンピュータ実装方法。
【請求項30】
被験者の認知機能低下を検出するためのコンピュータ実装方法であって、
複数日の観察期間にわたって前記被験者の少なくとも1つのモバイルデバイスによって記
録された1つ以上のユーザ活動の受動的に取得された時系列データを受信することと、
周波数分析を使用して、前記受動的に取得された時系列データを処理して、前記時系列デ
ータを周波数パワースペクトルに変換することと、
第1の周波数閾値と第2の周波数閾値との間の前記周波数パワースペクトル内のスペクト
ルエネルギー量を計算することと、
前記計算されたスペクトルエネルギー量に基づいてデジタルバイオマーカーデータを生成
することと、
前記デジタルバイオマーカーデータを分析して、前記被験者が認知機能低下を経験してい
るかどうかを判定することと、
前記分析の前記結果に関して、前記被験者および別のユーザのうちの少なくとも1人に対
してユーザ通知を生成することと、を含む、方法。
【請求項31】
前記第1の周波数閾値が、1/(24時間)未満であり、前記第2の周波数閾値が、1
/(24時間)よりも大きい、請求項30に記載のコンピュータ実装方法。
【請求項32】
前記第1の周波数が、1/(25時間)以上であり、前記第2の周波数閾値が、1/(
23時間)以下である、請求項30または31に記載のコンピュータ実装方法。
【請求項33】
前記第1の周波数が、1/(24時間30分)以上であり、前記第2の周波数閾値が、
1/(23時間30分)以下である、請求項30~32のいずれか一項に記載のコンピュ
ータ実装方法。
【請求項34】
前記デジタルバイオマーカーデータが、(i)前記第1の周波数閾値と前記第2の周波
数閾値との間の前記周波数パワースペクトル内のスペクトルエネルギーの前記計算された
量、および(ii)前記周波数パワースペクトル内の他のすべての周波数における前記ス
ペクトルエネルギー量の比率を含む、請求項30~33のいずれか一項に記載のコンピュ
ータ実装方法。
【請求項35】
前記1つ以上のユーザ活動が、電話通話、発信メッセージ、着信メッセージ、モバイル
デバイスのロック解除、モバイルアプリケーションとの相互作用、心拍数、立ち動作、ス
テップ、移動、モバイルデバイスのロック解除されている間の移動、およびモバイルデバ
イスがロックされている間の移動のうちの少なくとも1つを含む、請求項30~34のい
ずれか一項に記載のコンピュータ実装方法。
【請求項36】
前記被験者の前記少なくとも1つのモバイルデバイスが、スマートウォッチおよびスマ
ートフォンのうちの少なくとも1つを含む、請求項1~35のいずれか一項に記載のコン
ピュータ実装方法。
【請求項37】
前記認知機能低下が、少なくとも部分的にアルツハイマー病によって引き起こされる、
請求項1~36のいずれか一項に記載のコンピュータ実装方法。
【請求項38】
前記被験者が認知機能低下を経験しているかどうかを判定するために、前記デジタルバ
イオマーカーデータの前記分析が、畳み込みニューラルネットワークを使用して実装され
る、請求項1~37のいずれか一項に記載のコンピュータ実装方法。
【請求項39】
前記被験者が認知機能低下を経験しているかどうかを判定するために、前記デジタルバ
イオマーカーデータの前記分析が、1つ以上の決定木を使用して実装される、請求項1~
38のいずれか一項に記載のコンピュータ実装方法。
【請求項40】
前記受動的に取得されたデータが、少なくとも第1のカテゴリのデータおよび第2のカ
テゴリのデータを含み、前記第1のカテゴリのデータが、第1のデータ収集頻度で記録さ
れ、前記第2のカテゴリのデータが、前記第1のデータ収集頻度とは異なる第2のデータ
収集頻度で記録される、請求項1~39のいずれか一項に記載のコンピュータ実装方法。
【請求項41】
認知機能低下を検出するための処理デバイスであって、
1つ以上のプロセッサと、
実行されるときに、前記1つ以上のプロセッサに請求項1~40のいずれか一項に記載の
方法を実行させる命令を含むメモリと、を備える、処理デバイス。
【請求項42】
1つ以上のプロセッサによって実行されるときに、前記1つ以上のプロセッサに請求項
1~40のいずれか一項に記載の方法を実行させるように構成されている、コンピュータ
実行可能命令を記憶する、非一時的なコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、1つ以上のモバイルデバイスを用いて認知機能低下を検出するためのシステ
ムおよび方法に関する。より具体的には、本開示は、1つ以上のモバイルデバイスによっ
て収集された、受動的に取得されたセンサ測定値を使用して認知機能低下を検出するため
のシステムおよび方法に関する。
【背景技術】
【0002】
世界中の何百万人もの人々が、認知症またはアルツハイマー病などの認知障害を抱えて
生活している。認知障害を抱えて生活している人々が蔓延しているにもかかわらず、初期
の症状は微妙であり、通常の加齢に起因することが多いため、認知機能低下の早期診断は
臨床上の課題である。そのため、認知機能低下を可能な限り早く検出するための改善され
たシステムおよび方法が必要である。
【発明の概要】
【0003】
本開示の実施形態は、1つ以上のモバイルデバイスから受動的に収集されたセンサ測定
値を使用して認知機能低下を検出することに関する。例示的な実施形態は、以下の実施例
を含むが、これらに限定されない。
【0004】
一態様によれば、本開示は、被験者の認知機能低下を検出するための、コンピュータが
実行する方法(a computer-implemented method、以下、「コンピュータ実装方法」とも
いう)を対象とし、この方法は、複数日の観察期間にわたって被験者の少なくとも1つの
モバイルデバイスによって記録された、受動的に取得されたデータを受信することであっ
て、受動的に取得されたデータは、(i)モバイルデバイスによって受信された着信メッ
セージの数および(ii)モバイルデバイスによって送信された発信メッセージの数のう
ちの少なくとも1つに関するデータを含む、受信することと、受動的に取得されたデータ
を処理して、デジタルバイオマーカーデータを生成することと、デジタルバイオマーカー
データを分析して、被験者が認知機能低下を経験しているかどうかを判定することと、分
析の結果に関して、被験者および別のユーザのうちの少なくとも1人に対してユーザ通知
を生成することと、を含む。
【0005】
別の態様によれば、本開示は、被験者の認知機能低下を検出するためのコンピュータ実
装方法を対象とし、この方法は、複数日の観察期間にわたって被験者の少なくとも1つの
モバイルデバイスによって記録された、受動的に取得されたデータを受信することであっ
て、受動的に取得されたデータが、(i)観察期間中の各日の最初に観察された被験者の
動きの時刻(ToD)、(ii)観察期間中の各日の最初に観察された被験者のペースの
ToD、(iii)観察期間中の各日の最後に観察された被験者の動きのToD、および
(iv)観察期間中の各日の最後に観察された被験者のペースのToD、のうちの少なく
とも1つを含む、受信することと、受動的に取得されたデータを処理して、デジタルバイ
オマーカーデータを生成することと、デジタルバイオマーカーデータを分析して、被験者
が認知機能低下を経験しているかどうかを判定することと、判定の結果に関して、被験者
および別のユーザのうちの少なくとも1人に対してユーザ通知を生成することと、を含む
。
【0006】
別の態様によれば、本開示は、被験者の認知機能低下を検出するためのコンピュータ実
装方法を対象とし、この方法は、複数日の観察期間にわたって被験者の少なくとも1つの
モバイルデバイスによって記録された、受動的に取得されたデータを受信することであっ
て、受動的に取得されたデータが、被験者の観察された歩幅に関するデータを含む、受信
することと、受動的に取得されたデータを処理して、デジタルバイオマーカーデータを生
成することと、デジタルバイオマーカーデータを分析して、被験者が認知機能低下を経験
しているかどうかを判定することと、分析の結果に関して、被験者および別のユーザのう
ちの少なくとも1人に対してユーザ通知を生成することと、を含む。
【0007】
別の態様によれば、本開示は、被験者の認知機能低下を検出するためのコンピュータ実
装方法を対象とし、この方法は、複数日の観察期間にわたって被験者の少なくとも1つの
モバイルデバイスによって記録された、受動的に取得されたデータを受信することであっ
て、受動的に取得されたデータが、観察期間中の運動動作の数に関するデータを含む、受
信することと、受動的に取得されたデータを分析して、被験者が認知機能低下を経験して
いるかどうかを判定することと、分析の結果に関して、被験者および別のユーザのうちの
少なくとも1人に対してユーザ通知を生成することと、を含む。
【0008】
別の態様によれば、本開示は、被験者の認知機能低下を検出するためのコンピュータ実
装方法を対象とし、この方法は、複数日の観察期間にわたって被験者の少なくとも1つの
モバイルデバイスによって記録された、受動的に取得されたデータを受信することであっ
て、受動的に取得されたデータが、被験者が少なくとも1つのモバイルデバイス上の時間
を判断するためにモバイル時計アプリケーションを閲覧した回数に関するデータを含み、
被験者がモバイル時計アプリケーションを閲覧した各時間が、閲覧持続時間に関連付けら
れる、受信することと、受動的に取得されたデータを処理して、デジタルバイオマーカー
データを生成することと、受動的に取得されたデータを分析して、被験者が認知機能低下
を経験しているかどうかを判定することと、分析の結果に関して、被験者および別のユー
ザのうちの少なくとも1人に対してユーザ通知を生成することと、を含む。
【0009】
別の態様によれば、本開示は、被験者の認知機能低下を検出するためのコンピュータ実
装方法を対象とし、この方法は、複数日の観察期間にわたって被験者の少なくとも1つの
モバイルデバイスによって記録された、受動的に取得されたデータを受信することであっ
て、受動的に取得されたデータが、通信デバイスによって送信される発信メッセージを構
成しながらユーザがタイプする方法を特徴付けるデータを含む、受信することと、受動的
に取得されたデータを処理して、デジタルバイオマーカーデータを生成することと、デジ
タルバイオマーカーデータを分析して、被験者が認知機能低下を経験しているかどうかを
判定することと、分析の結果に関して、被験者および別のユーザのうちの少なくとも1人
に対してユーザ通知を生成することと、を含む。
【0010】
さらに別の態様によれば、本開示は、被験者の認知機能低下を検出するためのコンピュ
ータ実装方法を対象とし、この方法は、複数日の観察期間にわたって被験者の少なくとも
1つのモバイルデバイスによって記録された1つ以上のユーザ活動の受動的に取得された
時系列データを受信することと、周波数分析を使用して、受動的に取得された時系列デー
タを処理して、時系列データを周波数パワースペクトルに変換することと、第1の周波数
閾値と第2の周波数閾値との間の周波数パワースペクトル内のスペクトルエネルギー量を
計算することと、計算されたスペクトルエネルギー量に基づいてデジタルバイオマーカー
データを生成することと、デジタルバイオマーカーデータを分析して、被験者が認知機能
低下を経験しているかどうかを判定することと、分析の結果に関して、被験者および別の
ユーザのうちの少なくとも1人に対してユーザ通知を生成することと、を含む。
【図面の簡単な説明】
【0011】
本開示の上述および他の特徴および利点、ならびにそれらを達成する方式は、本発明の
実施形態の以下の説明を添付の図面と併せて参照することによってより明らかになり、ま
たより良好に理解されよう。
【0012】
【
図1】本開示の少なくとも1つの実施形態による、1つ以上のモバイルデバイスを使用して認知機能低下を検出するための例示的なシステムの概略図である。
【
図2】本開示の少なくとも1つの実施形態による、1つ以上のモバイルデバイスから受動的に取得されたデータを使用して認知機能低下を検出するための例示的なコンポーネントのブロック図である。
【
図3】本開示の少なくとも1つの実施形態による、1つ以上のモバイルデバイスから受動的に取得されたデータを使用して認知機能低下を判定するための方法の流れ図である。
【
図4】本開示の少なくとも1つの実施形態による、1つ以上のモバイルデバイスから受動的に取得されたデータを記録、処理、かつ/または表示するためのデータ構造を示す図である。
【
図5】本開示の少なくとも1つの実施形態による、認知機能低下を検出するために使用することができる20個の例示的な重要バイオマーカーを示す図である。
【
図6】本開示の少なくとも1つの実施形態による、1つ以上のモバイルデバイスから受動的に取得されたデータを分析して認知機能低下を判定するための方法の流れ図である。
【
図7】本開示の少なくとも1つの実施形態による、1つ以上のモバイルデバイスから受動的に取得されたデータを分析して認知機能低下を判定するための方法の別の流れ図である。
【
図8】本開示の少なくとも1つの実施形態による、
図7に示す方法の動作を示す例示的な時系列データおよび周波数スペクトルデータを示す図である。
【
図9】本開示の少なくとも1つの実施形態による、1つ以上のモバイルデバイスから受動的に取得されたデータを分析して認知機能低下を判定するための方法の別の流れ図である。
【
図10】本開示の少なくとも1つの実施形態による、1つ以上のモバイルデバイスから受動的に取得されたデータを使用して認知機能低下を検出するためのシステムおよび/または方法を実装するための例示的なコンピュータシステムのブロック図である。
【0013】
複数の図全体を通して、対応する参照符号は、対応する部品を示す。本明細書に記載さ
れる例示は、本発明の例示的な実施形態を例示し、そのような例示は、いかようにも本発
明の範囲を限定するものと解釈されるべきではない。
【発明を実施するための形態】
【0014】
認知障害の一般的なスクリーニングツールは、認知機能低下の初期段階を一貫して検出
しない。より良好な結果を達成するより感度の高いテストには、高度に専門化され訓練さ
れた評価担当者および長いテスト持続時間が必要であるが、評価者のバイアス、文化的バ
イアス、教育的バイアス、および実践効果によっても制限される。また、現在の医療環境
の限られた可用性および/または容量は、広範囲にわたるスクリーニングを達成すること
を困難にしている。
【0015】
これらの制限を緩和するために、コンピュータ化された努力がなされてきた。例えば、
Cambridge Neuropsychological Test Automa
ted Battery(CANTAB)などのコンピュータベースの認知評価テストは
、タッチスクリーンコンピュータを使用して被験者に実施される一連の神経心理学的テス
トで構成されている。ただし、このような神経心理学的テストでは、被験者の認知機能の
様々な領域を評価する一連のタスクで構成されるテストを完了するために、被験者が意図
的に時間および注意を向ける必要がある。その結果、被験者は一般に、認知機能低下の早
期診断を妨げる認知機能低下を病んでいる可能性があると自分がすでに疑っていない限り
、そのようなテストを探すこと、または完了することを行わない。さらに、そのようなテ
ストでは一般に、医療システムに対して直接的と間接的の両方で追加コストを負って、必
要なタスクを完了するために、被験者がかなりの時間および注意を払う必要がある。
【0016】
本明細書に開示される実施形態は、コンピュータ技術に根ざしたこれらの問題に対する
解決策を提供する。具体的には、本明細書に開示される実施形態は、被験者が日常生活中
に携帯かつ/または使用するモバイルデバイスを使用して、被験者が日常の活動を行うと
きに被験者に関する様々なパラメータデータを受動的に収集する。次に、この受動的に収
集されたパラメータデータを分析して、被験者が認知機能低下を経験している可能性があ
るかどうかを判定する。モバイルデバイス(例えば、スマートフォンおよび/またはスマ
ートウォッチ)は遍在しており、1日を通して多くの人が携帯するため、この解決策は、
従来の実施形態に勝る利点を提供する。例えば、被験者が認知機能低下を経験しているこ
とを最初に識別する必要性は、減少かつ/または排除される可能性がある。パラメータデ
ータは、ユーザが通常の活動を行っている間に受動的に収集されるため、ユーザの日常生
活および日課への侵入が減少する。併せて、データパラメータの受動的な収集、およびモ
バイルデバイスの相対的な遍在性は、アルツハイマー病などのより深刻な状態を示す可能
性のある認知機能低下の非常に早期の検出を可能にする。さらに、専門の評価者またはコ
ンピュータ化されたスクリーニングツールを積極的に利用する必要性が減少する。
【0017】
図1は、本開示の少なくとも1つの実施形態による、1つ以上のモバイルデバイス10
2を使用して認知機能低下を検出するための例示的なシステム100の概略図である。こ
の図は単なる例であり、特許請求の範囲の範囲を過度に制限するものではない。当業者は
、多くの変形、代替、および修正を認識するであろう。
【0018】
システム100は、1つ以上のモバイルデバイス102および被験者104を含む。モ
バイルデバイス102は、モバイルデバイス102に組み込まれた1つ以上のセンサを使
用して被験者104に関するデータを受動的に感知するために、被験者104が取り付け
、装着、携帯、かつ/または使用することができる任意のタイプの電子デバイスであり得
る。例示的なモバイルデバイス102には、スマートフォン、スマートウォッチ、スマー
トタブレット、スマートリング、スマートスーツ、歩数計、心拍数モニタ、睡眠センサな
どが含まれるが、これらに限定されない。
【0019】
モバイルデバイス102によって受動的に感知データは、任意の数の様々な生理学的パ
ラメータ、行動パラメータ、および/または環境パラメータ(本明細書では、集合的に「
感知データ」と称される)に対応し得る。以下でより詳細に説明するように、感知データ
および/または他のデータ(
図2を参照)は、認知機能低下を検出するために使用される
。いくつかの実施形態では、モバイルデバイス102は、被験者104による追加のステ
ップまたは入力を必要とせずに、被験者104によるモバイルデバイス102の通常の使
用中に、電気的、機械的、および/または化学的手段を使用して感知データを受動的に収
集する。言い換えれば、被験者104は、モバイルデバイス102との自分の日常的な相
互作用のいかなる態様も変更する必要はない。いくつかの実施形態では、モバイルデバイ
ス102は、要求(例えば、エネルギーを示す調査)に応じて収集データの一部を集める
。単一のモバイルデバイス102または複数のモバイルデバイス102が、収集データを
収集し得る。
【0020】
いくつかの実施形態では、モバイルデバイス102は、感知データを分析し、感知デー
タに基づいて被験者104の認知機能低下を検出するように構成されたコンポーネント(
例えば、
図2に示されるコンポーネント200)を含む。追加的に、または代替的に、モ
バイルデバイス102は、ネットワーク108を介して、感知データをサーバ106に送
信し、サーバ106は、収集データに基づいて被験者104の認知機能低下を検出するよ
うに構成されたコンポーネント(例えば、
図2に示されるコンポーネント200)を含む
。
【0021】
ネットワーク108は、例えば、バスネットワーク、ショートメッセージングサービス
(SMS)、ローカルエリアネットワーク(LAN)、ワイヤレスLAN(WLAN)、
ワイドエリアネットワーク(WAN)、インターネット、P2Pネットワーク、カスタム
設計された通信またはメッセージングプロトコルなど、任意の数の異なるタイプの通信ネ
ットワークであり得るか、またはそれらを含み得る。ネットワーク108は、複数のネッ
トワークの組み合わせを含み得る。
【0022】
図2は、本開示の少なくとも1つの実施形態による、1つ以上のモバイルデバイス10
2を使用して認知機能低下を検出するための例示的なコンポーネント200のブロック図
である。この図は単なる例であり、特許請求の範囲の範囲を過度に制限するものではない
。当業者は、多くの変形、代替、および修正を認識するであろう。コンポーネント200
は、1つ以上のセンサ202、収集コンポーネント204、増強コンポーネント206、
訓練コンポーネント208、分析コンポーネント210、リポジトリアプリケーションプ
ログラミングインターフェース(API)212、および/またはリポジトリ214を含
み得る。
【0023】
上記のように、1つ以上のモバイルデバイス102は、被験者104に関するデータを
受動的に感知するために使用される1つ以上のセンサを含み得る。例えば、センサ202
は、(例えば、加速度計を使用した)患者の身体活動レベルおよび/または活動タイプ、
人体に関係する代謝レベルおよび/または他のパラメータ、例えば、(例えば、フォトプ
レチスモグラムを使用した)心拍数、(例えば、温度計を使用した)体温、(例えば、血
圧計を使用した)血圧、血液特性(例えば、グルコースレベル)、食事、(例えば、グロ
ーバルポジショニングシステム(GPS)を使用した)相対的な地理的位置などを示す1
つ以上の信号などの生理学的パラメータを感知するように構成され得る。別の例として、
センサ202はまた、被験者104を取り囲む外部環境に関する環境パラメータ(例えば
、温度、空気の質、湿度、一酸化炭素レベル、酸素レベル、気圧、光強度、音など)を感
知することが可能であり得る。さらに別の例として、センサ202はまた、被験者のタイ
ピング、モバイルデバイスのうちの1つ以上の上で実行されているモバイルアプリケーシ
ョンの使用、モバイルデバイスによって送受信されるメッセージ(例えば、SMSテキス
ト、電子メール、インスタントチャットメッセージ、電話通話、ビデオ通話など)、Si
riなどの仮想アシスタントの使用などを要約するかまたは特徴付けるデータなど、被験
者に関する行動パラメータを感知かつ/または記録することが可能であり得る。生理学的
パラメータ、環境パラメータ、および行動パラメータは、本明細書では、集合的に感知デ
ータ216と称され得る。
【0024】
いくつかの実施形態では、収集コンポーネント204は、
図3(ブロック302)に示
されるように、センサ202から感知データ216を収集、受信、記憶、補足、かつ/ま
たは処理するように構成される。
図3は、本開示の少なくとも1つの実施形態による、1
つ以上のモバイルデバイスから受動的に取得されたデータを使用して認知機能低下を判定
するための方法300の流れ図である。この図は単なる例であり、特許請求の範囲の範囲
を過度に制限するものではない。当業者は、多くの変形、代替、および修正を認識するで
あろう。いくつかの実施形態では、収集コンポーネント204は、センサ202から感知
データ216を受信し、かつ/またはセンサを使用して感知データ216を収集する(ブ
ロック302)。
【0025】
図示されるように(ブロック302)、収集コンポーネント204は、追加的または代
替的に、任意の補足データ(本明細書では、集合的に収集データ218と称される、
図2
を参照)とともに感知データ216を記憶し得る。収集データ218は、(
図2の)リポ
ジトリ214に記憶され得る。感知データ216への補足データの例として、収集コンポ
ーネント204は、感知データ216のメタデータを収集し得る。より具体的な例として
、収集コンポーネント204は、感知データ216にタイムスタンプを付けて、感知デー
タ216の開始、感知データ216の持続時間、感知データ216の発生、および/また
は感知データ216の終了を判定し得る。追加的に、または代替的に、収集コンポーネン
ト204は、精神運動コンポーネントデータ(例えば、タッピング速度、タッピング規則
性、タイピング速度、文の複雑さ、ドラッグパス効率、読み取り速度など)、および/ま
たは精神運動コンポーネントに関するメタデータ、および/またはモバイルデバイス10
2との被験者104の他の相互作用(例えば、ワードプロセッシング、検索など)を収集
し得る。上記のように、感知データ216、精神運動コンポーネントデータ、および/ま
たはメタデータは、収集コンポーネント204によって、収集データ218としてリポジ
トリ214に記憶され得る。以下でより詳細に説明するように、収集データ218は、認
知機能低下に関連する1つ以上のデジタルバイオマーカーを生成し、デジタルバイオマー
カーを分析して被験者104(
図1)の認知機能低下を検出するために使用される。
【0026】
いくつかの実施形態では、収集コンポーネント204は、センサ202がいつ、および
/またはどのくらいの頻度で感知データ216を感知するかを判定し得、センサ202か
ら感知データ216を受信し、かつ/または感知データ216を補足して、収集データ2
18を生成する。いくつかの実施形態では、収集コンポーネント204は、被験者104
からの指示なしにこれらのタスクを実行する。一例として、収集コンポーネント204は
、異なるタイプの感知データ216を、1日ごとに(例えば、調査)、1時間ごとに、1
分ごとに(例えば、総身体活動)、1秒ごとに、10分の1秒ごとに、100分の1秒ご
とに(例えば、生の加速度計チャネル)などに1回サンプリングするようにセンサ202
に指示する。別の例として、収集コンポーネント204は、第1のタイプの感知データ2
16(例えば、睡眠品質データ)を一定の頻度でサンプリングし、第2のタイプの感知デ
ータ216を、この感知データのコンテキストに適合した頻度でサンプリングするように
センサ202に指示する。特定の例として、収集コンポーネント204は、ステップおよ
び/または心拍数の頻度に基づいて、ステップおよび/または心拍数を示すバイオマーカ
ーに関連する感知データ216のサンプリング頻度を適合させるようにセンサ202に指
示し得る。すなわち、ステップおよび/または心拍数が増加するにつれて、収集コンポー
ネント204は、ステップおよび/または心拍数に関連する感知データ216をより高い
頻度でサンプリングするようにセンサ202に指示し得、逆もまた同様である。
【0027】
図3を参照すると、収集コンポーネント204は、何らかのセンサデータ216が欠落
しているかどうかを照会し得る(ブロック304)。例えば、被験者104がモバイルデ
バイス102を特定の期間使用または着用していないためにデータ収集がない期間につい
て、収集コンポーネント204は、欠落しているデータを埋め得る(ブロック306)。
例えば、イベントがトリガされたとき(例えば、アプリが開かれたとき、またはメッセー
ジが受信されたとき)、収集コンポーネント204は、値なしの分を、その分においてト
リガリングイベントがないことを表したゼロで埋め得る。別の例として、収集コンポーネ
ント204は、心拍数の短い持続時間のギャップ(例えば、1分、5分、10分、15分
など)を線形補間し得る。さらに別の例として、収集コンポーネント204は、残りのす
べての欠落データを、代入されないものとして保持し得る。欠落データ(例えば、行動の
ギャップ)は、人が認知機能低下を経験しているために引き起こされる可能性がある。こ
のように、データのギャップは、人が認知機能低下を経験しているかどうかを知らせるた
めに使用され得る。いくつかの実施形態では、収集コンポーネント204は、収集データ
218を、平均値、カウント、間隔、インパルス、および調査という、5つの異なるチャ
ネルタイプにグループ化し、1)すべての分と、2)様々なイベントの時刻と、3)各日
の集計と、4)活動の継続的な「島」の持続時間と、の集合からなる、4つの一般的なタ
イプの特徴を計算する。
【0028】
追加的に、または代替的に、収集コンポーネント204は、感知データ216および/
または収集データ218のさらなる処理(ブロック302)を実行し得る。例えば、収集
コンポーネント204は、収集データ218をビヘイビアグラム400にマッピングし得
、その例が
図4に示されている。ビヘイビアグラム400は、収集データ218の記録、
処理、および/または表示を容易にするデータ構造を含み得る。このデータ構造は、1分
の分解能、1秒の分解能、1秒未満の分解能、または他の時間分解能の値を有する、時間
調整された処理済みデータチャネルを含む場合がある。収集データ218をビヘイビアグ
ラム400表現にマッピングするために、収集コンポーネント204は、チャネル間の時
間調整の実行、異なる時間スケールでのソースのリサンプリング、チャネル認識集約、お
よび欠落値の処理を含み得る。特定の例として、収集コンポーネント204は、タイムゾ
ーンを認識する方法で入力ソースのタイムスタンプを整列させ、イベントベースのソース
からそれらが発生する秒に値を再割り当てし得る。収集コンポーネント204は、値を合
計(ステップ、階段、不在着信、およびメッセージの場合)あるいは平均化(ペース、歩
幅、心拍数、および調査応答の場合)して、分レベルの分解能サンプリングを生成し得る
。収集コンポーネント204は、(例えば、ワークアウトセッション、呼吸セッション、
立ち時間、運動、電話通話、電話のロック解除、およびアプリの使用の)間隔を表す入力
ソースを、その間隔がカバーする分の分数を符号化することによって分に変換し得る。1
分未満(または1秒未満)の精度を必要とする収集データ218(例えば、微細運動機能
)の場合、収集コンポーネント204は、統計値を分レベルの分解能に集約する前に、よ
り高い時間分解能で統計値を計算し得る。例えば、収集コンポーネント204は、重力の
影響を低減するためにローパスフィルタまたはセンサフュージョン技術を適用した後、1
00分の1秒ごとに取られたX、Y、およびZ加速度のL2(ユークリッド)ノルムを平
均化することによって、100Hzにおける加速度計測定値を分レベル値に集約し得る。
【0029】
ビヘイビアグラム400は、異なるチャネル間の関連付けのパターンを分析することに
よって、被験者104の認知機能低下の検出を容易にし得る。例えば、ビヘイビアグラム
400は、他のコンテキスト内の1つのチャネルにおける欠落データおよび外れ値を検査
することを可能にする。別の例として、データ表現フォーマットとして、ビヘイビアグラ
ム400は、異なる入力データソース間の相互作用を容易にキャプチャすることを可能に
し、実験室または診療所において実施されるデュアルタスク実験を概念的に複製する手段
を提供し得る。より具体的には、認知機能低下がある被験者104は、被験者104が単
一のタスク(例えば、歩くことのみ)を実行することを試みるときよりも、その人が2つ
のタスク(例えば、歩くことと、会話をすること)を同時に行うことを試みるとき、より
大きい障害を示す場合がある。ビヘイビアグラム400を用いると、電話通話および平均
歩行ペースを表すデータチャネルをマージすることによって、分レベルの分解能で「話し
ながら歩く」を表すチャネルを追加し、電話での会話中の平均ペースをキャプチャするこ
とが容易になる場合がある。
【0030】
いくつかの実施形態では、収集コンポーネント204は、プログラマ、臨床医、または
他の者が、収集データ218、センサ202、および/または感知データ216と相互作
用するために、(
図2の)フロントエンドユーザインターフェース(UI)コンポーネン
ト220を含む。収集コンポーネント204は、リポジトリAPI212とは別個のコン
ポーネントとして示されているが、収集コンポーネント204は、リポジトリAPI21
2に組み込まれ得る。
【0031】
いくつかの実施形態では、センサ202と収集コンポーネント204の両方は、デバイ
ス102などの1つ以上のモバイルデバイス上に実装され得る。コンポーネント202お
よび204は、そのようなモバイルデバイスに組み込まれるかまたはそれらと通信可能に
結合されたハードウェア、ならびに上記の機能を実装するように構成されたソフトウェア
および/またはファームウェア(例えば、モバイルアプリケーション)の両方を備え得る
。いくつかの実施形態では、収集コンポーネント204は、サーバ106などの1つ以上
のサーバに組み込まれるかもしくはそれらと通信可能に結合されたハードウェア、ソフト
ウェア、および/またはファームウェア上に実装され得る。いくつかの実施形態では、収
集コンポーネント204は、1つ以上のモバイルデバイス(例えば、デバイス102)と
1つ以上のサーバ(例えば、サーバ106)の両方に分散され得、これらは、一緒に動作
して、上記の機能を実装する。
【0032】
方法300は、(
図2の)認知機能低下検出アルゴリズム222が訓練されているかど
うかを照会することをさらに含み得る(ブロック308)。認知機能低下検出アルゴリズ
ム222が訓練されていない場合、方法300は、収集データを分析して被験者104の
認知機能低下を検出することによって続行し得る(ブロック310)。収集データを分析
して認知機能低下を検出するための例示的な実施形態が、
図5~9に提供される。
【0033】
しかしながら、検出アルゴリズム222が訓練されている場合、方法300は、検出ア
ルゴリズム222を訓練するために、収集データ218を増強すべきかどうかを照会し得
る(ブロック312)。収集データ218を増強すべきである場合、方法300は、収集
データを増強することに進み得る(ブロック314)。
【0034】
いくつかの実施形態では、増強コンポーネント206は、収集コンポーネント204か
ら収集データ218を受信して、収集データ218を増強する。検出アルゴリズム222
を訓練するために収集データ218を増強するために、増強コンポーネント206は、収
集データ218の重複しないサブセット上の特徴を使用し得る。重複しないサブセットは
、例えば、被験者104ごとに、合計n(例えば、3~50)個の隔週の2週間期間であ
り得る:被験者104iごとにBWi,1...BWi,n。また、増強コンポーネント
206は、各隔週BWi,jに、被験者104iに割り当てられた同じラベル(例えば、
健康な対照または症候性)を割り当て得る。この場合、収集データ218は、(以下に説
明される)機械学習技術を使用して検出アルゴリズム222を訓練するために使用されて
いるため、被験者104が健康な対照被験者104である(例えば、認知機能低下を経験
していない)かどうか、あるいは被験者104が認知機能低下を経験しているかどうかが
分かり得る(そうである場合、ラベルは、任意選択的に、被験者104がどのタイプの認
知障害を経験しているか、かつ/または被験者104がどの程度の認知障害を経験してい
るかをさらに指定し得る)。したがって、被験者104に関連付けられた各隔週BWi,
jには、被験者104の対応する認知機能低下または対照ラベルが割り当てられ得る。こ
の方法は、時系列分類におけるウィンドウスライシングと称され得る。増強コンポーネン
ト206は、BWi,jを平均化して、被験者104iの最終スコアにし得る。増強コン
ポーネント206は、リポジトリAPI212とは別個のコンポーネントとして示されて
いるが、増強コンポーネント206は、リポジトリAPI212に組み込まれ得る。
【0035】
実施形態では、2週間ウィンドウは、データサイズの実質的なブーストを提供すると同
時に、被験者104の毎日および毎週のパターンを依然として捕捉するので、有益であり
得る。いくつかの実施形態では、2週間ウィンドウは、精神運動タスクにおいて計算され
た特徴が2週間ごとに判定された場合にも有益であり得る。いくつかの実施形態では、よ
り長い時間ウィンドウ(例えば、3週間、4週間、または1ヶ月間の長さのウィンドウ)
も使用され得る。
【0036】
収集データ218が増強されると、この方法は、認知機能低下を検出するように検出ア
ルゴリズム222を訓練することを含み得る(ブロック316)。代替的に、収集データ
218を増強する必要がない場合、方法300は、検出アルゴリズム222を訓練するこ
とに進み得る(ブロック316)。
【0037】
いくつかの実施形態では、(
図2の)訓練コンポーネント208を使用して、検出アル
ゴリズム222を訓練し得る。例えば、検出アルゴリズムは、畳み込みニューラルネット
ワーク(CNN)を使用して実装され得る。収集データ218について、訓練コンポーネ
ント208は、nリピート(例えば、50~500)ホールドアウト手順(ここで、nは
データのサブセットの数)を使用して、各隔週を健康な対照または症候性の被験者104
に属するものとして分類する際のサンプル外の一般化性能を評価し得る。n回の反復の各
々において、訓練コンポーネント208は、診断(症候性対健康な対照)によって層別化
され、かつ被験者104によってグループ化された(モデルが特定の被験者104のパタ
ーンを記憶するのを防止するために、同じ被験者104からの隔週はすべて、同じセット
内になる)70/30シャッフル分割を使用して、データセットを訓練セットおよびテス
トセットに分割し得る。実施形態では、訓練コンポーネント208は、グループ化された
3フォールド交差検証を使用して、訓練セットに対してハイパーパラメータ調整を実行す
る。実施形態では、訓練コンポーネント208は、Hyperoptを使用して、次のパ
ラメータを選択し得る:推定量の数、学習率、最大ツリー深度、およびガンマ。Hype
roptは、James Bergstra、Dan Yamins、およびDavid
D Coxによって、“Hyperopt:A python library fo
r optimizing the hyperparameters of mach
ine learning algorithms”、Proceedings of
the 12th Python in Science Conference、Ci
teseer、13-20に記載されており、この内容は、あらゆる目的のために本明細
書に組み込まれる。m個の組み合わせ(例えば、10~50)までの、パラメータの各組
み合わせについて、訓練コンポーネント208は、検出アルゴリズム222の性能を評価
し得る。実施形態では、訓練コンポーネント208は、外側分割における完全な訓練セッ
ト上で、3つのフォールドにわたって最高の平均ROC曲線下面積(AUROC)をもた
らしたモデルハイパーパラメータを訓練することを選択し得る。実施形態では、訓練コン
ポーネント208は、外側分割におけるホールドアウトテストセットに関する隔週モデル
性能メトリックを計算し得る。次に、被験者レベル104で判定を行うために、訓練コン
ポーネント208は、ソフト投票を介して被験者104の隔週スコアを集約して、テスト
セット内で各被験者104をランク付けし得る。訓練コンポーネント208は、これらの
スコアに関する検出アルゴリズム222の性能メトリックを計算し得る。最後に、訓練コ
ンポーネント208は、この手順をx回の反復だけ繰り返して、平均性能メトリックおよ
びそれらの関連する誤差を推定し得る。
【0038】
検出アルゴリズム222が訓練された後、方法300は、被験者104が認知機能低下
を経験しているかどうかを検出するために、複数日の観察期間にわたって記録された収集
データ218を分析することに進み得る(ブロック310)。そうするために、(サーバ
106の一部として、1つ以上のモバイルデバイス102の一部として、またはこれら2
つのタイプのシステムの組み合わせとして実装され得る)分析コンポーネント210は、
観察期間にわたって記録された収集データ218を処理してデジタルバイオマーカーデー
タを生成するバイオマーカーコンポーネント224を含み得る。本明細書で使用されると
き、デジタルバイオマーカーは、収集データ218の少なくとも一部を入力として受け取
り、健康な被験者と、認知障害または認知機能低下の兆候を示している可能性のある被験
者との間で区別するために検出アルゴリズム(例えば、検出アルゴリズム222)によっ
て使用され得る値を出力する数学的または統計的関数を指し得る。デジタルバイオマーカ
ーは、被験者の認知機能低下を検出するために、独立して、または他のデジタルバイオマ
ーカーと組み合わせて使用され得る。収集データ218から生成され得る例示的なデジタ
ルバイオマーカーデータは、被験者104の身体活動に関連するバイオマーカー、被験者
104の社会的相互作用に関連するバイオマーカー、被験者104のワードプロセッシン
グに関連するバイオマーカー、および/または被験者104のアプリケーション使用に関
連するバイオマーカーを含むが、これらに限定されない。
【0039】
方法300は、異なる実施形態に従って、そのステップのいくつかまたはすべてを追加
、削除、かつ/または修正することによって修正され得る。方法300は、検出アルゴリ
ズム222を訓練することと、検出アルゴリズム222を使用することの両方に好適であ
るとして説明されているが、これら2つのタスクは、いくつかの実施形態では別々の方法
によって実行され得る。例えば、(例えば、大規模な研究によって作成された)訓練セッ
トを使用して検出アルゴリズム222を訓練するための第1の方法および/またはプロセ
スがあり得る。検出アルゴリズム222が訓練されると、第2の方法および/またはプロ
セスを採用して、検出アルゴリズム222を使用して新しいデータセットを処理し、デー
タセットが、1人以上の被験者が認知機能低下を経験していることを示すかどうかの指標
を出力し得る。訓練フェーズと分類フェーズが別々の方法に分割される場合、検出アルゴ
リズムが訓練されているかどうかを照会するためのステップ(例えば、上記のステップ3
08)がない場合がある。
【0040】
いくつかのデジタルバイオマーカーは、他のデジタルバイオマーカーよりも、被験者1
04の認知機能低下を検出する際により重要または有用である可能性がある。このような
バイオマーカーは、本明細書では重要バイオマーカー226と称される。収集データ21
8から生成する重要バイオマーカー226を判定するために、分析コンポーネント210
は、ゲーム理論コンポーネント228を含み得る。いくつかの実施形態では、ゲーム理論
コンポーネント228は、ゲーム理論を局所的な説明と組み合わせて機械学習モデル(す
なわち、検出アルゴリズム222)を説明するSHapley Additive ex
Planations(SHAP)を使用し得る。実施形態では、SHAP値は、年齢が
一致するコホートについて収集データ218上で訓練されたペアワイズ目的関数(および
それ以外の場合はデフォルトパラメータ)を有するXGBRegressorモデルにつ
いて報告される。
【0041】
前述の方法およびシステムを使用して、Eli Lilly and Company
およびApple Inc.のためにEvidation Health,Inc.によ
って行われたマルチサイト12週間試験から捕捉されたデータの分析から、20個の重要
バイオマーカー500のセットが識別された。この研究は、スマートデバイスを使用して
、軽度認知障害(MCI)および初期アルツハイマー病(AD)認知症の個人を健康な対
照と区別することの実現可能性を評価することを目的とした。
【0042】
この12週間試験中に、154人の参加者が同意を提供し、米国中の12個のセンター
から適格性についてスクリーニングされた。主な選択基準は、(1)年齢60~75歳、
(2)英語を読み、書き、かつ話すことが可能であり、(3)iPhoneを所有かつ使
用していることおよび自宅WiFiネットワークを使用していることを含む、デジタルデ
バイスに精通していること、であった。
【0043】
MCIの参加者は、米国国立老化研究所/アルツハイマー協会(NIA-AA)のAD
によるMCIのコア臨床基準を満たさなければならず、軽度AD認知症の参加者は、AD
による認知症のNIA-AAコア臨床基準を満たさなければならなかった。症候性の参加
者については、研究パートナーが、研究手順のコンプライアンスを監視することに同意し
た。
【0044】
登録時に、各参加者には、12週間の調査期間中にすべてのセンサおよびアプリ使用イ
ベントを収集するアプリとともに、(彼らの主要な電話として使用される)iPhone
7 plus、Apple Watch Series 2、スマートキーボードを備
えた10.5インチiPad pro、およびBeddit睡眠監視デバイスが提供され
た。全部で、84人の健康な対照、および35人の症候性の参加者が選択基準を満たした
。参加者は、研究の過程で中枢神経系に影響を与える可能性のある認知症に対する治療法
または他の薬物療法を変更しないように求められたが、これは参加の要件ではなかった。
【0045】
12週間のデータ収集の過程で、参加者は、iPhoneおよびApple Watc
hを通常どおり使用し、充電されたままに保つように指示された。これらのデバイス内の
センサからのデータおよび、電話のロック/ロック解除、通話、メッセージ、アプリ履歴
を含むデバイス使用状況は、研究用モバイルアプリケーションによって受動的に収集され
、研究用サーバに毎晩送信された。着信データの中央レビューにより、デバイスからデー
タが受信されなかった場合のアウトリーチが可能になった。デバイスデータにギャップが
ある参加者には、デバイスの使用および問題のトラブルシューティングを思い起こさせる
ために、電子メールまたは電話を介して連絡した。
【0046】
参加者はまた、毎日2つの1質問の調査(1つは気分に関するもの、もう1つはエネル
ギーに関するもの)に回答し、ならびにデジタル評価アプリ上で2週間ごとに簡単な活動
を実行するように求められた。このアプリは、参加者が1つの形状を別の形状にドラッグ
するドラッグタスク、参加者が円を可能な限り速くタップし、次に可能な限り規則的にタ
ップするタッピングタスク、参加者が簡単なまたは難しい文章を読む読書タスク、および
参加者が絵の説明をタイプするタイプ叙述タスクを含む、いくつかの低負荷の精神運動タ
スクで構成された。これらの活動は、それらが将来受動的に監視される可能性があるため
に選択された。研究手順は、デジタル評価アプリ上でタスクを完了している間、参加者の
ビデオおよびオーディオを記録および送信することを含んだ。
【0047】
図1および2に関連して上記で説明したプラットフォームと同様の研究プラットフォー
ムを使用して、iPhone、Apple Watch、およびBedditデバイスか
ら、ならびに12週間の研究期間にわたってiPad上で行われた活動テストから収集さ
れたデータを集約かつ分析した。プラットフォームによって取り込まれたデータには、タ
イムスタンプが付けられ、整合性がチェックされ、データ分析を容易にするために標準ス
キーマに正規化され、最適化された形式を使用して分散および複製されたデータストアに
保存された。
【0048】
いくつかの入力ソースは、一定の頻度でサンプリングされた(例えば、睡眠品質データ
)が、他の入力ソースは、関連するイベントが発生したとき(例えば、特定のアプリが開
かれたとき)にのみサンプリングされた。いくつかの入力ソースは、コンテキストに適合
した頻度でサンプリングされた(例えば、歩数計および心拍数の測定のサンプリングレー
トは、高活動期間およびワークアウト期間中に増加した)。均等にサンプリングされたデ
ータソースの中で、サンプリング時間は、1日以上(例えば、調査)から1分以上(例え
ば、総身体活動)~1秒未満(例えば、100Hzでサンプリングされた生の加速度計チ
ャネル)の間隔の範囲であった。
【0049】
すべてのイベントストリームおよび時系列の生データソースは、
図4を参照しながら説
明されたビヘイビアグラム400と同様に、共通の表現にマッピングされた。欠落データ
は、前述のように、ゼロで埋めるか、線形補間を使用して埋めるか、欠落した非代入デー
タとして保持することによって処理された。
【0050】
この研究からの生データを使用して、健康な対照とMCIまたはADを示す被験者との
間で区別する際の有効性をテストするためのデジタルバイオマーカーのセットを作成した
。合計で、996個のデジタルバイオマーカーが、生データの処理から生成された。これ
らの生成されたデジタルバイオマーカーを使用して、健康な対照とMCIまたはADを病
んでいる患者との間で区別するように畳み込みニューラルネットワーク(CNN)を訓練
した。この訓練は、少なくとも部分的に、例えば、上記の増強コンポーネント206およ
び/または訓練コンポーネント208に関して説明した前述の技術を使用して実装された
。CNNを訓練するために使用された996個のデジタルバイオマーカーのうち、20個
の最も重要なデジタルバイオマーカーが、
図5にバイオマーカー500として提示されて
いる。これらの20個のデジタルバイオマーカーは、健康な対照とMCIまたはADを示
す被験者との間で区別する際に、CNNに最大の影響を与えることがわかった。被験者1
04の認知機能低下を検出するために使用することができるこれらの上位20個の重要バ
イオマーカー500のSHAP値が
図5に示されている。
【0051】
具体的には、上位20個の重要バイオマーカー500は、休止なしのタイピング速度(
すなわち、休止を除く、タイピングタスクにおける平均タイピング速度)、観察期間中に
モバイルデバイス104によって感知された最初のアクティブペースの時刻の中央値、エ
ネルギー調査回答のない日(すなわち、被験者に毎日送出される調査に対する回答がない
観察期間中の日数の割合)、エネルギー調査回答の時刻の中央値(すなわち、毎日の調査
が完了した時刻の中央値)、着信メッセージの総数(すなわち、観察期間中のすべての日
にわたる着信メッセージの合計)、モバイルデバイス102によって感知された最後の加
速の時刻の四分位範囲(すなわち、観察期間中の最後の時間の間にモバイルデバイス10
2が動かされる時刻の広がり)、観察期間中にモバイルデバイス102によって感知され
た最初のステップの時刻、運動動作の総数(すなわち、観察期間中に運動に費やされた期
間)、モバイルデバイス102(例えば、モバイルウォッチ)によって感知される歩幅の
スキュー(skew)、モバイルデバイス102によって感知された最初の加速の時刻の四分
位範囲(すなわち、観察期間中の最初の時間の間にモバイルデバイス102が動かされる
時刻の広がり)、時計アプリケーションセッション持続時間の95パーセンタイル、時計
アプリケーションセッション持続時間の四分位範囲、スマートアシスタントアプリケーシ
ョン(Siriなど)の提案カウント(すなわち、特定の期間中にスマートアシスタント
アプリケーションがアクセスされた総回数)、日々の発信メッセージのカウントの四分位
範囲(すなわち、観察期間中の1日当たりに送信される発信メッセージの数の四分位範囲
)、心拍数の日々の5パーセンタイルの5パーセンタイル、モバイルデバイス102によ
って感知された最後の加速の時刻の中央値、観察期間中のすべての日にわたって時計アプ
リケーションに費やされた総時間、1日当たりに時計アプリケーションに費やされた日々
の総時間の四分位範囲、日々の着信メッセージのカウントの中央値(すなわち、1日当た
りに受信された着信メッセージの数の中央値)、タイピングタスクにおける文当たりの平
均単語数(すなわち、タイピングタスクにおける文当たりの平均単語数)を含む。
【0052】
図6は、いくつかの実施形態による、受動的に取得されたデータから生成されたデジタ
ルバイオマーカーを使用して被験者の認知機能低下を検出するための例示的なコンピュー
タ実装プロセス600を示す。プロセス600は、例えば、収集コンポーネント204お
よび/または分析コンポーネント210によって、独立してまたは共同で実装され得る。
プロセス600は、ステップ602において開始し、これは、複数日の観察期間にわたっ
て被験者の少なくとも1つのモバイルデバイスによって記録された、受動的に取得された
データ(例えば、感知データ216および/または収集データ218)を受信することを
含む。受動的に取得されたデータは、前述のタイプの生データのいずれかなど、少なくと
も1つのモバイルデバイス上のセンサによって記録された生データを含み得る。
【0053】
ステップ604において、受動的に取得されたデータを処理して、デジタルバイオマー
カーデータを生成する。デジタルバイオマーカーデータは、受動的に取得されたデータの
いずれかから計算または導出された、あるいは受動的に取得されたデータのいずれかを要
約するかまたは特徴付ける、処理またはフォーマットされたデータを含み得る。
【0054】
例えば、重要バイオマーカーの1つの例示的なカテゴリは、(i)モバイルデバイスに
よって受信された着信メッセージの数、および(ii)モバイルデバイスによって送信さ
れた発信メッセージの数のうちの少なくとも1つに関して受動的に取得されたデータから
生成されたデジタルバイオマーカーである。このカテゴリ内のデジタルバイオマーカーは
、観察期間中の着信メッセージの総数、および/または観察期間中の1日当たりに受信さ
れた着信メッセージの数の中央値を含む。総メッセージおよび/または1日当たりのメッ
セージのより低い数は、より低い社会的または社会関与に関連付けられ得、これは認知機
能低下を示している可能性がある。このカテゴリ内の別のデジタルバイオマーカーは、観
察期間中にユーザのモバイルデバイスによって1日当たりに送信された発信メッセージの
数の統計的変動性の測度である。使用され得る統計的変動性の例示的な測度は、範囲、四
分位範囲、標準偏差、および/または分散を含む。より高い統計的変動性は、認知機能低
下を示している可能性がある。
【0055】
重要バイオマーカーの別の例示的なカテゴリは、(i)観察期間中の各日の最初に観察
された被験者の動きの時刻(ToD)、(ii)観察期間中の各日の最初に観察された被
験者のペースのToD、(iii)観察期間中の各日の最後に観察された被験者の動きの
ToD、および(iv)観察期間中の各日の最後に観察された被験者のペースのToD、
のうちの少なくとも1つに関して受動的に取得されたデータから生成されたデジタルバイ
オマーカーである。このカテゴリ内のデジタルバイオマーカーは、観察期間中の最初に観
察された被験者のペースの中央値ToD、および/または観察期間中の最後に観察された
被験者の動きの中央値ToDを含む。最初に観察された被験者のペースおよび/または最
後に観察された被験者の動きの、後の中央値のToDは、認知機能低下を示している可能
性がある。このカテゴリ内の別のデジタルバイオマーカーは、観察期間中の最後に観察さ
れた被験者の動きのToDの統計的変動性の測度、および/または観察期間中の最初に観
察された被験者の動きのToDの統計的変動性の測度である。使用され得る統計的変動性
の例示的な測度は、範囲、四分位範囲、標準偏差、および/または分散を含む。より高い
統計的変動性は、認知機能低下を示している可能性がある。
【0056】
重要バイオマーカーの別の例示的なカテゴリは、観察期間中に観察された被験者の歩幅
に関して受動的に取得されたデータから生成されたデジタルバイオマーカーである。この
カテゴリ内のデジタルバイオマーカーは、観察された歩幅の統計的スキュー(statistica
l skew)を含む。被験者の観察された歩幅の高い統計的スキューは、認知機能低下を示し
ている可能性がある。
【0057】
重要バイオマーカーの別の例示的なカテゴリは、観察期間中に被験者によって行われた
運動動作の数に関して受動的に取得されたデータから生成されたデジタルバイオマーカー
である。運動動作の低い数は、認知機能低下を示している可能性がある。
【0058】
重要バイオマーカーの別の例示的なカテゴリは、被験者がモバイルデバイス上の時間を
閲覧するためにモバイル時計アプリケーションを閲覧した回数に関して受動的に取得され
たデータから生成されたデジタルバイオマーカーである。被験者がモバイル時計アプリケ
ーションを閲覧した時間を、閲覧持続時間に関連付けられ得る。このカテゴリ内のデジタ
ルバイオマーカーは、観察期間中にそのそれぞれの被験者について記録されたすべての閲
覧持続時間の目標パーセンテージ以上である閲覧持続時間を計算することを含む。いくつ
かの実施形態では、目標パーセンテージは、90%~100%である。いくつかの実施形
態では、目標パーセンテージは、93%~97%である。いくつかの実施形態では、目標
パーセンテージは、95%である。計算された閲覧持続時間が長い場合は、認知機能低下
を示している可能性がある。このカテゴリ内のデジタルバイオマーカーの別の例は、観察
期間中に被験者がモバイル時計アプリケーションを閲覧した各時間に関連付けられた閲覧
持続時間の統計的変動性の測度である。より高い統計的変動性は、認知機能低下を示して
いる可能性がある。このカテゴリ内のデジタルバイオマーカーの別の例は、観察期間にわ
たる総閲覧持続時間であり、総閲覧持続時間がより長い場合は、認知機能低下を示してい
る可能性がある。このカテゴリ内のデジタルバイオマーカーのさらに別の例は、観察期間
中の各日にわたる日々の総閲覧持続時間の統計的変動性の測度であり、各日々の総閲覧持
続時間は、特定の日の間のすべての閲覧持続時間の合計に等しい。この場合も、より高い
統計的変動性は、認知機能低下を示している可能性がある。前と同じように、使用され得
る統計的変動性の例示的な測度は、範囲、四分位範囲、標準偏差、および/または分散を
含む。
【0059】
重要バイオマーカーの別の例示的なカテゴリは、ユーザがモバイルデバイスにデータを
入力している間に、またはモバイルデバイスと相互作用している間にタイプする方法を特
徴付ける、受動的に取得されたデータから生成されたデジタルバイオマーカーである。例
えば、データは、通信デバイスによって送信される発信メッセージを構成している間にユ
ーザがタイプする方法を特徴付け得る。このカテゴリ内のデジタルバイオマーカーは、休
止を除くタイピング速度、および/または文当たりの平均単語数を含む。タイピング速度
がより遅い、かつ/または文当たりの平均単語数がより少ない場合は、認知機能低下を示
している可能性がある。
【0060】
ステップ606において、デジタルバイオマーカーデータを分析して、被験者が認知障
害であるかどうかを判定し得る。本明細書に記載されるように、この分析は、健康な被験
者と、MCIおよび/またはADを示す被験者との間で区別するように訓練されたCNN
を使用して実装され得る。
【0061】
ステップ608において、分析の結果に関して、被験者および別のユーザのうちの少な
くとも1人に対して、通知が送信され得る。この通知は、分析の結果に基づく通知または
要約を含む場合がある。例えば、通知は、分析の要約、認知機能低下の確率、認知機能低
下が検出されたかどうかの二元的表示、脳または神経精神医学的スコア、治療またはさら
なる診断を求める通知などを含み得る。
【0062】
図7は、いくつかの実施形態による、被験者の認知機能低下を検出するための別の例示
的なプロセス700を示す。プロセス700はまた、例えば、収集コンポーネント204
および/または分析コンポーネント210によって、独立してまたは共同で実装され得る
。プロセス700は、ステップ702において開始し、これは、複数日の観察期間にわた
って被験者の少なくとも1つのモバイルデバイスによって記録された1つ以上のユーザ活
動の受動的に取得された時系列データを受信することを含む。タイムスタンプを有し、か
つ前述のモバイルデバイスのいずれかによって記録された任意のデータが使用され得る。
このような時系列データの例は、電話通話、発信メッセージ、着信メッセージ、モバイル
デバイスのロック解除、モバイルアプリケーションとの相互作用、心拍数、立ち動作、ス
テップ、移動、モバイルデバイスのロック解除されている間の移動、モバイルデバイスが
ロックされている間の移動などを含むが、これらに限定されない。
【0063】
純粋に説明のために、
図8のグラフ802は、被験者のモバイルデバイスがロックまた
はロック解除された時間を示す時系列データの1つの例示的なセットを示している。グラ
フ802の横軸は、秒、分、および/または時間などの好適な単位で時間の経過を示して
いる。グラフ802の縦軸は、被験者の電話がロックされていたかロック解除されていた
かを示しており、例えば、高(バイナリ1)は、デバイスがロック解除されていることを
示し得、低(バイナリ0)は、デバイスがロックされていることを示し得る。時系列デー
タは、好ましくは、複数日の期間(例えば、1週間、2週間、および/または1ヶ月間)
にわたって連続的に、または実質的に連続的に記録されたデータにまたがる。
【0064】
ステップ704において、周波数分析を使用して、取得された時系列データを処理して
、時系列データを周波数パワースペクトルに変換する。時系列データを周波数パワースペ
クトルに変換する任意の既知の周波数分析、例えば、フーリエ変換、高速フーリエ変換(
FFT)、離散フーリエ変換(DFT)、ウェーブレット変換、および/またはLomb
-Scargleピリオドグラムが使用され得るが、それらに含められない。
【0065】
ステップ704の例示的な出力が、
図8のグラフ804に示されている。グラフ804
は、グラフ802に示される時系列データの周波数パワースペクトルを示す。グラフ80
4の横軸は、ヘルツなどの好適な単位で、周波数を示している。グラフ804の縦軸は、
その周波数における時系列データ内の周波数成分の大きさを示している。ほとんどの被験
者の活動は、規則的な24時間の日々のサイクルで規則的に変動すると予想されるため、
ほとんどの被験者のグラフ804は、通常、24時間の期間に対応する周波数F
0、すな
わち、1/(24時間)、または1.157*10
-5Hzにおいてまたはその周辺で最
も高い周波数成分を有する。
【0066】
ステップ706において、プロセス700は、第1の周波数閾値(Fmin)と第2の
周波数閾値(Fmax)との間の周波数パワースペクトル内の周波数成分量を計算し得る
。周波数閾値FminおよびFmaxは、不等式Fmin<F
0<Fmaxを満たす。具
体的には、
図8のグラフ806に示されるように、Fminは、F
0-Δf
1に等しくな
り得、一方、Fmaxは、F
0+Δf
2に等しくなり得る。いくつかの実施形態では、Δ
f
1は、Δf
2に等しくなり得るが、他の実施形態では、それらは等しくない場合がある
。
【0067】
FminおよびFmaxは、24時間の期間に対応する、F0付近の比較的狭い範囲の
周波数を定義する。例えば、Fminは、24時間よりも半時間長い期間、すなわち、1
/(24時間30分)、または1.134*10-5Hzに対応する周波数以上に設定さ
れ得る。または、Fminは、24時間よりも1時間長い期間、すなわち、1/(25時
間)、または1.111*10-5Hzに対応する周波数以上に設定され得る。同様に、
Fmaxは、24時間よりも半時間短い期間、すなわち、1/(23時間30分)、また
は1.182*10-5Hzに対応する周波数以下に設定され得る。または、Fmaxは
、24時間よりも1時間短い期間、すなわち、1/(23時間)、または1.208*1
0-5Hzに対応する周波数以下に設定され得る。
【0068】
FminとFmaxとの間のスペクトルエネルギー量は、FminとFmaxとの間の
周波数スペクトル曲線下面積に基づいて計算され得る。いくつかの実施形態では、スペク
トルエネルギー量はまた、前述の面積の二乗に基づいて計算され得る。
【0069】
ステップ708において、プロセス700は、計算されたスペクトルエネルギー量に基
づいてデジタルバイオマーカーデータを生成する。いくつかの実施形態では、このステッ
プは、計算されたスペクトルエネルギー量をデジタルバイオマーカーとして単に使用する
ことを含み得る。他の実施形態では、プロセス700は、ステップ708において、(i
)FminとFmaxとの間の周波数スペクトル曲線下面積、および(ii)Fmin未
満でありかつFmaxよりも大きい他のすべての周波数における周波数スペクトル曲線下
面積の比率を計算し得る。次いで、この比率は、デジタルバイオマーカーとして使用され
得る。
【0070】
ステップ710において、プロセス700は、デジタルバイオマーカーデータを分析し
て、被験者が認知機能低下を経験しているかどうかを判定する。健康な被験者は、彼らの
活動においてより比較的高い規則性と24時間のリズムへの順守とを示すため、Fmin
とFmaxとの間の比較的高い量のスペクトルエネルギー、および/または前の段落にお
いて説明した比率を計算したときの比較的高い結果は、被験者が認知機能低下の兆候を示
していないことを示す可能性がある。逆に、認知機能低下の兆候を示す被験者は、彼らの
活動においてより大きい不規則性を示す可能性があり、彼らのモバイルデバイスから記録
された時系列データは、規則的な24時間のリズムに従わない可能性がある。結果として
、FminとFmaxとの間の比較的少量のスペクトルエネルギー、および/または前の
段落において説明した比率を計算したときの比較的小さい結果は、被験者が認知機能低下
の兆候を示していることを示す可能性がある。
【0071】
ステップ712において、分析の結果に関して、被験者および別のユーザのうちの少な
くとも1人に対して、通知が送信され得る。前と同様に、この通知は、分析の結果に基づ
く通知または要約を含む場合がある。例えば、通知は、分析の要約、認知機能低下の確率
、認知機能低下が検出されたかどうかの二元的表示、脳または神経精神医学的スコア、治
療またはさらなる診断を求める通知などを含み得る。
【0072】
分析コンポーネント210は、前述のデジタルバイオマーカーのいずれか1つ以上を使
用して、被験者104が認知機能低下を経験しているかどうかを検出し得る。いくつかの
実施形態では、分析コンポーネント210は、上記デジタルバイオマーカーに基づいて、
被験者104が経験している認知障害のタイプを分類し得る。前述の複数のデジタルバイ
オマーカーの一部またはすべてを組み合わせると、認知機能低下を検出するための検出ア
ルゴリズムの精度および正確さが向上する可能性がある。
【0073】
例えば、前述のデジタルバイオマーカーの一部またはすべてを一緒に使用して、(
図2
の)検出アルゴリズム222を訓練し得る。検出アルゴリズムは、ノードの1つ以上の層
を有する畳み込みニューラルネットワーク(CNN)の形態を採り得、各層は、1つ以上
のノードを有する。訓練フェーズ中に、CNNは、訓練被験者の母集団に対する前述のデ
ジタルバイオマーカー、ならびにデジタルバイオマーカーがそれについて生成された各被
験者が、健康な対照であったか、MCIおよび/またはADの兆候を示す被験者であった
かを示すグラウンドトゥルースラベルの両方を含む訓練データを使用して訓練され得る。
機械学習アルゴリズムを適用して、デジタルバイオマーカーと第1のノード層内のノード
との間の接続の一部またはすべて、およびまた、ノード間の接続の一部またはすべてに対
する重みのセットを判定し得る。重みは、被験者が健康であるか、または認知機能低下を
経験しているかがわからない被験者用に生成されたデジタルバイオマーカーに適用される
とき、CNNを使用して被験者の状態を判定し得るように判定され得る。別の言い方をす
れば、CNNの重みは、分析コンポーネント210が、健康である被験者104について
収集データ218から生成されたデジタルバイオマーカーに重みを適用するときに、分析
コンポーネントがある程度の自信(例えば、パーセンテージの可能性)をもって被験者1
04が健康であると判定するように、検出アルゴリズム222の訓練中に判定され得る。
逆に、分析コンポーネント210が、認知機能低下を経験している被験者104について
収集データ218から生成されたデジタルバイオマーカーに重みを適用するときに、分析
コンポーネント210は、ある程度の自信(例えば、パーセンテージの可能性)をもって
、被験者104が認知機能低下を経験していると判定する。CNNを採用するそのような
検出アルゴリズム222は、前述のデジタルバイオマーカーのいずれかまたはすべてを使
用して認知機能低下を検出するように訓練かつ/または使用され得る。
【0074】
いくつかの実施形態では、検出アルゴリズム222は、認知機能低下の異なる分類を有
する被験者104についての収集データ218上で訓練されている可能性がある。これら
の実施形態では、分析コンポーネント210は、被験者104について認知機能低下の特
定の分類を判定し得る。例えば、検出アルゴリズム222は、軽度認知障害および初期ア
ルツハイマー病を有する被験者104についての収集データ218上で訓練されている可
能性がある。したがって、分析コンポーネント210は、検出アルゴリズム222の訓練
中に判定された重みを適用することによって、被験者104が健康であるか、または認知
機能低下を経験しているかを判定するだけでなく、被験者104が認知機能低下を経験し
ているかどうか、認知障害のどの分類を被験者104が経験しているか、すなわち、軽度
認知障害および初期アルツハイマー病をも判定し得る(ブロック606)。
【0075】
いくつかの実施形態では、検出アルゴリズム222は、生の収集データ218から計算
されたデジタルバイオマーカーを使用して、被験者104が認知機能低下を経験している
かどうかを判定する決定木を含み得る。決定木は、生の収集データ218からデジタルバ
イオマーカーを計算するための、かつ/または処理されたデジタルバイオマーカーを閾値
もしくは予想される範囲と比較するための1つ以上の処理ステップを含み得る。そのよう
なステップ、閾値、および/または範囲は、本明細書に記載の機械学習技術を使用して導
出され得る。
【0076】
図9は、本開示の少なくとも1つの実施形態による、モバイルデバイスから受動的に取
得されたデータを分析して認知機能低下を判定するための方法900の別の流れ図である
。この図は単なる例であり、特許請求の範囲の範囲を過度に制限するものではない。当業
者は、多くの変形、代替、および修正を認識するであろう。
【0077】
ステップ902において、前述のデジタルバイオマーカーの1つ以上(またはすべて)
に対応するベースラインデータが受信され得る。バイオマーカーのベースラインデータ2
30は、検出アルゴリズム222の訓練中に判定され得、被験者104が健康であるとき
、および/または被験者が認知機能低下を経験しているとき、異なるベースラインに対応
し得る。より具体的には、各バイオマーカーについて、被験者104がいつ健康であり、
被験者がいつ認知機能低下を経験しているのかを示す、そのバイオマーカーのベースライ
ンデータ230が判定され得る。このベースラインデータは、評価されている被験者10
4と同じまたは類似の母集団からの被験者から、評価されている被験者104と同じまた
は類似の人口統計学的および/または医学的特徴を有する被験者から生成され得る。いく
つかの実施形態では、このベースラインデータは、評価されている被験者104から取得
された過去の測定値から生成され得る。言い換えれば、受信されたベースラインデータは
、場合によっては、評価されている各個々の被験者104に対して一意であり得る、縦方
向のベースラインデータセットであり得る。次に、ベースラインデータ230を、収集デ
ータ218から生成されたデジタルバイオマーカーと比較して(ブロック904)、被験
者104が認知機能低下を経験しているかどうか(ブロック906)および/または認知
機能低下の分類(ブロック908)を判定し得る。例えば、バイオマーカーの収集データ
218が、ベースラインデータ230の特定のパーセンテージ(例えば、0~20%)内
にある場合、ベースラインデータ230が、認知機能低下を経験している被験者104お
よび/または認知機能低下の特定の分類を経験している被験者104に関連付けられてい
る場合、収集データ218に関連付けられた被験者104は、それぞれ、認知機能低下を
経験している、かつ/または認知機能低下の特定の分類を経験していると判定され得る。
別の例として、バイオマーカーの収集データ218が、ベースラインデータ230の特定
のパーセンテージ(例えば、0~20%)の外側にある場合、ベースラインデータ230
が、認知機能低下を経験している被験者104に関連付けられている場合、収集データ2
18に関連付けられた被験者104は健康であると判定され得る。さらに別の例として、
バイオマーカーの収集データ218が、ベースラインデータ230の特定のパーセンテー
ジ(例えば、0~20%)内にある場合、ベースラインデータ230が、健康である被験
者104に関連付けられている場合、収集データ218に関連付けられた被験者104は
健康であると判定され得る。別の例として、バイオマーカーの収集データ218が、ベー
スラインデータ230の特定のパーセンテージ(例えば、0~20%)の外側にある場合
、ベースラインデータ230が、健康である被験者104に関連付けられている場合、収
集データ218に関連付けられた被験者104は、認知機能低下を経験していると判定さ
れ得る。さらに別の例として、特定の被験者104のためのバイオマーカーの収集データ
118が、時間とともにより高いまたはより低い認知機能に向かう傾向を示す場合、被験
者104は認知機能低下を経験しているまたは経験していないと判定され得る。認知機能
低下の判定(ブロック712)および/または認知機能低下の分類(ブロック714)は
、さらなる評価および/または治療を手配するために、被験者104(
図1)に、または
家族および/もしくは医療提供者などの別の許可された当事者に伝達され得る。
【0078】
図10は、本開示の少なくとも1つの実施形態による、モバイルデバイスを使用して認
知機能低下を検出するためのシステムおよび/または方法を実装するためのコンピュータ
システム1000の例示的なコンポーネントのブロック図である。例えば、コンポーネン
ト200の機能、ならびに/あるいは方法300、600、700、および/または90
0のプロセス(例えば、ステップ)の一部またはすべては、コンピューティングシステム
1000によって実行される。この図は単なる例であり、特許請求の範囲の範囲を過度に
制限するものではない。当業者は、多くの変形、代替、および修正を認識するであろう。
【0079】
コンピューティングシステム1000は、プロセッサ1004、ディスプレイ1006
、カーソル制御コンポーネント1008、入力デバイス1010、メインメモリ1012
、読み取り専用メモリ(ROM)1014、記憶ユニット1016、および/またはネッ
トワークインターフェース1088の間で情報を通信するためのバス1002または他の
通信メカニズムを含む。いくつかの例では、バス1002は、プロセッサ1004、ディ
スプレイ1006、カーソル制御コンポーネント1008、入力デバイス1010、メイ
ンメモリ1012、読み取り専用メモリ(ROM)1014、記憶ユニット1016、お
よび/またはネットワークインターフェース1018に結合されている。また、特定の例
では、ネットワークインターフェース1018は、ネットワーク1020(例えば、ネッ
トワーク108)に結合されている。
【0080】
いくつかの例では、プロセッサ1004は、1つ以上の汎用マイクロプロセッサを含む
。いくつかの例では、メインメモリ1012(例えば、ランダムアクセスメモリ(RAM
)、キャッシュ、および/または他の動的記憶デバイス)は、プロセッサ1004によっ
て実行される情報および命令を記憶するように構成される。特定の例では、メインメモリ
1012は、プロセッサ1004によって実行される命令の実行中に一時変数または他の
中間情報を記憶するように構成される。例えば、命令は、プロセッサ1004にとってア
クセス可能な記憶ユニット816に記憶されるときに、コンピューティングシステム10
00を、命令内で指定された操作(例えば、方法300、方法600、方法700、およ
び/または方法900)を実行するようにカスタマイズされた専用マシンになるようにす
る。いくつかの例では、ROM1014は、プロセッサ1004のための静的情報および
命令を記憶するように構成される。特定の例では、記憶ユニット1016(例えば、磁気
ディスク、光ディスク、またはフラッシュドライブ)は、情報および命令を記憶するよう
に構成される。
【0081】
いくつかの実施形態では、ディスプレイ1006(例えば、陰極線管(CRT)、LC
Dディスプレイ、またはタッチスクリーン)は、コンピューティングシステム1000の
ユーザに情報を表示するように構成される。いくつかの例では、入力デバイス1010(
例えば、英数字、および他のキー)は、情報およびコマンドをプロセッサ1004に通信
するように構成される。例えば、カーソル制御1008(例えば、マウス、トラックボー
ル、またはカーソル方向キー)は、(例えば、ディスプレイ1006上のカーソルの動き
を制御するための)追加の情報およびコマンドをプロセッサ1004に通信するように構
成される。
【0082】
本発明は例示的な設計を有するものとして記載されてきたが、本発明は、本開示の趣旨
および範囲内でさらに修正することができる。したがって、本出願は、本発明の一般的原
理を用いた本発明の任意の変形、使用、または適応を網羅することが意図される。さらに
、本出願は、本発明が関係し、添付の特許請求の範囲の制限内にある、当該技術分野で既
知のまたは慣習的な実施の範囲内に入るものとして、本開示からのそのような逸脱を網羅
することを意図する。
【0083】
以下の態様を含むがこれらに限定されない様々な態様が、この開示に記載されている。
【0084】
1.被験者の認知機能低下を検出するためのコンピュータ実装方法であって、複数日の
観察期間にわたって被験者の少なくとも1つのモバイルデバイスによって記録された、受
動的に取得されたデータを受信することであって、受動的に取得されたデータが、(i)
モバイルデバイスによって受信された着信メッセージの数および(ii)モバイルデバイ
スによって送信された発信メッセージの数のうちの少なくとも1つに関するデータを含む
、受信することと、受動的に取得されたデータを処理して、デジタルバイオマーカーデー
タを生成することと、デジタルバイオマーカーデータを分析して、被験者が認知機能低下
を経験しているかどうかを判定することと、分析の結果に関して、被験者および別のユー
ザのうちの少なくとも1人に対してユーザ通知を生成することと、を含む、方法。
【0085】
2.各メッセージが、SMSテキストメッセージ、電子メール、チャットメッセージ、
音声通話、およびビデオ電話会議通話、のうちの少なくとも1つである、態様1に記載の
コンピュータ実装方法。
【0086】
3.受動的に取得されたデータを処理することが、観察期間の各日にわたって受信され
たすべての着信メッセージを合計して、着信メッセージの総数を生成することを含み、デ
ジタルバイオマーカーデータが、着信メッセージの総数を含む、態様1または2に記載の
コンピュータ実装方法。
【0087】
4.受動的に取得されたデータを処理することが、観察期間中の各日にわたってモバイ
ルデバイスによって送信された発信メッセージの数の変動性の統計的測度(a statistica
l measure)を計算することを含み、デジタルバイオマーカーデータが、発信メッセージ
の数の変動性の計算された統計的測度を含む、態様1~3のいずれか1つに記載のコンピ
ュータ実装方法。
【0088】
5.計算された統計的測度が、四分位範囲(an inter-quartile range)である、態様
4に記載のコンピュータ実装方法。
【0089】
6.受動的に取得されたデータを処理することが、観察期間中に1日当たりに受信され
た着信メッセージの中央値を計算することを含み、デジタルバイオマーカーデータが、着
信メッセージの計算された中央値を含む、態様1~5のいずれか1つに記載のコンピュー
タ実装方法。
【0090】
7.被験者の認知機能低下を検出するためのコンピュータ実装方法であって、複数日の
観察期間にわたって被験者の少なくとも1つのモバイルデバイスによって記録された、受
動的に取得されたデータを受信することであって、受動的に取得されたデータが、(i)
観察期間中の各日の最初に観察された被験者の動きの時刻(ToD)、(ii)観察期間
中の各日の最初に観察された被験者のペースのToD、(iii)観察期間中の各日の最
後に観察された被験者の動きのToD、および(iv)観察期間中の各日の最後に観察さ
れた被験者のペースのToD、のうちの少なくとも1つを含む、受信することと、受動的
に取得されたデータを処理して、デジタルバイオマーカーデータを生成することと、デジ
タルバイオマーカーデータを分析して、被験者が認知機能低下を経験しているかどうかを
判定することと、判定の結果に関して、被験者および別のユーザのうちの少なくとも1人
に対してユーザ通知を生成することと、を含む、方法。
【0091】
8.受動的に取得されたデータを処理することが、観察期間中に最初に観察された被験
者のペースの中央値ToDを計算することを含み、デジタルバイオマーカーデータが、最
初に観察された被験者のペースの計算された中央値ToDを含む、態様7に記載のコンピ
ュータ実装方法。
【0092】
9.受動的に取得されたデータを処理することが、観察期間中に最後に観察された被験
者の動きのToDの統計的変動性の測度を計算することを含み、デジタルバイオマーカー
データが、最後に観察された被験者の動きのToDの統計的変動性の計算された測度を含
む、態様7または8に記載のコンピュータ実装方法。
【0093】
10.統計的変動性の測度が、四分位範囲である、態様9に記載のコンピュータ実装方
法。
【0094】
11.受動的に取得されたデータを処理することが、観察期間中に最初に観察された被
験者の動きのToDの統計的変動性の測度を計算することを含み、デジタルバイオマーカ
ーデータが、最初に観察された被験者の動きのToDの統計的変動性の計算された測度を
含む、態様7~10のいずれか1つに記載のコンピュータ実装方法。
【0095】
12.統計的変動性の測度が、四分位範囲である、態様11に記載のコンピュータ実装
方法。
【0096】
13.受動的に取得されたデータを処理することが、観察期間中に最後に観察された被
験者の動きの中央値ToDを計算することを含み、デジタルバイオマーカーデータが、最
後に観察された被験者の動きの計算された中央値ToDを含む、態様7~11のいずれか
1つに記載のコンピュータ実装方法。
【0097】
14.被験者の認知機能低下を検出するためのコンピュータ実装方法であって、複数日
の観察期間にわたって被験者の少なくとも1つのモバイルデバイスによって記録された、
受動的に取得されたデータを受信することであって、受動的に取得されたデータが、被験
者の観察された歩幅に関するデータを含む、受信することと、受動的に取得されたデータ
を処理して、デジタルバイオマーカーデータを生成することと、デジタルバイオマーカー
データを分析して、被験者が認知機能低下を経験しているかどうかを判定することと、分
析の結果に関して、被験者および別のユーザのうちの少なくとも1人に対してユーザ通知
を生成することと、を含む、方法。
【0098】
15.受動的に取得されたデータを処理することが、観察期間中に被験者の観察された
歩幅の統計的スキューを計算することを含み、デジタルバイオマーカーデータが、計算さ
れた統計的スキューを含む、態様14に記載のコンピュータ実装方法。
【0099】
16.被験者の認知機能低下を検出するためのコンピュータ実装方法であって、複数日
の観察期間にわたって被験者の少なくとも1つのモバイルデバイスによって記録された、
受動的に取得されたデータを受信することであって、受動的に取得されたデータが、観察
期間中の運動動作の数に関するデータを含む、受信することと、受動的に取得されたデー
タを分析して、被験者が認知機能低下を経験しているかどうかを判定することと、分析の
結果に関して、被験者および別のユーザのうちの少なくとも1人に対してユーザ通知を生
成することと、を含む、方法。
【0100】
17.被験者の認知機能低下を検出するためのコンピュータ実装方法であって、複数日
の観察期間にわたって被験者の少なくとも1つのモバイルデバイスによって記録された、
受動的に取得されたデータを受信することであって、受動的に取得されたデータが、被験
者が少なくとも1つのモバイルデバイス上の時間を判断するためにモバイル時計アプリケ
ーションを閲覧した回数に関するデータを含み、被験者がモバイル時計アプリケーション
を閲覧した各時間が、閲覧持続時間に関連付けられる、受信することと、受動的に取得さ
れたデータを処理して、デジタルバイオマーカーデータを生成することと、受動的に取得
されたデータを分析して、被験者が認知機能低下を経験しているかどうかを判定すること
と、分析の結果に関して、被験者および別のユーザのうちの少なくとも1人に対してユー
ザ通知を生成することと、を含む、方法。
【0101】
18.受動的に取得されたデータを処理することが、観察期間中に被験者がモバイル時
計アプリケーションを閲覧した各時間に関連付けられた閲覧持続時間の目標パーセンテー
ジ以上である閲覧持続時間を計算することを含み、デジタルバイオマーカーデータが、計
算された閲覧持続時間を含む、態様17に記載のコンピュータ実装方法。
【0102】
19.目標パーセンテージが、90%~100%である、態様18に記載のコンピュー
タ実装方法。
【0103】
20.目標パーセンテージが、93%~97%である、態様18または19に記載のコ
ンピュータ実装方法。
【0104】
21.目標パーセンテージが、95%である、態様18~20のいずれか1つに記載の
コンピュータ実装方法。
【0105】
22.受動的に取得されたデータを処理することが、観察期間中に被験者がモバイル時
計アプリケーションを閲覧した各時間に関連付けられた閲覧持続時間の統計的変動性の測
度を計算することを含み、デジタルバイオマーカーデータが、閲覧持続時間の統計的変動
性の計算された測度を含む、態様17~21のいずれか1つに記載のコンピュータ実装方
法。
【0106】
23.統計的変動性の測度が、四分位範囲である、態様22に記載のコンピュータ実装
方法。
【0107】
24.受動的に取得されたデータを処理することが、観察期間中に被験者がモバイル時
計アプリケーションを閲覧したすべての時間に関連付けられたすべての閲覧持続時間を合
計して、総閲覧持続時間を生成することを含み、デジタルバイオマーカーデータが、総閲
覧持続時間を含む、態様17~23のいずれか1つに記載のコンピュータ実装方法。
【0108】
25.受動的に取得されたデータを処理することが、観察期間中の各それぞれの日につ
いて、それぞれの日の間に被験者がモバイル時計アプリケーションを閲覧したすべての時
間に関連付けられたすべての閲覧持続時間の合計に等しい日々の総閲覧持続時間を計算し
、計算された日々の総閲覧持続時間の統計的変動性の測度を計算することを含み、デジタ
ルバイオマーカーデータが、計算された日々の総閲覧持続時間の統計的変動性の計算され
た測度を含む、態様17~24のいずれか1つに記載のコンピュータ実装方法。
【0109】
26.統計的変動性の測度が、四分位範囲である、態様25に記載のコンピュータ実装
方法。
【0110】
27.被験者の認知機能低下を検出するためのコンピュータ実装方法であって、複数日
の観察期間にわたって被験者の少なくとも1つのモバイルデバイスによって記録された、
受動的に取得されたデータを受信することであって、受動的に取得されたデータが、通信
デバイスによって送信される発信メッセージを構成しながらユーザがタイプする方法を特
徴付けるデータを含む、受信することと、受動的に取得されたデータを処理して、デジタ
ルバイオマーカーデータを生成することと、デジタルバイオマーカーデータを分析して、
被験者が認知機能低下を経験しているかどうかを判定することと、分析の結果に関して、
被験者および別のユーザのうちの少なくとも1人に対してユーザ通知を生成することと、
を含む、方法。
【0111】
28.受動的に取得されたデータを処理することが、休止を除くタイピング速度を計算
することを含み、デジタルバイオマーカーデータが、計算されたタイピング速度を含む、
態様27に記載のコンピュータ実装方法。
【0112】
29.受動的に取得されたデータを処理することが、文当たりの平均単語数を計算する
ことを含み、デジタルバイオマーカーデータが、計算された平均単語数を含む、態様27
または28に記載のコンピュータ実装方法。
【0113】
30.被験者の認知機能低下を検出するためのコンピュータ実装方法であって、複数日
の観察期間にわたって被験者の少なくとも1つのモバイルデバイスによって記録された1
つ以上のユーザ活動の受動的に取得された時系列データを受信することと、周波数分析を
使用して、受動的に取得された時系列データを処理して、時系列データを周波数パワース
ペクトルに変換することと、第1の周波数閾値と第2の周波数閾値との間の周波数パワー
スペクトル内のスペクトルエネルギー量を計算することと、計算されたスペクトルエネル
ギー量に基づいてデジタルバイオマーカーデータを生成することと、デジタルバイオマー
カーデータを分析して、被験者が認知機能低下を経験しているかどうかを判定することと
、分析の結果に関して、被験者および別のユーザのうちの少なくとも1人に対してユーザ
通知を生成することと、を含む、方法。
【0114】
31.第1の周波数閾値が、1/(24時間)未満であり、第2の周波数閾値が、1/
(24時間)よりも大きい、態様30に記載のコンピュータ実装方法。
【0115】
32.第1の周波数が、1/(25時間)以上であり、第2の周波数閾値が、1/(2
3時間)以下である、態様30または31に記載のコンピュータ実装方法。
【0116】
33.第1の周波数が、1/(24時間30分)以上であり、第2の周波数閾値が、1
/(23時間30分)以下である、態様30~32のいずれか1つに記載のコンピュータ
実装方法。
【0117】
34.デジタルバイオマーカーデータが、(i)第1の周波数閾値と第2の周波数閾値
との間の周波数パワースペクトル内のスペクトルエネルギーの計算された量、および(i
i)周波数パワースペクトル内の他のすべての周波数におけるスペクトルエネルギー量の
比率を含む、態様30~33のいずれか1つに記載のコンピュータ実装方法。
【0118】
35.1つ以上のユーザ活動が、電話通話、発信メッセージ、着信メッセージ、モバイ
ルデバイスのロック解除、モバイルアプリケーションとの相互作用、心拍数、立ち動作、
ステップ、移動、モバイルデバイスのロック解除されている間の移動、およびモバイルデ
バイスがロックされている間の移動のうちの少なくとも1つを含む、態様30~34のい
ずれか1つに記載のコンピュータ実装方法。
【0119】
36.被験者の少なくとも1つのモバイルデバイスが、スマートウォッチおよびスマー
トフォンのうちの少なくとも1つを含む、態様1~35のいずれか1つに記載のコンピュ
ータ実装方法。
【0120】
37.認知機能低下が、少なくとも部分的にアルツハイマー病によって引き起こされる
、態様1~36のいずれか1つに記載のコンピュータ実装方法。
【0121】
38.被験者が認知機能低下を経験しているかどうかを判定するために、デジタルバイ
オマーカーデータの分析が、畳み込みニューラルネットワークを使用して実装される、態
様1~37のいずれか1つに記載のコンピュータ実装方法。
【0122】
39.被験者が認知機能低下を経験しているかどうかを判定するために、デジタルバイ
オマーカーデータの分析が、1つ以上の決定木を使用して実装される、態様1~38のい
ずれか1つに記載のコンピュータ実装方法。
【0123】
40.受動的に取得されたデータが、少なくとも第1のカテゴリのデータおよび第2の
カテゴリのデータを含み、第1のカテゴリのデータが、第1のデータ収集頻度で記録され
、第2のカテゴリのデータが、第1のデータ収集頻度とは異なる第2のデータ収集頻度で
記録される、態様1~39のいずれか1つに記載のコンピュータ実装方法。
【0124】
41.認知機能低下を検出するための処理デバイスであって、1つ以上のプロセッサと
、実行されるときに、1つ以上のプロセッサに態様1~40のいずれか1つに記載の方法
を実行させる命令を含むメモリと、を備える、処理デバイス。
【0125】
42.1つ以上のプロセッサによって実行されるときに、1つ以上のプロセッサに態様
1~40のいずれか1つに記載の方法を実行させるように構成されている、コンピュータ
実行可能命令を記憶する、非一時的なコンピュータ可読記憶媒体。
【手続補正書】
【提出日】2023-05-26
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
被験者の認知機能低下を検出するためのコンピュータ実装方法であって、
複数日の観察期間にわたって前記被験者の少なくとも1つのモバイルデバイスによって記録された、受動的に取得されたデータを受信することであって、前記受動的に取得されたデータが、通信デバイスによって送信される発信メッセージを構成しながら前記ユーザがタイプする方法を特徴付けるデータを含む、受信することと、
前記受動的に取得されたデータを処理して、デジタルバイオマーカーデータを生成することと、
前記デジタルバイオマーカーデータを分析して、前記被験者が認知機能低下を経験しているかどうかを判定することと、
前記分析の前記結果に関して、前記被験者および別のユーザのうちの少なくとも1人に対してユーザ通知を生成することと、を含む、方法。
【請求項2】
前記受動的に取得されたデータを処理することが、休止を除くタイピング速度を計算することを含み、前記デジタルバイオマーカーデータが、前記計算されたタイピング速度を含む、請求項1に記載のコンピュータ実装方法。
【請求項3】
前記受動的に取得されたデータを処理することが、文当たりの平均単語数を計算することを含み、前記デジタルバイオマーカーデータが、前記計算された平均単語数を含む、請求項1または2に記載のコンピュータ実装方法。
【請求項4】
前記被験者の前記少なくとも1つのモバイルデバイスが、スマートウォッチおよびスマートフォンのうちの少なくとも1つを含む、請求項1~3のいずれか一項に記載のコンピュータ実装方法。
【請求項5】
前記認知機能低下が、少なくとも部分的にアルツハイマー病によって引き起こされる、請求項1~4のいずれか一項に記載のコンピュータ実装方法。
【請求項6】
前記被験者が認知機能低下を経験しているかどうかを判定するために、前記デジタルバイオマーカーデータの前記分析が、畳み込みニューラルネットワークを使用して実装される、請求項1~5のいずれか一項に記載のコンピュータ実装方法。
【請求項7】
前記被験者が認知機能低下を経験しているかどうかを判定するために、前記デジタルバイオマーカーデータの前記分析が、1つ以上の決定木を使用して実装される、請求項1~6のいずれか一項に記載のコンピュータ実装方法。
【請求項8】
前記受動的に取得されたデータが、少なくとも第1のカテゴリのデータおよび第2のカテゴリのデータを含み、前記第1のカテゴリのデータが、第1のデータ収集頻度で記録され、前記第2のカテゴリのデータが、前記第1のデータ収集頻度とは異なる第2のデータ収集頻度で記録される、請求項1~7のいずれか一項に記載のコンピュータ実装方法。
【請求項9】
認知機能低下を検出するための処理デバイスであって、
1つ以上のプロセッサと、
実行されるときに、前記1つ以上のプロセッサに請求項1~8のいずれか一項に記載の方法を実行させる命令を含むメモリと、を備える、処理デバイス。
【請求項10】
1つ以上のプロセッサによって実行されるときに、前記1つ以上のプロセッサに請求項1~8のいずれか一項に記載の方法を実行させるように構成されている、コンピュータ実行可能命令を記憶する、非一時的なコンピュータ可読記憶媒体。
【外国語明細書】