IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックセミコンダクターソリューションズ株式会社の特許一覧

特開2023-107471半導体レーザ装置及び半導体レーザ素子の製造方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023107471
(43)【公開日】2023-08-03
(54)【発明の名称】半導体レーザ装置及び半導体レーザ素子の製造方法
(51)【国際特許分類】
   H01S 5/0234 20210101AFI20230727BHJP
   H01S 5/22 20060101ALI20230727BHJP
   H01S 5/024 20060101ALI20230727BHJP
【FI】
H01S5/0234
H01S5/22
H01S5/024
【審査請求】未請求
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2022008695
(22)【出願日】2022-01-24
(71)【出願人】
【識別番号】520133916
【氏名又は名称】ヌヴォトンテクノロジージャパン株式会社
(74)【代理人】
【識別番号】100109210
【弁理士】
【氏名又は名称】新居 広守
(74)【代理人】
【識別番号】100137235
【弁理士】
【氏名又は名称】寺谷 英作
(74)【代理人】
【識別番号】100131417
【弁理士】
【氏名又は名称】道坂 伸一
(72)【発明者】
【氏名】永井 洋希
(72)【発明者】
【氏名】久納 康光
(72)【発明者】
【氏名】山田 篤志
(72)【発明者】
【氏名】中谷 東吾
(72)【発明者】
【氏名】荒木 剛
【テーマコード(参考)】
5F173
【Fターム(参考)】
5F173AA08
5F173AB74
5F173AH03
5F173AK23
5F173AP05
5F173AP32
5F173AP82
5F173MA08
5F173MC11
5F173MC13
5F173MD07
5F173MD63
5F173MD84
(57)【要約】
【課題】長期信頼性が低下することを抑制できる半導体レーザ装置を提供する。
【解決手段】半導体レーザ装置100は、ヒートシンク2と、接合部材3を介してヒートシンク2に接合され、パッド電極70が設けられた半導体レーザ素子1と、を備え、半導体レーザ素子1は、パッド電極70がヒートシンク2側となるように配置されており、半導体レーザ素子1は、パッド電極70の前端面が半導体レーザ素子1の前端面から後退した位置に存在することでパッド電極70から露出する露出面61aを有し、接合部材3は、半導体レーザ素子1の露出面61aに接続されており、半導体レーザ素子1の共振器長方向に平行な縦断面において、パッド電極70の前端面は、少なくとも一部が窪むように形成されており、接合部材3とパッド電極70の前端面との間に隙間4が形成されている。
【選択図】図5
【特許請求の範囲】
【請求項1】
ヒートシンクと、
接合部材を介して前記ヒートシンクに接合され、パッド電極が設けられた半導体レーザ素子と、を備え、
前記半導体レーザ素子は、前記パッド電極が前記ヒートシンク側となるように配置されており、
前記半導体レーザ素子は、前記パッド電極の前端面が前記半導体レーザ素子の前端面から後退した位置に存在することで前記パッド電極から露出する露出面を有し、
前記接合部材は、前記半導体レーザ素子の前記露出面に接続されており、
前記半導体レーザ素子の共振器長方向に平行な縦断面において、
前記パッド電極の前記前端面は、少なくとも一部が窪むように形成されており、
前記接合部材と前記パッド電極の前記前端面との間に隙間が形成されている、
半導体レーザ装置。
【請求項2】
前記パッド電極の前端部に庇部が形成されることで前記パッド電極の前端面の一部が窪んでいる、
請求項1に記載の半導体レーザ装置。
【請求項3】
前記ヒートシンクは、前記半導体レーザ素子側に導体層を有しており、
前記接合部材は、前記導体層と前記パッド電極とを接合している、
請求項1又は2に記載の半導体レーザ装置。
【請求項4】
前記半導体レーザ素子は、前記パッド電極の前記ヒートシンク側とは反対側の面に形成された電極層を有し、
前記露出面は、前記電極層の表面である、
請求項1~3のいずれか1項に記載の半導体レーザ装置。
【請求項5】
前記電極層は、第1電極層であり、
前記パッド電極における前記ヒートシンク側の面と前記電極層における前記ヒートシンク側の面とに第2電極層が形成されている、
請求項4に記載の半導体レーザ装置。
【請求項6】
前記半導体レーザ素子は、前記共振器長方向に延在するリッジ部を有し、
前記半導体レーザ素子の前記露出面における前記共振器長方向に垂直な縦断面において、
前記接合部材は、少なくとも前記リッジ部の幅の全域にわたって前記露出面に接続されている、
請求項1~5のいずれか1項に記載の半導体レーザ装置。
【請求項7】
前記接合部材は、前記露出面における前記半導体レーザ素子が有する半導体積層構造体の前端面の位置まで接続されている、
請求項1~6のいずれか1項に記載の半導体レーザ装置。
【請求項8】
前記半導体レーザ素子の前記前端面と前記パッド電極の前記前端面との間隔は、5μm以上15μm以下である、
請求項1~7のいずれか1項に記載の半導体レーザ装置。
【請求項9】
前記半導体レーザ素子は、前記共振器長方向において、前記ヒートシンクに接合された面に対して中央部が凹むように反っている、
請求項1~8のいずれか1項に記載の半導体レーザ装置。
【請求項10】
前記半導体レーザ素子の反り量は、1μm以上3μm以下である、
請求項9に記載の半導体レーザ装置。
【請求項11】
前記パッド電極は、第1パッド電極であり、
前記第1パッド電極の前記ヒートシンク側に第2パッド電極が形成されており、
上面視において、前記第2パッド電極は、前記半導体レーザ素子の前記共振器長方向に延在する光導波路の両側に形成されている、
請求項1~10のいずれか1項に記載の半導体レーザ装置。
【請求項12】
前記半導体レーザ素子は、共振器長方向に延在する光導波路の上に開口部を有する絶縁膜を備え、
上面視したときに、前記絶縁膜は、前記半導体レーザ素子の前端部を覆っている、
請求項1~11のいずれか1項に記載の半導体レーザ装置。
【請求項13】
ジャンクションダウン実装により接合部材を介してヒートシンクに接合される半導体レーザ素子の製造方法であって、
活性層を含む半導体積層構造体を形成する工程と、
前記半導体積層構造体の上方に電極層を形成する工程と、
前記電極層の上方にパッド電極を形成する工程と、を含み、
前記パッド電極を形成する工程では、前記パッド電極の前端面の少なくとも一部が窪むように前記パッド電極を形成する、
半導体レーザ素子の製造方法。
【請求項14】
前記パッド電極を形成する工程は、
前記電極層の一部を露出するように前記電極層の上に所定形状のレジストを形成する工程と、
露出した前記電極層と前記レジストとにまたがって前記パッド電極を形成する工程と、
前記レジストを除去する工程と、を含み、
前記パッド電極の厚さは、前記レジストの厚さより厚い、
請求項13に記載の半導体レーザ素子の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、半導体レーザ素子を備える半導体レーザ装置及び半導体レーザ装置に用いられる半導体レーザ素子の製造方法に関する。
【背景技術】
【0002】
半導体レーザ素子は、民生分野や産業分野を問わず、様々な分野の製品の光源に用いられている。例えば、半導体レーザは、ディスプレイやプロジェクタ等の画像表示装置の光源、自動車のヘッドランプの光源、又は、レーザ加工装置等の産業機器の光源等に用いられている。
【0003】
中でも、プロジェクタ又はレーザ加工装置の光源に用いられる半導体レーザ素子については、光出力が1ワットを大きく超える高出力化が要求されている。例えば、溶接、接合又は切断等のレーザ加工を行うレーザ加工装置の光源には、赤外光(例えば波長915nm帯)のレーザ光を出射する半導体レーザ素子が用いられるが、この場合、10W程度~数十W級の光出力が要求される。
【0004】
このような高出力の半導体レーザ素子は、動作電流が非常に大きく、レーザ光が出射する前端部(光出射端部)での発熱量が大きくなるので、前端部にCOD(Catastrophic Optical Damage)が発生するおそれがある。このため、半導体レーザ素子を高出力状態に保ったまま長期間にわたって安定した動作を実現するには、前端部で発生した熱を速やかに外部に逃がし、前端部における動作温度の上昇を抑えることが重要になる。
【0005】
そこで、従来、はんだ等の接合部材を用いて半導体レーザ素子をジャンクションダウン実装によりヒートシンク(サブマウント)に接合された構成の半導体レーザ装置が提案されている。この種の半導体レーザ装置をさらに改良した技術が特許文献1、2に開示されている。
【0006】
具体的には、特許文献1に開示された半導体レーザ装置では、半導体レーザ素子と放熱部材とを接合する接着剤を、半導体レーザ素子と放熱部材との間から半導体レーザ素子の前端面の直下における放熱部材の前端面にまで延長している。また、特許文献2に開示された半導体レーザ装置では、半導体レーザ素子とヒートシンクとを接合する接合層について、半導体レーザ素子の前端部に接続される接合層とそれ以外の部分に接続される接合層との材質を変更し、前端部に接続される接合層の融点を高くしている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】国際公開第2013/150715号
【特許文献2】特開2017-191899号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
半導体レーザ素子とヒートシンクとが接合部材により接合された半導体レーザ装置では、半導体レーザ素子の前端部で発生する熱をヒートシンクに逃がすために、半導体レーザ素子とヒートシンクとの間に介在する接合部材の一部を半導体レーザ素子の前端部にまで延在して接合部材のフィレットを形成することがある。これにより、CODレベルを安定させることができるとともに、自己発熱によって半導体レーザ素子の光出力が低下することを抑制することができる。
【0009】
しかしながら、半導体レーザ素子の前端部に接続された接合部材のフィレットが形成されると、このフィレットによって半導体レーザ素子の前端部に応力がかかることになる。この結果、半導体レーザ素子の長期信頼性が低下するおそれがある。特に、特許文献1に開示された半導体レーザ装置の構造では、接合部材のフィレットの端部から半導体レーザ素子にかかる応力が大きくなってしまう。また、特許文献2に開示された半導体レーザ装置の構造では、半導体レーザ素子における前端部とそれ以外の部分とで接合層の組成比を変更しているので、前端部とそれ以外の部分とで残留する歪量が異なる。このため、半導体レーザ素子にかかる応力が不均一に発生し、半導体レーザ素子の長期信頼性が低下するおそれがある。
【0010】
本開示は、このような課題を解決するものであり、半導体レーザ素子の前端部に接合部材が接続されていても、長期信頼性が低下することを抑制できる半導体レーザ装置及び半導体レーザ素子の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記課題を解決するために、本開示に係る半導体レーザ装置の一態様は、ヒートシンクと、接合部材を介して前記ヒートシンクに接合され、パッド電極が設けられた半導体レーザ素子と、を備え、前記半導体レーザ素子は、前記パッド電極が前記ヒートシンク側となるように配置されており、前記半導体レーザ素子は、前記パッド電極の前端面が前記半導体レーザ素子の前端面から後退した位置に存在することで前記パッド電極から露出する露出面を有し、前記接合部材は、前記半導体レーザ素子の前記露出面に接続されており、前記半導体レーザ素子の共振器長方向に平行な縦断面において、前記パッド電極の前記前端面は、少なくとも一部が窪むように形成されており、前記接合部材と前記パッド電極の前記前端面との間に隙間が形成されている。
【0012】
また、本開示に係る半導体レーザ素子の製造方法の一態様は、ジャンクションダウン実装により接合部材を介してヒートシンクに接合される半導体レーザ素子の製造方法であって、活性層を含む半導体積層構造体を形成する工程と、前記半導体積層構造体の上方に電極層を形成する工程と、前記電極層の上方にパッド電極を形成する工程と、を含み、前記パッド電極を形成する工程では、前記パッド電極の前端面の少なくとも一部が窪むように前記パッド電極を形成する。
【発明の効果】
【0013】
本開示によれば、半導体レーザ素子の前端部に接合部材が接続されていても、半導体レーザ素子にかかる応力を緩和できるので、半導体レーザ素子の長期信頼性が低下することを抑制できる。
【図面の簡単な説明】
【0014】
図1図1は、実施の形態1に係る半導体レーザ素子の平面図である。
図2A図2Aは、図1のIIA-IIA線における実施の形態1に係る半導体レーザ素子の断面図である。
図2B図2Bは、図1のIIB-IIB線における実施の形態1に係る半導体レーザ素子の断面図である。
図2C図2Cは、図1のIIC-IIC線における実施の形態1に係る半導体レーザ素子の断面図である。
図3図3は、実施の形態1に係る半導体レーザ装置の平面図である。
図4A図4Aは、図3のIVA-IVA線における実施の形態1に係る半導体レーザ装置の断面図である。
図4B図4Bは、図3のIVB-IVB線における実施の形態1に係る半導体レーザ装置の断面図である。
図4C図4Cは、図3のIVC-IVC線における実施の形態1に係る半導体レーザ装置の断面図である。
図5図5は、実施の形態1に係る半導体レーザ装置の拡大断面図である。
図6A図6Aは、実施の形態1に係る半導体レーザ素子の製造方法において、基板に半導体積層構造体を形成する工程を示す断面図である。
図6B図6Bは、実施の形態1に係る半導体レーザ素子の製造方法において、半導体積層構造体に窓領域を形成する工程を示す断面図である。
図6C図6Cは、実施の形態1に係る半導体レーザ素子の製造方法において、半導体積層構造体に開口部を形成する工程を示す断面図である。
図6D図6Dは、実施の形態1に係る半導体レーザ素子の製造方法において、半導体積層構造体に分離溝を形成する工程を示す断面図である。
図6E図6Eは、実施の形態1に係る半導体レーザ素子の製造方法において、半導体積層構造体に絶縁膜を形成する工程を示す断面図である。
図6F図6Fは、実施の形態1に係る半導体レーザ素子の製造方法において、p側電極層及びパッド電極を形成する工程を示す断面図である。
図6G図6Gは、実施の形態1に係る半導体レーザ素子の製造方法において、n側電極層を形成する工程を示す断面図である。
図7図7は、実施の形態1に係る半導体レーザ素子の製造方法において、パッド電極を形成する工程を説明するための図である。
図8図8は、実施の形態1に係る半導体レーザ装置のSEM像である。
図9図9は、比較例の半導体レーザ装置の構成を示す断面図である。
図10図10は、実施の形態1に係る半導体レーザ装置の構成を示す断面図である。
図11図11は、光出射端面からパッド電極端までの距離とCOD破壊電流との関係を示す図である。
図12図12は、実施の形態1の変形例1に係る半導体レーザ装置の構成を示す断面図である。
図13図13は、実施の形態1の変形例2に係る半導体レーザ装置の構成を示す断面図である。
図14図14は、実施の形態1に係る半導体レーザ装置における半導体レーザ素子の反り状態を説明するための図である。
図15図15は、半導体レーザ素子の共振器長方向の位置と反り量との関係を示す図である。
図16図16は、実施の形態2に係る半導体レーザ素子の平面図である。
図17A図17Aは、図16のXVIIA-XVIIA線における実施の形態2に係る半導体レーザ素子の断面図である。
図17B図17Bは、図16のXVIIB-XVIIB線における実施の形態2に係る半導体レーザ素子の断面図である。
図17C図17Cは、図16のXVIIC-XVIIC線における実施の形態2に係る半導体レーザ素子の断面図である。
図18図18は、実施の形態2に係る半導体レーザ装置の拡大断面図である。
図19図19は、実施の形態2の変形例に係る半導体レーザ装置の拡大断面図である。
図20A図20Aは、実施の形態2に係る半導体レーザ素子の製造方法において、第2のp側電極層を形成する工程を示す断面図である。
図20B図20Bは、実施の形態2に係る半導体レーザ素子の製造方法において、n側電極層を形成する工程を示す断面図である。
図21図21は、実施の形態3に係る半導体レーザ素子の平面図である。
図22A図22Aは、図21のXXIIA-XXIIA線に対応する部分で実施の形態3に係る半導体体レーザ装置を切断したときの断面の一部を示す図である。
図22B図22Bは、図21のXXIIB-XXIIB線に対応する部分で実施の形態3に係る半導体体レーザ装置を切断したときの断面の一部を示す図である。
図22C図22Cは、図21のXXIIC-XXIIC線に対応する部分で実施の形態3に係る半導体体レーザ装置を切断したときの断面の一部を示す図である。
図23A図23Aは、実施の形態3に係る半導体レーザ素子の製造方法において、パッド電極、第2パッド電極及び第2のp側電極層を形成する工程を示す断面図である。
図23B図23Bは、実施の形態3に係る半導体レーザ素子の製造方法において、n側電極層を形成する工程を示す断面図である。
図24図24は、実施の形態3の変形例1に係る半導体レーザ素子の平面図である。
図25図25は、実施の形態3の変形例2に係る半導体レーザ素子の平面図である。
【発明を実施するための形態】
【0015】
以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ(工程)及びステップの順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
【0016】
また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
【0017】
また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに接する状態で配置される場合にも適用される。
【0018】
(実施の形態1)
[半導体レーザ素子]
まず、実施の形態1に係る半導体レーザ素子1の構成について、図1図2A図2B及び図2Cを用いて説明する。図1は、実施の形態1に係る半導体レーザ素子1の平面図である。図2A図2Cは、実施の形態1に係る半導体レーザ素子1の断面図である。図2A図2B及び図2Cは、それぞれ、図1のIIA-IIA線、図1のIIB-IIB線及び図1のIIC-IIC線における断面を示している。図2Aは、電流が注入される領域である電流注入領域に対応する部分の断面が示されており、図2Bは、半導体レーザ素子1の前端部における電流が注入されない領域である電流非注入領域に対応する部分の断面が示されている。
【0019】
図1に示すように、半導体レーザ素子1は、前端面1aと、前端面1aとは反対側の面である後端面1bとを有する。前端面1aは、レーザ光が出射するフロント端面(光出射端面)であり、後端面1bは、レーザ光が出射しないリア端面である。
【0020】
半導体レーザ素子1は、前端面1aと後端面1bとを共振器反射ミラーとする光導波路を有する。したがって、前端面1a及び後端面1bは、共振器端面となる。つまり、半導体レーザ素子1では、前端面1aと後端面1bとによって共振器が形成される。このため、後端面1bは、前端面1aよりも反射率が高くなっている。一例として、前端面1aの反射率は、5%であり、後端面1bの反射率は、95%である。また、半導体レーザ素子1の共振器長は、前端面1aと後端面1bとの間の距離である。本実施の形態において、半導体レーザ素子1の共振器長は、2mm以上であり、さらに4mm以上であってもよい。なお、半導体レーザ素子1の共振器長は、2mm未満であってもよい。また、半導体レーザ素子1は、共振器長方向に長尺をなす形状になっている。
【0021】
半導体レーザ素子1は、前端面1aから10W程度~数十W級の光出力でレーザ光を出射する。一例として、半導体レーザ素子1は、25Wの光出力で波長976nm帯にピーク波長を有する赤外光を出射する。なお、半導体レーザ素子1のレーザ光のピーク波長は、これに限るものではない。
【0022】
図2A図2Cに示すように、半導体レーザ素子1は、基板10と、基板10の上方に形成された半導体積層構造体20とを有する。本実施の形態における半導体レーザ素子1は、AlGaInAs系のIII-V族半導体材料によって構成された化合物半導体レーザである。したがって、半導体積層構造体20は、各々がIII-V族半導体材料によって構成された複数の半導体層が積層された構造になっている。
【0023】
図1及び図2Cに示すように、半導体積層構造体20の前端面には、第1端面コート膜20aが形成されている。また、半導体積層構造体20の後端面には、第2端面コート膜20bが形成されている。第1端面コート膜20a及び第2端面コート膜20bは、誘電体多層膜によって構成された反射膜である。例えば、第1端面コート膜20aは、AlとSiOとの多層膜であり、第2端面コート膜20bは、AlとSiOとTaとの多層膜である。一例として、第1端面コート膜20aの反射率は5%であり、第2端面コート膜20bの反射率は95%である。なお、第1端面コート膜20aの前端面が半導体レーザ素子1の前端面1aとなり、第2端面コート膜20bの後端面が半導体レーザ素子1の後端面1bとなる。
【0024】
図2A及び図2Bに示すように、半導体積層構造体20の側部には、分離溝20cが形成されている。分離溝20cは、半導体レーザ素子1を個片化する際に用いる溝であり、上面視において、共振器長方向に延在している。本実施の形態において、分離溝20cは、くびれるように形成されている。
【0025】
基板10は、主面が一様に平面である平面状の基板である。基板10は、GaAs基板等の半導体基板又はサファイア基板等の絶縁基板である。本実施の形態において、基板10は、n型GaAs基板である。
【0026】
図2A図2Cに示すように、半導体積層構造体20は、基板10の一方の面の上に、n型半導体層21と、活性層22と、p型半導体層23と、p型コンタクト層24とを順に有する。つまり、基板10の上にn型半導体層21が形成され、n型半導体層21の上に活性層22が形成され、活性層22の上にp型半導体層23が形成され、p型半導体層23の上にp型コンタクト層24が形成されている。
【0027】
n型半導体層21は、第1導電型の第1半導体層の一例である。本実施の形態において、n型半導体層21は、基板10の上に順次積層された、n型バッファ層、n型第1組成傾斜層、n型クラッド層、及び、n型第2組成傾斜層を有する。
【0028】
n型バッファ層、n型第1組成傾斜層、n型クラッド層及びn型第2組成傾斜層は、シリコン(Si)等の不純物が意図的にドーピングされたn型の半導体層であり、例えばn型GaAs層又はn型AlGaAs層によって構成されている。なお、n型半導体層21には、不純物が意図的にドーピングされていないアンドープの半導体層が含まれていてもよい。
【0029】
一例として、n型バッファ層は、膜厚0.50μmのn-GaAsからなるn型GaAS層であり、n型第1組成傾斜層は、膜厚0.05μmのn-AlGa1-xAs(x=0.15~0.32)からなるn型AlGaAs層であり、n型クラッド層は、膜厚3.0μmのn-Al0.32Ga0.715Asからなるn型AlGaAs層であり、n型第2組成傾斜層は、膜厚0.03μmのn-AlGa1-xAs(x=0.32~0.285)のn型AlGaAs層である。
【0030】
活性層22は、n型半導体層21の上に形成されている。本実施の形態において、活性層22は、n型半導体層21の上に順次積層された、n型ガイド層、n側第2バリア層、n側第1バリア層、ウェル層、p側第1バリア層、p側第2バリア層、及び、p型ガイド層を有する。
【0031】
n型ガイド層、n側第2バリア層及びn側第1バリア層は、シリコン等の不純物が意図的にドーピングされたn型半導体層であり、例えばn型AlGaAs層又はn型AlGaInAs層によって構成されている。
【0032】
一例として、n型ガイド層は、膜厚1.05μmのn-Al0.285Ga0.715Asからなるn型AlGaAs層であり、n側第2バリア層は、膜厚0.0268μmのn-Al0.15Ga0.85Asからなるn型AlGaAs層と膜厚0.0083μmのAl0.15Ga0.85AsからなるアンドープAlGaAs層との2層からなり、n側第1バリア層は、0.0018μmのAl0.50Ga0.32In0.18AsからなるAlGaInAs層である。
【0033】
また、p側第1バリア層、p側第2バリア層及びp型ガイド層は、は、炭素(C)等の不純物が意図的にドーピングされたp型の半導体層であり、例えばp型AlGaAs層又はp型AlGaInAs層によって構成されている。なお、p側第1バリア層及びp側第1バリア層は、不純物がドーピングされたドープ領域以外に、不純物がドーピングされていないアンドープ領域を有していてもよい。
【0034】
一例として、p側第1バリア層は、0.0018μmのAl0.50Ga0.32In0.18AsからなるAlGaInAs層であり、p側第2バリア層は、膜厚0.0083μmのAl0.15Ga0.85AsからなるアンドープAlGaAs層と膜厚0.025μmのp-Al0.15Ga0.85Asからなるp型AlGaAs層との2層からなり、p型ガイド層は、膜厚0.22μmのp-Al0.28Ga0.72Asからなるp型AlGaAs層である。
【0035】
また、ウェル層は、例えば、単一の量子井戸層を含む単一量子井戸構造である。ウェル層は、例えば、アンドープのInGaAs層によって構成されている。一例として、ウェル層は、膜厚0.0090μmのIn0.135Ga0.865AsからなるInGaAs層である。なお、ウェル層は、単一量子井戸構造に限らず、複数の量子井戸層を含む多重量子井戸構造であってもよい。
【0036】
p型半導体層23は、第1導電型とは異なる第2導電型の第2半導体層の一例である。本実施の形態において、p型半導体層23は、活性層22の上に順次積層された、p型第1組成傾斜層、p型クラッド層及びp型第2組成傾斜層を有する。p型第1組成傾斜層、p型クラッド層及びp型第2組成傾斜層は、炭素等の不純物が意図的にドーピングされたp型の半導体層であり、例えばp型AlGaAs層によって構成されている。なお、p型第1組成傾斜層、p型クラッド層及びp型第2組成傾斜層の不純物濃度は、例えば、1.0×1019(cm-3)未満である。
【0037】
一例として、p型第1組成傾斜層は、膜厚0.05μmのp-AlGa1-xAs(x=0.28~0.70)からなるp型AlGaAs層であり、p型クラッド層は、膜厚0.75μmのp-Al0.70Ga0.30Asからなるp型AlGaAs層であり、p型第2組成傾斜層は、膜厚0.05μmのp-AlGa1-xAs(x=0.70~0.15)からなるp型AlGaAs層である。
【0038】
p型コンタクト層24は、第2導電型の第3半導体層の一例である。p型コンタクト層は、炭素等の不純物が意図的にドーピングされたp型の半導体層であり、例えばp型GaAs層によって構成されている。なお、p型コンタクト層の不純物濃度は、例えば、1.0×1019(cm-3)以上である。一例として、p型コンタクト層は、膜厚0.25μmのp-GaAsからなるp型GaAs層である。
【0039】
半導体レーザ素子1は、共振器長方向に延在する導波路として、リッジ状に形成されたリッジ部1Rを有する。リッジ部1Rは、共振器長方向に延在している。リッジ部1Rは、半導体レーザ素子1における電流注入領域として機能する。図2A及び図2Bに示すように、リッジ部1Rは、p型半導体層23及びp型コンタクト層24に形成されている。
【0040】
具体的には、図2Aに示すように、リッジ部1Rは、p型半導体層23及びp型コンタクト層24に開口部30を掘り込むことで形成されている。本実施の形態において、リッジ部1Rの最上層は、p型コンタクト層24になっている。開口部30の底部30aは、リッジ底部を構成しており、p型半導体層23内に位置する平坦部である。
【0041】
本実施の形態において、開口部30は、一対の横溝部31を有する。図2Aに示すように、リッジ部1Rは、開口部30における一対の横溝部31によって挟まれている。図1に示すように、開口部30の一対の横溝部31は、互いに平行であり、レーザ共振器長方向に延在している。
【0042】
また、図1及び図2Bに示すように、開口部30は、一対の横溝部31だけではなく、前溝部32及び後溝部33も有する。前溝部32は、リッジ部1Rの延長上における半導体レーザ素子1の前端部に形成され、後溝部33は、リッジ部1Rの延長上における半導体レーザ素子1の後端部に形成されている。p型半導体層23及びp型コンタクト層24に前溝部32及び後溝部33が形成されることで、リッジ部1Rは、半導体レーザ素子1の前端部及び後端部には存在しないようになっている。一対の横溝部31と前溝部32と後溝部33とは連続して形成されている。したがって、リッジ部1Rは、開口部30で囲まれるように構成されている。なお、前溝部32と後溝部33は形成されなくてもよい。
【0043】
また、図2Aに示すように、p型半導体層23及びp型コンタクト層24に開口部30を形成することで、半導体レーザ素子1に一対のウイング部40が形成されている。一対のウイング部40は、リッジ部1Rの側方に位置している。つまり、リッジ部1Rは、開口部30を介して一対のウイング部40によって挟まれている。一対のウイング部40は、半導体レーザ素子1の共振器長方向に沿って延在している。
【0044】
また、図2A図2Cに示すように、リッジ部1R上の一部を除き、p型コンタクト層24の上には、SiO又はSiN等の誘電体膜からなる絶縁膜50が形成されている。具体的には、絶縁膜50は、p型コンタクト層24のリッジ部1Rの上に開口部50aを有するように形成されている。絶縁膜50は、電流ブロック膜として機能する。したがって、絶縁膜50の開口部50aは、電流が通過する電流注入窓である。
【0045】
また、絶縁膜50は、p型半導体層23及びp型コンタクト層24に形成された開口部30の底部30aを覆っている。したがって、半導体レーザ素子1の前端部における開口部30の底部30a(具体的には、前溝部32の底部)は、絶縁膜50で覆われている。つまり、上面視したときに、絶縁膜50は、半導体レーザ素子1の前端部を覆っている。これにより、半導体レーザ素子1の前端部及び窓領域に電流が拡がることを抑制することができ、光出力の低下及び信頼性の低下を抑制することができる。
【0046】
図2A及び図2Bに示すように、絶縁膜50は、さらに、半導体積層構造体20の側面も覆っている。具体的には、絶縁膜50は、p型コンタクト層24の側面全面、p型半導体層23の側面全面、活性層22の側面全面、及び、n型半導体層21の側面の一部を覆っている。
【0047】
図2Cに示すように、半導体レーザ素子1における半導体積層構造体20は、共振器長方向の前端部に窓領域22a(端面窓構造)を有する。具体的には、活性層22におけるリッジ部1Rの前端面付近の電流非注入領域において、前端面1aから所定の長さの領域に窓領域22aが形成されている。窓領域22aは、半導体積層構造体20の前端部に形成されている。なお、導波路における窓領域22aが形成されていない領域は利得領域である。このように、半導体レーザ素子1の前端部に窓領域22a(端面窓構造)を形成することで、半導体レーザ素子1の前端部を透明化して前端面1a付近における光吸収を低減することができる。これにより、半導体レーザ素子1の前端部にCODが発生することを抑制できる。なお、半導体積層構造体20の後端部にも、同様の窓領域が形成されていてもよい。なお、半導体レーザ素子1の前端部及び後端部には、窓領域が形成されなくてもよい。
【0048】
半導体レーザ素子1は、p側の第1電極として、p側電極層61を有する。p側電極層61は、半導体積層構造体20の上に形成されている。具体的には、p側電極層61は、p型コンタクト層24の上方に形成されている。本実施の形態において、p側電極層61は、リッジ部1Rの上方においてp型コンタクト層24に接するように形成されている。具体的には、p側電極層61は、p型コンタクト層24とオーミック接触している。本実施の形態において、p側電極層61は、リッジ部1Rの上だけではなく、絶縁膜50を介して開口部30内及びウイング部40上にも形成されている。
【0049】
p側電極層61は、金属材料によって構成された金属層である。p側電極層61は、例えば、Pt、Ti、Cr、Ni、Mo及びAuの少なくとも一つで形成された単層膜又は多層膜である。本実施の形態において、p側電極層61は、多層膜によって構成されている。一例として、p側電極層61は、p型コンタクト層24側から、Ti膜、Pt膜及びAu膜の順で積層された3層構造の多層膜である。
【0050】
また、半導体レーザ素子1は、n側の第2電極として、n側電極層62を有する。n側電極層62は、基板10の一方の面(半導体積層構造体20側の面)とは反対側の面である他方の面(下面)の下方に形成されている。本実施の形態において、n側電極層62は、基板10の他方の面に直接形成されている。
【0051】
n側電極層62は、金属材料によって構成された金属層である。n側電極層62は、例えば、Cr、Ti、Ni、Pd、Pt、Au及びGeの少なくとも一つで形成された単層膜又は多層膜である。本実施の形態において、n側電極層62は、多層膜によって構成されている。一例として、n側電極層62は、例えば、基板10側から、AuGe膜、Ni膜、Au膜、Ti膜、Pt膜、及び、Au膜の順で積層された6層構造の多層膜である。
【0052】
さらに、半導体レーザ素子1は、パッド電極70を有する。パッド電極70は、p側電極層61の上方に形成されている。具体的には、パッド電極70は、p側電極層61の上面に接するようにしてp側電極層61に積層されている。つまり、p側電極層61は、パッド電極70の下面に形成されている。パッド電極70は、p側電極層61とともにp側の電極を構成するp側パッド電極である。本実施の形態において、パッド電極70は、p側電極層61の上方に形成されている。したがって、パッド電極70は、リッジ部1Rの上方だけではなく、ウイング部40の上方にも形成されている。
【0053】
パッド電極70は、金属材料によって構成された金属層である。本実施の形態において、パッド電極70は、Auめっき膜であるが、これに限らない。
【0054】
図2Cに示すように、パッド電極70の前端面は、半導体レーザ素子1の前端面1aから後退した位置に存在している。このように、パッド電極70の前端面が半導体レーザ素子1の前端面1aから後退した位置に存在することで、半導体レーザ素子1は、パッド電極70から露出する露出面61aを有することになる。本実施の形態において、この露出面61aは、p側電極層61の表面になっている。パッド電極70の前端面と半導体レーザ素子1の前端面1aとの間隔L(パッド電極70の前端部の後退量)は、例えば、5μm以上15μm以下であるが、これに限るものではない。
【0055】
また、半導体レーザ素子1の共振器長方向に平行な縦断面において、パッド電極70の前端面は、少なくとも一部が窪むように形成されている。具体的には、パッド電極70の前端部には庇部71(オーバーハング部)が形成されている。このように、本実施の形態では、パッド電極70の前端部に庇部71が形成されていることで、パッド電極70の前端面の一部が窪んでいる。これにより、パッド電極70の前端面には、当該前端面の一部が共振器長方向の後方に向けて凹んだ凹部70aが形成されている。
【0056】
図2Aに示すように、本実施の形態において、庇部71は、パッド電極70の側面にも形成されている。なお、図示されていないが、庇部71は、パッド電極70の後端面にも形成されている。つまり、庇部71は、パッド電極70の全周にわたって形成されている。
【0057】
[半導体レーザ装置]
次に、半導体レーザ素子1を用いた半導体レーザ装置100の構成について、図3図4A図4B図4C及び図5を用いて説明する。図3は、実施の形態1に係る半導体レーザ装置100の平面図である。図4A図4Cは、実施の形態1に係る半導体レーザ装置100の断面図である。図4A図4B及び図4Cは、それぞれ、図3のIVA-IVA線、図3のIVB-IVB線及び図3のIVC-IVC線における断面を示している。また、図5は、図4Cの破線で囲まれる領域Vの拡大断面図である。
【0058】
図3図5に示すように、本実施の形態に係る半導体レーザ装置100は、半導体レーザ素子1と、ヒートシンク2と、半導体レーザ素子1とヒートシンク2とを接合する接合部材3とを備える。つまり、半導体レーザ素子1は、接合部材3を介してヒートシンク2に接合されている。
【0059】
半導体レーザ素子1は、ジャンクションダウン実装によりヒートシンク2に接合されている。つまり、半導体レーザ素子1は、パッド電極70がヒートシンク2側となるように配置されている。具体的には、半導体レーザ素子1は、ヒートシンク2の上方において、パッド電極70側が下向きになるように配置し、接合部材3によってヒートシンク2に接合されている。
【0060】
ヒートシンク2は、半導体レーザ素子1で発生する熱を放熱するための放熱部材である。本実施の形態において、ヒートシンク2は、半導体レーザ素子1を実装するためのサブマウント(基台)としても機能する。半導体レーザ素子1は、ヒートシンク2の上に位置している。
【0061】
図4Cに示すように、ヒートシンク2は、ヒートシンク本体2aと、第1導体層2bと、第2導体層2cと、第3導体層2dと、第4導体層2eとを有する。
【0062】
第1導体層2b及び第2導体層2cは、ヒートシンク本体2aの半導体レーザ素子1側に形成されている。第1導体層2bは、ヒートシンク本体2aの上面に形成されており、第2導体層2cは、第1導体層2bの上面に形成されている。本実施の形態において、第2導体層2cは、第1導体層2bが露出しないように第1導体層2bの前端面及び後端面も覆っている。
【0063】
第3導体層2d及び第4導体層2eは、ヒートシンク本体2aの半導体レーザ素子1側とは反対側に形成されている。第3導体層2dは、ヒートシンク本体2aの下面に形成されており、第4導体層2eは、第3導体層2dの下面に形成されている。本実施の形態において、第4導体層2eは、第3導体層2dが露出しないように第3導体層2dの前端面及び後端面も覆っている。
【0064】
ヒートシンク本体2aは、例えば、AlN、CuW、ダイヤモンド、SiC等の高熱伝導材料によって構成される。本実施の形態において、ヒートシンク本体2aは、AlNによって構成されている。ヒートシンク本体2aの形状は、一例として、直方体である。
【0065】
第1導体層2b、第2導体層2c、第3導体層2d及び第4導体層2eは、金属材料によって構成された金属層である。第1導体層2b、第2導体層2c、第3導体層2d及び第4導体層2eは、単層膜であってもよいし、多層膜であってもよい。
【0066】
ヒートシンク本体2aに接する第1導体層2b及び第3導体層2dは、Cu等の伝導率が高い金属材料によって構成された高放熱導体層である。本実施の形態において、第1導体層2b及び第3導体層2dは、Cu膜である。
【0067】
接合部材3に接する第2導体層2cは、接合部材3との密着性が高い金属材料によって構成されているとよい。本実施の形態において、第2半導体層2cは、第1半導体層2bから接合部材3に向かって、Ni膜、Au膜及びPt膜が順次形成された3層構造の多層膜である。なお、第4導体層2eは、第2導体層2cと同様の構成になっている。
【0068】
図5に示すように、ヒートシンク2に実装される半導体レーザ素子1は、前端面1aがヒートシンク2の前端面から突出しないように配置されている。つまり、半導体レーザ素子1の前端面1aは、ヒートシンク2の前端面よりも後退した位置に存在している。なお、半導体レーザ素子1の前端面1aは、ヒートシンク2のヒートシンク本体2aの前端面と第2導体層2cの前端面との間に位置している。
【0069】
図4A図4C及び図5に示すように、接合部材3は、半導体レーザ素子1とヒートシンク2とを接合しており、半導体レーザ素子1とヒートシンク2との間に介在している。具体的には、接合部材3は、半導体レーザ素子1のパッド電極70とヒートシンク2の第2導体層2cとを接合している。
【0070】
また、図5に示すように、接合部材3は、半導体レーザ素子1の前端部にまで延在されており、半導体レーザ素子1の前端部に接続されている。これにより、接合部材3を介して半導体レーザ素子1の前端部で発生する熱をヒートシンク2に伝導させることができるので、半導体レーザ素子1の前端部にCODが発生することを抑制することができる。本実施の形態において、接合部材3は、半導体レーザ素子1の前端部における露出面61aに接続されている。つまり、接合部材3は、半導体レーザ素子1のp側電極層61に接続されている。
【0071】
具体的には、接合部材3にはフィレット3aが形成されており、フィレット3aが半導体レーザ素子1の前端部に接続されている。フィレット3aは、接合部材3において、半導体レーザ素子1とヒートシンク2との間からはみ出した部分である。本実施の形態において、接合部材3は、半田であるので、フィレット3aは、半田フィレットである。
【0072】
また、接合部材3は、半導体レーザ素子1の露出面61aにおける半導体レーザ素子1が有する半導体積層構造体20の前端面の位置まで接続されている。つまり、フィレット3aは、半導体積層構造体20の前端面の位置まで形成されている。なお、フィレット3aは、露出面61aにおける半導体レーザ素子1の前端面1aの位置まで形成されていてもよい。
【0073】
本実施の形態において、接合部材3は、半導体レーザ素子1の前端部に接続されているだけではなく、ヒートシンク2の前端面にも接続されている。具体的には、パッド電極70とヒートシンク2との間から前方にはみ出した接合部材3のフィレット3aが、半導体レーザ素子1の前端部における露出面61aに接続されているとともに、ヒートシンク2の第2導体層2cの前端面に接続されている。
【0074】
また、図4Aに示すように、半導体レーザ素子1の露出面61aにおける共振器長方向に垂直な縦断面において、接合部材3は、少なくともリッジ部1Rの幅(リッジ幅)の全域にわたって露出面61aに接続されている。本実施の形態において、接合部材3は、半導体レーザ素子1の露出面61aにおける共振器長方向に垂直な縦断面において、露出面61aの全面に形成されている。具体的には、図4Aに示すように、接合部材3の幅は、露出面61aの幅よりも大きくなっている。
【0075】
接合部材3は、例えば、AuSnを主成分とするAuSnはんだ等のはんだ材、又は、金属ろう材である。本実施の形態において、接合部材3は、AuSnはんだである。なお、半導体レーザ素子1とヒートシンク2との間における接合部材3の厚さは、一例として、3μm~7μmである。
【0076】
図5に示すように、本実施の形態における半導体レーザ装置100では、半導体レーザ素子1の共振器長方向に平行な縦断面において、接合部材3とパッド電極70の前端面との間に隙間4が形成されている。具体的には、隙間4は、接合部材3のフィレット3aとパッド電極70の前端面と半導体レーザ素子1の露出面61aとで囲まれた空隙(空洞)であり、意図的に形成されたものである。隙間4は、少なくともパッド電極70の庇部71と半導体レーザ素子1の露出面61aとの間に存在している。
【0077】
隙間4の断面形状は、一例として、略台形状である。したがって、隙間4におけるパッド電極70の前端面及び接合部材3(フィレット3a)の隙間4側の内面は、いずれも傾斜面になっている。この場合、半導体レーザ素子1の露出面61aとパッド電極70の前端面とのなす角は、半導体レーザ素子1の露出面61aと接合部材3(フィレット3a)の内面とのなす角よりも大きくなっている。
【0078】
なお、隙間4は、図5の紙面垂直方向において延在している。つまり、隙間4は、柱状であり、半導体レーザ素子1における半導体積層構造体20の積層方向及び共振器長方向のいずれにも直交する方向に沿って延在している。
【0079】
[半導体レーザ素子の製造方法]
次に、図1図2Cに示される半導体レーザ素子1の製造方法について、図6A図6Gを用いて説明する。図6A図6Gは、実施の形態1に係る半導体レーザ素子1の製造方法における各工程の断面図である。なお、図6A図6Gの各図において、(a)は、図2Aに対応する断面(電流注入領域の断面)を示しており、(b)は、図2Bに対応する断面(前端部における電流非注入領域の断面)を示している。
【0080】
まず、図6Aの(a)及び(b)に示すように、基板10を準備し、基板10の上に、活性層22を含む半導体積層構造体20を形成する。具体的には、n-GaAS基板のウエハである基板10の上に、有機金属気層成長法(Metalorganic Chemical Vapor Deposition;MOCVD法)による結晶成長技術により、n型半導体層21、活性層22、p型半導体層23及びp型コンタクト層24を順次成膜する。
【0081】
次に、図6Bの(a)及び(b)に示すように、半導体積層構造体20における共振器長方向の前端部に対応する部分にのみ窓領域22aを形成する。本実施の形態において、窓領域22aは、活性層22に空孔を拡散することで形成される。なお、窓領域22aは、空孔拡散法によって形成したが、これに限らない。なお、半導体レーザ素子1の前端部及び後端部には窓領域が形成されなくてもよい。
【0082】
次に、図6Cの(a)及び(b)に示すように、p型コンタクト層24に、リッジ部1Rとウイング部40を画定するための開口部30を形成する。具体的には、p型コンタクト層24の上に、フォトリソグラフィー技術によりSiO等からなるマスクを所定のパターンで形成し、その後、ウェットエッチング技術によって、開口部30を形成する。
【0083】
このとき、図6Cの(a)に示すように、電流注入領域においては、横溝部31を形成することで、リッジ部1Rに対応する部分のp型コンタクト層24には凸部5aを形成するとともに、ウイング部40に対応する部分のp型コンタクト層24には凸部5bを形成する。一方、図6Cの(b)に示すように、半導体レーザ素子1の前端部(電流非注入領域)においては、凸部5aを形成せず、p型コンタクト層24には前溝部32を形成する。なお、前溝部32と後溝部33は形成されなくてもよい。
【0084】
なお、半導体レーザ素子1のチップ端領域においては、個片化する際の分離溝20cに対応する部分のp型コンタクト層24に別途凹部を形成しておいてもよい。この凹部は、半導体積層構造体20の両側部に形成されており、上面視において、共振器長方向に延在している。
【0085】
次に、図6Dの(a)及び(b)に示すように、半導体積層構造体20の側面に傾斜面を有する分離溝20cを形成する。具体的には、p型半導体層23の上に、フォトリソグラフィー技術を用いてSiO等からなるマスクを所定のパターンで形成し、その後、ウェットエッチング技術によって、p型半導体層23からn型半導体層21の途中までをエッチングすることで、半導体積層構造体20の側面を傾斜させた分離溝20cを形成することができる。
【0086】
なお、分離溝20cを形成する際のエッチング液は、例えば、硫酸系のエッチング液を用いることができる。この場合、硫酸:過酸化水素水:水=1:1:10のエッチング液を用いることができる。また、エッチング液は、硫酸系のエッチング液に限らず、有機酸系のエッチング液又はアンモニア系のエッチング液を用いてもよい。このとき、分離溝20cは、等方性のウェットエッチングにより形成される。これにより、半導体積層構造体20の側面に傾斜面を形成して、半導体積層構造体20の側面にくびれ構造を形成することができる。
【0087】
次に、分離溝20cを形成する際のマスクをフッ酸系のエッチング液で除去した後に、図6Eの(a)及び(b)に示すように、基板10上の全面に、絶縁膜50としてSiN膜を堆積し、その後、フォトリソグラフィー技術及びエッチング技術を用いて、電流注入領域に対応する部分の絶縁膜50を除去することで開口部50aを形成する。なお、図6Eの(b)に示すように、電流非注入領域に対応する部分の絶縁膜50は除去されず、電流非注入領域に対応する部分の絶縁膜50には開口部50aが形成されない。
【0088】
絶縁膜50のエッチングとしては、フッ酸系エッチング液を用いたウェットエッチング又は反応性イオンエッチング(RIE)によるドライエッチングを用いることができる。また、絶縁膜50は、SiN膜としたが、これに限らず、SiO膜などであってもよい。
【0089】
次に、図6Fの(a)及び(b)に示すように、半導体積層構造体20の上方にp側電極層61を形成し、その後、p側電極層61の上方にパッド電極70を形成する。
【0090】
具体的には、電子ビーム蒸着法によってTi膜とPt膜とAu膜との積層膜からなるp側電極層61を半導体積層構造体20のp型コンタクト層24の上に形成する。その後、p側電極層61を下地電極として、p側電極層61の上に、Auめっき膜からなるパッド電極70を形成する。このとき、パッド電極70を形成する工程では、レジストマスクを用いてパターニングすることで、パッド電極70の前端面の少なくとも一部が窪むようにパッド電極70を形成する。なお、p側電極層61は、共振器長方向のほぼ全長にわたって形成されるが、パッド電極70は、共振器長方向の全長にわたって形成されておらず、前端部には形成されていない。
【0091】
ここで、パッド電極70を形成する工程について、図7を用いて詳細に説明する。まず、図7の(a)に示すように、p側電極層61の一部を露出するようにp側電極層61の上に所定形状のレジスト80(レジストマスク)を形成する。次に、図7の(b)に示すように、露出したp側電極層61とレジスト80とにまたがってパッド電極70を形成する。具体的には、電解めっき法によってp側電極層61を下地電極としてAuめっき膜を形成し、その後、フォトリソグラフィー技術、エッチング技術及びリフトオフ技術を用いて、半導体積層構造体20の前端部近傍のAuめっき膜を選択的に除去することで、図7の(b)に示される形状のパッド電極70を形成することができる。次に、図7の(c)に示すように、レジスト80を除去する。これにより、p側電極層61の表面が露出して露出面61aが形成される。
【0092】
また、このパッド電極70を形成する工程において、パッド電極70(Auめっき膜)の厚さは、レジスト80の厚さより厚くするとよい。これにより、レジスト80の端部に覆いかぶさるようにパッド電極70(Auめっき膜)が形成されるので、パッド電極70の前端部に庇部71を形成することができる。このようにして、前端部に庇部71を有するパッド電極70を形成することができる。この場合、図7の(c)に示すように、パッド電極70の凹部70aの傾斜面の角度θは、65±15°であり、パッド電極70の庇部71の長さdは、0.4μm~2.0μmである。なお、レジスト80の厚さは、例えば、1.8μmである。
【0093】
次に、図6Gの(a)及び(b)に示すように、基板10の下面に、n側電極層62を形成する。具体的には、基板10側から、AuGe膜、Ni膜、Au膜、Ti膜、Pt膜、及び、Au膜を順次成膜することで、基板10の下面にn側電極層62を形成する。
【0094】
その後、図示しないが、所定形状の半導体積層構造体20が形成された基板10(ウエハ)を、ブレードを用いたダイシング又は劈開等によって複数本のバー状に分離し、その後、さらに分離溝20cを切断部として切断することでチップ分離を行う。これにより、個片状の半導体レーザ素子1を作製することができる。
【0095】
そして、半導体レーザ素子1を接合部材3によってジャンクションダウン実装によりヒートシンク2に接合することで、図3図5に示される半導体レーザ装置100を作製することができる。
【0096】
このとき、半導体レーザ素子1によって液状の接合部材3が押しつけられることになるので、半導体レーザ素子1とヒートシンク2との間から液状の接合部材3がはみ出して、半導体レーザ素子1の前端部に接合部材3に接続することになるが、本実施の形態に係る半導体レーザ素子1では、パッド電極70の前端部に庇部71が形成されているので、液状の接合部材3は、突出する庇部71の内側に回り込まない。この結果、図5に示すように、接合部材3はパッド電極70の前端面に接触しなくなるので、隙間4が形成されることになる。
【0097】
図8は、このようにして実際に作製した半導体レーザ装置100のSEM像である。図8に示すように、半導体レーザ装置100では、半導体レーザ素子1の共振器長方向に平行な縦断面において、接合部材3とパッド電極70の前端面との間に隙間4が形成されていることが分かる。
【0098】
次に、図9及び図10を用いて、本実施の形態に係る半導体レーザ装置100の作用効果について、比較例の半導体レーザ装置100Xと比較して説明する。図9は、比較例の半導体レーザ装置100Xの構成を示す断面図である。図10は、実施の形態1に係る半導体レーザ装置100の構成を示す断面図である。なお、図10は、図5に対応する断面図である。
【0099】
図9に示すように、比較例の半導体レーザ装置100Xでは、CODの発生を抑制するために、半導体レーザ素子1Xとヒートシンク2とを接合する接合部材3Xは、半導体レーザ素子1Xの前端部に接続されている。接合部材3Xとしては、AuSnはんだが用いられている。
【0100】
また、比較例の半導体レーザ装置100Xでは、半導体レーザ素子1Xのパッド電極70Xの前端面が垂直面になっており、接合部材3X(フィレット3a)は、パッド電極70Xの前端面を覆うとともに、半導体レーザ素子1Xの露出面61a(つまりp側電極層61の表面)の全面を覆っている。つまり、半導体レーザ素子1Xの前端部に接続された接合部材3Xは、パッド電極70Xの前端面及び露出面61aの周辺領域を隙間なく埋めている。
【0101】
このような構造の場合、接合部材3Xとパッド電極70Xの前端面との接触部分が合金化するとともに、接合部材3Xとp側電極層61の露出面61aとの接触部分が合金化する。このため、接合部材3Xとパッド電極70Xの前端面との界面と、接合部材3Xとp側電極層61の露出面61aとの界面とに、新たな合金層が形成されることになる。
【0102】
このとき、接合部材3Xとパッド電極70Xとp側電極層61と新たな合金層とは、互いに線膨張係数が異なっている。つまり、接合部材3Xとパッド電極70Xとp側電極層61と新たな合金層との各部材間には、線膨張係数差が存在することになる。したがって、半導体レーザ装置100Xにおいて、温度が変化すると、各部材間の線膨張係数差に起因して各部材間に剪断応力が発生する。特に、図9の点Pに示すように、パッド電極70Xの前端面とp側電極層61の露出面61aとの角部に接合部材3Xが詰まって存在していると、この点Pに大きな剪断応力が発生することになる。この結果、半導体レーザ素子1Xの前端部に剪断応力がかかって剪断歪が発生し、半導体レーザ素子1Xの内部の発光領域にこの剪断歪が進行することになる。これにより、半導体レーザ素子1Xの長期信頼性が低下するおそれがある。
【0103】
これに対して、図10に示すように、本実施の形態に係る半導体レーザ装置100では、半導体レーザ素子1の前端部の露出面61aに接合部材3(フィレット3a)が接続されているが、パッド電極70の前端面の少なくとも一部が窪むように形成されているので、接合部材3とパッド電極70の前端面との間に隙間4(空隙)が形成されている。本実施の形態では、パッド電極70の前端部に庇部71が形成されることでパッド電極70の前端面の一部が窪んでいる。
【0104】
このように、接合部材3とパッド電極70の前端面との間に隙間4が存在すると、接合部材3とパッド電極70の前端面とが離間することになり、接合部材3とパッド電極70の前端面との間に新たな合金層が形成されなくなる。これにより、部材間の線膨張係数差による剪断応力によって半導体レーザ素子1の前端部に応力がかかることを抑制することができる。この結果、半導体レーザ素子1の内部の発光領域に剪断歪が進行することを抑制できるので、半導体レーザ素子1の長期信頼性が低下することを抑制することができる。
【0105】
さらに、本実施の形態に係る半導体レーザ装置100では、隙間4が存在することで、接合部材3とp側電極層61の露出面61aの一部とが離間している。このため、接合部材3とp側電極層61の露出面61aとの間に形成される合金層を少なくすることもできる。
【0106】
これにより、部材間の線膨張係数差に起因する剪断応力によって半導体レーザ素子1の前端部に応力がかかることを一層抑制することができる。したがって、半導体レーザ素子1の長期信頼性が低下することをさらに抑制することができる。
【0107】
以上説明したように、本実施の形態に係る半導体レーザ装置100によれば、CODの発生を抑制するために半導体レーザ素子1の前端部に接合部材3を接続したとしても、半導体レーザ素子1にかかる応力を緩和することができる。これにより、半導体レーザ素子1の長期信頼性が低下することを抑制できる。
【0108】
また、本実施の形態に係る半導体レーザ装置100において、半導体レーザ素子1は、共振器長方向に延在するリッジ部1Rを有し、半導体レーザ素子1の露出面61aにおける共振器長方向に垂直な縦断面において、接合部材3は、少なくともリッジ部1Rの幅の全域にわたって露出面61aに接続されている。
【0109】
半導体レーザ素子1が発光している時に生じる熱は、リッジ部1R(リッジ幅領域)で最も高くなる。したがって、図4Aに示すように、露出面61aにおける接合部材3(フィレット3a)が、リッジ部1Rの幅の一部だけでなく、リッジ部1Rの幅の全体(つまり発光領域の全体)に形成することで、半導体レーザ素子1の前端部のリッジ幅領域で発生する熱を効果的に放熱させることができる。つまり、リッジ部1Rにおける放熱を促進できる。
【0110】
また、図10に示すように、本実施の形態に係る半導体レーザ装置100では、接合部材3が、露出面61aにおける半導体レーザ素子1が有する半導体積層構造体20の前端面の位置まで接続されている。
【0111】
この構成により、半導体レーザ素子1の前端部における熱を確実に放熱しつつ、隙間4によって剪断歪を効果的に低減することができる。これにより、半導体レーザ素子1の長期信頼性を向上させることができる。
【0112】
ここで、図10に示すように、半導体レーザ素子1の前端面1a(光出射端面)からパッド電極70の前端面(パッド電極端)までの間隔をLとして、この間隔Lを変化させてCOD破壊電流を測定すると、図11に示す結果になった。
【0113】
半導体レーザ素子1の前端面1aとパッド電極70の前端面との間隔Lは、短くなるほど、半導体レーザ素子1の前端部に接続されるフィレット3aが形成されやすくなるので、COD破壊電流が高くなる。逆に、間隔Lが大きくなると、フィレット3aが形成されにくくなるので、COD破壊電流が低下する。したがって、図11に示す結果から、高いCOD破壊電流を得るとの観点では、間隔Lは、15μm以下にするとよい。
【0114】
一方、半導体積層構造体20が形成されたウエハをへき開してバー状にする際、パッド電極70の上からへき開すると、へき開端面が変形してレーザ特性及び信頼性に影響を及ぼすおそれがある。このため、パッド電極70の前端面は、半導体積層構造体20の前端面から離しておくとよい。このため、間隔Lは、5μm以上であるとよい。
【0115】
したがって、半導体レーザ素子1の前端面1aとパッド電極70の前端面との間隔Lは、5μm以上15μm以下であるとよい。
【0116】
なお、本実施の形態における半導体レーザ装置100では、図10に示すように、半導体レーザ素子1の前端面1aがヒートシンク2の前端面から飛び出していなかったが、これに限らない。例えば、図12に示される半導体レーザ装置100Aのように、半導体レーザ素子1の前端面1aは、ヒートシンク2の前端面から飛び出していてもよい。つまり、半導体レーザ素子1は、前端面1aがヒートシンク2の前端面からはみ出すように実装されていてもよい。
【0117】
また、本実施の形態における半導体レーザ装置100では、パッド電極70に庇部71が形成されることでパッド電極70の前端面の一部が窪んでいたが、これに限らない。例えば、図13に示される半導体レーザ装置100Bのように、パッド電極70Bに庇部71が形成されることなくパッド電極70Bの前端面の一部が窪んでいてもよい。具体的には、図13では、パッド電極70Bの前端面の全体が傾斜面になっている。この場合、接合部材3とパッド電極70Bの前端面との間の隙間4の断面形状は、三角形状になっている。つまり、隙間4の断面形状は、台形状に限らない。なお、隙間4の断面形状は、台形状及び三角形状以外の形状であってもよい。
【0118】
また、本実施の形態に係る半導体レーザ装置100では、図14の(a)に示すように、半導体レーザ素子1は反っていなかったが、半導体レーザ素子1は、共振器長方向において反っていてもよい。この場合、図14の(b)に示すように、半導体レーザ素子1は、共振器長方向において、ヒートシンク2に接合された面に対して中央部が凹むように反っているとよい。
【0119】
図14の(a)に示すように、半導体レーザ素子1が反らずにフラットであると、半導体レーザ素子1の前端部に接合部材3のフィレット3aが形成されにくく、しかも、半導体レーザ素子1の前端面1aとヒートシンク2の前端面とが面一に近い場合には、接合部材3が半導体レーザ素子1の前端面1a(光出射端面)に這い上がってしまうおそれがある。
【0120】
これに対して、図14の(b)に示すように、接合部材3によってヒートシンク2に半導体レーザ素子1を実装した時に、半導体レーザ素子1が共振器長方向において反っていると、半導体レーザ素子1の前端部に接合部材3のフィレット3aが形成しやすくなるとともに、接合部材3が半導体レーザ素子1の前端面1aに這い上がってしまうことを抑制できる。
【0121】
この場合、図14の(c)に示すように、半導体レーザ素子1の共振器長方向における中央部が凸状となるように半導体レーザ素子1が反っていると、半導体レーザ素子1とヒートシンク2とを接合部材3で接合する際に、接合部材3が凸状となった半導体レーザ素子1の湾曲した内側に入り込んでしまい、接合部材3が半導体レーザ素子1の露出面61aと接続されなくなるおそれがある。したがって、ヒートシンク2に実装された半導体レーザ素子1は、図14(b)に示すように、共振器長方向において凹状に沿っているとよい。
【0122】
ただし、半導体レーザ素子1が凹状となるように反っていたとしても、図14の(d)に示すように、反り量が大きくなると、接合部材3と半導体レーザ素子1の露出面61aとの間隔が大きくなり、半導体レーザ素子1の露出面61aに接合部材3が接続されにくくなる。
【0123】
したがって、図14の(b)に示すように、半導体レーザ素子1の共振器長方向における中央部が凹状となるように反っているとともに、その反り量が小さくなっているとよい。これにより、半導体レーザ素子1によって押し付けられた接合部材3が半導体レーザ素子1の両端側で盛り上がることになるので、半導体レーザ素子1の露出面61aと接合部材3との接合を促進させることができる。
【0124】
ここで、図14の(b)、(c)及び(d)に示す半導体レーザ装置において、共振器長方向における半導体レーザ素子1の反り量を測定すると、図15に示す結果となった。図15において、(b)、(c)、(d)は、それぞれ、図14の(b)、(c)、(d)の各半導体レーザ素子1の反り量を示している。図15に示す結果から、半導体レーザ素子1の反り量は、1μm以上3μm以下であるとよい。
【0125】
なお、上記実施の形態1における半導体レーザ素子1の層構成は、実施例1としての一例であり、これに限るものではない。例えば、上記実施の形態1における半導体レーザ素子1の層構成は、実施例2として、以下のように構成されていてもよい。
【0126】
具体的には、基板10は、n型GaAs基板であり、半導体層21は、n型バッファ層が膜厚0.50μmのn-GaAsからなるn型GaAS層で、n型第1組成傾斜層が膜厚0.05μmのn-AlGa1-xAs(x=0.15~0.353)からなるn型AlGaAs層で、n型クラッド層が膜厚2.40μmのn-Al0.353Ga0.647Asからなるn型AlGaAs層で、n型第2組成傾斜層が膜厚0.03μmのn-AlGa1-xAs(x=0.353~0.323)のn型AlGaAs層である。活性層22は、n型ガイド層が膜厚0.95μmのn-Al0.323Ga0.677Asからなるn型AlGaAs層で、n側第2バリア層が膜厚0.0250μmのn-Al0.18Ga0.82Asからなるn型AlGaAs層と膜厚0.0065μmのAl0.18Ga0.82AsからなるアンドープAlGaAs層との2層で、n側第1バリア層が0.0035μmのAl0.35Ga0.55In0.10AsからなるAlGaInAs層で、ウェル層が膜厚0.0060μmのIn0.11Ga0.89AsからなるInGaAs層で、p側第1バリア層が0.0035μmのAl0.35Ga0.55In0.10AsからなるAlGaInAs層で、p側第2バリア層が膜厚0.0065μmのAl0.18Ga0.82AsからなるアンドープAlGaAs層と膜厚0.025μmのp-Al0.18Ga0.82Asからなるp型AlGaAs層との2層で、p型ガイド層が膜厚0.1825μmのp-Al0.32Ga0.68Asからなるp型AlGaAs層である。p型半導体層23は、p型第1組成傾斜層が膜厚0.05μmのp-AlGa1-xAs(x=0.32~0.70)からなるp型AlGaAs層で、p型クラッド層が膜厚0.75μmのp-Al0.70Ga0.30Asからなるp型AlGaAs層で、p型第2組成傾斜層が膜厚0.05μmのp-AlGa1-xAs(x=0.70~0.15)からなるp型AlGaAs層である。p型コンタクト層24は、膜厚0.25μmのp-GaAsからなるp型GaAs層である。以上のように構成される実施例2の半導体レーザ素子1も実施例1の半導体レーザ素子1と同様の効果を奏する。
【0127】
また、実施の形態1における半導体レーザ素子1の層構成は、実施例3として、以下のように構成されていてもよい。
【0128】
具体的には、基板10は、n型GaAs基板であり、n型半導体層21は、n型バッファ層が膜厚0.50μmのn-GaAsからなるn型GaAs層で、n型第1組成傾斜層が膜厚0.05μmのn-AlGa1-xAs(x=0.15~0.25)からなるn型AlGaAs層で、n型クラッド層が膜厚3.10μmのn-Al0.25Ga0.75Asからなるn型AlGaAs層で、n型第2組成傾斜層が膜厚0.83μmのn-AlGa1-xAs(x=0.25~0.2)のn型AlGaAs層である。活性層22は、n型ガイド層が膜厚0.27μmのn-Al0.20Ga0.80Asからなるn型AlGaAs層で、n側第2バリア層が膜厚0.01μmのAl0.16Ga0.84AsからなるアンドープAlGaAs層の単層で、ウェル層が膜厚0.0090μmのIn0.1350.865AsからなるInGaAs層で、p側第2バリア層が膜厚0.01μmのAl0.16Ga0.84AsからなるアンドープAlGaAs層の単層で、p型ガイド層が膜厚0.01μmのp-Al0.20Ga0.80Asからなるp型AlGaAs層と膜厚0.28μmのp-AlGa1-xAs(x=0.20~0.21)からなるp型AlGaAs層との2層である。なお、活性層22は、n側第1バリア層及びp側第1バリア層は有していない。p型半導体層23は、p型第1組成傾斜層が膜厚0.1μmのp-AlGa1-xAs(x=0.21~0.70)からなるp型AlGaAs層で、p型クラッド層が膜厚0.55μmのp-Al0.70Ga0.30Asからなるp型AlGaAs層で、p型第2組成傾斜層が膜厚0.05μmのp-AlGa1-xAs(x=0.70~0.15)からなるp型AlGaAs層である。p型コンタクト層24は、膜厚0.25μmのp-GaAsからなるp型GaAs層である。以上のように構成される実施例3の半導体レーザ素子1も実施例1の半導体レーザ素子1と同様の効果を奏する。さらに、実施例3の半導体レーザ素子1は、窓領域22、前溝部32及び後溝部33が形成されていない。また、実施例3の半導体レーザ素子1では、p側第2バリア層及びn側2バリア層よりもAl組成が高いn側第1バリア層及びp側第1バリア層が形成されていない。これにより、動作電圧を低減させることができる。さらに、実施例3の半導体レーザ素子1では、n側第2バリア層が単層であり、n型AlGaAsが形成されていない。これにより、導波路損失を低減することができるので、スロープ効率を向上させることができる。
【0129】
(実施の形態2)
次に、実施の形態2について、図16図18を用いて説明する。図16は、実施の形態2に係る半導体レーザ素子1Aの平面図である。図17A図17Cは、実施の形態2に係る半導体レーザ素子1Aの断面図である。なお、図17A図17B及び図17Cは、それぞれ、図16のXVIIA-XVIIA線、図16のXVIIB-XVIIB線及び図16のXVIIC-XVIIC線における断面を示している。図18は、実施の形態2に係る半導体レーザ装置101の拡大断面図である。図18は、図5に対応する断面図である。
【0130】
図16図18に示すように、本実施の形態に係る半導体レーザ素子1A及び半導体レーザ装置101は、上記実施の形態1に係る半導体レーザ素子1及び半導体レーザ装置100において、p側電極層61を第1のp側電極層としたときに、さらに、第2のp側電極層63を備える構成になっている。具体的には、第2のp側電極層63は、半導体レーザ素子1Aに設けられている。
【0131】
図17A図17Cに示すように、第2のp側電極層63は、パッド電極70の上に形成されているとともに、p側電極層61の上にも形成されている。したがって、図18に示すように、半導体レーザ装置101において、第2のp側電極層63は、パッド電極70におけるヒートシンク2側の面と、p側電極層61におけるヒートシンク2側の面とに形成されている。
【0132】
そして、図18に示すように、半導体レーザ素子1Aの前端部において、p側電極層61の上に第2のp側電極層63が形成されている。このため、本実施の形態では、半導体レーザ素子1Aの前端部における露出面は、p側電極層61の表面ではなく、第2のp側電極層63の表面になっている。したがって、半導体レーザ素子1Aの前端部に接続される接合部材3(フィレット3a)は、p側電極層61ではなく、第2のp側電極層63に接続されている。
【0133】
第2のp側電極層63は、金属材料によって構成された金属層である。第2のp側電極層63は、例えば、Pt、Ti、Cr、Ni、Mo及びAuの少なくとも一つで形成された単層膜又は多層膜である。本実施の形態において、第2のp側電極層63は、p側電極層61と同じ多層膜によって構成されている。したがって、第2のp側電極層63は、パッド電極70側から、Ti膜、Pt膜及びAu膜の順で積層された3層構造の多層膜である。
【0134】
なお、第2のp側電極層63が追加されていること以外は、本実施の形態に係る半導体レーザ素子1A及び半導体レーザ装置101は、上記実施の形態1に係る半導体レーザ素子1及び半導体レーザ装置100と同じ構成である。
【0135】
したがって、本実施の形態に係る半導体レーザ装置101においても、上記実施の形態1に係る半導体レーザ装置100と同様に、半導体レーザ素子1Aの前端部の露出面61aに接合部材3(フィレット3a)が接続されているが、パッド電極70の前端面の少なくとも一部が窪むように形成されている。そして、接合部材3とパッド電極70の前端面との間に隙間4(空隙)が形成されている。
【0136】
この構成により、接合部材3とパッド電極70との合金化を抑制できるので、半導体レーザ素子1Aの前端部に応力がかかることを抑制できる。したがって、半導体レーザ素子1Aに生じる歪を抑制できるので、半導体レーザ素子1Aの長期信頼性が低下することを抑制することができる。
【0137】
さらに、本実施の形態に係る半導体レーザ装置101では、パッド電極70の上とp側電極層61の上とに第2のp側電極層63が形成されており、半導体レーザ素子1Aの前端部に接続される接合部材3(フィレット3a)は、第2のp側電極層63に接続されている。
【0138】
この構成により、接合部材3が半導体レーザ素子1Aに接触して形成される合金層に起因する剪断応力の影響を一層抑制できるので、半導体レーザ素子1Aに生じる歪をさらに抑制することができる。この結果、本実施の形態に係る半導体レーザ装置101は、上記実施の形態に係る半導体レーザ装置100と比べて、長期信頼性を向上させることができる。
【0139】
なお、本実施の形態における半導体レーザ装置101では、図18に示すように、半導体レーザ素子1Aの前端面1aがヒートシンク2の前端面から飛び出していなかったが、これに限らない。例えば、図19に示される半導体レーザ装置101Aのように、半導体レーザ素子1Aの前端面1aは、ヒートシンク2の前端面から飛び出していてもよい。つまり、半導体レーザ素子1Aは、前端面1aがヒートシンク2の前端面からはみ出すように実装されていてもよい。
【0140】
また、本実施の形態における半導体レーザ素子1Aは、上記実施の形態1に係る半導体レーザ素子1の製造方法に準じて作製することができる。具体的には、図6A図6Fまでは、上記実施の形態1と同様の方法で作製することができる。
【0141】
そして、本実施の形態では、パッド電極70を形成した後は、図20Aの(a)及び(b)に示すように、パッド電極70の上とp側電極層61の上とに、第2のp側電極層63を形成する。具体的には、電子ビーム蒸着法によってTi膜とPt膜とAu膜との積層膜からなる第2のp側電極層63をパッド電極70の上とp側電極層61の上とに形成する。
【0142】
次に、図20Bの(a)及び(b)に示すように、基板10の下面に、n側電極層62を形成する。具体的には、基板10側から、AuGe膜、Ni膜、Au膜、Ti膜、Pt膜、及び、Au膜を順次成膜することで、基板10の下面にn側電極層62を形成する。
【0143】
その後、図示しないが、上記実施の形態1と同様に、所定形状の半導体積層構造体20が形成された基板10(ウエハ)を複数本のバー状に分離し、さらにチップ分離を行うことで、個片状の半導体レーザ素子1Aを作製することができる。
【0144】
なお、図20A及び図20Bの各図において、(a)は、図17Aに対応する断面(電流注入領域の断面)を示しており、(b)は、図17Bに対応する断面(前端部における電流非注入領域の断面)を示している。
【0145】
(実施の形態3)
次に、実施の形態3について、図21図22Cを用いて説明する。図21は、実施の形態3に係る半導体レーザ素子1Bの平面図である。図22A図22Cは、実施の形態2に係る半導体レーザ装置102の断面図である。なお、図22A図22B及び図22Cは、それぞれ、図21のXXIIA-XXIIA線、図21のXXIIB-XXIIB線及び図21のXXIIC-XXIIC線に対応する部分で実施の形態3に係る半導体レーザ装置102を切断したときの断面の一部を示している。なお、図21では、第2パッド電極90の位置を示すために、便宜上ハッチングを施している。
【0146】
図21図22Cに示すように、本実施の形態に係る半導体レーザ素子1B及び半導体レーザ装置102は、上記実施の形態2に係る半導体レーザ素子1A及び半導体レーザ装置101において、パッド電極70を第1パッド電極としたときに、さらに、第2パッド電極90を備える構成になっている。具体的には、第2パッド電極90は、半導体レーザ素子1Bに設けられている。
【0147】
第2パッド電極90は、半導体レーザ素子1Bの共振器長方向に延在する光導波路の両側に形成されている。本実施の形態では、光導波路としてリッジ部1Rが形成されているので、図21に示すように、上面視において、第2パッド電極90は、リッジ部1Rの両側に形成されている。具体的には、第2パッド電極90は、リッジ部1Rを挟むように2つ形成されている。2つの第2パッド電極90は、半導体レーザ素子1Bの共振器長方向に延在するように平行に形成されている。なお、各第2パッド電極90の幅は一定であり、各第2パッド電極90の上面視形状は、長尺状の矩形である。
【0148】
また、図22B及び図22Cに示すように、第2パッド電極90は、パッド電極70(第1パッド電極)のヒートシンク2側に形成されている。つまり、第2パッド電極90は、パッド電極70におけるp側電極層61側とは反対側の面に形成されている。したがって、パッド電極70は、p側電極層61と第2パッド電極90とで挟まれた構成になっている。
【0149】
なお、第2パッド電極90が追加されていること以外は、本実施の形態に係る半導体レーザ素子1B及び半導体レーザ装置102は、上記実施の形態2に係る半導体レーザ素子1A及び半導体レーザ装置101と同じ構成である。
【0150】
したがって、本実施の形態に係る半導体レーザ装置102においても、上記実施の形態2に係る半導体レーザ装置101と同様に、半導体レーザ素子1Bの前端部の露出面61aに接合部材3(フィレット3a)が接続されているが、パッド電極70の前端面の少なくとも一部が窪むように形成されている。そして、接合部材3とパッド電極70の前端面との間に隙間4(空隙)が形成されている。
【0151】
この構成により、接合部材3とパッド電極70との合金化を抑制できるので、半導体レーザ素子1Bの前端部に応力がかかることを抑制できる。したがって、半導体レーザ素子1Bに生じる歪を抑制できるので、半導体レーザ素子1Bの長期信頼性が低下することを抑制することができる。
【0152】
また、本実施の形態に係る半導体レーザ装置102でも、上記実施の形態2と同様に、パッド電極70の上とp側電極層61の上とに第2のp側電極層63が形成されており、半導体レーザ素子1Bの前端部に接続される接合部材3(フィレット3a)は、第2のp側電極層63に接続されている。
【0153】
この構成により、上記実施の形態2と同様に、半導体レーザ素子1Bに生じる歪を抑制できるので、長期信頼性を向上させることができる。
【0154】
さらに、本実施の形態に係る半導体レーザ装置102では、パッド電極70のヒートシンク2側に第2パッド電極90が形成されており、第2パッド電極90は、半導体レーザ素子1Bの共振器長方向に延在する光導波路の両側に形成されている。
【0155】
この構成により、接合部材3によって半導体レーザ素子1Bをヒートシンク2に実装する際、半導体レーザ素子1とヒートシンク2との間の接合部材3が横方向に広がることを規制して共振器長方向に濡れ広がるようにすることができる。これにより、半導体レーザ素子1Bの前端部のリッジ幅領域に接合部材3のフィレット3aが形成することを促進させることができる。したがって、半導体レーザ素子1Bが発光している時に生じる熱はリッジ部1R(リッジ幅領域)で最も高くなるので、半導体レーザ素子1Bの前端部のリッジ幅領域に接合部材3のフィレット3aが形成されることで、半導体レーザ素子1Bの前端部のリッジ幅領域で発生する熱を効果的に放熱させることができる。
【0156】
なお、図示しないが、本実施の形態における半導体レーザ装置102でも、半導体レーザ素子1Bの前端面1aは、ヒートシンク2の前端面から飛び出していてもよい。
【0157】
また、本実施の形態における半導体レーザ素子1Bは、上記実施の形態1、2に係る半導体レーザ素子1、1Aの製造方法に準じて作製することができる。具体的には、図6A図6Fまでは、上記実施の形態1、2と同様の方法で作製することができる。
【0158】
そして、本実施の形態では、パッド電極70を形成した後は、図23Aの(a)及び(b)に示すように、パッド電極70の上に一対の第2パッド電極90を形成し、その後、第2パッド電極90を覆うようにパッド電極70の上に第2のp側電極層63を形成するとともに、p側電極層61の上に第2のp側電極層63を形成する。
【0159】
次に、図23Bの(a)及び(b)に示すように、上記実施の形態1、2と同様にして、基板10の下面に、n側電極層62を形成する。
【0160】
その後、図示しないが、上記実施の形態2と同様に、所定形状の半導体積層構造体20が形成された基板10(ウエハ)を複数本のバー状に分離し、さらにチップ分離を行うことで、個片状の半導体レーザ素子1Bを作製することができる。
【0161】
なお、図23A及び図23Bの各図において、(a)は、電流注入領域の断面を示しており、(b)は、半導体レーザ素子1Bの前端部における電流非注入領域の断面を示している。
【0162】
また、上記実施の形態における半導体レーザ素子1Bにおいて、各第2パッド電極90は、共振器長方向に沿って連続して形成されていたが、これに限らない。例えば、図24に示される半導体レーザ素子1Dのように、各第2パッド電極90Dは、共振器長方向に沿って断続的に形成されていてもよい。つまり、第2パッド電極90Dは、共振器長方向において、部分的に分断されていてもよい。
【0163】
また、上記実施の形態における半導体レーザ素子1Bにおいて、各第2パッド電極90は、長尺状の矩形であったが、これに限らない。例えば、図25に示される半導体レーザ素子1Eのように、上面視において、第2パッド電極90Eの長手方向の両端部の各々に、内側に突出する突出部が形成されていてもよい。これにより、接合部材3によって半導体レーザ素子1Bをヒートシンク2に実装する際に、共振器長方向に濡れ広がった接合部材3が半導体レーザ素子の前端部で内側へと進行することになる。したがって、半導体レーザ素子1Bの前端部のリッジ幅領域に接合部材3のフィレット3aを容易に形成することができる。
【0164】
(変形例)
以上、本開示に係る半導体レーザ装置及び半導体レーザ素子等について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。
【0165】
例えば、上記実施の形態1~3において、半導体レーザ素子は、赤外光のレーザ光を出射するように構成されていたが、これに限らない。例えば、半導体レーザ素子は、可視光又は紫外光のレーザ光を出射するように構成されていてもよい。
【0166】
また、上記実施の形態1~3において、半導体レーザ素子は、AlGaInAs系のIII-V族半導体材料によって構成されたが、これに限らない。例えば、半導体レーザ素子は、窒化物系半導体材料によって構成された窒化物系半導体レーザ素子であってもよい。
【0167】
その他、上記実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
【産業上の利用可能性】
【0168】
本開示に係る半導体レーザ装置及び半導体レーザ素子は、レーザ加工装置等をはじめとして、様々な製品の光源に適用することができる。
【符号の説明】
【0169】
1、1A、1B、1D、1E 半導体レーザ素子
1a 前端面
1b 後端面
1R リッジ部
2 ヒートシンク
2a ヒートシンク本体
2b 第1導体層
2c 第2導体層
2d 第3導体層
2e 第4導体層
3 接合部材
3a フィレット
4 隙間
5a、5b 凸部
10 基板
20 半導体積層構造体
20a 第1端面コート膜
20b 第2端面コート膜
20c 分離溝
21 n型半導体層
22 活性層
22a 窓領域
23 p型半導体層
24 p型コンタクト層
30 開口部
30a 底部
31 横溝部
32 前溝部
33 後溝部
40 ウイング部
50 絶縁膜
50a 開口部
61 p側電極層
61a 露出面
62 n側電極層
63 第2のp側電極層
70、70B パッド電極
70a 凹部
71 庇部
80 レジスト
90、90D、90E 第2パッド電極
100、100A、100B、101、101A、102 半導体レーザ装置
図1
図2A
図2B
図2C
図3
図4A
図4B
図4C
図5
図6A
図6B
図6C
図6D
図6E
図6F
図6G
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17A
図17B
図17C
図18
図19
図20A
図20B
図21
図22A
図22B
図22C
図23A
図23B
図24
図25