IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クレッシェンド バイオサイエンス インコーポレイテッドの特許一覧 ▶ ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアの特許一覧 ▶ サッソ エリックの特許一覧 ▶ イーストマン ポール スコットの特許一覧 ▶ ボルス レベッカの特許一覧 ▶ カヴァノー アーサーの特許一覧

特開2023-10789乾癬性関節炎の疾患活動性を評価するためのバイオマーカーおよび方法
<>
  • 特開-乾癬性関節炎の疾患活動性を評価するためのバイオマーカーおよび方法 図1
  • 特開-乾癬性関節炎の疾患活動性を評価するためのバイオマーカーおよび方法 図2
  • 特開-乾癬性関節炎の疾患活動性を評価するためのバイオマーカーおよび方法 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023010789
(43)【公開日】2023-01-20
(54)【発明の名称】乾癬性関節炎の疾患活動性を評価するためのバイオマーカーおよび方法
(51)【国際特許分類】
   G01N 33/53 20060101AFI20230113BHJP
   C07K 14/47 20060101ALN20230113BHJP
   C07K 14/54 20060101ALN20230113BHJP
   C07K 14/705 20060101ALN20230113BHJP
【FI】
G01N33/53 V
G01N33/53 X
G01N33/53 P
C07K14/47 ZNA
C07K14/54
C07K14/705
【審査請求】有
【請求項の数】1
【出願形態】OL
(21)【出願番号】P 2022180774
(22)【出願日】2022-11-11
(62)【分割の表示】P 2021009259の分割
【原出願日】2016-09-29
(31)【優先権主張番号】62/234,526
(32)【優先日】2015-09-29
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】512097802
【氏名又は名称】クレッシェンド バイオサイエンス インコーポレイテッド
(71)【出願人】
【識別番号】506115514
【氏名又は名称】ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア
【氏名又は名称原語表記】The Regents of the University of California
(71)【出願人】
【識別番号】516371324
【氏名又は名称】サッソ エリック
(71)【出願人】
【識別番号】516371313
【氏名又は名称】イーストマン ポール スコット
(71)【出願人】
【識別番号】518106250
【氏名又は名称】ボルス レベッカ
(71)【出願人】
【識別番号】518106261
【氏名又は名称】カヴァノー アーサー
(74)【代理人】
【識別番号】100102978
【弁理士】
【氏名又は名称】清水 初志
(74)【代理人】
【識別番号】100102118
【弁理士】
【氏名又は名称】春名 雅夫
(74)【代理人】
【識別番号】100160923
【弁理士】
【氏名又は名称】山口 裕孝
(74)【代理人】
【識別番号】100119507
【弁理士】
【氏名又は名称】刑部 俊
(74)【代理人】
【識別番号】100142929
【弁理士】
【氏名又は名称】井上 隆一
(74)【代理人】
【識別番号】100148699
【弁理士】
【氏名又は名称】佐藤 利光
(74)【代理人】
【識別番号】100128048
【弁理士】
【氏名又は名称】新見 浩一
(74)【代理人】
【識別番号】100129506
【弁理士】
【氏名又は名称】小林 智彦
(74)【代理人】
【識別番号】100205707
【弁理士】
【氏名又は名称】小寺 秀紀
(74)【代理人】
【識別番号】100114340
【弁理士】
【氏名又は名称】大関 雅人
(74)【代理人】
【識別番号】100121072
【弁理士】
【氏名又は名称】川本 和弥
(72)【発明者】
【氏名】サッソ エリック
(72)【発明者】
【氏名】イーストマン ポール スコット
(72)【発明者】
【氏名】ボルス レベッカ
(72)【発明者】
【氏名】カヴァノー アーサー
(57)【要約】
【課題】個々の患者に対して最大限の治療効果を達成するためには、特定の時期に対象の疾患活動性を明確に定量化して評価することができ、疾患活動性に及ぼす治療の効果を判定し、将来の結果(アウトカム)を予測する。
【解決手段】乾癬性関節炎(PsA)と以前に診断された対象におけるPsA疾患活動性を評価するのに有用なスコアを作成するためのバイオマーカーおよび方法が提供される。本発明はまた、該バイオマーカーに基づく予測モデル、ならびに、サンプルをスコアリングおよび任意で分類するための、該モデルのコンピュータシステムとソフトウェア態様、ならびに、最適な治療レジメンを推奨する方法を提供する。
【選択図】なし
【特許請求の範囲】
【請求項1】
第1の対象由来の第1の血液サンプルに対して少なくとも1つのイムノアッセイを実施して、少なくとも4種類のタンパク質マーカーのタンパク質レベルデータを含む第1のデータセットを作成すること
を含む、第1の対象についてのタンパク質レベルデータを作成するための方法であって、
該少なくとも4種類のタンパク質マーカーが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーを含み、
第1の対象が乾癬性関節炎(PsA)と以前に診断されている、
前記方法。
【請求項2】
少なくとも1つのイムノアッセイの実施が、
第1の血液サンプルを取得する段階であって、第1の血液サンプルが前記タンパク質マーカーを含む、段階;
第1の血液サンプルを複数の異なる試薬と接触させる段階;
該試薬と該マーカーとの間に複数の異なる複合体を生成させる段階;および
該複合体を検出して前記データを作成する段階
を含む、請求項1記載の方法。
【請求項3】
少なくとも1つのイムノアッセイがマルチプレックスアッセイを含む、請求項1記載の方法。
【請求項4】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類のマーカーを含む、請求項1記載の方法。
【請求項5】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも6種類のマーカーを含む、請求項1記載の方法。
【請求項6】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも7種類のマーカーを含む、請求項1記載の方法。
【請求項7】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも8種類のマーカーを含む、請求項1記載の方法。
【請求項8】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも9種類のマーカーを含む、請求項1記載の方法。
【請求項9】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも10種類のマーカーを含む、請求項1記載の方法。
【請求項10】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも11種類のマーカーを含む、請求項1記載の方法。
【請求項11】
前記複数のタンパク質マーカーが多くとも500種類のタンパク質マーカーからなる、請求項1記載の方法。
【請求項12】
前記複数のタンパク質マーカーが多くとも250種類のタンパク質マーカーからなる、請求項1記載の方法。
【請求項13】
前記複数のタンパク質マーカーが多くとも100種類のタンパク質マーカーからなる、請求項1記載の方法。
【請求項14】
前記複数のタンパク質マーカーが多くとも50種類のタンパク質マーカーからなる、請求項1記載の方法。
【請求項15】
前記複数のタンパク質マーカーが多くとも25種類のタンパク質マーカーからなる、請求項1記載の方法。
【請求項16】
前記複数のタンパク質マーカーが多くとも12種類のタンパク質マーカーからなる、請求項1記載の方法。
【請求項17】
CHI3L1がNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPがNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFがNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6がNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPがNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1がNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3がNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNがNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1がNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AがNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1がNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、VEGFAがNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である、請求項1記載の方法。
【請求項18】
タンパク質レベルスコアを作成するための方法であって、以下の段階を含む方法:
乾癬性関節炎(PsA)と以前に診断された対象由来の第1の血液サンプルに対して少なくとも1つのイムノアッセイを実施して、複数のタンパク質マーカーの各タンパク質マーカーに関するタンパク質レベルデータを作成する段階であって、
該複数のタンパク質マーカーが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーを含む複数の試験マーカーを含む、段階;および
各試験マーカーのタンパク質レベルデータを組み合わせて、タンパク質レベルスコアを作成する段階。
【請求項19】
少なくとも1つのイムノアッセイの実施が、
第1の血液サンプルを取得する段階であって、第1の血液サンプルが前記タンパク質マーカーを含む、段階;
第1の血液サンプルを複数の異なる試薬と接触させる段階;
該試薬と該マーカーとの間に複数の異なる複合体を生成させる段階;および
該複合体を検出して前記データを作成する段階
を含む、請求項18記載の方法。
【請求項20】
少なくとも1つのイムノアッセイがマルチプレックスアッセイを含む、請求項18記載の方法。
【請求項21】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類のマーカーを含む、請求項18記載の方法。
【請求項22】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも6種類のマーカーを含む、請求項18記載の方法。
【請求項23】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも7種類のマーカーを含む、請求項18記載の方法。
【請求項24】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも8種類のマーカーを含む、請求項18記載の方法。
【請求項25】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも9種類のマーカーを含む、請求項18記載の方法。
【請求項26】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも10種類のマーカーを含む、請求項18記載の方法。
【請求項27】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも11種類のマーカーを含む、請求項18記載の方法。
【請求項28】
前記複数の試験マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、およびVEGFAを含む、請求項18記載の方法。
【請求項29】
CHI3L1がNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPがNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFがNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6がNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPがNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1がNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3がNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNがNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1がNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AがNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1がNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、VEGFAがNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である、請求項18記載の方法。
【請求項30】
乾癬性関節炎(PsA)と以前に診断された対象においてPsAの疾患活動性の定量的尺度を提供するための方法であって、以下の段階を含む方法:
該対象由来の第1のサンプルに対して少なくとも1つのイムノアッセイを実施して、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーを含む定量的データを含む第1のデータセットを作成する段階;および
第1のデータセットにアルゴリズムを適用して、第1の疾患活動性スコアを決定する段階であって、第1の疾患活動性スコアが該対象におけるPsA疾患活動性の定量的尺度を提供する、段階。
【請求項31】
前記対象から取得した第2のサンプルに関連する第2のデータセットを受け取る段階であって、第1のサンプルと第2のサンプルが異なる時期に該対象から取得したものである、段階;
第2のデータセットにアルゴリズムを適用して、第2の疾患活動性スコアを決定する段階;および
第1の疾患活動性スコアと第2の疾患活動性スコアを比較して、疾患活動性スコアの変化を決定する段階であって、その変化が該対象における乾癬性関節炎の疾患活動性の変化を示す、段階
をさらに含む、請求項30記載の方法。
【請求項32】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類、6種類、7種類、8種類、9種類、10種類、または11種類のマーカーを含む、請求項30記載の方法。
【請求項33】
CHI3L1がNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPがNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFがNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6がNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPがNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1がNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3がNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNがNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1がNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AがNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1がNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、VEGFAがNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である、請求項30記載の方法。
【請求項34】
サンプルをスコアリングするためのシステムであって、以下を含むシステム:
乾癬性関節炎(PsA)と以前に診断された対象から取得した第1のサンプルに関連する第1のデータセットを保存するための記憶用メモリであって、
第1のデータセットが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーの定量的データを含む、記憶用メモリ;および
該記憶用メモリに通信可能に接続されたプロセッサであって、
該プロセッサが、第1のデータセットにアルゴリズムを適用して第1の疾患活動性スコアを決定するように構成されており、ここで、第1の疾患活動性スコアが、該対象におけるPsA疾患活動性の定量的尺度を提供し、該アルゴリズムが、既知のPsA疾患活動性を有する対象由来のサンプル中の少なくとも4種類のマーカーを表すデータを用いてトレーニングされる、プロセッサ。
【請求項35】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類、6種類、7種類、8種類、9種類、10種類、または11種類のマーカーを含む、請求項34記載のシステム。
【請求項36】
CHI3L1がNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPがNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFがNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6がNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPがNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1がNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3がNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNがNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1がNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AがNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1がNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、VEGFAがNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である、請求項34記載のシステム。
【請求項37】
乾癬性関節炎(PsA)と以前に診断された対象において治療レジメンを推奨するための方法であって、以下の段階を含む方法:
a) 第1の時点で、該対象由来の第1のサンプルに対して第1のイムノアッセイを実施して、定量的データの第1のセットに基づいて第1のスコアを作成する段階であって、
定量的データの第1のセットが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のバイオマーカーの発現データを含む、段階;
b) 第1の時点後の第2の時点で、該対象由来の第2のサンプルに対して第2のイムノアッセイを実施して、定量的データの第2のセットに基づいて第2のスコアを作成する段階であって、
定量的データの第2のセットが該少なくとも4種類のバイオマーカーの発現データを含む、段階;
c) 第1のスコアと第2のスコアとの間に差があるかどうかを判定する段階;および
d) 第1のスコアと第2のスコアとの間の差に基づいて、治療レジメンを推奨するか、または既存の治療レジメンを変更する段階。
【請求項38】
第1のスコアと第2のスコアとの間の差がPsA疾患活動性の低下または変化なしを示す場合には、非生物学的治療レジメンが推奨される、請求項37記載の方法。
【請求項39】
第1のスコアと第2のスコアとの間の差がPsA疾患活動性の増加を示す場合には、生物学的治療レジメンが推奨される、請求項37記載の方法。
【請求項40】
前記少なくとも1つのイムノアッセイの実施が、
第1のサンプルを取得する段階であって、第1のサンプルが前記タンパク質マーカーを含む、段階;
第1のサンプルを複数の異なる試薬と接触させる段階;
該試薬と該マーカーとの間に複数の異なる複合体を生成させる段階;および
該複合体を検出して前記データを作成する段階
を含む、請求項37記載の方法。
【請求項41】
第1および第2のイムノアッセイがマルチプレックスアッセイを含む、請求項37記載の方法。
【請求項42】
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類、6種類、7種類、8種類、9種類、10種類、または11種類のマーカーを含む、請求項37記載の方法。
【請求項43】
CHI3L1がNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPがNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFがNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6がNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPがNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1がNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3がNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNがNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1がNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AがNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1がNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、VEGFAがNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である、請求項37記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本出願は、2015年9月29日に出願された米国仮出願第62/234,526号の優先権を主張するものであり、その全内容は参照により本明細書に組み入れられる。
【背景技術】
【0002】
背景
本出願は、バイオインフォマティクスおよび炎症性・自己免疫性疾患の分野に関し、炎症性疾患の治療法に対する応答、特に乾癬性関節炎(psoriatic arthritis: PsA)の疾患活動性、を評価する方法に関する。PsAは炎症性疾患の一例であって、慢性の全身性自己免疫疾患であり、乾癬患者の約30%に発生する。乾癬は、鱗状の赤色と白色の斑点が皮膚上に現れる疾患である。
【0003】
PsAは、身体のあらゆる関節とその周辺に痛み、硬直、腫れを引き起こす。PsAは、典型的には、大関節、特に下肢の関節、手足の指の遠位関節、さらには背中および骨盤の仙腸関節にも影響を及ぼす。PsAには5つの一般的なパターンが存在する:遠位指節間関節の関節炎、破壊性関節炎、関節リウマチと区別できない対称性多発性関節炎、非対称性少関節炎、および脊椎関節症。PsAからの持続性炎症は関節の損傷につながる可能性がある。
【0004】
PsAの影響は、罹患した関節および症状の重症度に基づいて変化する。PsAのよく見られる副次的影響は、疲労と貧血である。乾癬と同様に、PsAの症状は再燃(フレア)して鎮静化することがあり、同じ対象において部位を変えることさえある。PsAは著しく高い罹患率および身体障害と関連しており、したがって大きな社会経済的な重荷となっている。個々の患者に対して最大限の治療効果を達成するためには、特定の時期に対象の疾患活動性を明確に定量化して評価することができ、疾患活動性に及ぼす治療の効果を判定し、将来の結果(アウトカム)を予測することが重要である。
【発明の概要】
【0005】
概要
本教示は、乾癬性関節炎をはじめとする自己免疫疾患を含めて、炎症性疾患に関連するバイオマーカー、ならびに対象における疾患活動性を、さらには治療に応答して、測定するためのバイオマーカーの使用方法に関する。
【0006】
一態様においては、第1の対象についてのタンパク質レベルデータを作成するための方法が提供される。この方法は、第1の対象由来の第1の血液サンプルに対して少なくとも1つのイムノアッセイを実施して、少なくとも4種類のタンパク質マーカーのタンパク質レベルデータを含む第1のデータセットを作成することを含み、ここで、該少なくとも4種類のタンパク質マーカーは、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーを含み、ここで、第1の対象は乾癬性関節炎(PsA)と以前に診断されている。別の態様において、少なくとも1つのイムノアッセイの実施は、第1の血液サンプルを取得する段階であって、第1の血液サンプルが該タンパク質マーカーを含む、段階;第1の血液サンプルを複数の異なる試薬と接触させる段階;該試薬と該マーカーとの間に複数の異なる複合体を生成させる段階;および該複合体を検出して前記データを作成する段階を含む。一態様では、少なくとも1つのイムノアッセイはマルチプレックスアッセイを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも6種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも7種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも8種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも9種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも10種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも11種類のマーカーを含む。一態様では、該複数のタンパク質マーカーは、多くとも500種類のタンパク質マーカーからなる。一態様では、該複数のタンパク質マーカーは、多くとも250種類のタンパク質マーカーからなる。一態様では、該複数のタンパク質マーカーは、多くとも100種類のタンパク質マーカーからなる。一態様では、該複数のタンパク質マーカーは、多くとも50種類のタンパク質マーカーからなる。一態様では、該複数のタンパク質マーカーは、多くとも25種類のタンパク質マーカーからなる。一態様では、該複数のタンパク質マーカーは、多くとも12種類のタンパク質マーカーからなる。一態様において、CHI3L1はNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPはNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFはNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6はNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPはNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1はNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3はNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNはNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1はNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AはNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1はNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、かつVEGFAはNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である。
【0007】
別の態様においては、タンパク質レベルスコアを作成するための方法が提供される。この方法は、以下の段階を含む:乾癬性関節炎(PsA)と以前に診断された対象由来の第1の血液サンプルに対して少なくとも1つのイムノアッセイを実施して、複数のタンパク質マーカーの各タンパク質マーカーに関するタンパク質レベルデータを作成する段階であって、該複数のタンパク質マーカーが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーを含む複数の試験マーカーを含む、段階;および各試験マーカーのタンパク質レベルデータを組み合わせて、タンパク質レベルスコアを作成する段階。一態様において、少なくとも1つのイムノアッセイの実施は、第1の血液サンプルを取得する段階であって、第1の血液サンプルが前記タンパク質マーカーを含む、段階;第1の血液サンプルを複数の異なる試薬と接触させる段階;該試薬と該マーカーとの間に複数の異なる複合体を生成させる段階;および該複合体を検出して前記データを作成する段階を含む。一態様では、少なくとも1つのイムノアッセイはマルチプレックスアッセイを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも6種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも7種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも8種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも9種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも10種類のマーカーを含む。一態様では、少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも11種類のマーカーを含む。一態様では、該複数の試験マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、およびVEGFAを含む。一態様において、CHI3L1はNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPはNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFはNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6はNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPはNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1はNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3はNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNはNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1はNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AはNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1はNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、かつVEGFAはNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である。
【0008】
別の態様においては、乾癬性関節炎(PsA)と以前に診断された対象においてPsAの疾患活動性の定量的尺度を提供するための方法が提供される。この方法は、乾癬性関節炎(PsA)と以前に診断された対象においてPsAの疾患活動性の定量的尺度を提供することを含み、以下の段階を含む:該対象由来の第1のサンプルに対して少なくとも1つのイムノアッセイを実施して、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーを含む定量的データを含む第1のデータセットを作成する段階;および第1のデータセットにアルゴリズムを適用して、第1の疾患活動性スコアを決定する段階であって、第1の疾患活動性スコアが該対象におけるPsA疾患活動性の定量的尺度を提供する、段階。一態様において、この方法は、以下の段階をさらに含む:該対象から取得した第2のサンプルに関連する第2のデータセットを受け取る段階であって、第1のサンプルと第2のサンプルが異なる時期に該対象から取得したものである、段階;第2のデータセットにアルゴリズムを適用して、第2の疾患活動性スコアを決定する段階;および第1の疾患活動性スコアと第2の疾患活動性スコアを比較して、疾患活動性スコアの変化を決定する段階であって、その変化が該対象における乾癬性関節炎の疾患活動性の変化を示す、段階。一態様では、該少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類、6種類、7種類、8種類、9種類、10種類、または11種類のマーカーを含む。一態様において、CHI3L1はNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPはNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFはNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6はNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPはNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1はNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3はNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNはNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1はNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AはNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1はNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、かつVEGFAはNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である。
【0009】
別の態様においては、サンプルをスコアリングするためのシステムが提供される。このシステムは、以下を含む:乾癬性関節炎(PsA)と以前に診断された対象から取得した第1のサンプルに関連する第1のデータセットを保存するための記憶用メモリであって、第1のデータセットが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーの定量的データを含む、記憶用メモリ;および該記憶用メモリに通信可能に接続されたプロセッサであって、該プロセッサが、第1のデータセットにアルゴリズムを適用して第1の疾患活動性スコアを決定するように構成されており、ここで、第1の疾患活動性スコアが、該対象におけるPsA疾患活動性の定量的尺度を提供し、該アルゴリズムは、既知のPsA疾患活動性を有する対象由来のサンプル中の少なくとも4種類のマーカーを表すデータを用いてトレーニングされる、プロセッサ。一態様では、該少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類、6種類、7種類、8種類、9種類、10種類、または11種類のマーカーを含む。一態様において、CHI3L1はNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPはNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFはNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6はNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPはNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1はNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3はNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNはNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1はNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AはNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1はNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、かつVEGFAはNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である。
【0010】
別の態様においては、乾癬性関節炎(PsA)と以前に診断された対象において治療レジメンを推奨するための方法が提供される。この方法は、以下の段階を含む:a) 第1の時点で、該対象由来の第1のサンプルに対して第1のイムノアッセイを実施して、定量的データの第1のセットに基づいて第1のスコアを作成する段階であって、定量的データの第1のセットが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のバイオマーカーの発現データを含む、段階;b) 第1の時点後の第2の時点で、該対象由来の第2のサンプルに対して第2のイムノアッセイを実施して、定量的データの第2のセットに基づいて第2のスコアを作成する段階であって、定量的データの第2のセットが該少なくとも4種類のバイオマーカーの発現データを含む、段階;c) 第1のスコアと第2のスコアとの間に差があるかどうかを判定する段階;およびd) 第1のスコアと第2のスコアとの間の差に基づいて、治療レジメンを推奨するか、または既存の治療レジメンを変更する段階。一態様において、第1のスコアと第2のスコアとの間の差がPsA疾患活動性の低下または変化なしを示す場合には、非生物学的治療レジメンが推奨される。一態様において、第1のスコアと第2のスコアとの間の差がPsA疾患活動性の増加を示す場合には、生物学的治療レジメンが推奨される。一態様において、少なくとも1つのイムノアッセイの実施は、第1のサンプルを取得する段階であって、第1のサンプルが前記タンパク質マーカーを含む、段階;第1のサンプルを複数の異なる試薬と接触させる段階;該試薬と該マーカーとの間に複数の異なる複合体を生成させる段階;および該複合体を検出して前記データを作成する段階を含む。一態様では、第1および第2のイムノアッセイはマルチプレックスアッセイを含む。一態様では、該少なくとも4種類のタンパク質マーカーは、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類、6種類、7種類、8種類、9種類、10種類、または11種類のマーカーを含む。一態様において、CHI3L1はNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPはNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFはNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6はNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPはNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1はNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3はNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNはNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1はNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AはNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1はNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、かつVEGFAはNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である。
[本発明1001]
第1の対象由来の第1の血液サンプルに対して少なくとも1つのイムノアッセイを実施して、少なくとも4種類のタンパク質マーカーのタンパク質レベルデータを含む第1のデータセットを作成すること
を含む、第1の対象についてのタンパク質レベルデータを作成するための方法であって、
該少なくとも4種類のタンパク質マーカーが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーを含み、
第1の対象が乾癬性関節炎(PsA)と以前に診断されている、
前記方法。
[本発明1002]
少なくとも1つのイムノアッセイの実施が、
第1の血液サンプルを取得する段階であって、第1の血液サンプルが前記タンパク質マーカーを含む、段階;
第1の血液サンプルを複数の異なる試薬と接触させる段階;
該試薬と該マーカーとの間に複数の異なる複合体を生成させる段階;および
該複合体を検出して前記データを作成する段階
を含む、本発明1001の方法。
[本発明1003]
少なくとも1つのイムノアッセイがマルチプレックスアッセイを含む、本発明1001の方法。
[本発明1004]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類のマーカーを含む、本発明1001の方法。
[本発明1005]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも6種類のマーカーを含む、本発明1001の方法。
[本発明1006]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも7種類のマーカーを含む、本発明1001の方法。
[本発明1007]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも8種類のマーカーを含む、本発明1001の方法。
[本発明1008]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも9種類のマーカーを含む、本発明1001の方法。
[本発明1009]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも10種類のマーカーを含む、本発明1001の方法。
[本発明1010]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも11種類のマーカーを含む、本発明1001の方法。
[本発明1011]
前記複数のタンパク質マーカーが多くとも500種類のタンパク質マーカーからなる、本発明1001の方法。
[本発明1012]
前記複数のタンパク質マーカーが多くとも250種類のタンパク質マーカーからなる、本発明1001の方法。
[本発明1013]
前記複数のタンパク質マーカーが多くとも100種類のタンパク質マーカーからなる、本発明1001の方法。
[本発明1014]
前記複数のタンパク質マーカーが多くとも50種類のタンパク質マーカーからなる、本発明1001の方法。
[本発明1015]
前記複数のタンパク質マーカーが多くとも25種類のタンパク質マーカーからなる、本発明1001の方法。
[本発明1016]
前記複数のタンパク質マーカーが多くとも12種類のタンパク質マーカーからなる、本発明1001の方法。
[本発明1017]
CHI3L1がNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPがNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFがNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6がNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPがNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1がNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3がNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNがNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1がNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AがNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1がNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、VEGFAがNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である、本発明1001の方法。
[本発明1018]
タンパク質レベルスコアを作成するための方法であって、以下の段階を含む方法:
乾癬性関節炎(PsA)と以前に診断された対象由来の第1の血液サンプルに対して少なくとも1つのイムノアッセイを実施して、複数のタンパク質マーカーの各タンパク質マーカーに関するタンパク質レベルデータを作成する段階であって、
該複数のタンパク質マーカーが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーを含む複数の試験マーカーを含む、段階;および
各試験マーカーのタンパク質レベルデータを組み合わせて、タンパク質レベルスコアを作成する段階。
[本発明1019]
少なくとも1つのイムノアッセイの実施が、
第1の血液サンプルを取得する段階であって、第1の血液サンプルが前記タンパク質マーカーを含む、段階;
第1の血液サンプルを複数の異なる試薬と接触させる段階;
該試薬と該マーカーとの間に複数の異なる複合体を生成させる段階;および
該複合体を検出して前記データを作成する段階
を含む、本発明1018の方法。
[本発明1020]
少なくとも1つのイムノアッセイがマルチプレックスアッセイを含む、本発明1018の方法。
[本発明1021]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類のマーカーを含む、本発明1018の方法。
[本発明1022]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも6種類のマーカーを含む、本発明1018の方法。
[本発明1023]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも7種類のマーカーを含む、本発明1018の方法。
[本発明1024]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも8種類のマーカーを含む、本発明1018の方法。
[本発明1025]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも9種類のマーカーを含む、本発明1018の方法。
[本発明1026]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも10種類のマーカーを含む、本発明1018の方法。
[本発明1027]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも11種類のマーカーを含む、本発明1018の方法。
[本発明1028]
前記複数の試験マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、およびVEGFAを含む、本発明1018の方法。
[本発明1029]
CHI3L1がNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPがNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFがNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6がNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPがNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1がNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3がNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNがNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1がNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AがNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1がNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、VEGFAがNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である、本発明1018の方法。
[本発明1030]
乾癬性関節炎(PsA)と以前に診断された対象においてPsAの疾患活動性の定量的尺度を提供するための方法であって、以下の段階を含む方法:
該対象由来の第1のサンプルに対して少なくとも1つのイムノアッセイを実施して、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーを含む定量的データを含む第1のデータセットを作成する段階;および
第1のデータセットにアルゴリズムを適用して、第1の疾患活動性スコアを決定する段階であって、第1の疾患活動性スコアが該対象におけるPsA疾患活動性の定量的尺度を提供する、段階。
[本発明1031]
前記対象から取得した第2のサンプルに関連する第2のデータセットを受け取る段階であって、第1のサンプルと第2のサンプルが異なる時期に該対象から取得したものである、段階;
第2のデータセットにアルゴリズムを適用して、第2の疾患活動性スコアを決定する段階;および
第1の疾患活動性スコアと第2の疾患活動性スコアを比較して、疾患活動性スコアの変化を決定する段階であって、その変化が該対象における乾癬性関節炎の疾患活動性の変化を示す、段階
をさらに含む、本発明1030の方法。
[本発明1032]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類、6種類、7種類、8種類、9種類、10種類、または11種類のマーカーを含む、本発明1030の方法。
[本発明1033]
CHI3L1がNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPがNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFがNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6がNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPがNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1がNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3がNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNがNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1がNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AがNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1がNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、VEGFAがNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である、本発明1030の方法。
[本発明1034]
サンプルをスコアリングするためのシステムであって、以下を含むシステム:
乾癬性関節炎(PsA)と以前に診断された対象から取得した第1のサンプルに関連する第1のデータセットを保存するための記憶用メモリであって、
第1のデータセットが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のマーカーの定量的データを含む、記憶用メモリ;および
該記憶用メモリに通信可能に接続されたプロセッサであって、
該プロセッサが、第1のデータセットにアルゴリズムを適用して第1の疾患活動性スコアを決定するように構成されており、ここで、第1の疾患活動性スコアが、該対象におけるPsA疾患活動性の定量的尺度を提供し、該アルゴリズムが、既知のPsA疾患活動性を有する対象由来のサンプル中の少なくとも4種類のマーカーを表すデータを用いてトレーニングされる、プロセッサ。
[本発明1035]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類、6種類、7種類、8種類、9種類、10種類、または11種類のマーカーを含む、本発明1034のシステム。
[本発明1036]
CHI3L1がNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPがNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFがNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6がNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPがNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1がNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3がNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNがNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1がNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AがNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1がNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、VEGFAがNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である、本発明1034のシステム。
[本発明1037]
乾癬性関節炎(PsA)と以前に診断された対象において治療レジメンを推奨するための方法であって、以下の段階を含む方法:
a) 第1の時点で、該対象由来の第1のサンプルに対して第1のイムノアッセイを実施して、定量的データの第1のセットに基づいて第1のスコアを作成する段階であって、
定量的データの第1のセットが、キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);インターロイキン6 (インターフェロン、β2)(IL6);レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);または血管内皮成長因子A (VEGFA)から選択される少なくとも4種類のバイオマーカーの発現データを含む、段階;
b) 第1の時点後の第2の時点で、該対象由来の第2のサンプルに対して第2のイムノアッセイを実施して、定量的データの第2のセットに基づいて第2のスコアを作成する段階であって、
定量的データの第2のセットが該少なくとも4種類のバイオマーカーの発現データを含む、段階;
c) 第1のスコアと第2のスコアとの間に差があるかどうかを判定する段階;および
d) 第1のスコアと第2のスコアとの間の差に基づいて、治療レジメンを推奨するか、または既存の治療レジメンを変更する段階。
[本発明1038]
第1のスコアと第2のスコアとの間の差がPsA疾患活動性の低下または変化なしを示す場合には、非生物学的治療レジメンが推奨される、本発明1037の方法。
[本発明1039]
第1のスコアと第2のスコアとの間の差がPsA疾患活動性の増加を示す場合には、生物学的治療レジメンが推奨される、本発明1037の方法。
[本発明1040]
前記少なくとも1つのイムノアッセイの実施が、
第1のサンプルを取得する段階であって、第1のサンプルが前記タンパク質マーカーを含む、段階;
第1のサンプルを複数の異なる試薬と接触させる段階;
該試薬と該マーカーとの間に複数の異なる複合体を生成させる段階;および
該複合体を検出して前記データを作成する段階
を含む、本発明1037の方法。
[本発明1041]
第1および第2のイムノアッセイがマルチプレックスアッセイを含む、本発明1037の方法。
[本発明1042]
少なくとも4種類のタンパク質マーカーが、CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1、またはVEGFAから選択される少なくとも5種類、6種類、7種類、8種類、9種類、10種類、または11種類のマーカーを含む、本発明1037の方法。
[本発明1043]
CHI3L1がNCBI RefSeq NP_001267.2(配列番号1)のアミノ酸配列と少なくとも90%同一であり、CRPがNCBI RefSeq NP_000558.2(配列番号2)のアミノ酸配列と少なくとも90%同一であり、EGFがNCBI RefSeq NP_001954.2(配列番号3)のアミノ酸配列と少なくとも90%同一であり、IL6がNCBI RefSeq NP_000591.1(配列番号4)のアミノ酸配列と少なくとも90%同一であり、LEPがNCBI RefSeq NP_000221.1(配列番号5)のアミノ酸配列と少なくとも90%同一であり、MMP1がNCBI RefSeq NP_002412.1(配列番号6)のアミノ酸配列と少なくとも90%同一であり、MMP3がNCBI RefSeq NP_002413.1(配列番号7)のアミノ酸配列と少なくとも90%同一であり、RETNがNCBI RefSeq NP_065148.1(配列番号8)のアミノ酸配列と少なくとも90%同一であり、SAA1がNCBI RefSeq NP_000322.2(配列番号9)のアミノ酸配列と少なくとも90%同一であり、TNFRSF1AがNCBI RefSeq NP_001056.1(配列番号10)のアミノ酸配列と少なくとも90%同一であり、VCAM1がNCBI RefSeq NP_001069.1(配列番号11)のアミノ酸配列と少なくとも90%同一であり、VEGFAがNCBI RefSeq NP_001020539.2(配列番号12)のアミノ酸配列と少なくとも90%同一である、本発明1037の方法。
【図面の簡単な説明】
【0011】
当業者は、以下に記載する図面が単なる例示の目的のためであることを理解するであろう。図面は、本教示の範囲を決して限定するものではない。
図1図1は、実施例1に記載される、MBDAアルゴリズム予測およびCRPと、疾患活動性の臨床評価と、の相関を示す。
図2図2は、実施例1の記載に従った、ベースラインおよび6ヶ月の訪問時の対象についてのMBDAスコアを示す。MBDAスコアは治療群および時点によって示される。ベースラインと6ヶ月の両方で利用できるMBDAスコアを有する対象のみが示される。
図3】コンピュータ(1600)のハイレベルブロック図を示す。チップセット(1604)に接続された少なくとも1つのプロセッサ(1602)が図示される。さらに、メモリ(1606)、記録デバイス(1608)、キーボード(1610)、グラフィックスアダプタ(1612)、ポインティングデバイス(1614)、およびネットワークアダプタ(1616)もチップセット(1604)に接続される。ディスプレイ(1618)はグラフィックスアダプタ(1612)に接続される。一態様では、チップセット(1604)の機能性がメモリコントローラハブ(1620)とI/Oコントローラハブ(1622)によって提供される。別の態様では、メモリ(1606)がチップセット(1604)の代わりにプロセッサ(1602)に直結される。記録デバイス(1608)は、ハードドライブ、コンパクトディスク読取専用メモリ(CD-ROM)、DVD、またはソリッドステート・メモリデバイスのような、データ保持が可能な任意のデバイスである。メモリ(1606)はプロセッサ(1602)で用いられる命令とデータを保持する。ポインティングデバイス(1614)はマウス、トラックボール、または他のタイプのポインティングデバイスであってよく、コンピュータシステム(1600)にデータを入力するためにキーボード(1610)と組み合わせて用いられる。グラフィックスアダプタ(1612)はディスプレイ(1618)上に画像や他の情報を表示する。ネットワークアダプタ(1616)はコンピュータシステム(1600)をローカルまたはワイドエリアネットワークに接続する。
【発明を実施するための形態】
【0012】
さまざまな態様の説明
本教示のこれらおよび他の特徴は本明細書の説明からより明らかになるだろう。本教示はさまざまな態様と関連して説明されるが、本教示はそのような態様に限定されるものではない。反対に、当業者には理解されるように、本教示はさまざまな代替、改変、および均等物を包含する。
【0013】
本教示は全体として、炎症性疾患および/または自己免疫疾患、例えば乾癬性関節炎(PsA)を有する対象に関連したバイオマーカーの識別に関し、疾患活動性を判定または評価する上で有用である。
【0014】
本明細書中で用いる用語のほとんどは、当業者がそれらの用語に帰属すると考えている意味を有する。本明細書で具体的に定義された用語は、全体としては本教示の文脈において提供される意味を有し、当業者によって一般的に理解されているとおりである。当技術分野で理解されている用語または語句の定義と、本明細書で具体的に教示される用語または語句の定義との間にコンフリクトが生じる場合は、本明細書が優先するものとする。本明細書および添付の特許請求の範囲で用いる単数形「a」、「an」および「the」は、文脈上明確に別途示されない限り、複数形で指示されるものを含むことに留意する必要がある。
【0015】
定義
「精度」とは、測定値または計算値がその実際の値に一致する度合いのことである。臨床試験における「精度」は、実際の結果(真陽性または真陰性、ここでは対象が、それぞれ、疾患を持つとして、または健康/正常として、正しく分類される)と、誤って分類された結果(偽陽性または偽陰性、ここでは対象が、それぞれ、疾患を持つとして、または健康/正常として、誤って分類される)との比率に関係する。「精度」を表す他のおよび/または同等の用語には、例えば、「感度」、「特異性」、「陽性適中度(PPV)」、「AUC」、「陰性適中度(NPV)」、「尤度」および「オッズ比」が含まれる。「解析精度」は、本教示の文脈においては、測定プロセスの再現性および予測可能性をさす。解析精度は例えば次のような測定にまとめることができる:変動係数(CV)の測定、ならびに異なる時点での、または異なる評価者、ユーザー、機器および/または試薬を用いた、同一のサンプルまたは対照の一致および校正の試験。新しいバイオマーカーを評価する上での考慮事項の概要については、例えば、R. Vasan, Circulation 2006, 113(19):2335-2362を参照されたい。
【0016】
本明細書で使用する用語「投与する」は、所望の効果が生じるように、所望の部位での組成物の少なくとも部分的な局在化をもたらす方法または経路で、組成物を対象に配置することを指す。投与経路には、局所投与と全身投与の両方が含まれる。一般的に、局所投与は、対象の全身と比較して、より多くの組成物が特定の部位に送達される結果となるが、全身投与は、本質的に対象の全身に送達される結果となる。
【0017】
用語「アルゴリズム」は、連続的であろうと分類別であろうと、1つまたは複数の入力またはパラメーターを受け取って、出力値、指標、指標値またはスコアを算出する、あらゆる式、モデル、数式、アルゴリズム的、解析的もしくはプログラムされたプロセス、あるいは統計的手法または分類解析を包含する。アルゴリズムの例としては、限定するものではないが、以下が挙げられる:比率、和、指数または係数などの回帰演算子、バイオマーカー値の変換と正規化(年齢、性別、民族性などの臨床パラメーターに基づく正規化スキームを含むが、これらに限定されない)、規則とガイドライン、統計的分類モデル、および集団に向けられたニューラルネットワーク。さらに、バイオマーカーとの関連で用いられるものは、(a)対象サンプルで検出されたバイオマーカーのレベルと(b)それぞれの対象の疾患活動性のレベルとの関係を決定するための、線形および非線形方程式ならびに統計的分類解析である。
【0018】
本教示の文脈において用語「分析物」とは、測定される任意の物質を意味し、バイオマーカー、マーカー、核酸、電解質、代謝産物、タンパク質、糖、炭水化物、脂肪、脂質、サイトカイン、ケモカイン、成長因子、タンパク質、ペプチド、核酸、オリゴヌクレオチド、代謝産物、突然変異体、変異体、遺伝子多型、改変体、断片、サブユニット、分解産物および他の要素を含むことができる。簡略化するために、遺伝子のみならず、遺伝子産物/タンパク質をも意味するために、標準的なタンパク質記号を用いるのではなく、標準的な遺伝子記号が全体にわたって用いられる;例えば、本明細書中で用いるAPOA1は遺伝子APOA1とタンパク質ApoAIをも意味することができる。一般に、本明細書では分析物の名称および記号からハイフンが省略される(IL-6=IL6)。
【0019】
「解析(分析)する」には、サンプル中の分析物のレベルを測定することによって、サンプルに関連した値または値のセットを決定することが含まれる。「解析(分析)する」はさらに、そのレベルを、同じ対象または他の対象(複数可)由来のサンプルまたはサンプルのセット中の成分レベルと比較することを含み得る。本教示のバイオマーカーは、当技術分野で公知のさまざまな従来法によって解析することができる。いくつかのそうした方法として、限定するものではないが、血清タンパク質、糖、代謝産物または他の分析物のレベルを測定すること、酵素活性を測定すること、および遺伝子発現を測定することが挙げられる。
【0020】
用語「抗体」とは、必要とされる選択性でもって他のものと可逆的に結合する任意の免疫グロブリン様分子を指す。したがって、この用語には、本教示のバイオマーカーと選択的に結合することができる、任意のそのような分子が含まれる。この用語は、抗原上に存在するエピトープと結合できる免疫グロブリン分子を含む。この用語は、モノクローナル抗体およびポリクローナル抗体などの完全な免疫グロブリン分子だけでなく、抗体アイソタイプ、組換え抗体、二重特異性抗体、ヒト化抗体、キメラ抗体、抗イディオタイプ(抗ID)抗体、一本鎖抗体、Fabフラグメント、F(ab')フラグメント、融合タンパク質抗体フラグメント、免疫グロブリンフラグメント、Fvフラグメント、一本鎖Fvフラグメント、ならびに免疫グロブリン配列を含むキメラ、および必要とされる選択性の抗原認識部位を含む上記のいずれかの改変体をも含むことを意図している。
【0021】
「自己免疫疾患」は、体内に通常存在する物質および組織に対する免疫反応の結果として生じる、本明細書で定義される任意の疾患を包含する。自己免疫疾患であると疑われるまたは知られている疾患の例としては、以下が挙げられる:関節リウマチ、早期関節リウマチ(RA)、体軸性脊椎関節炎、若年性特発性関節炎、血清反応陰性脊椎関節炎、強直性脊椎炎、乾癬性関節炎(PsA)、抗リン脂質抗体症候群、自己免疫肝炎、ベーチェット病、水疱性類天疱瘡、セリアック病、クローン病、皮膚筋炎、グッドパスチャー症候群、グレーヴス病、橋本病、特発性血小板減少性紫斑病、IgA腎症、川崎病、全身性エリテマトーデス、混合性結合組織病、多発性硬化症、重症筋無力症、多発性筋炎、原発性胆汁性肝硬変、乾癬、強皮症、シェーグレン症候群、潰瘍性大腸炎、血管炎、ヴェーゲナー肉芽腫、側頭動脈炎、高安動脈炎、ヘノッホ・シェーンライン紫斑病、白血球破壊性血管炎、結節性動脈炎、チャーグ・ストラウス症候群、および混合型クリオグロブリン血症血管炎。
【0022】
本教示の文脈において「バイオマーカー」または「マーカー」は、限定するものではないが、サイトカイン、ケモカイン、増殖因子、タンパク質、ペプチド、核酸、オリゴヌクレオチド、および代謝産物、ならびにそれらの関連する代謝産物、突然変異体、アイソフォーム、変異体、遺伝子多型、改変体、断片、サブユニット、分解産物、要素、およびその他の分析物またはサンプル由来の指標を包含する。バイオマーカーはまた、変異タンパク質、変異核酸、コピー数の変化および/または転写変異体をも含むことができる。バイオマーカーはさらに、健康状態の非血液由来因子および非分析物生理学的マーカー、および/またはサンプル(例えば、体液などの生体サンプル)から測定されない他の因子もしくはマーカー、例えば臨床的評価のための臨床パラメーターおよび伝統的因子を包含する。バイオマーカーはまた、計算されるおよび/または数学的に生成されるあらゆる指標を含むことができる。バイオマーカーはまた、時間的傾向および時間差を含めて、上記の測定のいずれか1つ以上の組合せを含むことができる。バイオマーカーとしては、限定するものではないが、以下が挙げられる:アポリポタンパク質A-I (APOA1);アポリポタンパク質C-III (APOC3);カルプロテクチン;ケモカイン(C-Cモチーフ)リガンド22 (CCL22);キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1またはYKL-40);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);細胞間接着分子1 (ICAM1);ICTP;インターロイキン18 (インターフェロンγ誘導因子)(IL18);インターロイキン1、β(IL1B);インターロイキン6受容体(IL6R);インターロイキン8 (IL8);ケラタン硫酸またはKS;レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);ピリジノリン(3個のリシン残基から誘導される、コラーゲンに形成された架橋)、本明細書ではPYDと呼ぶことがある;レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);および血管内皮成長因子A (VEGFA)。
【0023】
本教示の文脈において「臨床(的)評価」、または「臨床データポイント」もしくは「臨床エンドポイント」とは、疾患活動性または重症度の尺度を指すことができる。臨床評価は、所定の条件下で対象(複数可)由来のサンプル(またはサンプルの集団)の評価から得ることができるスコア、値、または値のセットを含むことができる。臨床評価はまた、対象が記入する質問票(アンケート)であり得る。臨床評価はまた、バイオマーカーおよび/または他のパラメーターによって予測することが可能である。当業者は、RAの臨床評価が、一例として、限定するものではないが、次のうちの1つ以上を含み得ることを認識するであろう:DAS、DAS28、DAS28-ESR、DAS28-CRP、HAQ、mHAQ、MDHAQ、医師による全般的評価VAS、患者による全般的評価VAS、疼痛VAS、疲労VAS、全体的VAS、睡眠VAS、SDAI、CDAI、RAPID3、RAPID4、RAPID5、ACR20、ACR50、ACR70、SF-36 (十分に検証された全身の健康状態の尺度)、RA MRIスコア(RAMRIS;またはRA MRIスコアリングシステム)、総Sharpスコア(TSS)、van der Heijde改変TSS、van der Heijde改変Sharpスコア(またはSharp-van der Heijdeスコア(SHS))、Larsenスコア、TJC、腫脹関節数(SJC)、CRP力価(またはレベル)、およびESR。当業者は、PsAの臨床評価もまた、一例として、限定するものではないが、次のうちの1つ以上を含み得ることを認識するであろう:医師による全般的評価、HAQスコア、皮膚BSA、およびCDAI。
【0024】
本教示の文脈において用語「臨床パラメーター」は、対象の健康状態のあらゆる尺度を包含する。臨床パラメーターを用いて、対象の疾患活動性の臨床的評価を得ることが可能である。臨床パラメーターとしては、限定するものではないが、以下を挙げることができる:治療レジメン(従来型の製剤または生物学的製剤、ステロイド剤などを問わずに、DMARDを含むが、これらに限定されない)、TJC、SJC、朝のこわばり、3箇所以上の関節領域の関節炎、手関節の関節炎、乾癬、対称性関節炎、リウマチ結節、X線画像の変化および他のイメージング、性別/性、年齢、人種/民族、罹病期間、拡張期および収縮期血圧、安静時の心拍数、身長、体重、体格指数、家族歴、CCP状態(すなわち、対象が抗CCP抗体陽性であるか、陰性であるか)、CCP力価、RF状態、RF力価、ESR、CRP力価、閉経状態、ならびに喫煙者/非喫煙者であるか。
【0025】
「臨床的評価」と「臨床パラメーター」は互いに排他的な用語ではない。これら2つのカテゴリーのメンバーには重複が存在し得る。例えば、CRP力価は疾患活動性の臨床的評価として用いられる;あるいは、それは対象の健康状態の指標として用いられ、したがって、臨床パラメーターとして役立つ。
【0026】
用語「コンピュータ」とは、当技術分野で一般に知られた意味を有する;すなわち、一連の命令に従ってデータを操作するためのマシンである。例示目的のみのために、図3はコンピュータ(1600)のハイレベルブロック図である。当技術分野で公知のように、「コンピュータ」は図3に示したものとは異なるコンポーネントおよび/または他のコンポーネントを持つことができる。さらに、コンピュータ1600は特定の示されたコンポーネントを持たなくてもよい。その上、記録デバイス(1608)はローカルであってよく、かつ/またはコンピュータ(1600)から遠く離れていてもよい(例えば、記録エリアネットワーク(SAN)内で具体化される)。当技術分野で公知のように、コンピュータ(1600)は、本明細書に記載する機能を提供するためのコンピュータプログラムモジュールを実行するように適合される。本明細書中で用いる用語「モジュール」とは、指定された機能を提供するために利用されるコンピュータプログラムのロジックをさす。したがって、モジュールはハードウェア、ファームウェアおよび/またはソフトウェアに実装することができる。一態様では、プログラムモジュールが記録デバイス(1608)に格納され、メモリ(1606)にロードされ、そしてプロセッサ(1602)によって実行される。本明細書に記載するエンティティの態様は、本明細書に記載したもの以外の他のモジュールおよび/または異なるモジュールを含むことができる。さらに、モジュールに帰せられる機能は、他の態様では他のモジュールまたは異なるモジュールによって実行することができる。また、この説明では、明瞭さと利便性の目的のために、用語「モジュール」を省略することがある。
【0027】
本教示における用語「サイトカイン」とは、免疫系の特定の細胞から分泌される物質であって、細胞間で局所的にシグナルを伝送し、したがって他の細胞に影響を与える物質である。用語「サイトカイン」は「成長因子」を包含する。「ケモカイン」もサイトカインである。それらは細胞において走化性を誘導することができるサイトカインのサブセットである;したがって、それらは「走化性サイトカイン」の別名でも知られている。
【0028】
「DAS」は、対象におけるRA活動性の尺度である、当業者によく知られた疾患活動性スコアを指す。D. van der Heijde et al., Ann. Rheum. Dis. 1990, 49(11):916-920を参照されたい。本明細書で使用する「DAS」は、この特定の疾患活動性スコアを指す。「DAS28」は28ヶ所の特定の関節の評価を含む。これは、研究および臨床実践において十分に認識された現行基準である。DAS28はよく認識された基準であるため、単に「DAS」と呼ばれることが多い。特に指定しない限り、本明細書における「DAS」はDAS28を包含する。DAS28は、オランダのNijmegenにあるUniversity Medical CentreのDepartment of Rheumatologyにより維持管理されたdas-score. nlウェブサイトで概説される基準に従って、RA対象について計算することができる。各対象における腫れた関節の数、つまり合計28のうちの腫脹関節数(SJC28)、および圧痛のある関節の数、つまり合計28のうちの圧痛関節数(TJC28)が評価される。いくつかのDAS28の計算では、対象の全身の健康状態(general health: GH)もまた一構成要素であり、100mmの視覚的アナログスケール(Visual Analogue Scale:VAS)で測定することができる。「患者による全般的健康評価」(または単に「患者による全般的評価」)に関して、GHを本明細書ではPGまたはPGAということもできる。かくして、「患者による全般的健康評価VAS」は、視覚的アナログスケールで測定されるGHのことである。
【0029】
「DAS28-CRP」(または「DAS28CRP」)は、ESRの代わりにCRPを使用して計算されるDAS28評価である(下記参照)。CRPは肝臓で産生される。通常、個体の血清中に循環しているCRPはほとんどないか、または全くない;CRPは一般に急性炎症または感染のエピソード中に体内に存在する。そのため、血清中のCRP量が高いか、上昇すると、急性の感染または炎症と関連している可能性がある。1mg/dLを超えるCRPの血清レベルは、通常、高いとみなされる。大部分の炎症および感染は、10mg/dLを超えるCRPレベルをもたらす。対象血清中のCRPの量は、例えば、Diagnostics Systems Laboratories社(Webster, TX)により開発された、DSL-10-42100 ACTIVE(登録商標)US C反応性タンパク質酵素結合免疫吸着検定法(ELISA)を用いて定量することができる。CRP産生はRAの放射線学的進行と関連している。M. Van Leeuwen et al., Br. J. Rheum. 1993, 32(suppl.):9-13を参照されたい。したがって、CRPはRA疾患活動性を測定する上でESRの適切な代替手段と考えられる。R. Mallya et al., J. Rheum. 1982, 9(2):224-228およびF. Wolfe, J. Rheum. 1997, 24:1477-1485を参照されたい。
【0030】
DAS28-CRPは、GHの構成要素を含むまたは含まない、以下のいずれかの式に従って算出することができ、式中、「CRP」は対象の血清中に存在するこのタンパク質の量(mg/L)を表し、「sqrt」は平方根を表し、「ln」は自然対数を表す:
【0031】
「DAS28-ESR」は、各対象のESRをも(mm/時で)測定するDAS28評価である。DAS28-ESRは、以下の式に従って算出することができる:
【0032】
本明細書中で特に明記しない限り、本教示で使用される用語「DAS28」は、上記の4つの式のいずれかによって得られるDAS28-ESRまたはDAS28-CRPを指すことができる;あるいは、DAS28は、当技術分野で知られるような、別の信頼できるDAS28の式を指すことができる。
【0033】
「データセット」または「データ」は、所望の条件下でのサンプル(またはサンプルの母集団)の評価から結果として得られた数値のセットである。データセットの値は、例えば、サンプルから実験的に測定値を取得し、これらの測定値からデータセットを構築することによって;あるいは、研究所などのサービスプロバイダから、またはデータセットが格納されているサーバーまたはデータベースから、データセットを取得することによって、得ることができる。
【0034】
本明細書で使用する「差」は、第2のサンプル中のバイオマーカーまたはバイオマーカーパネルの測定可能な発現と比較したときの、同じバイオマーカーまたはバイオマーカーパネルの測定可能な発現の増加または低下を指す。
【0035】
本教示の文脈において用語「疾患」は、例えば身体の無秩序なまたは正しく機能しない臓器、部分、構造または系に出現して、例えば遺伝子のエラーもしくは発生上のエラー、感染、毒物、栄養の不足もしくはアンバランス、毒性、または不利な環境要因から生じる、あらゆる障害、病態、病気、不調などを包含する。
【0036】
DMARDは従来型のものまたは生物学的なものであり得る。一般に従来型と見なされるDMARDの例としては、限定するものではないが、以下が挙げられる:MTX、アザチオプリン(AZA)、ブシラミン(BUC)、クロロキン(CQ)、シクロスポリン(CSA、またはサイクロスポリン)、ドキシサイクリン(DOXY)、ヒドロキシクロロキン(HCQ)、筋内注射金製剤(IM金製剤)、レフルノミド(LEF)、レボフロキサシン(LEV)、およびスルファサラジン(SSZ)。その他の従来型DMARDの例としては、限定するものではないが、以下が挙げられる:フォリン酸、D-ペニシラミン、金オーラノフィン、金オーロチオグルコース、金チオマレート、シクロホスファミド、およびクロラムブシル。生物学的DMARD(または生物学的製剤)の例としては、限定するものではないが、以下が挙げられる:腫瘍壊死因子(TNF)α分子を標的とする生物学的製剤およびTNF阻害剤、例えばインフリキシマブ、アダリムマブ、エタネルセプトおよびゴリムマブ。生物学的DMARDの他のクラスには、IL-1阻害剤、例えばアナキンラ、T細胞モジュレーター、例えばアバタセプト、B細胞モジュレーター、例えばリツキシマブ、およびIL-6阻害剤、例えばトシリズマブが含まれる。
【0037】
本明細書で使用する「イムノアッセイ」は、生物学的サンプル中のアナライトまたはバイオマーカーの存在もしくは濃度を測定するために1種類以上の抗体を使用する生化学アッセイを指す。本明細書で使用する「マルチプレックスイムノアッセイ」は、アッセイの1回のラン/サイクルにおいて複数のアナライトを同時に測定するために2種類以上の抗体を使用する生化学アッセイを指す。
【0038】
本教示の文脈において「炎症性疾患」は、病原体、損傷細胞、刺激物、抗原のような刺激を含むがこれらに限定されない有害な刺激に対する、および自己免疫疾患の場合には体内に通常存在する物質または組織に対する、血管組織の生物学的応答から生じる、本明細書で定義される任意の疾患を、限定することなく、包含する。炎症性疾患の非限定的な例としては、RA、強直性脊椎炎、乾癬性関節炎、乾癬、アテローム性動脈硬化、喘息、自己免疫疾患、慢性炎症、慢性前立腺炎、糸球体腎炎、過敏症、炎症性腸疾患、骨盤内炎症性疾患、再潅流障害、移植による拒絶反応、および血管炎が挙げられる。
【0039】
本明細書で使用する「解釈機能」は、観測データのセットを、特に興味深い意味のある決定に変換することを意味する;例えば、解釈機能は、観測されたバイオマーカーデータのデータセットを、疾患活動性または対象の病状の意味のある決定に変換するために、1つ以上の統計的アルゴリズムを利用することによって生み出される予測モデルであり得る。
【0040】
本教示の文脈において「測定する」または「測定」とは、臨床サンプルまたは対象由来のサンプル中の物質の存在、不在、分量、量、または有効量、例えばそのような物質の濃度レベル、を決定すること、あるいは対象の臨床パラメーターの値または分類を評価することを意味する。
【0041】
本教示の文脈において「性能」は、例えば、モデル、アルゴリズム、または予後検査の質および全体的な有用性に関する。モデルまたは検査性能において考慮すべき事項には、限定するものではないが、検査の臨床精度および解析精度、試薬および各種成分の安定性などの使用特性、モデルまたは検査の使いやすさ、健康価値または経済的価値、ならびに検査の各種試薬および成分の相対的コストが含まれる。行うとは、機能を実施する行為を意味しうる。
【0042】
「集団」は、同様の指定された特性の対象をグループ化したものである。グループ化は、例えば、限定するものではないが、臨床パラメーター、臨床的評価、治療レジメン、疾患状態(例えば、病気があるまたは健康)、疾患活動性のレベルなどによることが考えられる。集団間で疾患活動性を比較する際にMBDAスコアを用いる場合には、集計値が、例えば縦断的研究における特定の時点で、集団の対象の観測MBDAスコアに基づいて決定され得る。集計値は、例えば個々のデータポイントのコレクションから意味のある集計値に到達するための、当技術分野で知られた有用な、いずれかの数式または統計式に基づくことができ;例えば、平均値、中央値、平均値の中央値などである。
【0043】
「予測モデル」、この用語は本明細書では「多変量モデル」または単に「モデル」と同義的に用いられるが、それはデータのセットを分類するための1つまたは複数の統計的アルゴリズムを用いて開発された数学的構築物である。用語「予測する」は、データポイントを生成するために通常または別途必要とされる臨床診断の手順を実際に行うことなく、データポイントの値を生成することをさす;このモデルに関連して用いられる「予測する」は、特定の結果を予測するモデルの能力をさすとだけ理解されるべきでない。予測モデルは解釈関数を提供することができる;例えば、予測モデルは、観測データのデータセットを疾患活動性または対象の疾患状態の意味のある値に変換する1つまたは複数の統計的アルゴリズムまたは方法を利用することによって、作成することができる。モデル開発に有用な統計的ツールのいくつかの例については、「MBDAスコアの計算」を参照されたい。
【0044】
「予後」は、疾患の起こり得る転帰についての予測である。予後の推定は、例えば対象のための適切な治療レジメンを決定する上で、有用である。
【0045】
本教示において用いる「定量的データセット」または「定量的データ」とは、例えば対象サンプル中の複数(すなわち2つ以上)のバイオマーカーの発現の検出および複合測定から導かれるデータをさす。定量的データセットは疾患状態の識別、モニタリングおよび治療のためのスコアの生成に用いられ、そして対象の生物学的状態を特徴づける際に用いられる。対象となる疾患状態または生理学的状態に応じて異なるバイオマーカーを検出することが可能である。
【0046】
本明細書で使用する「推奨する」とは、治療レジメンへの推奨を行うこと、または対象に対して特定の治療レジメンを排除する(すなわち、推奨しない)ことを指す。このような推奨は、臨床医が個々の対象に対して特定の治療レジメンを適用するための基礎として、任意で他の情報と合わせて、役立つであろう。
【0047】
本教示の文脈において「サンプル」とは、対象から単離された任意の生物学的サンプルをさす。サンプルには、限定することなく、以下が含まれる:単一の細胞または複数の細胞、細胞の断片、体液のアリコート、全血、血小板、血清、血漿、赤血球、白血球、内皮細胞、組織生検、滑液、リンパ液、腹水、および間質液または細胞外液。用語「サンプル」はまた、細胞間の空間にある液体、例えば歯肉溝滲出液、骨髄、脳脊髄液(CSF)、唾液、粘液、痰、精液、汗、尿、または他のいずれかの体液を包含する。「血液サンプル」は、全血またはその画分、例えば血液細胞、赤血球、白血球、血小板、血清および血漿をさすことができる。サンプルは、限定するものではないが、以下を含む手段によって対象から取得することができる:静脈穿刺、排泄、射精、マッサージ、生検、針吸引、洗浄(lavage)、擦過、外科的切開、または当技術分野で知られた介入もしくは他の手段。
【0048】
「スコア」は、対象の状態の変動または特徴の定量的尺度を提供するように、かつ/または対象の状態を識別する、区別する、または他の方法で特徴付けるように選択された1つの値または複数の値のセットである。スコアを構成する値は、例えば、対象から、または臨床パラメーターから、または臨床評価から、またはそれらの任意の組み合わせから得た、1つ以上のサンプル成分の測定量をもたらす定量的データに基づくことができる。特定の態様では、スコアは単一の成分、パラメーターまたは評価から導出され得るが、他の態様では、スコアは複数の成分、パラメーターおよび/または評価から導出される。スコアは、解釈関数に基づいてもよいし、解釈関数から導出されてもよい;例えば、解釈関数は、当技術分野で公知の様々な統計的アルゴリズムのいずれかを使用して、特定の予測モデルから導出される。「スコアの変化」は、例えば、1つの時点から次の時点までの、スコアの絶対的な変化、またはスコアの変化パーセント、または単位時間あたりのスコアの変化(すなわち、スコア変化率)を指すことができる。本明細書で使用する「スコア」は、以下に定義されるMBDAスコアと交換可能に使用される。
【0049】
本教示の文脈において「マルチバイオマーカー疾患活動性指数スコア」、「MBDAスコア」、または単に「MBDA」は、対象における炎症性疾患活動性または炎症性疾患の状態の定量的尺度を提供するために定量的データを使用するスコアである。特別に選択されたバイオマーカーからの、例えば開示されたバイオマーカーのセットからの、データのセットは、MBDAスコアを導くために本教示に従って解釈機能に入力される。解釈機能は、いくつかの態様では、統計的アルゴリズムに基づく予測または多変量モデリングから作成することができる。解釈機能への入力は、開示されたセットのバイオマーカーの2つ以上を試験した結果を、単独でまたは本明細書でも説明される臨床パラメーターおよび/もしくは臨床的評価と組み合わせて、含むことができる。本教示のいくつかの態様では、MBDAスコアは自己免疫疾患活動性の定量的尺度である。いくつかの態様では、MBDAスコアはRA疾患活動性の定量的尺度である。いくつかの態様では、MBDAスコアはPsA疾患活動性の定量的尺度である。本明細書で使用するMBDAは、VECTRA(登録商標)DAスコアを指すことができる。
【0050】
本教示の文脈において「統計的に有意」とは、観測された変化が偶然のみによって生じると予想されること(例えば、「偽陽性」)を上回ることを意味する。統計的有意性は当技術分野で周知のさまざまな方法のいずれかによって判定することができる。統計的有意性の一般的に用いられる尺度の例はp値である。p値は特定のデータポイントに等しい所定の結果を得る確率を表し、ここで、そのデータポイントは偶然のみの結果である。結果は、多くの場合、0.05以下のp値で高度に有意(偶然ではない)と見なされる。
【0051】
本教示の文脈において「対象」は一般的に哺乳類である。対象は患者であり得る。本明細書中で用いる用語「哺乳類」には、ヒト、非ヒト霊長類、イヌ、ネコ、マウス、ラット、ウシ、ウマ、およびブタが含まれるが、これらに限定されない。ヒト以外の哺乳類は有利には、炎症の動物モデルを表す対象として使用される。対象は雄性または雌性であってよい。対象は、PsAなどの炎症性疾患をもつと以前に診断または確認された者であり得る。対象は、炎症性疾患の治療的介入をすでに受けた者、または受けている者であり得る。対象はまた、炎症性疾患をもつと以前に診断されていない者であり得る;例えば、対象は、炎症状態の1つまたは複数の症状もしくは危険因子を示す者、または炎症状態の症状もしくは危険因子を示さない対象、または炎症性疾患について無症状である対象であり得る。
【0052】
本明細書中に記載される「治療レジメン」、「治療法」または「治療」は、それが生物学的、化学的、物理的、またはそれらの組合せであろうとなかろうと、対象の状態を維持する、改善する、向上させる、または他の方法で改変することを目的とした、対象のあらゆる臨床管理および介入を包含する。これらの用語は本明細書では同義的に用いられる。治療には、限定するものではないが、以下が含まれる:予防薬または治療用化合物(従来型DMARD、生物学的DMARD、非ステロイド性抗炎症薬(NSAID)、例えばCOX-2選択的阻害剤、およびコルチコステロイドを含む)の投与、運動療法、理学療法、食事の変更および/または補充、肥満外科的介入、医薬品および/または抗炎症薬(処方箋または店頭販売)の投与、ならびに疾患を予防する、その発症を遅らせる、または疾患を改善するのに有効と当技術分野で知られている他のいずれかの治療。「治療への応答」には、生物学的、化学的、物理的、またはこれらの組合せであろうとなかろうと、先に記載した治療のいずれかへの対象の応答が含まれる。「治療コース」は、特定の治療または治療レジメンの投与量、持続期間、程度などに関係する。
【0053】
本明細書で使用する「時点」(time point)とは、単一の点を用いて実質的に記述することができる、時間の記述の仕方を指す。時点はまた、検出できる最小単位の時間範囲として記述することもできる。時点は、時間のアスペクトの状態、または一定期間の記述の仕方を指すことができる。このような時点または時間範囲は、例えば、秒、分から時間、または日数のオーダーを含むことができる。
【0054】
疾患活動性の評価における本教示の使用
本教示のいくつかの態様において、バイオマーカーは、本明細書に記載するように、MBDAスコアの導出に使用することができる。そのMBDAスコアは、炎症性疾患および自己免疫疾患、特にRAまたはPsAの疾患状態および/または疾患活動性を評価するために使用され得る。特定の態様では、MBDAスコアは、治療法に応答したPsAの疾患状態および/または疾患活動性を評価するために用いられ得る。
【0055】
対象の炎症性疾患の状態を確認することは、その疾患の予後予測を可能にし、ひいては、より進行した疾患状態への対象の進行を遅らせる、抑制するまたは防止するために、さまざまな治療レジメンを、情報に基づいて選択すること、開始すること、調整すること、または増やすこともしくは減らすことを可能にする。いくつかの態様では、したがって、対象は、彼らのMBDAスコアの決定に基づいて、特定のレベルの炎症性疾患活動性を有する、および/または特定の疾患状態にある、と確認され、そして炎症性疾患のさらなる進行を防止するまたは遅延させるために、本明細書で定義されるような治療を開始するまたは加速するために選択され得る。他の態様では、MBDAスコアにより特定のレベルの炎症性疾患活動性を有する、および/または炎症性疾患の特定の状態にある、と確認された対象は、改善または寛解が対象に見られる場合、その治療を減らすまたは中止するために選択され得る。
【0056】
疾患活動性の格付け
本教示のいくつかの態様において、本明細書に記載するように導出されたMBDAスコアは、炎症性疾患活動性を、例えば高度、中程度、または低度と格付けするために使用することができる。このスコアは、医師により選択された値のセットに基づいて変化させることができる。例えば、値が0~100の範囲を与えられ、2つのスコア間の差が少なくとも1ポイントの値になるように、スコアを設定することができる。その後、医師はその値に基づいて疾患活動性を割り当てることができる。例えば、いくつかの態様では、1~29のスコアは低度の疾患活動性を表し、30~44のスコアは中程度のレベルの疾患活動性を表し、45~100のスコアは高度の疾患活動性を表す。疾患活動性スコアは、そのスコアの範囲に基づいて変化し得る。例えば、0~200の範囲が利用される場合、1~58のスコアは低レベルの疾患活動性を表すことができる。差は、スコア範囲の可能性に基づいて決定され得る。例えば、0~100のスコア範囲を使用する場合、スコアの小さな差は、約1、2、3、4、5、6、7、8、9または10ポイントの差であり得る;スコアの中程度の差は、約4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29または30ポイントの差であり得る;大きな差は、約14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45または50ポイントの差であり得る。したがって、例として、医師は、スコアの小さな差を約≦6ポイントとして、スコアの中程度の差を約7~20ポイントとして、スコアの大きな差を約>20ポイントとして規定することができる。その差は、任意の単位で表され、例えば、パーセントポイント(percentage points)で表される。例えば、医師は、小さな差を約6≦パーセントポイントとして、中程度の差を約7~20パーセントポイントとして、大きな差を約>20パーセントポイントとして規定することができる。
【0057】
本教示のいくつかの態様では、自己免疫疾患活動性がそのように格付けされ得る。他の態様では、RA疾患活動性がそのように格付けされ得る。他の態様では、PsA疾患活動性がそのように格付けされ得る。MBDAスコアは、例えばPsAの、炎症性疾患活動性の従来の臨床的評価と良好に相関するため、本教示の他の態様では、対象または集団における骨損傷それ自体、それゆえに疾患進行を、MBDAスコアの使用および適用によって追跡することができる。
【0058】
MBDAスコアは、いくつかの目的に使用することができる。対象に特有の基準で、それらは疾患活動性の相対的レベルを理解するためのコンテキストを提供する。疾患活動性のMBDA格付けは、例えば、治療の判定および治療コースの設定へと臨床医を導くために、および/または対象が寛解状態にあることを臨床医に知らせるために、使用することができる。さらに、それは対象における疾患活動性の質的レベルをより正確に評価して文書化するための手段を提供する。それはまた、ある診療を受けている対象の集団間の臨床上の差異を評価する観点からも有用である。例えば、このツールを用いて、さまざまな治療法の相対的有効性を評価することが可能である。さらに、それは異なる診療間の臨床上の差異を評価する観点からも有用である。これにより、医師は同僚がどのような世界的レベルの疾病管理を達成しているのかを判断することができ、かつ/または健康管理グループはコストと相対的有効性の両方についての異なる診療間でのそれらの結果を比較することができるだろう。MBDAスコアは、DAS28などの確立された疾患活動性評価との強い関連性を示すので、MBDAスコアは、対象の疾患活動性の程度および治療に対する応答をモニタリングするための定量的尺度を提供することができる。
【0059】
対象のスクリーニング
本教示の特定の態様はまた、さまざまな設定で対象集団をスクリーニングするために使用することができる。例えば、健康維持機構、公衆衛生団体または学校保健計画は、上記のように、治療介入を必要とする者を識別するために対象グループをスクリーニングすることができる。これらの教示の他の態様は、例えばある集団の臨床管理の有効性を判定する、または臨床管理のギャップを判定することを目的として、1以上の対象集団に関する疾患活動性データを収集して、全体として対象疾患状態を識別するために、使用することができる。保険会社(例えば、健康、生命、または障害)は、可能な介入の保険適用範囲を決定する過程で申込者のスクリーニングを要求する可能性がある。そのような集団スクリーニングで収集されたデータは、特にRAまたはPsAなどの症状への臨床的進行に結びついたとき、例えば健康維持機構、公衆衛生計画および保険会社の業務において価値があるだろう。
【0060】
そのようなデータのアレイまたはコレクションは、とりわけ、改善された医療サービス、費用対効果の高い医療、および改善された保険業務を提供するために、マシンが読み取り可能な媒体に格納されて、さまざまな健康関連データ管理システムで使用することができる。例えば、米国特許出願第2002/0038227号;米国特許出願第2004/0122296号;米国特許出願第2004/0122297号;および米国特許第5,018,067号を参照されたい。そのようなシステムは内部データ記録から直接、または本明細書でさらに詳述される1つまたは複数のデータ保管場所から遠隔的に、データにアクセス可能である。したがって、疾患に関連した雇用生産性の損失、身体障害および外科手術を減少させ、ひいては医療費を削減するために、集団の炎症性疾患の進行を管理することが重要である健康関連データ管理システムにおいて、本教示のさまざまな態様は、本明細書で定義されるバイオマーカーの測定値、および/またはそれらのバイオマーカー測定値から結果として得られる疾患状態および活動性の評価を包含するデータアレイの使用を含む改善を提供する。
【0061】
スコアの計算
本教示のいくつかの態様では、対象における炎症性疾患活動性は、炎症性疾患対象の血清中の2つ以上のバイオマーカーのレベルを測定し、次いで、解釈関数を適用して該バイオマーカーのレベルを単一のMBDAスコアに変換することによって測定される。このMBDAスコアは、以下の実施例に示されるように、対象における炎症性疾患活動性の定量的尺度を提供し、炎症性疾患活動性の従来の臨床評価(例えば、RAまたはPsAでのDAS28またはCDAIスコア)とよく相関する。いくつかの態様では、そのように測定された疾患活動性は自己免疫疾患に関連している。いくつかの態様では、そのように測定された疾患活動性はRAに関連している。いくつかの態様では、そのように測定された疾患活動性はPsAに関連している。バイオマーカーとしては、以下が挙げられる:アポリポタンパク質A-I (APOA1);アポリポタンパク質C-III (APOC3);カルプロテクチン;ケモカイン(C-Cモチーフ)リガンド22 (CCL22);キチナーゼ3様1 (軟骨糖タンパク質39)(CHI3L1またはYKL-40);C反応性タンパク質、ペントラキシン関連(CRP);上皮成長因子(β-ウロガストロン)(EGF);細胞間接着分子1 (ICAM1);ICTP;インターロイキン18 (インターフェロンγ誘導因子)(IL18);インターロイキン1、β(IL1B);インターロイキン6受容体(IL6R);インターロイキン8 (IL8);ケラタン硫酸またはKS;レプチン(LEP);マトリックスメタロペプチダーゼ1 (間質コラゲナーゼ)(MMP1);マトリックスメタロペプチダーゼ3 (ストロメライシン1、プロゼラチナーゼ)(MMP3);ピリジノリン(3個のリシン残基から誘導される、コラーゲンに形成された架橋)、本明細書ではPYDと呼ぶことがある;レジスチン(RETN);血清アミロイドA1 (SAA1);腫瘍壊死因子受容体スーパーファミリー、メンバー1A (TNFRSF1A);血管細胞接着分子1 (VCAM1);および血管内皮成長因子A (VEGFA)。本発明のバイオマーカーの選択は、US 2011/0137851に詳細に記載されている。カルプロテクチンは、遺伝子記号S100A8およびS100A9の2つのタンパク質サブユニットを含むヘテロポリマーである。ICTPは、I型コラーゲンのカルボキシ末端のテロペプチド領域であり、成熟I型コラーゲンの分解中に遊離する。I型コラーゲンは組織内に繊維として存在している;骨では、I型コラーゲン分子が架橋されている。ICTPペプチドは、血液中では免疫化学的にインタクトである。(I型コラーゲン遺伝子については、公式記号COL1A1、HUGO Gene Nomenclature Committeeを参照のこと;別名をOI4;α1 I型コラーゲン;コラーゲンα1鎖I型;皮膚、腱および骨のコラーゲン、α1鎖;およびプロα1コラーゲン1型ともいう)。ケラタン硫酸(KS、またはケラト硫酸)は、別個の遺伝子の産物ではなく、数種類の硫酸化グリコサミノグリカンのいずれかを指す。それらは中枢神経系で合成され、特に軟骨と骨に見出される。ケラタン硫酸は大きな、高度に水和した分子であって、関節では機械的衝撃を吸収するクッションとしての役割を果たすことができる。いくつかの態様では、バイオマーカーは、IL6、EGF、VEGFA、LEP、SAA1、VCAM1、CRP、MMP1、MMP3、TNFRSF1A、RETN、およびCHI3L1のうちの2、3、4、5、6、7、8、9、10、11、または12種類を含むことができる。いくつかの態様では、バイオマーカーは、IL6、EGF、SAA1、およびCRPを含む少なくとも4種類のバイオマーカーを含むことができる。
【0062】
いくつかの態様において、解釈関数は予測モデルに基づくものである。モデルとして有用な、または予測モデルを設計する上で有用な、当技術分野で周知の、確立された統計的アルゴリズムおよび方法としては、限定するものではないが、以下が挙げられる:分散分析(ANOVA);ベイジアンネットワーク;ブースティングおよびAdaブースティング;ブートストラップ・アグリゲーティング(bootstrap aggregating)(またはバギング)アルゴリズム;決定木による分類手法、例えば分類と回帰木(CART)、ブーステッド(boosted)CART、ランダムフォレスト(RF)、再帰分割木(RPART)、およびその他;カード・アンド・ホエー(Curds and Whey: CW);カード・アンド・ホエー-Lasso;次元縮小法、例えば主成分分析(PCA)および因子回転または因子分析;判別分析、例えば線形判別分析(LDA)、Eigengene線形判別分析(ELDA)、および二次判別分析;判別関数分析(DFA);因子回転または因子分析;遺伝的アルゴリズム;隠れマルコフモデル;カーネル(kernel)ベースのマシンアルゴリズム、例えばカーネル密度推定、カーネル部分最小二乗アルゴリズム、カーネルマッチング追跡アルゴリズム、カーネルフィッシャー判別分析アルゴリズム、およびカーネル主成分分析アルゴリズム;線形回帰および一般化線形モデル、例えば前進線形ステップワイズ回帰、Lasso(またはLASSO)縮小選択法、およびElastic Net正則化・選択法を含むまたは利用する;glmnet(LassoおよびElastic Net正則化一般化線形モデル);ロジスティック回帰(LogReg);メタ学習アルゴリズム;分類または回帰のための近傍法、例えばK近傍法(KNN);非線形回帰または分類アルゴリズム;ニューラルネットワーク;部分最小二乗法;ルールベース分類;shrunken centroid(SC);層別化逆回帰法;製品モデルデータ交換規格、アプリケーション翻案構成体(StepAIC);スーパー主成分(SPC)回帰;ならびにサポートベクターマシン(SVM)および再帰的サポートベクターマシン(RSVM)。さらに、当技術分野で知られているクラスタリングアルゴリズムは対象サブグループを決定するのに有用であり得る。
【0063】
ロジスティック回帰は、二値応答変数、例えば治療1対治療2、の選択の従来の予測モデリング法である。これはデータ変数の線形および非線形の両側面をモデル化するために用いられ、容易に解釈できるオッズ比を提供する。
【0064】
判別関数分析(DFA)は、2つ以上の天然に存在するグループを判別するための変数(根)として分析物のセットを用いる。DFAは、グループ間で有意差がある分析物を検査するために用いられる。前進ステップワイズDFAを用いて、試験したグループを最大限に判別する分析物のセットを選択することが可能である。具体的には、各ステップで、どの変数がグループを最大限に判別するかを決定するために、すべての変数が再検討される。次にこの情報は、グループの帰属関係を予測するための分析物濃度の線形結合からなる式である、根(root)で表される判別関数に含められる。最終方程式の判別能力は、各グループについて得られた根値のラインプロットとして観察できる。このアプローチは、分析物の濃度レベルの変化を用いて、プロファイルを明らかにし、治療効果を評価することができる、そのような分析物のグループを識別する。DFAモデルはまた、新対象を「健康」または「病的」のいずれかに分類できる、任意のスコアを作成することができる。医療界でのこのスコアの使用を容易にするために、0の値が健常者を示し、0より大きいスコアが増大しつつある疾患活動性を示すように、スコアを再スケール化することができる。
【0065】
分類と回帰木(CART)は、決定木を作成するためにデータの論理的分割(if/then)を実施する。所定のノードに入るすべての観測は、そのノードの中で最も一般的な転帰に従って分類される。CARTの結果は容易に解釈可能である - 分類が生じるまで一連のif/thenツリーの分岐に従う。
【0066】
サポートベクターマシン(SVM)はオブジェクトを2つ以上のクラスに分類する。クラスの例には、治療選択肢のセットまたは予後選択肢のセットが含まれる。各オブジェクトは、各オブジェクトの正確なクラス割り当てが知られているトレーニングデータセット中のオブジェクトへのその類似性(またはオブジェクトからのその隔たり)に基づいてクラスに割り当てられる。既知オブジェクトへの新オブジェクトの類似性の尺度は、潜在的に高次元の空間(>R6)に領域を定めるサポートベクターを用いて決定される。
【0067】
ブートストラップ・アグリゲーティング、または「バギング」、のプロセスは計算的に単純である。第1の段階では、所定のデータセットを指定した回数(例えば数千回)ランダムにリサンプリングして、その数の新データセットを効率よく提供する。新データセットはデータの「ブートストラップリサンプル」(bootstrapped resamples)と呼ばれ、その後それぞれがモデルを構築するために使用される。次に、分類モデルの例では、すべての新しい観測のクラスが第1の段階で作成された数の分類モデルによって予測される。最終的なクラスの決定は分類モデルの「多数決」に基づく;すなわち、最終的な分類の呼び出しは、新しい観測が所定のグループに分類される回数をカウントし、多数決分類(majority classification)(3クラス系では33%+)をとることによって決定される。ロジスティック回帰モデルの例では、ロジスティック回帰が1000回バギングされる場合、1000のロジスティックモデルが存在することになり、それぞれがクラス1または2に属するサンプルの確率を提供する。
【0068】
最小二乗法(OLS)を用いるカード・アンド・ホエー(CW)は別の予測モデリング法である。L. Breiman and JH Friedman, J. Royal. Stat. Soc. B 1997, 59(1):3-54を参照されたい。この方法は、予測変数Xの共通のセットに対する各応答変数の個々の回帰を実施する通常の手法と比較して、予測精度を改善するために応答変数間の相関を利用する。CWでは、Y=XB * Sであり、ここでY=(ykj)であり、ただしkはk番目の患者、jはj番目の応答についてであり(TJCについてはj=1、SJCについてはj=2など)、BはOLSを用いて取得され、そしてSは正準座標系から計算された縮小行列である。別の方法はカード・アンド・ホエーとLassoとの組合せ(CW-Lasso)である。CWの場合はBを得るためにOLSを用いる代わりに、ここではLassoが用いられ、パラメーターはLassoアプローチに応じて調整される。
【0069】
これらの技法の多くは、バイオマーカー選択法(例えば、前進選択、後退選択、またはステップワイズ選択)と組み合わせて、または所定のサイズのすべての潜在的なパネルの完全な列挙もしくは遺伝的アルゴリズムのために有用であるか、あるいは、それら自体が独自の技法にバイオマーカー選択の方法論を含めることができる。こうした技法は、追加のバイオマーカーの包含とモデル改良との間のトレードオフを定量化するために、そしてオーバーフィットを最小限に抑えるために、赤池情報量規準(AIC)、ベイズ情報量規準(BIC)、または交差検証などの情報量基準と結合させることができる。得られた予測モデルは他の試験で検証されるか、または、例えばLeave-One-Out(LOO)および10分割交差検証(10-Fold CV)のような技法を用いて、それらが最初に訓練を受けた試験において交差検証され得る。
【0070】
上記のような統計的モデリングの方法から導き出された、MBDAスコアを与える解釈関数の一例は、以下の関数によって示される:
式中、MBDAはMBDAスコアであり、b0-nは定数であり、DAIMRK1-n xは、本明細書に開示されたバイオマーカーから選択されるn個の異なるバイオマーカーの血清濃度のx乗である。既知の臨床評価(例えば、DAS28スコア)を有するRA対象についてのこのように得られたMBDAスコアを、その後、そうした既知の評価と比較して、2つの評価間の相関のレベルを決定し、ひいてはMBDAスコアとその基礎となる予測モデルの精度を判定することができる。特定の式および定数については以下の実施例を参照されたい。
【0071】
より一般的には、前記関数は次のように記載することができる:
式中、MBDAはMBDAスコアであり、Fは関数であり、DAIMRK1-n xは、本明細書に開示されたバイオマーカーから選択されるn個の異なるバイオマーカーの血清濃度のx乗である。この関数については、次の段落で説明する。
【0072】
MBDAスコアを提供するための解釈関数はまた、疾患活動性を全体的に予測するのではなく、DAS28-CRPなどの疾患活動性評価の構成要素を予測するために構築されたモデルに基づいて、導き出すこともできる。実施例1を参照されたい。そのような関数の一例は、以下により与えられ、ここで、バイオマーカーはDASスコアの改善された予測構成要素を提供するために使用される:
ここで、CRP以外の全てのバイオマーカーの血清レベルxはx1/10として変換され、全てのバイオマーカーの単位はpg/mLであり、lnは自然対数またはlogeである。
【0073】
CRP単位がmg/Lで取得され、かつ他のマーカーがpg/mLである場合、
である。
【0074】
MBDAスコアは、1から100の間の整数、スケール変換されたMBDAスコアを提供するために、さらに端数を丸めかつ上限を設定することができる。これを達成するために、直前の関数を次のように書き換えることができる:
上記式中のバイオマーカーの遺伝子名は、それらのマーカーの濃度を表し、使用するアッセイのタイプによって決まる。
【0075】
本教示のいくつかの態様では、MBDAスコアが対象の炎症性疾患活動性の定量的尺度を提供するために、そのMBDAスコアを、あらかじめ決められた「基準」、「正常」、「対照」、「標準」、「健康」、「疾患の発症前」または他の同様の指標と比較することは必要でない。
【0076】
本教示の他の態様では、サンプル中の1つまたは複数のバイオマーカーの量を測定し、その量を用いてMBDAスコアを導出することができる。その後、MBDAスコアは、炎症性疾患のカットオフポイントおよび/または異常値を規定するために、例えば基準もしくは識別限界またはリスクを定める閾値などの技法を利用して、「正常」または「対照」のレベルまたは値と比較される。このとき正常レベルは、評価対象の炎症性疾患を罹っていない対象に一般的に見られる1つまたは複数のバイオマーカーのレベルまたは組み合わせたバイオマーカーの指標である。「正常」または「対照」についての他の用語は、例えば、「基準」、「指標」、「ベースライン」、「標準」、「健康」、「疾患の発症前」などである。そのような正常レベルは、スコアを出力するために、あるバイオマーカーが単独で用いられるか、または他のバイオマーカーと組み合わせた式中で用いられるかに基づいて、変化することがある。あるいはまた、正常レベルは、臨床的に関連する期間にわたって評価対象の炎症性疾患へと変化しなかった、以前に検査した対象からのバイオマーカーパターンのデータベースであり得る。基準(正常、対照)値はまた、例えば炎症性疾患の活動性のレベルまたは状態が知られている対照の対象または集団から、誘導することもできる。本教示のいくつかの態様では、炎症性疾患に対する治療を受けたことがある1以上の対象から、または炎症性疾患を発症するリスクが低い1以上の対象から、または治療を受けた結果として炎症性疾患活動性の要因(例えば、本明細書で定義するような臨床パラメーターなど)の改善を示した対象から、基準値を誘導することができる。いくつかの態様では、治療を受けたことがない1以上の対象から基準値が誘導され得る;例えば、治療の進行状況をモニタリングするために、(a)炎症性疾患に対する初期治療を受けた対象、および(b)炎症性疾患に対する後続の治療を受けた対象、からサンプルを採取することができる。基準値はまた、疾患活動性アルゴリズムから、または集団調査からの計算指標から誘導することもできる。
【0077】
バイオマーカーの測定
本教示の1つまたは複数のバイオマーカーの量は値として示すことができる。その値はサンプルの評価から結果として得られる1つまたは複数の数値とすることができ、例えば、研究所で行われるアッセイでサンプル中のバイオマーカーのレベルを測定することによって、または研究所などのプロバイダーより得られるデータセットから、またはサーバーに格納されたデータセットから導出することができる。バイオマーカーレベルは、当技術分野で知られたいくつかの技法のいずれかを用いて測定可能である。本教示はそのような技法を包含し、さらにバイオマーカーを測定するためのすべての対象空腹時サンプリング手法および/または時間ベースのサンプリング手法を含む。
【0078】
バイオマーカーのレベルの実際の測定は、当技術分野で知られた任意の方法を用いて、タンパク質または核酸レベルで測定することができる。「タンパク質」の検出は、全長タンパク質、成熟タンパク質、プレタンパク質、ポリペプチド、アイソフォーム、突然変異体、変異体、翻訳後修飾タンパク質およびそれらの変異型の検出を含み、任意の適当な方法で検出することができる。バイオマーカーのレベルは、例えば、本明細書に記載の遺伝子産物によりコードされるペプチドの血清レベルを測定することによって、またはこれらのタンパク質バイオマーカーの酵素活性を測定することによって、タンパク質レベルでの測定が可能である。そのような方法は当技術分野で周知であり、例えば、遺伝子によりコードされるタンパク質に対する抗体、アプタマーまたは分子インプリントに基づくイムノアッセイが含まれる。任意の生体物質をタンパク質またはその活性の検出/定量化に用いることができる。あるいはまた、バイオマーカー遺伝子によりコードされるタンパク質の活性を測定するために、分析される各タンパク質の活性に応じて適当な方法を選択することができる。酵素活性をもつことが知られているバイオマーカータンパク質、ポリペプチド、アイソフォーム、突然変異体、およびそれらの変異型では、その活性を、当技術分野で知られた酵素アッセイを用いてインビトロで測定することができる。そのようなアッセイとしては、限定するものではないが、とりわけ、プロテアーゼアッセイ、キナーゼアッセイ、ホスファターゼアッセイ、レダクターゼアッセイが挙げられる。酵素活性の反応速度論の調節は、公知のアルゴリズム、例えばHillプロット、ミカエリス・メンテン式、Lineweaver-Burk解析などの線形回帰プロット、およびScatchardプロットを用いて、速度定数KMを測定することにより確認することができる。
【0079】
バイオマーカーに関するパブリックデータベースエントリにより提供される配列情報を用いて、バイオマーカーの発現を、当業者に周知の技法により検出し測定することが可能である。例えば、バイオマーカーの核酸に相当する配列データベース中の核酸配列を用いて、バイオマーカー核酸を検出および/または測定するためのプライマーおよびプローブを構築することができる。これらのプローブは、例えば、ノーザンもしくはサザンブロットハイブリダイゼーション解析、リボヌクレアーゼ保護アッセイ、および/または特定の核酸配列を定量的に増幅する方法において、使用することができる。別の例として、配列データベース中の配列は、例えば逆転写ベースのポリメラーゼ連鎖反応(RT-PCR)およびPCRなどの増幅に基づく検出・定量方法で、バイオマーカー配列を特異的に増幅するためのプライマーを構築するために使用することができる。遺伝子発現の変化が遺伝子増幅、ヌクレオチド欠失、遺伝子多型、翻訳後修飾および/または突然変異に関連づけられる場合、検査集団と基準集団における配列比較は、検査集団と基準集団で検討されるDNA配列の相対量を比較することによって行うことができる。
【0080】
例として、これらの配列の1つまたは複数を特異的に認識するプローブを用いたノーザンハイブリダイゼーション解析は、遺伝子発現を測定するために使用することができる。また、RT-PCRを用いて発現を測定することも可能である;例えば、発現量に差のあるバイオマーカーmRNA配列に特異的なポリヌクレオチドプライマーはそのmRNAをDNAに逆転写し、次にそのDNAがPCRで増幅されて、可視化および定量化され得る。バイオマーカーRNAはまた、例えば、TMA、SDA、およびNASBAなどの他の標的増幅法、またはシグナル増幅法(例:bDNA)などを用いて、定量化することも可能である。リボヌクレアーゼ保護アッセイもまた、1つまたは複数のバイオマーカーmRNA配列を特異的に認識するプローブを用いることによって、遺伝子発現を測定するために使用することができる。
【0081】
あるいは、バイオマーカータンパク質および核酸の代謝産物を測定することが可能である。用語「代謝産物」は、代謝過程の化学的または生化学的産物、例えば、生体分子(例:タンパク質、核酸、炭水化物、または脂質)のプロセッシング、切断または消費により生成された任意の化合物を含む。代謝産物は、以下を含む、当業者に知られたさまざまな方法で検出することができる:屈折率分光法(RI)、紫外線分光法(UV)、蛍光分析、放射化学分析、近赤外分光法(近IR)、核磁気共鳴分光法(NMR)、光散乱分析(LS)、質量分析、熱分解質量分析、ネフェロメトリー、分散ラマン分光法、質量分析と組み合わせたガスクロマトグラフィー、質量分析と組み合わせた液体クロマトグラフィー、マトリックス支援レーザー脱離イオン化-飛行時間型(MALDI-TOF)質量分析、質量分析と組み合わせたイオンスプレー分光法、キャピラリー電気泳動、NMRおよびIR検出。WO 04/056456およびWO 04/088309を参照されたい;それぞれの全体を参照により本明細書に組み入れる。この点について、他のバイオマーカー分析物は、上記の検出方法または当業者に知られた他の方法を用いて、測定することができる。例えば、循環カルシウムイオン(Ca2+)は、とりわけ、Fluoシリーズ、Fura-2A、Rhod-2などの蛍光色素を用いてサンプル中で検出可能である。その他のバイオマーカー代謝産物は、そのような代謝産物を検出するように特別に設計または調整された試薬を用いて、同様に検出することができる。
【0082】
いくつかの態様において、バイオマーカーの検出は、対象サンプルを試薬と接触させ、試薬と分析物の複合体を生成させて、その複合体を検出することによって行われる。「試薬」の例としては、核酸プライマーおよび抗体が挙げられるが、これらに限定されない。
【0083】
本教示のいくつかの態様においては、抗体結合アッセイがバイオマーカーを検出するために用いられる;例えば、対象由来のサンプルを、バイオマーカー分析物と結合する抗体試薬に接触させて、抗体試薬と分析物を含む反応産物(または複合体)を生成させ、その複合体の有り(もしくは無し)または量を測定する。バイオマーカー分析物を検出するのに有用な抗体試薬は、上で詳述したように、モノクローナル、ポリクローナル、キメラ、組換え、または前述のフラグメントであってよく、反応産物を検出するステップは任意の適当なイムノアッセイを用いて実施することができる。対象由来のサンプルは一般的に上記のような生物学的液体であり、先に記載した方法を実施するために用いられるものと同じ生物学的液体のサンプルであり得る。
【0084】
本教示に従って実施されるイムノアッセイは、均一系アッセイまたは不均一系アッセイであり得る。本教示に従って実施されるイムノアッセイは、マルチプレックスであり得る。均一系アッセイでは、免疫反応が特異的抗体(例えば、抗バイオマーカータンパク質抗体)、標識分析物、および関心対象のサンプルを含むことができる。標識はシグナルを生成し、標識分析物が抗体に結合すると、標識から生じるシグナルが、直接または間接的に、変化するようになる。免疫学的な結合反応および結合の程度の検出の両方を均一な溶液中で実施することが可能である。利用できる免疫化学的標識としては、限定するものではないが、フリーラジカル、放射性同位元素、蛍光色素、酵素、バクテリオファージ、および補酵素が挙げられる。イムノアッセイには競合アッセイが含まれる。
【0085】
不均一系アッセイのアプローチでは、試薬が関心対象のサンプル、抗体、および検出可能なシグナルを生成する試薬であり得る。上記のサンプルが使用可能である。抗体はビーズ(プロテインAおよびプロテインGアガロースビーズなど)、プレートまたはスライドのような支持体に固定化され、バイオマーカーを含むと予想されるサンプルに液相中で接触させることができる。その支持体を液相から分離して、支持体相または液相のどちらかを、シグナルを検出するための当技術分野で公知の方法を用いて分析する。シグナルはサンプル中の分析物の存在に関連している。検出可能なシグナルを生成する方法としては、限定するものではないが、放射性標識、蛍光標識、または酵素標識の使用が含まれる。例えば、検出すべき抗原が第2の結合部位を含む場合には、その部位に結合する抗体が検出可能な(シグナル発生)グループにコンジュゲートされ、分離ステップの前に液相反応溶液に添加される。固相支持体上の検出可能グループの存在は検査サンプル中のバイオマーカーの存在を示している。適当なイムノアッセイの例としては、免疫ブロット法、免疫沈降法、免疫蛍光法、化学発光法、電気化学発光法(ECL)、および/または酵素結合イムノアッセイ(ELISA)が挙げられるが、これらに限定されない。
【0086】
当業者であれば、本明細書に開示の方法を実施するのに有用であり得る多数の具体的なイムノアッセイフォーマットおよびそれらの変法に精通しているだろう。例えば、E. Maggio, Enzyme-Immunoassay (1980), CRC Press, Inc., Boca Raton, FLを参照されたい。さらに以下を参照されたい:「Novel Methods for Modulating Ligand-Receptor Interactions and their Application」と題するC. Skoldらの米国特許第4,727,022号;「Immunoassay of Antigens」と題するGC Forrestらの米国特許第4,659,678号;「Immunometric Assays Using Monoclonal Antibodies」と題するGS Davidらの米国特許第4,376,110号;「Macromolecular Environment Control in Specific Receptor Assays」と題するD. Litmanらの米国特許第4,275,149号;「Reagents and Method Employing Channeling」と題するE. Maggioらの米国特許第4,233,402号;および「Heterogenous Specific Binding Assay Employing a Coenzyme as Label」と題するR. Boguslaskiらの米国特許第4,230,797号。
【0087】
抗体は、アッセイに適した固相支持体(例えば、プロテインAもしくはプロテインGアガロースのようなビーズ、ミクロスフェア、プレート、スライドまたはウェル(ラテックスやポリスチレンなどの材料から形成されたもの))に、受動的結合などの公知の技法に従ってコンジュゲートすることができる。本明細書に記載の抗体は同様に、公知の技法に従って、以下のような検出可能な標識またはグループにコンジュゲートすることができる:放射性標識(例:35S、125I、131I)、酵素標識(例:西洋ワサビペルオキシダーゼ、アルカリホスファターゼ)、および蛍光標識(例:フルオレセイン、Alexa、緑色蛍光タンパク質、ローダミン)。
【0088】
抗体はまた、バイオマーカーの翻訳後修飾を検出するのに有用であり得る。翻訳後修飾の例には、限定するものではないが、チロシンリン酸化、トレオニンリン酸化、セリンリン酸化、シトルリン化およびグリコシル化(例:O-GlcNAc)が含まれる。このような抗体は関心対象の1種類以上のタンパク質中のリン酸化アミノ酸を特異的に検出し、本明細書に記載の免疫ブロット法、免疫蛍光法、およびELISA検定法で使用することができる。これらの抗体は当業者に周知であり、市販されている。翻訳後修飾はまた、リフレクター・マトリックス支援レーザー脱離イオン化-飛行時間型質量分析(MALDI-TOF)で準安定イオンを用いて測定することができる。U. Wirth et al., Proteomics 2002, 2(10):1445-1451を参照されたい。
【0089】
治療レジメン
本発明は、本明細書に開示されるバイオマーカーの発現の差を決定した後に治療レジメンを推奨する方法を提供する。ある期間にわたって本明細書に開示したバイオマーカーの発現レベルから導き出された測定スコアは、対象の生物学的状態の動的状況を臨床医に提供することができる。したがって、本教示のこれらの態様は、治療法の決定に有益であり、かつ治療応答のモニタリングを容易にする、対象に特有の生物学的情報を提供して、より迅速でより最適化された治療、疾患活動性のより良好なコントロール、および寛解を達成する対象の割合の増加をもたらすはずである。
【0090】
自己免疫疾患の治療戦略は、PsAなどの、いくつかの自己免疫疾患が、多種多様な関連症状を有する一群の対象に与えられた分類であるという事実によって混乱をきたす。このことは、PsAの特定のサブタイプが特定の細胞型またはサイトカインによって引き起こされることを示唆する。起こりそうな結果として、単一の治療法が治療に最適だと証明されることはない。PsAに利用可能な治療選択肢の数が増えると、治療成果の免疫学的予後因子によって方向づけられた、個々の状況に合わせた治療の必要性が不可欠である。本教示の様々な態様では、バイオマーカーから導出されたアルゴリズムを使用して、PsA対象における治療応答を定量化することができる。所与の治療に応答する可能性が高い患者を特定することは、より個別化された医療および治療有効性の向上につながると考えられ、こうしたことは本発明の目的である。
【0091】
治療のための参照基準
多くの態様においては、治療の決定を方向づけるために、サンプル中の1つ以上のアナライトバイオマーカーのレベルまたはアナライトバイオマーカーの特定のパネルのレベルを、参照基準(「参照基準」または「参照レベル」)と比較する。1つ以上のバイオマーカーの発現レベルを組み合わせて1つのスコアにすることができ、そのスコアは疾患活動性を表すことができる。本明細書に開示された態様に使用される参照基準は、対照集団における1つ以上のアナライトバイオマーカーの平均値(average)、平均値(mean)、もしくは中央値(median)レベル、またはアナライトバイオマーカーの特定のパネルの該レベルを含み得る。参照基準は、同じ対象についてのより早い時点をさらに含み得る。例えば、参照基準は第1の時点を含み、1つ以上のアナライトバイオマーカーのレベルを、第2、第3、第4、第5、第6の時点などで、再検査することができる。特定の時点よりも早い任意の時点を参照基準とみなすことができる。参照基準はさらに、対照集団の、または同じ対象のより早い時点の、カットオフ値もしくは他の統計的属性、例えば、1つ以上のアナライトバイオマーカーの平均値レベルもしくはアナライトバイオマーカーの特定のパネルの該レベルからの標準偏差など、を含むことができる。いくつかの態様では、対照集団は、健康な個体、または治療を施す前の同じ対象を含むことができる。
【0092】
いくつかの態様では、あるスコアを基準時点から取得して、異なるスコアをより遅い時点から取得することができる。第1の時点は、最初の治療レジメンが開始されるときであり得る。第1の時点は、第1のイムノアッセイが実施されるときでもあり得る。時点は、時間、日、月、年などとすることができる。ある態様では、時点は1ヶ月である。ある態様では、時点は2ヶ月である。ある態様では、時点は3ヶ月である。ある態様では、時点は4ヶ月である。ある態様では、時点は5ヶ月である。ある態様では、時点は6ヶ月である。ある態様では、時点は7ヶ月である。ある態様では、時点は8ヶ月である。ある態様では、時点は9ヶ月である。ある態様では、時点は10ヶ月である。ある態様では、時点は11ヶ月である。ある態様では、時点は12ヶ月である。ある態様では、時点は2年である。ある態様では、時点は3年である。ある態様では、時点は4年である。ある態様では、時点は5年である。ある態様では、時点は10年である。
【0093】
スコアの差は、疾患活動性の減少と解釈することができる。例えば、より低いスコアは疾患活動性のより低いレベルを示し得る。これらの状況では、基準スコアまたは第1のスコアよりも低いスコアを有する第2のスコアは、第1および第2の期間の間に対象の疾患活動性が低下(改善)したことを意味する。あるいは、より高いスコアが疾患活動性のより低いレベルを示すこともある。これらの状況では、基準スコアまたは第1のスコアよりも高いスコアを有する第2のスコアもまた、第1および第2の期間の間に対象の疾患活動性が改善したことを意味する。
【0094】
スコアの差は、疾患活動性の増加と解釈することもできる。例えば、より低いスコアは疾患活動性のより高いレベルを示し得る。これらの状況では、基準スコアまたは第1のスコアよりも低いスコアを有する第2のスコアは、第1および第2の期間の間に対象の疾患活動性が増加(悪化)したことを意味する。あるいは、より高いスコアが疾患活動性のより高いレベルを示すこともある。これらの状況では、基準スコアまたは第1のスコアよりも高いスコアを有する第2のスコアもまた、第1および第2の期間の間に対象の疾患活動性が悪化したことを意味する。
【0095】
こうした差はさまざまであり得る。例えば、スコアの差が疾患活動性の減少と解釈される場合、大きな差は、より小さな差または中程度の差よりも疾患活動性のより大きな減少を意味し得る。あるいは、スコアの差が疾患活動性の増加と解釈される場合、大きな差は、より小さな差または中程度の差よりも疾患活動性のより大きな増加を意味し得る。
【0096】
治療のための基準療法
いくつかの態様では、患者は、スコアの差に基づき、基準療法よりも積極的にまたはあまり積極的ではなく治療される。基準療法は、自己免疫障害の標準治療である任意の治療法である。治療標準は時間的および地理的に異なる可能性があるが、当業者は、関連する医学文献を参考にして適切な治療標準を容易に決定することができる。
【0097】
いくつかの態様において、標準的治療よりも積極的な治療法は、標準的治療よりも早く治療を開始することを含む。いくつかの態様では、標準的治療よりも積極的な治療法は、標準的治療よりも追加的な治療を施すことを含む。いくつかの態様では、標準的治療よりも積極的な治療法は、標準的治療と比較して加速されたスケジュールで治療することを含む。いくつかの態様では、標準的治療よりも積極的な治療法は、標準的治療では求められない追加の治療を施すことを含む。
【0098】
いくつかの態様において、標準的治療よりも積極的ではない治療法は、標準的治療と比べて治療を遅らせることを含む。いくつかの態様では、標準的治療よりも積極的ではない治療法は、標準的治療よりも少ない治療を施すことを含む。いくつかの態様では、標準的治療よりも積極的ではない治療法は、標準的治療と比較して減速されたスケジュールで治療することを含む。いくつかの態様では、標準的治療よりも積極的ではない治療法は、治療を一切施さないことを含む。
【0099】
自己免疫障害の治療
一態様において、医師は、異なるスコア間の比較に基づいて、治療を調整する。一態様では、医師は、異なる薬物を選択して投与することによって治療を調整する。一態様では、医師は、薬物の異なる組合せを選択して投与することによって治療を調整する。一態様では、医師は、薬物の投与量を調整することによって治療を調整する。一態様では、医師は、投与計画を調整することによって治療を調整する。一態様では、医師は、治療期間を調整することによって治療を調整する。一態様では、医師は、異なる薬物の組合せを選択して投与し、かつ薬物の投与量を調整することによって治療を調整する。一態様では、医師は、異なる薬物の組合せを選択して投与し、かつ投与計画を調整することによって治療を調整する。一態様では、医師は、異なる薬物の組合せを選択して投与し、かつ治療期間を調整することによって治療を調整する。一態様では、医師は、薬物の投与量と投与計画を調整することによって治療を調整する。一態様では、医師は、薬物の投与量を調整しかつ治療期間を調整することによって治療を調整する。一態様では、医師は、投与計画を調整しかつ治療期間を調整することによって治療を調整する。一態様では、医師は、異なる薬物を選択して投与し、薬物の投与量を調整し、かつ投与計画を調整することによって治療を調整する。一態様では、医師は、異なる薬物を選択して投与し、薬物の投与量を調整し、かつ治療期間を調整することによって治療を調整する。一態様では、医師は、異なる薬物を選択して投与し、投与計画を調整し、かつ治療期間を調整することによって治療を調整する。一態様では、医師は、薬物の投与量を調整し、投与計画を調整し、かつ治療期間を調整することによって治療を調整する。一態様では、医師は、異なる薬物を選択して投与し、薬物の投与量を調整し、投与計画を調整し、かつ治療期間を調整することによって治療を調整する。
【0100】
一態様において、あまり積極的でない治療は、治療を遅らせることを含む。一態様では、あまり積極的でない治療は、作用の弱い薬物を選択して投与することを含む。一態様では、あまり積極的でない治療は、治療頻度を減らすことを含む。一態様では、あまり積極的でない治療は、治療期間を短縮することを含む。一態様では、あまり積極的でない治療は、作用の弱い薬物を選択して投与し、かつ薬物の投与量を減らすことを含む。一態様では、あまり積極的でない治療は、作用の弱い薬物を選択して投与し、かつ投与計画を減速させることを含む。一態様では、あまり積極的でない治療は、作用の弱い薬物を選択して投与し、かつ治療期間を短縮することを含む。一態様では、あまり積極的でない治療は、薬物の投与量を減らし、かつ投与計画を減速させることを含む。一態様では、あまり積極的でない治療は、薬物の投与量を減らし、かつ治療期間を短縮することを含む。一態様では、あまり積極的でない治療は、投与計画を減速させ、かつ治療期間を短縮することを含む。一態様では、あまり積極的でない治療は、作用の弱い薬物を選択して投与し、薬物の投与量を減らし、かつ投与計画を減速させることを含む。一態様では、あまり積極的でない治療は、作用の弱い薬物を選択して投与し、薬物の投与量を減らし、かつ治療期間を短縮することを含む。一態様では、あまり積極的でない治療は、作用の弱い薬物を選択して投与し、投与計画を減速させ、かつ治療期間を短縮することを含む。一態様では、あまり積極的でない治療は、薬物の投与量を減らし、投与計画を減速させ、かつ治療期間を短縮することを含む。一態様では、あまり積極的でない治療は、作用の弱い薬物を選択して投与し、薬物の投与量を減らし、投与計画を減速させ、かつ治療期間を短縮することを含む。いくつかの態様では、あまり積極的でない治療は、非薬物ベースの治療のみを施すことを含む。
【0101】
本出願の別の局面において、治療は、基準療法よりも積極的な治療を含む。一態様では、より積極的な治療は、治療期間の延長を含む。一態様では、より積極的な治療は、投与計画の頻度の増加を含む。一態様では、より積極的な治療は、作用の強い薬物を選択して投与し、かつ薬物の投与量を増加させることを含む。一態様では、より積極的な治療は、作用の強い薬物を選択して投与し、かつ投与計画を加速させることを含む。一態様では、より積極的な治療は、作用の強い薬物を選択して投与し、かつ治療期間を延長することを含む。一態様では、より積極的な治療は、薬物の投与量を増加させ、かつ投与計画を加速させることを含む。一態様では、より積極的な治療は、薬物の投与量を増加させ、かつ治療期間を延長することを含む。一態様では、より積極的な治療は、投与計画を加速させ、かつ治療期間を延長することを含む。一態様では、より積極的な治療は、作用の強い薬物を選択して投与し、薬物の投与量を増加させ、かつ投与計画を加速させることを含む。一態様では、より積極的な治療は、作用の強い薬物を選択して投与し、薬物の投与量を増加させ、かつ治療期間を延長することを含む。一態様では、より積極的な治療は、作用の強い薬物を選択して投与し、投与計画を加速させ、かつ治療期間を延長することを含む。一態様では、より積極的な治療は、薬物の投与量を増加させ、投与計画を加速させ、かつ治療期間を延長することを含む。一態様では、より積極的な治療は、作用の強い薬物を選択して投与し、薬物の投与量を増加させ、投与計画を加速させ、かつ治療期間を延長することを含む。いくつかの態様では、より積極的な治療は、薬物ベースの治療と非薬物ベースの治療の組み合わせを施すことを含む。
【0102】
治療薬は従来型のものまたは生物学的なものであり得る。一般に従来型とみなされる、疾患修飾性抗リウマチ薬(disease modifying anti-rheumatic drug: DMARD)などの、治療薬の例には、限定するものではないが、MTX、アザチオプリン(AZA)、ブシラミン(BUC)、クロロキン(CQ)、シクロスポリン(CSA、またはサイクロスポリン)、ドキシサイクリン(DOXY)、ヒドロキシクロロキン(HCQ)、筋内注射金製剤(IM金製剤)、レフルノミド(LEF)、レボフロキサシン(LEV)、およびスルファサラジン(SSZ)が含まれる。従来型の治療薬には、非ステロイド性抗炎症薬(NDAID)、例えば、アスピリン、イブプロフェン、オキサプロジン、ピロキシカム、インドメタシン、エトドラク、メクロフェナメート、メロキシカム、ナプロキセン、ケトプロフェン、ナブメトン、トルメチンナトリウム、およびジクロフェナクも含まれる。他の従来の治療薬の例としては、限定するものではないが、フォリン酸、D-ペニシラミン、金オーラノフィン、金オーロチオグルコース、金チオリンゴ酸塩、シクロホスファミド、およびクロラムブシルが挙げられる。生物学的製剤の例には、限定するものではないが、腫瘍壊死因子(TNF)α分子を標的とする生物学的薬剤およびTNF阻害剤、例えば、インフリキシマブ、アダリムマブ、エタネルセプトおよびゴリムマブが含まれる。他のクラスの生物学的製剤には、IL1阻害剤、例えばアナキンラ、T細胞モジュレーター、例えばアバタセプト、B細胞モジュレーター、例えばリツキシマブ、およびIL6阻害剤、例えばトシリズマブが含まれる。
【0103】
特定の対象に適切な追加の治療薬または薬物を同定するために、対象由来の試験サンプルを治療剤または薬物に曝露して、1つ以上のバイオマーカーのレベルを測定することができる。1つ以上のバイオマーカーのレベルは、治療前と治療後の、または治療剤もしくは薬物への曝露前と曝露後の、対象に由来するサンプルと比較されるか、あるいはそのような治療または曝露の結果として炎症性疾患の状態または活動性(例えば、臨床パラメーターまたは従来の検査室リスク因子)の改善を示した、1人以上の対象に由来するサンプルと比較され得る。
【0104】
本教示の臨床的評価
本教示のいくつかの態様において、MBDAスコアは、集団、エンドポイントもしくは臨床的評価、および/または意図される用途に合わせて調整される。例えば、MBDAスコアは、一次予防について、そして二次予防および管理について対象を評価するために使用することができる。一次評価では、MBDAスコアは、将来の症状または疾患後遺症の予測およびリスク層別化のために、疾患活動性と変化速度の予後予測のために、および将来の治療レジメンの指示のために用いることができる。二次予防および臨床管理では、MBDAスコアを、予後予測とリスク層別化のために用いることができる。MBDAスコアは、臨床的な意思決定を支援するために、例えば、介入または治療を延期するかどうか、リスクのある患者に予防的検診を勧めるかどうか、来院回数の増加を勧めるかどうか、検査を増やすことを勧めるかどうか、および治療介入を勧めるかどうかを決定するために、使用することが可能である。MBDAスコアはさらに、治療の選択、治療応答の確認、治療の調整と投薬、進行中の治療効果のモニタリング、および治療レジメンの変更に関する指示に有用であり得る。
【0105】
疾患活動性検査を実施するためのシステム
本教示のさまざまな態様に従って疾患活動性を測定するための検査は、免疫学的または核酸検出アッセイからの結果などの、検査結果を得るために通常用いられるさまざまなシステムで実施することができる。そのようなシステムは、サンプル調製を自動化するモジュール、バイオマーカーレベルの測定などの検査を自動化するモジュール、複数のサンプルの検査を促進する、および/または各サンプルで同じ検査もしくは異なる検査をアッセイするようにプログラム化されるモジュールを含むことができる。いくつかの態様において、検査システムは1つのプラットフォーム上に1以上のサンプル調製モジュール、臨床化学モジュール、およびイムノアッセイモジュールを含む。検査システムは、典型的には、それらが、例えばハードウェアに接続してそこにあるデータベースを利用することによって、結果を収集し、格納し、そして追跡するモジュールをも含むように設計される。こうしたモジュールの例には、当技術分野で周知であるような物理的および電子的データ記録デバイス、例えばハードドライブ、フラッシュメモリ、および磁気テープが含まれる。検査システムはまた、一般に、結果をレポートおよび/または可視化するためのモジュールを含む。レポートモジュールのいくつかの例として、可視的ディスプレイまたはグラフィカルユーザインタフェース、データベースへのリンク、プリンタなどが挙げられる。以下の「マシン読み取り可能な記録媒体」のセクションを参照されたい。
【0106】
本発明の一態様は、対象の炎症性疾患活動性を判定するためのシステムを含む。そのシステムは、いくつかの態様では、本明細書に記載するようにパネル中のバイオマーカーの測定レベルを含む入力に式を適用してスコアを出力するためのモジュールを使用する。いくつかの態様では、バイオマーカーの測定レベルが検査結果であり、それらは式を適用するようにプログラム化されたコンピュータへの入力として用いられる。システムは、出力スコアを導出するために、バイオマーカーの結果に加えてまたはそれらと組み合わせて、例えば次のような1つまたは複数の臨床パラメーターなどの他の入力を含むことが可能である:治療レジメン、TJC、SJC、朝のこわばり、3箇所以上の関節領域の関節炎、手関節の関節炎、対称性関節炎、リウマチ結節、X線画像の変化および他のイメージング、性別/性、年齢、人種/民族、罹病期間、身長、体重、体格指数、家族歴、CCP状態、RF状態、ESR、喫煙者/非喫煙者など。システムは、いくつかの態様では、バイオマーカーレベルの入力に式を適用し、次に疾患活動性スコアを出力することができ、その活動性スコアはその後、他の臨床パラメーターなどの他の入力と併せて解析され得る。他の態様では、システムは、バイオマーカーの入力と非バイオマーカーの入力(例えば、臨床パラメーターなど)を一緒に式に適用し、その後、複合出力疾患活動性指標を報告するように設計される。
【0107】
本教示のさまざまな態様を実施するために使用することができるいくつかの検査システムが現在利用可能である。例えば、ハイスループット自動化臨床化学分析装置である統合免疫化学システムのARCHITECTシリーズを参照されたい(ARCHITECTはAbbott Laboratories社(Abbott Park, Ill. 60064)の登録商標である)。C. Wilson et al., "Clinical Chemistry Analyzer Sub-System Level Performance," American Association for Clinical Chemistry Annual Meeting, Chicago, Ill, Jul. 23-27, 2006; およびHJ Kisner, "Product development: the making of the Abbott ARCHITECT," Clin. Lab. Manage. Rev. 1997 Nov.-Dec., 11(6):419-21; A. Ognibene et al., "A new modular chemiluminescence immunoassay analyzer evaluated," Clin. Chem. Lab. Med. 2000 March, 38(3):251-60; JW Park et al., "Three-year experience in using total laboratory automation system," Southeast Asian J. Trop. Med. Public Health 2002, 33 Suppl 2:68-73; D. Pauli et al., "The Abbott Architect c8000: analytical performance and productivity characteristics of a new analyzer applied to general chemistry testing," Clin. Lab. 2005, 51(1-2):31-41を参照されたい。
【0108】
本教示の態様に有用な別の検査システムはVITROSシステムである(VITROSはJohnson & Johnson社(New Brunswick, NJ)の登録商標である)。このシステムは、血液や他の体液から検査結果を得るために使用される、研究所と診療所のための化学分析装置である。別の検査システムは、体液分析用のシステムであるDIMENSIONシステム(DIMENSIONはDade Behring社(Deerfield Ill.)の登録商標である)であり、このシステムは分析装置を操作するためのコンピュータソフトウェアおよびハードウェアを備えており、分析装置によって生成されたデータを解析する。
【0109】
本教示のさまざまな態様に必要な検査、例えばバイオマーカーレベルの測定、は臨床検査改善修正法案(Clinical Laboratory Improvement Amendments)(42 U.S.C. Section 263(a))の下で認定を受けた研究所、あるいはその他の連邦政府もしくは州の法律、または臨床目的のためにサンプルを分析する研究所の操作を管理するその他の国、州もしくは県の法律の下で認定された研究所で実施することができる。そのような研究所には、例えば、Laboratory Corporation of America, 358 South Main Street, Burlington, NC 27215(本社);Quest Diagnostics, 3 Giralda Farms, Madison, NJ 07940(本社);ならびに他の参照研究所および臨床化学研究所が含まれる。
【0110】
キット
本教示の他の態様は、本教示のアッセイのいずれかを実施するためのキットの形に一緒にパッケージ化されたバイオマーカー検出試薬を含む。特定の態様では、キットは、バイオマーカー核酸との相同性および/または相補性に基づいて1つまたは複数のバイオマーカー核酸を特異的に識別するオリゴヌクレオチドを含む。オリゴヌクレオチドの配列はバイオマーカー核酸の断片に相当しうる。例えば、オリゴヌクレオチドは200ヌクレオチドより多い、200、150、100、50、25、10、または10ヌクレオチドより少ない長さであってよい。他の態様では、キットはバイオマーカー核酸によってコードされるタンパク質に対する抗体を含む。本教示のキットはまた、アプタマーを含むことができる。キットは別の容器に、とりわけ、核酸または抗体(固相マトリックスに結合された抗体、またはマトリックスに結合させるための試薬と別々にパッケージ化された抗体)、対照用配合物(陽性および/または陰性)、および/または検出可能な標識、例えば、限定するものではないが、フルオレセイン、緑色蛍光タンパク質、ローダミン、シアニン色素、Alexa色素、ルシフェラーゼ、および放射性標識を含むことができる。アッセイを実施するための指示事項を、場合によりMBDAスコアを生成するための指示事項を加えて、キットに含めることができる;例えば、書面、テープ、VCR、またはCD-ROM。アッセイは、例えば、当技術分野で公知のノーザンハイブリダイゼーションまたはサンドイッチELISAの形式にすることができる。
【0111】
本教示のいくつかの態様において、バイオマーカー検出試薬は、少なくとも1つのバイオマーカー検出部位を形成するために、多孔質ストリップのような固相マトリックス上に固定化することができる。いくつかの態様では、多孔質ストリップの測定または検出領域は核酸を含む部位を複数含むことができる。いくつかの態様では、検査ストリップに陰性および/または陽性対照の部位をも含めることもできる。また、対照部位を検査ストリップとは別のストリップ上に配置してもよい。必要に応じて、異なる検出部位に、固定化核酸の異なる量、例えば最初の検出部位にはより多量、そして後続の部位にはより少量、を含めることができる。検査サンプルの添加により、検出可能なシグナルを示す部位の数がサンプル中に存在するバイオマーカーの量の定量的指標を提供する。検出部位は適切に検出できる任意の形状に設定することができ、例えば、検査ストリップの幅にわたる棒または点の形状であってよい。
【0112】
本教示の他の態様において、キットは、1つまたは複数の核酸配列を含む核酸基板アレイを含むことができる。アレイ上の核酸はMBDAマーカーで表される1つまたは複数の核酸配列を特異的に識別する。さまざまな態様では、MBDAマーカーで表される1つまたは複数の配列の発現を、アレイへの結合に基づいて確認することができる。いくつかの態様では、基板アレイは、「チップ」として知られるような、固体基板上であってよい。例えば、米国特許第5,744,305号を参照されたい。いくつかの態様では、基板アレイは溶液アレイであり得る;例えば、xMAP (Luminex社, Austin, TX)、Cyvera (Illumina社, San Diego, CA)、RayBio抗体アレイ(RayBiotech社, Norcross, GA)、CellCard (Vitra Bioscience社, Mountain View, CA)およびQuantum Dots' Mosaic (Invitrogen社, Carlsbad, CA)。
【0113】
マシン読み取り可能な記録媒体
マシン読み取り可能な記録媒体は、例えば、マシン読み取り可能データまたはデータアレイを用いてコード化されるデータ記録材料を含むことができる。データおよびマシン読み取り可能な記録媒体は、前記データを用いるための命令でプログラムされたマシンを使用する場合、さまざまな目的に使用することができる。そのような目的には、限定するものではないが、経時的な対象または集団の炎症性疾患活動性、または炎症性疾患に対する治療に応答する疾患活動性、または炎症性疾患のための創薬などに関する情報を保存し、アクセスし、操作することが含まれる。本教示のバイオマーカーの測定、および/またはこれらのバイオマーカーからの疾患活動性もしくは疾患状態の評価を含むデータは、プログラム可能なコンピュータ(プロセッサ、データ記録システム、1つまたは複数の入力デバイス、1つまたは複数の出力デバイスなどを含む)上で実行されるコンピュータプログラムに実装することができる。プログラムコードを入力データに適用して、本明細書に記載の機能を実行し、出力情報を生成することができる。その後、当技術分野で周知の方法に従って、この出力情報を1つまたは複数の出力デバイスに適用することができる。コンピュータは、例えば、パーソナルコンピュータ、マイクロコンピュータ、または従来の設計のワークステーションであり得る。
【0114】
コンピュータプログラムは、例えば図3に示すコンピュータシステムなどの、コンピュータシステムと通信するために、ハイレベル手続き型プログラミング言語またはオブジェクト指向プログラミング言語で実装することができる。プログラムはまた、マシン語またはアセンブリ言語で実装することも可能である。プログラミング言語はコンパイル済み言語またはインタプリタ型言語とすることもできる。各コンピュータプログラムは、記録媒体またはROM、磁気ディスクなどのデバイスへの保存が可能であり、その記録媒体またはデバイスが記載された手順を実行するためにコンピュータによって読み取られるとき、コンピュータを設定し作動させるためのプログラム可能なコンピュータによって読み取られるようにすることができる。本教示の健康関連データ管理システムはいずれも、コンピュータプログラムを用いて設定された、コンピュータ読み取り可能な記録媒体として実装されると考えられ、そこでは記録媒体が本明細書に記載するようなさまざまな機能を実行するために特定の方法でコンピュータを作動させる。
【0115】
本明細書に開示したバイオマーカーは、炎症性疾患を有する対象から取り出される「対象バイオマーカープロファイル」を作成するために使用することができる。その後、対象バイオマーカープロファイルは、炎症性疾患の進行もしくは進行速度をモニタリングするために、または炎症性疾患に対する治療の有効性をモニタリングするために、基準バイオマーカープロファイルと比較することができる。本教示の態様のバイオマーカープロファイル(基準および対象)は、マシン読み取り可能媒体、とりわけ、CD-ROMまたはUSBフラッシュメディアが読み取り可能なものなどのアナログテープに含めることができる。そのようなマシン読み取り可能媒体には、追加の検査結果、例えば臨床パラメーターの測定値および臨床的評価を含めることも可能である。マシン読み取り可能媒体はまた、対象の情報を含むこともできる;例えば、対象の医療歴または家族歴。マシン読み取り可能媒体には、本明細書に記載されるような、他の疾患活動性アルゴリズムおよび計算されたスコアまたは指標に関する情報をも含めることが可能である。
【実施例0116】
本開示の局面は、以下の実施例を参照することでさらに理解することができるが、これらはいかなる形であれ本開示の範囲を限定するものとみなされるべきではない。
【0117】
本開示の実施には、そうでないことが示されない限り、当技術分野の、タンパク質化学、生化学、組み換えDNA技術および薬理学の従来法が使用されている。このような技術は、文献で十分に説明されている。例えば、T. Creighton, Proteins: Structures and Molecular Properties, 1993, W. Freeman and Co.,; A. Lehninger, Biochemistry, Worth Publishers, Inc. (current addition); J. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, 1989; Methods In Enzymology, S. Colowick and N. Kaplan, eds., Academic Press, Inc.; Remington's Pharmaceutical Sciences, 18th Edition, 1990, Mack Publishing Company, Easton, PA; Carey and Sundberg, Advanced Organic Chemistry, Vols. A and B, 3rd Edition, 1992, Plenum Pressを参照のこと。
【0118】
本開示の実施には、そうでないことが示されない限り、当技術分野の統計分析の従来法も使用されている。このような技術は、文献で十分に説明されている。例えば、J. Little and D. Rubin, Statistical Analysis with Missing Data, 2nd Edition 2002, John Wiley and Sons, Inc., NJ; M. Pepe, The Statistical Evaluation of Medical Tests for Classification and Prediction (Oxford Statistical Science Series) 2003, Oxford University Press, Oxford, UK; X. Zhoue et al., Statistical Methods in Diagnostic Medicine 2002, John Wiley and Sons, Inc., NJ; T. Hastie et al, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition 2009, Springer, NY; W. Cooley and P. Lohnes, Multivariate procedures for the behavioral science 1962, John Wiley and Sons, Inc. NY; E. Jackson, A User's Guide to Principal Components 2003, John Wiley and Sons, Inc., NYを参照のこと。
【0119】
実施例1:MBDAスコアの導出
この実施例は、バイオマーカーの定量的データのデータセットに基づいて、マルチバイオマーカー疾患活動性(MBDA)スコアを導出する方法を示す。この実施例において、MBDAスコアは、予測モデルのセットに基づく解釈関数を使用してバイオマーカーデータから決定され、各予測モデルはDAS28-CRPの構成要素、この実施例ではTJC、SJCおよび患者による全般的健康評価(global health assessment: GHA)、を予測する。この実施例に記載されるようなMBDAスコアの導出は、USSN 12/905,984に詳細に記載されており、その全体が参照により本明細書に組み入れられる。
【0120】
MBDAアルゴリズムの開発と評価
トレーニングデータ
MBDAアルゴリズムは、InFoRMおよびBRASS研究における患者の臨床データおよびバイオマーカーデータを用いてトレーニングされた。InFoRM (Index For Rheumatoid Arthritis Measurement:関節リウマチ測定指数)研究は、北米RA集団の多施設共同観察研究である。アルゴリズムのトレーニングに採用された患者は、米国とカナダの25のサイトから2009年4月~9月にかけて募集された。対象となる患者基準は、学会認定のリウマチ専門医によってRAと診断された年齢>18歳の患者であった。生物学的薬剤群とプラセボ群を含む治療薬治験に同時期に参加した患者は除外した。この研究には、各患者につき約3ヶ月の間隔で3回の訪問が含まれており、各回に臨床データおよび生物学的サンプルが収集される。
【0121】
BRASSは、マサチューセッツ州ボストンにあるBrigham and Women's HospitalのRB Brigham Arthritis and Musculoskeletal Diseases Clinical Research Centerで治療を受けている約1,000人のRA患者の観察研究である。対象となる患者基準は、学会認定のリウマチ専門医によってRAと診断された年齢>18歳の患者であった。この研究には、臨床データおよび生物学的サンプルの収集を行う年1回の訪問と、訪問する度の患者アンケートが含まれる。
【0122】
トレーニングに使用した最初のデータセットは、512名のInFoRM患者についての訪問1データからなっていた。512名の患者の訪問は、選択時に全研究集団を代表する臨床的特徴を有するように、さらに、限られた数の関節評価者によって評価されたように選択した。関節評価者の数を12に制限した;その結果、評価者に特有のバイアスをアルゴリズムの開発において評価し、考慮に入れることができた。これらの患者の平均年齢は58.9歳(20~91歳)であり、76%が女性であった。平均SJCおよびTJCは、それぞれ4.28および5.49であった。
【0123】
512名のInFoRM訪問者からの血清に対して25種類の候補バイオマーカーのアッセイを行った。これらのバイオマーカーは、SAA1、IL6、TNFRSF1A、VEGFA、PYD、MMP1、ICAM1、カルプロテクチン、CHI3L1 (YKL40)、MMP3、EGF、IL1RA、VCAM1、LEP、RETN、CRP、IL8、APOA1、APOC3、CCL22、IL1B、IL6R、IL18、ケラタン硫酸およびICTPであった。バイオマーカーアッセイの全てをMeso Scale Discovery (MSD(登録商標))プラットフォームで実施した。バイオマーカーアッセイの開発および評価の詳細については、US 2011/0137851の実施例1を参照されたい。
【0124】
バイオマーカーは、(1)疾患活動性との単変量関連、(2)疾患活動性の多変量モデルへの寄与、および(3)アッセイ性能に基づいて優先順位をつけた。
【0125】
20種類の候補バイオマーカーについてのアッセイは、BRASSからの167サンプルとInFoRMからの29サンプルとを含む、患者サンプルの第2のセットにおいて実施した。これらの20種類の候補バイオマーカーは、SAA1、IL6、TNFRSF1A、VEGFA、PYD、MMP1、ICAM1、カルプロテクチン、YKL40、MMP3、EGF、IL1RA、VCAM1、レプチン、レジスチン、CRP、IL8、CCL22、IL1BおよびIL6Rであった。サンプルは、極端な疾患活動性についての全体的なトレーニングデータを充実させるとともに、中等度の疾患活動性を有する患者をも良好に代表するように選択した。極端な表現型を充実させることは、アルゴリズムのトレーニングの改善をもたらす可能性がある;ただし、得られるトレーニング集団は、そのアルゴリズムが独立検証において使用される患者のタイプ、および意図した使用集団をなおも十分に代表している必要がある。167のBRASSサンプルは、低度、中等度、高度の疾患活動性を有する同等数の患者を代表することを目的としていた。低度および中等度の活動性の患者はすでに最初の512のトレーニングサンプルによって十分に代表されていたので、29のInFoRMサンプルは高度の疾患活動性を有する患者を代表するように選択した。
【0126】
データ解析
統計解析の前に、全てのアッセイデータは、アッセイ間CV、アッセイ内CV、較正曲線の測定可能範囲内のサンプルのパーセント、および較正曲線の該範囲内の4つの血清プロセス対照を含むパラメーターに関して合格/不合格基準を再検討した。較正曲線の測定可能範囲内でなかったバイオマーカー値は、欠測データとしてマークして、データエクスポートの過程で所定のバイオマーカーアッセイ内の全てのサンプルにわたって最低/最高の検出値で補完した。2回の反復から算出されたバイオマーカー濃度のアッセイ内CVが30%を超えた場合、それも欠測とみなして、単変量解析から除外した。多変量解析では、個々のバイオマーカーは、それらのデータ値の20%超が欠測であった場合には完全に除外し、その他の欠測データはKNNアルゴリズム(k=5の最近傍法)によって補完した。アルゴリズムのトレーニングに使用したデータでは、多変量解析から除外されたバイオマーカーは一つもなかった。なぜならば、それらは全て20%未満の欠測値を有していたためである。各バイオマーカーの値の分布をより正規(normal)にするために、さらなる解析の前に濃度値を×0.1として変換した。この変換は、対数変換と同様の効果を有するものの、負の値が生じるのを回避する。補完され、変換されたバイオマーカーデータセットは、X_(n×m)として示され、ここで、Xはn個のマーカーおよびm個のサンプルからのタンパク質データである。
【0127】
単変量解析では、各バイオマーカーのレベルと、DAS28-CRP4、DAS28-ESR4、SJC、TJC、GHA、SDAIおよびCDAIを含む疾患活動性尺度との間のピアソン相関を求めた。
【0128】
多変量解析では、5つの異なる回帰法によって統計モデルを開発した。第1の回帰法(1)では、前進型段階的最小二乗回帰の式Y=Xβ+εが適用され、式中、Yは観測値を含む列ベクトルであり、βは係数ベクトルであり、εは残差である。このモデルでは変数なし(no variables)から前進選択を開始する。次に、予測子Xの集合が与えられると、応答Yとの最大の絶対的相関を有するものを選択して、X1へのYの単純な線形回帰を実行する。残差ベクトルは今やX1と直交しており、新しい応答変数であるとみなされる。その後、他の予測子をX1と直交するように射影し、前進選択プロセスを繰り返す。
【0129】
第2の方法(2)では、Lassoを使用して、(R2値に基づいて)バイオマーカーの優先順位をつけ、かつLassoモデルを取得する。このモデルにおける「ラッソ」(lasso)は、係数の絶対値の合計が定数より小さいことを条件として、残差平方和を最小化する。この方法は解釈可能なモデルをもたらし、リッジ回帰の安定性を示す。R. Tibshirani, J. Royal Stat. Soc. B 1996, 58(1):267-288を参照されたい。
【0130】
第3の方法(3)では、Lassoとリッジのペナルティの組み合わせであるElastic Netが適用される。これは、強く相関する予測子がまとまって分離して、このモデルの内または外のいずれかにまとまる傾向がある場合に、グルーピング効果を促進する。T. Zou, J. Royal Stat. Soc. B 2005, 67(2):301-320を参照されたい。上記の3つの方法のそれぞれでは、各ステップで選択されたマーカーが記録される。
【0131】
第4の方法(4)は、最小二乗法(OLS)を用いたCurds and Whey (CW)による多変量応答である。L. Breiman and JH Friedman, J. Royal. Stat. Soc. B 1997, 59(1):3-54を参照されたい。この方法は、予測変数Xの共通セットに対する各応答変数の個々の回帰を実行する通常の手法と比較して、予測精度を向上させるために応答変数(例えば、DASの構成要素)間の相関を利用する。CWでは、Y=XB * Sであり、式中、Y=(ykj)であって、kはk番目の患者、jはj番目の応答(TJCではj=1、SJCではj=2など)についてであり、BはOLSを用いて得られ、Sは正準座標系から計算された縮小行列である。したがって、このアプローチにより、DASの各構成要素に対応するサブモデルが作成される。
【0132】
第5の方法(5)は、Curds and WheyとLassoの組み合わせ(CW-Lasso)である。CWのようにBを得るためにOLSを用いる代わりに、Lassoが使用され、Lassoのアプローチに合わせてパラメーターが調整された。
【0133】
5つの回帰法の性能は、70/30交差検証(無作為に選択した70%のデータでのトレーニングと残りの30%でのテストを繰り返し行う)で比較した。各回帰モデルにおけるマーカーの数は、入れ子式の10分割交差検証(nested 10-fold cross-validation)を用いて選択し、所定の解析方法のためにマーカーの数が選択されたら、そのサイズのベストフィットするモデルを用いて、その方法を表した。CWアプローチ(方法4および5)では、DASの各構成要素に対応する各サブモデルについて、入れ子式の10分割交差検証を使用した。CW-Lasso法を用いて開発されたモデルは、全体的に最高の性能を発揮した。以下のセクションは、主にCW-Lassoアプローチを用いた結果で構成される。
【0134】
全てのトレーニングサンプルで調べた20種類の候補バイオマーカーは、以下を含む、多くの基準に従って優先順位をつけた:疾患活動性との関連性の強さおよび多変量モデルに対する貢献度;実行性データとトレーニングデータのセットにわたる疾患活動性との相関の一致性;CRPは、それがDAS28-CRP4に含まれているためと、それが独立した試験サンプルにおいてサブモデルの予測精度を向上させなかったためという両方の理由から、TJC、SJCおよびPGAのいずれのサブモデルからも除外した(しかし、MBDA式の一部としての最終的なMBDAスコア計算では、CRPを使用する);ロバストなアッセイ性能(IL1Bは、その濃度があまりにも頻繁にイムノアッセイの検出限界以下になるため、最終モデリングから除外した);既知の薬物効果(IL6Rは、疾患活動性に対するトシリズマブの効果とは無関係に、該薬物によって強く影響を受けることが知られているため、最終モデリングから除外した);ならびに安定性(IL8は、血清サンプルを冷やしておかないと、その測定可能なレベルが劇的に上昇することが知られているため、最終モデリングから除外した)。これらの基準は、最終的なアルゴリズムに含めることが考慮される15種類の候補バイオマーカーにつながった。表1を参照されたい。
【0135】
【表1】
【0136】
アルゴリズムのトレーニング
全てのデータをバイオマーカーの優先順位付けに使用した一方で、サブセットを最終的なアルゴリズムのトレーニングに使用した。このサブセットは、広範囲の疾患活動性レベルを有するように選択されたので、あらゆる疾患活動性レベルの患者がよく表現されていた。以下のサンプルを用いてトレーニングしたモデルの性能の比較を行った:BRASSサンプルのみ(合計167);BRASSサンプル+InFoRMサンプル(均一な疾患活動性分布を有するように選択した)(167+~100);またはBRASSサンプル+InFoRMサンプル(BRASSサンプルと同様の疾患活動性分布を有する)(167+~100)。
【0137】
モデル性能は、この目的のために取り置きしておいたBRASSサンプルとInFoRMサンプル(合計70)の独立したセットで評価した。この独立した試験セットのDAS28-CRP分布は、過去の研究のそれと同様であった(ほぼ正規分布)。以下に示すように、中央値カットオフを用いて高DASと低DASを予測するためのDAS28-CRPおよびROC曲線下面積(AUROC)との相関(r)は、BRASSサンプル+「BRASS様」InFoRMサンプルをトレーニングに用いた場合に、より高かったが、その差は統計学的に有意ではなかった。下記の表2ではLasso回帰法が使用される。
【0138】
【表2】
【0139】
最終的なトレーニングのために、BRASSサンプル+「BRASS様」InFoRMサンプルの組み合わせを選択した。最終的なアルゴリズムの開発のためにCW-Lasso回帰法を選択したが、それは、この回帰法がトレーニングセット内での交差検証において、およびInFoRMの512名の患者とCAMERAの患者を用いたテストにおいて優れた性能を示したからである(別のコホートのサンプルでのアルゴリズムテストの説明については、下記の「MBDAアルゴリズムの性能」を参照されたい)。この方法の利用では、縮小行列がTJCおよびSJCの予測に適用された。10分割交差検証は、以下の13種類のマーカーが性能にとって最適であることを示した。表3を参照されたい。
【0140】
【表3】
【0141】
このセットから、アッセイ失敗率が高かったためPYDとカルプロテクチンを除外した。残りの11種類のバイオマーカーは、13種類のフルセットと非常に類似したアルゴリズム性能を示した。CW-Lasso回帰により開発されたアルゴリズムを検証のために選択し、この11マーカーを用いてBRASSサンプル+BRASS様InFoRMサンプルからのデータでDAS28-CRPを推定した。TJC、SJCおよびPGHAの推定値は、DAS28-CRPの計算に用いたものと類似の式において、CRPテスト結果と組み合わせた。
【0142】
ここで、IPTJC=改善されたTJCの予測、IPSJC=改善されたSJCの予測、PPGHA=予測されたPGHA、およびPDASは予測されたDAS28-CRPである。(詳細は以下に定義される;「選択されたアルゴリズム」を参照されたい)。MBDAスコアはこの式からの結果である。
【0143】
表4は、研究した2つのコホートCAMERAおよびInFoRMにおける、TJC、SJC、PGHAおよびDAS28-CRPの実際の値とPDASアルゴリズムによって予測された値との相関を示す。
【0144】
【表4】
【0145】
選択されたアルゴリズム
トレーニングプロセスから選択された11マーカー+CRP Lassoモデルは以下の通りである:
【0146】
最終的なDAアルゴリズムでは、11マーカー+CRP CW-Lassoモデルからの結果をスケール変換し、1~100のスケールで整数となるように端数を丸めて、MBDAスコア1がDAS28-CRP値0に等しく、MBDAスコア100がDAS28-CRP値9.4に等しくなるようにした。
【0147】
上記式中の遺伝子名は、MSD(登録商標)プラットフォームで得られるような、血清タンパク質濃度に相当する。バイオマーカー濃度は表5に示す範囲(95%信頼区間)で得られた。
【0148】
【表5】
【0149】
MBDAアルゴリズムの性能
この実施例で先に開発したアルゴリズムの性能を独立してテストするために、CAMERA研究から得た合計120の血清サンプルを分析した。サンプルはComputer Assisted Management in Early Rheumatoid Arthritis Study (CAMERA;早期関節リウマチ研究のコンピュータ支援管理)から取得した。1999年から2003年にかけて、米国リウマチ学会(American College of Rheumatology: ACR)の1987年に改訂された関節リウマチ基準を満たした全ての早期関節リウマチ患者(すなわち、1年以下の罹病期間)に、この2年間の無作為化、非盲検、前向き、多施設共同戦略試験に参加するよう募った。その結果、299名の患者が研究されることになった。患者は、オランダ、ユトレヒト州にある6つのリウマチ内科のうちの1つの外来診療所を訪れて、ユトレヒト関節リウマチコホート研究グループに協力して取り組んだ。患者受け入れ基準は、患者が16歳を超えていて、症状を示している期間が1年未満でなければならないことであった。除外基準は、グルココルチコイドまたはいずれかのDMARDを以前に使用していたこと、受け入れ前の3ヶ月の間に細胞毒性薬または免疫抑制薬を使用していたこと、1日あたり2単位より多いと定義されるアルコール乱用であること、およびこの研究プロトコルの順守を不可能にする精神的問題があることであった。ベースライン時に、全患者を、MTXの使用を妨げる医学的状態についてモニタリングした。このスクリーニングには、胸部X線、肝臓酵素、アルブミン、肝炎血清学、血清クレアチニンおよび全血球計算が含まれていた。独立した人物が病院あたり9つのブロックへの無作為化を行った。全ての参加病院の医療倫理委員会はこの研究を承認し、全ての患者はこの研究に入る前に書面によるインフォームド・コンセントを提出した。
【0150】
この研究のコホートは以下の特徴を有していた:女性69%、CCP陽性68%、RF陽性74%、MTXの服用100%、非生物学的DMARDの服用100%、および生物学的DMARDの服用0%。さらに、コホートの平均年齢は52歳(標準偏差(SD)+/-14.7歳)で、最低年齢17歳、最高年齢78歳であった。このコホートの平均DAS28-CRPは、5.0 (SD+/-1.9)であり、最小値0.9、最大値8.4であった。
【0151】
72名の対象の亜集団を、この実施例のためのCAMERAコホートから選択した。72名の患者全員は、ベースライン(時間0)の訪問およびサンプルによって表され、48名は6ヶ月の訪問およびサンプルによっても表された。選択された訪問の範囲内で、DAS28-CRPスコアの幅広い分布が示され、最小値0.96から最大値8.4までの幅があった。
【0152】
これらのうち、72のサンプルは対象のベースライン訪問から、48はベースラインの6ヶ月後の訪問から採取した。各サンプルにおいて23種類の血清タンパク質バイオマーカーの濃度を測定した:APOA1、APOC3、カルプロテクチン、CCL22、CHI3L1 (YKL40)、CRP、EGF、ICAM1、IL18、IL1B、IL1RA、IL6、IL6R、IL8、LEP、MMP1、MMP3、PYD、RETN、SAA1、TNFRSF1A、VCAM1、およびVEGFA。マーカーの濃度は、Meso Scale Discovery SECTOR(登録商標) Imager 6000または個々のELISAのいずれかを用いて、カスタマイズされたイムノアッセイによって測定した。
【0153】
個々のバイオマーカーと、DAS28-CRP、SJC28およびTJC28の臨床評価測定値との間の関連性は、対数変換した濃度についてのピアソン相関(r)によって評価した。相関p値は、Benjamini-Hochberg法を用いて偽陽性率(FDR)を推定することによって、多重仮説検定を調整した。J. Royal Stat. Soc. B 1995 57(1):289-300を参照されたい。
【0154】
試験した23種類のタンパク質のうち、14種類はDAS28-CRPと、11種類はSJC28と、9種類はTJC28と統計的に有意な相関を示した(FDR<0.05)。表6を参照されたい;これは個々のバイオマーカーと各臨床疾患活動性尺度との間のピアソン相関(r)を示す。q値はFDRを反映しており、多重仮説検定のp値を調整することによって計算した。統計的に有意な関連性(q<0.05)は太字で示される。表6に示されるように、疾患活動性に関連する個々のバイオマーカーは、RA疾患の病態生理に関連する様々な経路(機能カテゴリー)を表していた。
【0155】
【表6】
【0156】
これらの23種類のバイオマーカーのサブセットを使用する2つの予め特定されたアルゴリズムである、プロトタイプアルゴリズムと最終アルゴリズムを適用して、各訪問時(ベースラインおよび6ヶ月)に各対象の総MBDAスコアを算出した。これらのアルゴリズムを、他の臨床コホートからの独立したサンプルを用いた事前研究においてトレーニングした。アルゴリズムの性能は、ベースラインおよび6ヶ月の訪問時の疾患活動性の高低を識別するためのピアソン相関(r)およびROC曲線下面積(AUROC)によって評価した。ROC解析の基準分類は、2.67のDAS28-CRPに基づいており、これは寛解/低度疾患活動性を中等度および高度疾患活動性から切り離す閾値であった。
【0157】
多変量モデルのプロトタイプアルゴリズム
タンパク質バイオマーカーの線形結合を使用する第1のアルゴリズム、すなわち「プロトタイプアルゴリズム」は、DAS28を直接的に推定するために対象サンプルでトレーニングされ、本明細書の他の箇所に記載される下記式によって示された:
式中、MBDAはMBDAスコアであり、b0-nは定数であり、DAIMRK1-n xはバイオマーカーのパネルから選択されたn個の異なるバイオマーカーの、x乗に変換された血清濃度である。
【0158】
この実施例で使用したプロトタイプアルゴリズムは、下記式によって示された:
【0159】
このプロトタイプアルゴリズムは、DAS28-CRPに対して0.65のピアソン相関(r)および0.84のAUROCを達成した。
【0160】
最終アルゴリズムのためのバイオマーカーの選択
第2のアルゴリズムは、TJC28、SJC28およびPGHAの3つの臨床評価を別々に推定するように、血清バイオマーカーの濃度を用いて導出された。これらの全ては、DAS28-CRPの計算に使用される式:
の構成要素であることに留意されたい。
【0161】
次いで、バイオマーカーを選択して、疾患活動性、具体的にはPGHA、TJC28およびSJC28の臨床評価を予測および推定した。得られた推定値を血清CRP濃度測定値と組み合わせて、総MBDAスコアを算出した。図2を参照されたい;臨床的な疾患活動性測定値を予測するバイオマーカー、それらの結合体(union)、およびCRPの3つのパネルが示される。CW-Lasso法を用いてDAS28の個々の構成要素、すなわちTJC28、SJC28およびPGHAを予測した。バイオマーカーの項目は、それらが交差検証されるモデルの性能を改善するのに役立つ場合に、CW-Lassoに含められることに留意されたい;この基準は、各項目が単変量解析によって統計学的に有意であることを意味するものではない。バイオマーカーは、たとえそれが有意な単変量相関を有しないとしても、多変量モデルに大きく貢献することがあり得るし、また、たとえそれが有意な単変量相関を有するとしても、多変量モデルに大きく貢献することはないかもしれない。実際に、表3のバイオマーカーを含む、上記の(a)~(c)の臨床評価を予測する各アルゴリズムの比較は、各アルゴリズムの全てのバイオマーカーが個々にその臨床評価と統計的に相関があったとは限らないことを示している。例えば、EGF、LEP、VEGFAおよびVCAM1の血清濃度の値は全て、TJC28を予測するためのアルゴリズムに含まれるが、これらのマーカーのそれぞれは、個別には、TJCとの相関について≧0.28のq値を示した。しかし、これらのマーカーを含めると、独立した交差検証テストセットにおける多変量モデルの性能が改善される。
【0162】
本実施例の方法に従って導出された総MBDAスコアは、1~100の整数として示された。このスコアを導き出すために使用した式は、下記式により提供された:
式中、PTJC=予測されたTJC28、PSJC=予測されたSJC28、およびPPGHA=予測されたPGA。この例は、以下のバイオマーカーのセットからのデータを含む:PTJCについてはSAA1、IL6、CHI3L1、EGF、TNFRSF1A、LEP、VEGFAおよびVCAM1;PSJCについてはSAA1、IL6、EGF、CHI3L1およびTNFRSF1A;PPGHAについてはSAA1、MMP1、LEP、TNFRSF1A、VEGFA、EGF、MMP3、VCAM1およびRETN;プラス(+)CRP。したがって、全体で、以下の12種類のマーカーのセットからのデータを用いて、MBDAスコアを導出した:CHI3L1、CRP、EGF、IL6、LEP、MMP1、MMP3、RETN、SAA1、TNFRSF1A、VCAM1およびVEGFA。予測された疾患活動性の臨床評価は、以下の式に従って開発された:
【0163】
MBDAスコアを導出する上での上記アルゴリズムの性能は、ベースラインおよび6ヶ月の訪問時の疾患活動性の高低を識別するためのピアソン相関(r)およびROC曲線下面積(AUROC)によって評価した。ピアソン相関は0.73であり、AUROCは0.87であった;ROC解析の基準分類は2.67のDAS28-CRP閾値に基づいており、この閾値は寛解/低度疾患活動性を中等度および高度疾患活動性から区別する。ベースライン訪問と6ヶ月訪問の間のバイオマーカーベースのMBDAスコアの変化は、対応のあるウィルコクソン順位和検定によって評価した。
【0164】
一部の患者について2つのサンプルを含めたことが原因で、第2のアルゴリズムの性能が過大評価されていなかったことを確認するため、各対象につき無作為に選択された1回のみの訪問を含むサンプルのサブセットも分析した。アルゴリズムは、これらのサブセットでも同じように良好に機能した。低度および高度疾患活動性群間の数のアンバランスによるAUROCのバイアスの可能性も、2.67のDAS28-CRPカットオフを用いて解析した。カットオフを4.6のDAS28-CRP中央値に設定した場合には、AUROCが0.83であった。
【0165】
MBDAアルゴリズムによって生み出されたDAS28の個々の構成要素の予測が、実際のTJC28、SJC28およびPGHAとの相関を示した場合、その相関係数は、RA疾患活動性の指標として単独でよく用いられるマーカーCRPの係数よりも高い傾向にある(したがって、臨床的疾患活動性測定値とのより良好な相関を提供する)ことが見られた。図1を参照されたい。
【0166】
次に、MBDAスコアがCAMERA研究で使用された治療プロトコルに応答して変化するかどうかを調べるための分析を行った。MBDAスコアが両方の訪問(ベースラインおよび6ヶ月)に入手可能であった全ての対象について、スコア中央値は52から37に低下した(p=2.2E-6;n=46)。図2を参照されたい。強化治療群と従来治療群とは別々に検討された。強化治療群ではMBDAスコア中央値の52から36への有意な低下が見られた(p=2.5E-5;n=31)。従来治療群では、MBDAスコア中央値が59から45に低下した(p=0.06;n=15)。
【0167】
結論として、この実施例は、様々な生物学的経路を代表する血清タンパク質バイオマーカーがRA疾患活動性と一貫して関連していたことを実証する。これらのバイオマーカーのうちの数種類からの情報を組み合わせる事前に指定されたMBDAアルゴリズムは、独立したテストセットで評価したとき、RA疾患活動性を予測する上で良好な性能を示した。TJC、SJCおよびPGHAのアルゴリズムの推定値は、疾患活動性の実際の臨床的測定値と相関していた。さらに、解析された対象のその後のMBDAスコアは、初期MBDAスコアと比較して、治療後にかつ治療に応答して低下した。
【0168】
実施例2:乾癬性関節炎の疾患活動性を評価するためのMBDAスコアの使用
この実施例は、実施例1に記載のMBDAスコアを使用して、乾癬性関節炎(PsA)患者における疾患活動性を評価することができることを実証する。
【0169】
PsA病変の臨床ドメインにおける、少なからぬ不均一性は、疾患活動性の評価を困難にすることがある。結果として、疾患活動性を評価するためのバイオマーカーの開発に関心が集まっている。実施例1に記載のMBDAアッセイは、12種類の血清タンパク質バイオマーカーの加重コンポジットであり、関節リウマチの疾患活動性と相関することが示された(Curtis JR, et al. Arthritis Care Res 64: 1794-1803 (2012))。この実施例の目的は、MBDAテストのバイオマーカーパネルがPsAの異なるドメイン間の疾患活動性と相関するかどうかを調べることであった。
【0170】
方法
CASPAR基準を満たすPsAを有する30名の成人患者の断面サンプルを、UCSD関節炎クリニックから募集した(Taylor W, et al. Arthritis Rheum 54:2665-73 (2006))。臨床データおよび血清サンプルを収集し、血清をMBDAスコアおよびその個々のバイオマーカー(Hambardzumyan K, et al. Ann Rheum Dis. 74:1102-9 (2015))、ならびにICAM-1、IL-6R、およびMDCについて分析した。
【0171】
表7は、この実施例の30名の患者の特徴を記載する。
【0172】
【表7】
【0173】
結果
平均MBDAスコアは39.6であり、これはRAにおける中等度の疾患活動性スコアと一致するであろう(Curtis et al., (2012))。PsAコホートでは、MBDAスコアは、医師による全般的評価(ピアソン相関係数、r=0.57)、DAS28 (r=0.53)、および皮膚BSA (r=0.50)と最も強く相関していた。CDAI (r=0.35)、SJC28 (r=0.35)、患者による全般的評価(r=0.08)、HAQスコア(r=0.15)、および疼痛スコア(r=0.12)との相関は低かった。個々のバイオマーカーの分析は強い相関を示し、多くの場合に以下の複合MBDAスコアよりも高かった:皮膚BSAとのSAA、INFRI、MDCおよびレプチン(それぞれr=0.85、0.84、0.75および0.72);DAS29スコアとのレプチンおよびICAM-1(それぞれr=0.62および0.52);ならびにPhGAとのSAAおよびVCAM-1(それぞれr=0.67および0.61)。これらのデータは、実施例1で得られたMBDAスコアがPsAの疾患活動性と相関し得ることを示唆している。
【0174】
本明細書に引用された全ての刊行物および特許出願は、個々の刊行物または特許出願が参照により組み入れられることが具体的かつ個別に示されたかのように、参照により本明細書に組み入れられる。
【0175】
前述の発明は、理解を明確にするために、例示および実施例によってある程度詳しく説明されているが、添付の特許請求の範囲に記載の本発明の精神または範囲から逸脱することなく、ある種の変更および修正を行うことができることが、本発明の教示に照らして当業者には容易に明らかであろう。
【0176】
配列情報
SEQUENCE LISTING
<110> CRESCENDO BIOSCIENCE, INC.
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
SASSO, Eric
EASTMAN, Paul Scott
BOLCE, Rebecca
KAVANAUGH, Arthur
<120> BIOMARKERS AND METHODS FOR ASSESSING PSORIATIC ARTHRITIS DISEASE
ACTIVITY
<150> 62/234,526
<151> 2015-09-29
<160> 12
<170> PatentIn version 3.5

<210> 1
<211> 383
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_001267.2
<400> 1
Met Gly Val Lys Ala Ser Gln Thr Gly Phe Val Val Leu Val Leu Leu
1 5 10 15
Gln Cys Cys Ser Ala Tyr Lys Leu Val Cys Tyr Tyr Thr Ser Trp Ser
20 25 30
Gln Tyr Arg Glu Gly Asp Gly Ser Cys Phe Pro Asp Ala Leu Asp Arg
35 40 45
Phe Leu Cys Thr His Ile Ile Tyr Ser Phe Ala Asn Ile Ser Asn Asp
50 55 60
His Ile Asp Thr Trp Glu Trp Asn Asp Val Thr Leu Tyr Gly Met Leu
65 70 75 80
Asn Thr Leu Lys Asn Arg Asn Pro Asn Leu Lys Thr Leu Leu Ser Val
85 90 95
Gly Gly Trp Asn Phe Gly Ser Gln Arg Phe Ser Lys Ile Ala Ser Asn
100 105 110
Thr Gln Ser Arg Arg Thr Phe Ile Lys Ser Val Pro Pro Phe Leu Arg
115 120 125
Thr His Gly Phe Asp Gly Leu Asp Leu Ala Trp Leu Tyr Pro Gly Arg
130 135 140
Arg Asp Lys Gln His Phe Thr Thr Leu Ile Lys Glu Met Lys Ala Glu
145 150 155 160
Phe Ile Lys Glu Ala Gln Pro Gly Lys Lys Gln Leu Leu Leu Ser Ala
165 170 175
Ala Leu Ser Ala Gly Lys Val Thr Ile Asp Ser Ser Tyr Asp Ile Ala
180 185 190
Lys Ile Ser Gln His Leu Asp Phe Ile Ser Ile Met Thr Tyr Asp Phe
195 200 205
His Gly Ala Trp Arg Gly Thr Thr Gly His His Ser Pro Leu Phe Arg
210 215 220
Gly Gln Glu Asp Ala Ser Pro Asp Arg Phe Ser Asn Thr Asp Tyr Ala
225 230 235 240
Val Gly Tyr Met Leu Arg Leu Gly Ala Pro Ala Ser Lys Leu Val Met
245 250 255
Gly Ile Pro Thr Phe Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr
260 265 270
Gly Val Gly Ala Pro Ile Ser Gly Pro Gly Ile Pro Gly Arg Phe Thr
275 280 285
Lys Glu Ala Gly Thr Leu Ala Tyr Tyr Glu Ile Cys Asp Phe Leu Arg
290 295 300
Gly Ala Thr Val His Arg Ile Leu Gly Gln Gln Val Pro Tyr Ala Thr
305 310 315 320
Lys Gly Asn Gln Trp Val Gly Tyr Asp Asp Gln Glu Ser Val Lys Ser
325 330 335
Lys Val Gln Tyr Leu Lys Asp Arg Gln Leu Ala Gly Ala Met Val Trp
340 345 350
Ala Leu Asp Leu Asp Asp Phe Gln Gly Ser Phe Cys Gly Gln Asp Leu
355 360 365
Arg Phe Pro Leu Thr Asn Ala Ile Lys Asp Ala Leu Ala Ala Thr
370 375 380

<210> 2
<211> 224
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_000558.2
<400> 2
Met Glu Lys Leu Leu Cys Phe Leu Val Leu Thr Ser Leu Ser His Ala
1 5 10 15
Phe Gly Gln Thr Asp Met Ser Arg Lys Ala Phe Val Phe Pro Lys Glu
20 25 30
Ser Asp Thr Ser Tyr Val Ser Leu Lys Ala Pro Leu Thr Lys Pro Leu
35 40 45
Lys Ala Phe Thr Val Cys Leu His Phe Tyr Thr Glu Leu Ser Ser Thr
50 55 60
Arg Gly Tyr Ser Ile Phe Ser Tyr Ala Thr Lys Arg Gln Asp Asn Glu
65 70 75 80
Ile Leu Ile Phe Trp Ser Lys Asp Ile Gly Tyr Ser Phe Thr Val Gly
85 90 95
Gly Ser Glu Ile Leu Phe Glu Val Pro Glu Val Thr Val Ala Pro Val
100 105 110
His Ile Cys Thr Ser Trp Glu Ser Ala Ser Gly Ile Val Glu Phe Trp
115 120 125
Val Asp Gly Lys Pro Arg Val Arg Lys Ser Leu Lys Lys Gly Tyr Thr
130 135 140
Val Gly Ala Glu Ala Ser Ile Ile Leu Gly Gln Glu Gln Asp Ser Phe
145 150 155 160
Gly Gly Asn Phe Glu Gly Ser Gln Ser Leu Val Gly Asp Ile Gly Asn
165 170 175
Val Asn Met Trp Asp Phe Val Leu Ser Pro Asp Glu Ile Asn Thr Ile
180 185 190
Tyr Leu Gly Gly Pro Phe Ser Pro Asn Val Leu Asn Trp Arg Ala Leu
195 200 205
Lys Tyr Glu Val Gln Gly Glu Val Phe Thr Lys Pro Gln Leu Trp Pro
210 215 220

<210> 3
<211> 1207
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_001954.2
<400> 3
Met Leu Leu Thr Leu Ile Ile Leu Leu Pro Val Val Ser Lys Phe Ser
1 5 10 15
Phe Val Ser Leu Ser Ala Pro Gln His Trp Ser Cys Pro Glu Gly Thr
20 25 30
Leu Ala Gly Asn Gly Asn Ser Thr Cys Val Gly Pro Ala Pro Phe Leu
35 40 45
Ile Phe Ser His Gly Asn Ser Ile Phe Arg Ile Asp Thr Glu Gly Thr
50 55 60
Asn Tyr Glu Gln Leu Val Val Asp Ala Gly Val Ser Val Ile Met Asp
65 70 75 80
Phe His Tyr Asn Glu Lys Arg Ile Tyr Trp Val Asp Leu Glu Arg Gln
85 90 95
Leu Leu Gln Arg Val Phe Leu Asn Gly Ser Arg Gln Glu Arg Val Cys
100 105 110
Asn Ile Glu Lys Asn Val Ser Gly Met Ala Ile Asn Trp Ile Asn Glu
115 120 125
Glu Val Ile Trp Ser Asn Gln Gln Glu Gly Ile Ile Thr Val Thr Asp
130 135 140
Met Lys Gly Asn Asn Ser His Ile Leu Leu Ser Ala Leu Lys Tyr Pro
145 150 155 160
Ala Asn Val Ala Val Asp Pro Val Glu Arg Phe Ile Phe Trp Ser Ser
165 170 175
Glu Val Ala Gly Ser Leu Tyr Arg Ala Asp Leu Asp Gly Val Gly Val
180 185 190
Lys Ala Leu Leu Glu Thr Ser Glu Lys Ile Thr Ala Val Ser Leu Asp
195 200 205
Val Leu Asp Lys Arg Leu Phe Trp Ile Gln Tyr Asn Arg Glu Gly Ser
210 215 220
Asn Ser Leu Ile Cys Ser Cys Asp Tyr Asp Gly Gly Ser Val His Ile
225 230 235 240
Ser Lys His Pro Thr Gln His Asn Leu Phe Ala Met Ser Leu Phe Gly
245 250 255
Asp Arg Ile Phe Tyr Ser Thr Trp Lys Met Lys Thr Ile Trp Ile Ala
260 265 270
Asn Lys His Thr Gly Lys Asp Met Val Arg Ile Asn Leu His Ser Ser
275 280 285
Phe Val Pro Leu Gly Glu Leu Lys Val Val His Pro Leu Ala Gln Pro
290 295 300
Lys Ala Glu Asp Asp Thr Trp Glu Pro Glu Gln Lys Leu Cys Lys Leu
305 310 315 320
Arg Lys Gly Asn Cys Ser Ser Thr Val Cys Gly Gln Asp Leu Gln Ser
325 330 335
His Leu Cys Met Cys Ala Glu Gly Tyr Ala Leu Ser Arg Asp Arg Lys
340 345 350
Tyr Cys Glu Asp Val Asn Glu Cys Ala Phe Trp Asn His Gly Cys Thr
355 360 365
Leu Gly Cys Lys Asn Thr Pro Gly Ser Tyr Tyr Cys Thr Cys Pro Val
370 375 380
Gly Phe Val Leu Leu Pro Asp Gly Lys Arg Cys His Gln Leu Val Ser
385 390 395 400
Cys Pro Arg Asn Val Ser Glu Cys Ser His Asp Cys Val Leu Thr Ser
405 410 415
Glu Gly Pro Leu Cys Phe Cys Pro Glu Gly Ser Val Leu Glu Arg Asp
420 425 430
Gly Lys Thr Cys Ser Gly Cys Ser Ser Pro Asp Asn Gly Gly Cys Ser
435 440 445
Gln Leu Cys Val Pro Leu Ser Pro Val Ser Trp Glu Cys Asp Cys Phe
450 455 460
Pro Gly Tyr Asp Leu Gln Leu Asp Glu Lys Ser Cys Ala Ala Ser Gly
465 470 475 480
Pro Gln Pro Phe Leu Leu Phe Ala Asn Ser Gln Asp Ile Arg His Met
485 490 495
His Phe Asp Gly Thr Asp Tyr Gly Thr Leu Leu Ser Gln Gln Met Gly
500 505 510
Met Val Tyr Ala Leu Asp His Asp Pro Val Glu Asn Lys Ile Tyr Phe
515 520 525
Ala His Thr Ala Leu Lys Trp Ile Glu Arg Ala Asn Met Asp Gly Ser
530 535 540
Gln Arg Glu Arg Leu Ile Glu Glu Gly Val Asp Val Pro Glu Gly Leu
545 550 555 560
Ala Val Asp Trp Ile Gly Arg Arg Phe Tyr Trp Thr Asp Arg Gly Lys
565 570 575
Ser Leu Ile Gly Arg Ser Asp Leu Asn Gly Lys Arg Ser Lys Ile Ile
580 585 590
Thr Lys Glu Asn Ile Ser Gln Pro Arg Gly Ile Ala Val His Pro Met
595 600 605
Ala Lys Arg Leu Phe Trp Thr Asp Thr Gly Ile Asn Pro Arg Ile Glu
610 615 620
Ser Ser Ser Leu Gln Gly Leu Gly Arg Leu Val Ile Ala Ser Ser Asp
625 630 635 640
Leu Ile Trp Pro Ser Gly Ile Thr Ile Asp Phe Leu Thr Asp Lys Leu
645 650 655
Tyr Trp Cys Asp Ala Lys Gln Ser Val Ile Glu Met Ala Asn Leu Asp
660 665 670
Gly Ser Lys Arg Arg Arg Leu Thr Gln Asn Asp Val Gly His Pro Phe
675 680 685
Ala Val Ala Val Phe Glu Asp Tyr Val Trp Phe Ser Asp Trp Ala Met
690 695 700
Pro Ser Val Met Arg Val Asn Lys Arg Thr Gly Lys Asp Arg Val Arg
705 710 715 720
Leu Gln Gly Ser Met Leu Lys Pro Ser Ser Leu Val Val Val His Pro
725 730 735
Leu Ala Lys Pro Gly Ala Asp Pro Cys Leu Tyr Gln Asn Gly Gly Cys
740 745 750
Glu His Ile Cys Lys Lys Arg Leu Gly Thr Ala Trp Cys Ser Cys Arg
755 760 765
Glu Gly Phe Met Lys Ala Ser Asp Gly Lys Thr Cys Leu Ala Leu Asp
770 775 780
Gly His Gln Leu Leu Ala Gly Gly Glu Val Asp Leu Lys Asn Gln Val
785 790 795 800
Thr Pro Leu Asp Ile Leu Ser Lys Thr Arg Val Ser Glu Asp Asn Ile
805 810 815
Thr Glu Ser Gln His Met Leu Val Ala Glu Ile Met Val Ser Asp Gln
820 825 830
Asp Asp Cys Ala Pro Val Gly Cys Ser Met Tyr Ala Arg Cys Ile Ser
835 840 845
Glu Gly Glu Asp Ala Thr Cys Gln Cys Leu Lys Gly Phe Ala Gly Asp
850 855 860
Gly Lys Leu Cys Ser Asp Ile Asp Glu Cys Glu Met Gly Val Pro Val
865 870 875 880
Cys Pro Pro Ala Ser Ser Lys Cys Ile Asn Thr Glu Gly Gly Tyr Val
885 890 895
Cys Arg Cys Ser Glu Gly Tyr Gln Gly Asp Gly Ile His Cys Leu Asp
900 905 910
Ile Asp Glu Cys Gln Leu Gly Glu His Ser Cys Gly Glu Asn Ala Ser
915 920 925
Cys Thr Asn Thr Glu Gly Gly Tyr Thr Cys Met Cys Ala Gly Arg Leu
930 935 940
Ser Glu Pro Gly Leu Ile Cys Pro Asp Ser Thr Pro Pro Pro His Leu
945 950 955 960
Arg Glu Asp Asp His His Tyr Ser Val Arg Asn Ser Asp Ser Glu Cys
965 970 975
Pro Leu Ser His Asp Gly Tyr Cys Leu His Asp Gly Val Cys Met Tyr
980 985 990
Ile Glu Ala Leu Asp Lys Tyr Ala Cys Asn Cys Val Val Gly Tyr Ile
995 1000 1005
Gly Glu Arg Cys Gln Tyr Arg Asp Leu Lys Trp Trp Glu Leu Arg
1010 1015 1020
His Ala Gly His Gly Gln Gln Gln Lys Val Ile Val Val Ala Val
1025 1030 1035
Cys Val Val Val Leu Val Met Leu Leu Leu Leu Ser Leu Trp Gly
1040 1045 1050
Ala His Tyr Tyr Arg Thr Gln Lys Leu Leu Ser Lys Asn Pro Lys
1055 1060 1065
Asn Pro Tyr Glu Glu Ser Ser Arg Asp Val Arg Ser Arg Arg Pro
1070 1075 1080
Ala Asp Thr Glu Asp Gly Met Ser Ser Cys Pro Gln Pro Trp Phe
1085 1090 1095
Val Val Ile Lys Glu His Gln Asp Leu Lys Asn Gly Gly Gln Pro
1100 1105 1110
Val Ala Gly Glu Asp Gly Gln Ala Ala Asp Gly Ser Met Gln Pro
1115 1120 1125
Thr Ser Trp Arg Gln Glu Pro Gln Leu Cys Gly Met Gly Thr Glu
1130 1135 1140
Gln Gly Cys Trp Ile Pro Val Ser Ser Asp Lys Gly Ser Cys Pro
1145 1150 1155
Gln Val Met Glu Arg Ser Phe His Met Pro Ser Tyr Gly Thr Gln
1160 1165 1170
Thr Leu Glu Gly Gly Val Glu Lys Pro His Ser Leu Leu Ser Ala
1175 1180 1185
Asn Pro Leu Trp Gln Gln Arg Ala Leu Asp Pro Pro His Gln Met
1190 1195 1200
Glu Leu Thr Gln
1205

<210> 4
<211> 212
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_000591.1
<400> 4
Met Asn Ser Phe Ser Thr Ser Ala Phe Gly Pro Val Ala Phe Ser Leu
1 5 10 15
Gly Leu Leu Leu Val Leu Pro Ala Ala Phe Pro Ala Pro Val Pro Pro
20 25 30
Gly Glu Asp Ser Lys Asp Val Ala Ala Pro His Arg Gln Pro Leu Thr
35 40 45
Ser Ser Glu Arg Ile Asp Lys Gln Ile Arg Tyr Ile Leu Asp Gly Ile
50 55 60
Ser Ala Leu Arg Lys Glu Thr Cys Asn Lys Ser Asn Met Cys Glu Ser
65 70 75 80
Ser Lys Glu Ala Leu Ala Glu Asn Asn Leu Asn Leu Pro Lys Met Ala
85 90 95
Glu Lys Asp Gly Cys Phe Gln Ser Gly Phe Asn Glu Glu Thr Cys Leu
100 105 110
Val Lys Ile Ile Thr Gly Leu Leu Glu Phe Glu Val Tyr Leu Glu Tyr
115 120 125
Leu Gln Asn Arg Phe Glu Ser Ser Glu Glu Gln Ala Arg Ala Val Gln
130 135 140
Met Ser Thr Lys Val Leu Ile Gln Phe Leu Gln Lys Lys Ala Lys Asn
145 150 155 160
Leu Asp Ala Ile Thr Thr Pro Asp Pro Thr Thr Asn Ala Ser Leu Leu
165 170 175
Thr Lys Leu Gln Ala Gln Asn Gln Trp Leu Gln Asp Met Thr Thr His
180 185 190
Leu Ile Leu Arg Ser Phe Lys Glu Phe Leu Gln Ser Ser Leu Arg Ala
195 200 205
Leu Arg Gln Met
210

<210> 5
<211> 167
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_000221.1
<400> 5
Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr Leu
1 5 10 15
Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys
20 25 30
Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr
35 40 45
Gln Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu Asp Phe Ile Pro
50 55 60
Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met Asp Gln Thr Leu Ala
65 70 75 80
Val Tyr Gln Gln Ile Leu Thr Ser Met Pro Ser Arg Asn Val Ile Gln
85 90 95
Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp Leu Leu His Val Leu Ala
100 105 110
Phe Ser Lys Ser Cys His Leu Pro Trp Ala Ser Gly Leu Glu Thr Leu
115 120 125
Asp Ser Leu Gly Gly Val Leu Glu Ala Ser Gly Tyr Ser Thr Glu Val
130 135 140
Val Ala Leu Ser Arg Leu Gln Gly Ser Leu Gln Asp Met Leu Trp Gln
145 150 155 160
Leu Asp Leu Ser Pro Gly Cys
165

<210> 6
<211> 469
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_002412.1
<400> 6
Met His Ser Phe Pro Pro Leu Leu Leu Leu Leu Phe Trp Gly Val Val
1 5 10 15
Ser His Ser Phe Pro Ala Thr Leu Glu Thr Gln Glu Gln Asp Val Asp
20 25 30
Leu Val Gln Lys Tyr Leu Glu Lys Tyr Tyr Asn Leu Lys Asn Asp Gly
35 40 45
Arg Gln Val Glu Lys Arg Arg Asn Ser Gly Pro Val Val Glu Lys Leu
50 55 60
Lys Gln Met Gln Glu Phe Phe Gly Leu Lys Val Thr Gly Lys Pro Asp
65 70 75 80
Ala Glu Thr Leu Lys Val Met Lys Gln Pro Arg Cys Gly Val Pro Asp
85 90 95
Val Ala Gln Phe Val Leu Thr Glu Gly Asn Pro Arg Trp Glu Gln Thr
100 105 110
His Leu Thr Tyr Arg Ile Glu Asn Tyr Thr Pro Asp Leu Pro Arg Ala
115 120 125
Asp Val Asp His Ala Ile Glu Lys Ala Phe Gln Leu Trp Ser Asn Val
130 135 140
Thr Pro Leu Thr Phe Thr Lys Val Ser Glu Gly Gln Ala Asp Ile Met
145 150 155 160
Ile Ser Phe Val Arg Gly Asp His Arg Asp Asn Ser Pro Phe Asp Gly
165 170 175
Pro Gly Gly Asn Leu Ala His Ala Phe Gln Pro Gly Pro Gly Ile Gly
180 185 190
Gly Asp Ala His Phe Asp Glu Asp Glu Arg Trp Thr Asn Asn Phe Arg
195 200 205
Glu Tyr Asn Leu His Arg Val Ala Ala His Glu Leu Gly His Ser Leu
210 215 220
Gly Leu Ser His Ser Thr Asp Ile Gly Ala Leu Met Tyr Pro Ser Tyr
225 230 235 240
Thr Phe Ser Gly Asp Val Gln Leu Ala Gln Asp Asp Ile Asp Gly Ile
245 250 255
Gln Ala Ile Tyr Gly Arg Ser Gln Asn Pro Val Gln Pro Ile Gly Pro
260 265 270
Gln Thr Pro Lys Ala Cys Asp Ser Lys Leu Thr Phe Asp Ala Ile Thr
275 280 285
Thr Ile Arg Gly Glu Val Met Phe Phe Lys Asp Arg Phe Tyr Met Arg
290 295 300
Thr Asn Pro Phe Tyr Pro Glu Val Glu Leu Asn Phe Ile Ser Val Phe
305 310 315 320
Trp Pro Gln Leu Pro Asn Gly Leu Glu Ala Ala Tyr Glu Phe Ala Asp
325 330 335
Arg Asp Glu Val Arg Phe Phe Lys Gly Asn Lys Tyr Trp Ala Val Gln
340 345 350
Gly Gln Asn Val Leu His Gly Tyr Pro Lys Asp Ile Tyr Ser Ser Phe
355 360 365
Gly Phe Pro Arg Thr Val Lys His Ile Asp Ala Ala Leu Ser Glu Glu
370 375 380
Asn Thr Gly Lys Thr Tyr Phe Phe Val Ala Asn Lys Tyr Trp Arg Tyr
385 390 395 400
Asp Glu Tyr Lys Arg Ser Met Asp Pro Gly Tyr Pro Lys Met Ile Ala
405 410 415
His Asp Phe Pro Gly Ile Gly His Lys Val Asp Ala Val Phe Met Lys
420 425 430
Asp Gly Phe Phe Tyr Phe Phe His Gly Thr Arg Gln Tyr Lys Phe Asp
435 440 445
Pro Lys Thr Lys Arg Ile Leu Thr Leu Gln Lys Ala Asn Ser Trp Phe
450 455 460
Asn Cys Arg Lys Asn
465

<210> 7
<211> 477
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_002413.1
<400> 7
Met Lys Ser Leu Pro Ile Leu Leu Leu Leu Cys Val Ala Val Cys Ser
1 5 10 15
Ala Tyr Pro Leu Asp Gly Ala Ala Arg Gly Glu Asp Thr Ser Met Asn
20 25 30
Leu Val Gln Lys Tyr Leu Glu Asn Tyr Tyr Asp Leu Lys Lys Asp Val
35 40 45
Lys Gln Phe Val Arg Arg Lys Asp Ser Gly Pro Val Val Lys Lys Ile
50 55 60
Arg Glu Met Gln Lys Phe Leu Gly Leu Glu Val Thr Gly Lys Leu Asp
65 70 75 80
Ser Asp Thr Leu Glu Val Met Arg Lys Pro Arg Cys Gly Val Pro Asp
85 90 95
Val Gly His Phe Arg Thr Phe Pro Gly Ile Pro Lys Trp Arg Lys Thr
100 105 110
His Leu Thr Tyr Arg Ile Val Asn Tyr Thr Pro Asp Leu Pro Lys Asp
115 120 125
Ala Val Asp Ser Ala Val Glu Lys Ala Leu Lys Val Trp Glu Glu Val
130 135 140
Thr Pro Leu Thr Phe Ser Arg Leu Tyr Glu Gly Glu Ala Asp Ile Met
145 150 155 160
Ile Ser Phe Ala Val Arg Glu His Gly Asp Phe Tyr Pro Phe Asp Gly
165 170 175
Pro Gly Asn Val Leu Ala His Ala Tyr Ala Pro Gly Pro Gly Ile Asn
180 185 190
Gly Asp Ala His Phe Asp Asp Asp Glu Gln Trp Thr Lys Asp Thr Thr
195 200 205
Gly Thr Asn Leu Phe Leu Val Ala Ala His Glu Ile Gly His Ser Leu
210 215 220
Gly Leu Phe His Ser Ala Asn Thr Glu Ala Leu Met Tyr Pro Leu Tyr
225 230 235 240
His Ser Leu Thr Asp Leu Thr Arg Phe Arg Leu Ser Gln Asp Asp Ile
245 250 255
Asn Gly Ile Gln Ser Leu Tyr Gly Pro Pro Pro Asp Ser Pro Glu Thr
260 265 270
Pro Leu Val Pro Thr Glu Pro Val Pro Pro Glu Pro Gly Thr Pro Ala
275 280 285
Asn Cys Asp Pro Ala Leu Ser Phe Asp Ala Val Ser Thr Leu Arg Gly
290 295 300
Glu Ile Leu Ile Phe Lys Asp Arg His Phe Trp Arg Lys Ser Leu Arg
305 310 315 320
Lys Leu Glu Pro Glu Leu His Leu Ile Ser Ser Phe Trp Pro Ser Leu
325 330 335
Pro Ser Gly Val Asp Ala Ala Tyr Glu Val Thr Ser Lys Asp Leu Val
340 345 350
Phe Ile Phe Lys Gly Asn Gln Phe Trp Ala Ile Arg Gly Asn Glu Val
355 360 365
Arg Ala Gly Tyr Pro Arg Gly Ile His Thr Leu Gly Phe Pro Pro Thr
370 375 380
Val Arg Lys Ile Asp Ala Ala Ile Ser Asp Lys Glu Lys Asn Lys Thr
385 390 395 400
Tyr Phe Phe Val Glu Asp Lys Tyr Trp Arg Phe Asp Glu Lys Arg Asn
405 410 415
Ser Met Glu Pro Gly Phe Pro Lys Gln Ile Ala Glu Asp Phe Pro Gly
420 425 430
Ile Asp Ser Lys Ile Asp Ala Val Phe Glu Glu Phe Gly Phe Phe Tyr
435 440 445
Phe Phe Thr Gly Ser Ser Gln Leu Glu Phe Asp Pro Asn Ala Lys Lys
450 455 460
Val Thr His Thr Leu Lys Ser Asn Ser Trp Leu Asn Cys
465 470 475

<210> 8
<211> 108
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_065148.1
<400> 8
Met Lys Ala Leu Cys Leu Leu Leu Leu Pro Val Leu Gly Leu Leu Val
1 5 10 15
Ser Ser Lys Thr Leu Cys Ser Met Glu Glu Ala Ile Asn Glu Arg Ile
20 25 30
Gln Glu Val Ala Gly Ser Leu Ile Phe Arg Ala Ile Ser Ser Ile Gly
35 40 45
Leu Glu Cys Gln Ser Val Thr Ser Arg Gly Asp Leu Ala Thr Cys Pro
50 55 60
Arg Gly Phe Ala Val Thr Gly Cys Thr Cys Gly Ser Ala Cys Gly Ser
65 70 75 80
Trp Asp Val Arg Ala Glu Thr Thr Cys His Cys Gln Cys Ala Gly Met
85 90 95
Asp Trp Thr Gly Ala Arg Cys Cys Arg Val Gln Pro
100 105

<210> 9
<211> 122
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_000322.2
<400> 9
Met Lys Leu Leu Thr Gly Leu Val Phe Cys Ser Leu Val Leu Gly Val
1 5 10 15
Ser Ser Arg Ser Phe Phe Ser Phe Leu Gly Glu Ala Phe Asp Gly Ala
20 25 30
Arg Asp Met Trp Arg Ala Tyr Ser Asp Met Arg Glu Ala Asn Tyr Ile
35 40 45
Gly Ser Asp Lys Tyr Phe His Ala Arg Gly Asn Tyr Asp Ala Ala Lys
50 55 60
Arg Gly Pro Gly Gly Ala Trp Ala Ala Glu Val Ile Ser Asp Ala Arg
65 70 75 80
Glu Asn Ile Gln Arg Phe Phe Gly His Gly Ala Glu Asp Ser Leu Ala
85 90 95
Asp Gln Ala Ala Asn Glu Trp Gly Arg Ser Gly Lys Asp Pro Asn His
100 105 110
Phe Arg Pro Ala Gly Leu Pro Glu Lys Tyr
115 120

<210> 10
<211> 455
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_001056.1
<400> 10
Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu
1 5 10 15
Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro
20 25 30
His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys
35 40 45
Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys
50 55 60
Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp
65 70 75 80
Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu
85 90 95
Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val
100 105 110
Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg
115 120 125
Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe
130 135 140
Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu
145 150 155 160
Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu
165 170 175
Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr
180 185 190
Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser
195 200 205
Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu
210 215 220
Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys
225 230 235 240
Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu
245 250 255
Gly Glu Leu Glu Gly Thr Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser
260 265 270
Phe Ser Pro Thr Pro Gly Phe Thr Pro Thr Leu Gly Phe Ser Pro Val
275 280 285
Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys
290 295 300
Pro Asn Phe Ala Ala Pro Arg Arg Glu Val Ala Pro Pro Tyr Gln Gly
305 310 315 320
Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn
325 330 335
Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp
340 345 350
Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Val Glu Asn Val Pro Pro
355 360 365
Leu Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu Ser Asp His Glu
370 375 380
Ile Asp Arg Leu Glu Leu Gln Asn Gly Arg Cys Leu Arg Glu Ala Gln
385 390 395 400
Tyr Ser Met Leu Ala Thr Trp Arg Arg Arg Thr Pro Arg Arg Glu Ala
405 410 415
Thr Leu Glu Leu Leu Gly Arg Val Leu Arg Asp Met Asp Leu Leu Gly
420 425 430
Cys Leu Glu Asp Ile Glu Glu Ala Leu Cys Gly Pro Ala Ala Leu Pro
435 440 445
Pro Ala Pro Ser Leu Leu Arg
450 455

<210> 11
<211> 739
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_001069.1
<400> 11
Met Pro Gly Lys Met Val Val Ile Leu Gly Ala Ser Asn Ile Leu Trp
1 5 10 15
Ile Met Phe Ala Ala Ser Gln Ala Phe Lys Ile Glu Thr Thr Pro Glu
20 25 30
Ser Arg Tyr Leu Ala Gln Ile Gly Asp Ser Val Ser Leu Thr Cys Ser
35 40 45
Thr Thr Gly Cys Glu Ser Pro Phe Phe Ser Trp Arg Thr Gln Ile Asp
50 55 60
Ser Pro Leu Asn Gly Lys Val Thr Asn Glu Gly Thr Thr Ser Thr Leu
65 70 75 80
Thr Met Asn Pro Val Ser Phe Gly Asn Glu His Ser Tyr Leu Cys Thr
85 90 95
Ala Thr Cys Glu Ser Arg Lys Leu Glu Lys Gly Ile Gln Val Glu Ile
100 105 110
Tyr Ser Phe Pro Lys Asp Pro Glu Ile His Leu Ser Gly Pro Leu Glu
115 120 125
Ala Gly Lys Pro Ile Thr Val Lys Cys Ser Val Ala Asp Val Tyr Pro
130 135 140
Phe Asp Arg Leu Glu Ile Asp Leu Leu Lys Gly Asp His Leu Met Lys
145 150 155 160
Ser Gln Glu Phe Leu Glu Asp Ala Asp Arg Lys Ser Leu Glu Thr Lys
165 170 175
Ser Leu Glu Val Thr Phe Thr Pro Val Ile Glu Asp Ile Gly Lys Val
180 185 190
Leu Val Cys Arg Ala Lys Leu His Ile Asp Glu Met Asp Ser Val Pro
195 200 205
Thr Val Arg Gln Ala Val Lys Glu Leu Gln Val Tyr Ile Ser Pro Lys
210 215 220
Asn Thr Val Ile Ser Val Asn Pro Ser Thr Lys Leu Gln Glu Gly Gly
225 230 235 240
Ser Val Thr Met Thr Cys Ser Ser Glu Gly Leu Pro Ala Pro Glu Ile
245 250 255
Phe Trp Ser Lys Lys Leu Asp Asn Gly Asn Leu Gln His Leu Ser Gly
260 265 270
Asn Ala Thr Leu Thr Leu Ile Ala Met Arg Met Glu Asp Ser Gly Ile
275 280 285
Tyr Val Cys Glu Gly Val Asn Leu Ile Gly Lys Asn Arg Lys Glu Val
290 295 300
Glu Leu Ile Val Gln Glu Lys Pro Phe Thr Val Glu Ile Ser Pro Gly
305 310 315 320
Pro Arg Ile Ala Ala Gln Ile Gly Asp Ser Val Met Leu Thr Cys Ser
325 330 335
Val Met Gly Cys Glu Ser Pro Ser Phe Ser Trp Arg Thr Gln Ile Asp
340 345 350
Ser Pro Leu Ser Gly Lys Val Arg Ser Glu Gly Thr Asn Ser Thr Leu
355 360 365
Thr Leu Ser Pro Val Ser Phe Glu Asn Glu His Ser Tyr Leu Cys Thr
370 375 380
Val Thr Cys Gly His Lys Lys Leu Glu Lys Gly Ile Gln Val Glu Leu
385 390 395 400
Tyr Ser Phe Pro Arg Asp Pro Glu Ile Glu Met Ser Gly Gly Leu Val
405 410 415
Asn Gly Ser Ser Val Thr Val Ser Cys Lys Val Pro Ser Val Tyr Pro
420 425 430
Leu Asp Arg Leu Glu Ile Glu Leu Leu Lys Gly Glu Thr Ile Leu Glu
435 440 445
Asn Ile Glu Phe Leu Glu Asp Thr Asp Met Lys Ser Leu Glu Asn Lys
450 455 460
Ser Leu Glu Met Thr Phe Ile Pro Thr Ile Glu Asp Thr Gly Lys Ala
465 470 475 480
Leu Val Cys Gln Ala Lys Leu His Ile Asp Asp Met Glu Phe Glu Pro
485 490 495
Lys Gln Arg Gln Ser Thr Gln Thr Leu Tyr Val Asn Val Ala Pro Arg
500 505 510
Asp Thr Thr Val Leu Val Ser Pro Ser Ser Ile Leu Glu Glu Gly Ser
515 520 525
Ser Val Asn Met Thr Cys Leu Ser Gln Gly Phe Pro Ala Pro Lys Ile
530 535 540
Leu Trp Ser Arg Gln Leu Pro Asn Gly Glu Leu Gln Pro Leu Ser Glu
545 550 555 560
Asn Ala Thr Leu Thr Leu Ile Ser Thr Lys Met Glu Asp Ser Gly Val
565 570 575
Tyr Leu Cys Glu Gly Ile Asn Gln Ala Gly Arg Ser Arg Lys Glu Val
580 585 590
Glu Leu Ile Ile Gln Val Thr Pro Lys Asp Ile Lys Leu Thr Ala Phe
595 600 605
Pro Ser Glu Ser Val Lys Glu Gly Asp Thr Val Ile Ile Ser Cys Thr
610 615 620
Cys Gly Asn Val Pro Glu Thr Trp Ile Ile Leu Lys Lys Lys Ala Glu
625 630 635 640
Thr Gly Asp Thr Val Leu Lys Ser Ile Asp Gly Ala Tyr Thr Ile Arg
645 650 655
Lys Ala Gln Leu Lys Asp Ala Gly Val Tyr Glu Cys Glu Ser Lys Asn
660 665 670
Lys Val Gly Ser Gln Leu Arg Ser Leu Thr Leu Asp Val Gln Gly Arg
675 680 685
Glu Asn Asn Lys Asp Tyr Phe Ser Pro Glu Leu Leu Val Leu Tyr Phe
690 695 700
Ala Ser Ser Leu Ile Ile Pro Ala Ile Gly Met Ile Ile Tyr Phe Ala
705 710 715 720
Arg Lys Ala Asn Met Lys Gly Ser Tyr Ser Leu Val Glu Ala Gln Lys
725 730 735
Ser Lys Val

<210> 12
<211> 371
<212> PRT
<213> Homo sapiens
<308> NCBI RefSeq NP_001020539.2
<400> 12
Met Thr Asp Arg Gln Thr Asp Thr Ala Pro Ser Pro Ser Tyr His Leu
1 5 10 15
Leu Pro Gly Arg Arg Arg Thr Val Asp Ala Ala Ala Ser Arg Gly Gln
20 25 30
Gly Pro Glu Pro Ala Pro Gly Gly Gly Val Glu Gly Val Gly Ala Arg
35 40 45
Gly Val Ala Leu Lys Leu Phe Val Gln Leu Leu Gly Cys Ser Arg Phe
50 55 60
Gly Gly Ala Val Val Arg Ala Gly Glu Ala Glu Pro Ser Gly Ala Ala
65 70 75 80
Arg Ser Ala Ser Ser Gly Arg Glu Glu Pro Gln Pro Glu Glu Gly Glu
85 90 95
Glu Glu Glu Glu Lys Glu Glu Glu Arg Gly Pro Gln Trp Arg Leu Gly
100 105 110
Ala Arg Lys Pro Gly Ser Trp Thr Gly Glu Ala Ala Val Cys Ala Asp
115 120 125
Ser Ala Pro Ala Ala Arg Ala Pro Gln Ala Leu Ala Arg Ala Ser Gly
130 135 140
Arg Gly Gly Arg Val Ala Arg Arg Gly Ala Glu Glu Ser Gly Pro Pro
145 150 155 160
His Ser Pro Ser Arg Arg Gly Ser Ala Ser Arg Ala Gly Pro Gly Arg
165 170 175
Ala Ser Glu Thr Met Asn Phe Leu Leu Ser Trp Val His Trp Ser Leu
180 185 190
Ala Leu Leu Leu Tyr Leu His His Ala Lys Trp Ser Gln Ala Ala Pro
195 200 205
Met Ala Glu Gly Gly Gly Gln Asn His His Glu Val Val Lys Phe Met
210 215 220
Asp Val Tyr Gln Arg Ser Tyr Cys His Pro Ile Glu Thr Leu Val Asp
225 230 235 240
Ile Phe Gln Glu Tyr Pro Asp Glu Ile Glu Tyr Ile Phe Lys Pro Ser
245 250 255
Cys Val Pro Leu Met Arg Cys Gly Gly Cys Cys Asn Asp Glu Gly Leu
260 265 270
Glu Cys Val Pro Thr Glu Glu Ser Asn Ile Thr Met Gln Ile Met Arg
275 280 285
Ile Lys Pro His Gln Gly Gln His Ile Gly Glu Met Ser Phe Leu Gln
290 295 300
His Asn Lys Cys Glu Cys Arg Pro Lys Lys Asp Arg Ala Arg Gln Glu
305 310 315 320
Asn Pro Cys Gly Pro Cys Ser Glu Arg Arg Lys His Leu Phe Val Gln
325 330 335
Asp Pro Gln Thr Cys Lys Cys Ser Cys Lys Asn Thr Asp Ser Arg Cys
340 345 350
Lys Ala Arg Gln Leu Glu Leu Asn Glu Arg Thr Cys Arg Cys Asp Lys
355 360 365
Pro Arg Arg
370
図1
図2
図3
【配列表】
2023010789000001.app
【手続補正書】
【提出日】2022-12-09
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
本願の明細書に記載される発明。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】配列表
【補正方法】変更
【補正の内容】
【配列表】
2023010789000001.xml