(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023110132
(43)【公開日】2023-08-09
(54)【発明の名称】射出装置のスクリュおよび射出装置
(51)【国際特許分類】
B29C 45/60 20060101AFI20230802BHJP
B29C 45/50 20060101ALI20230802BHJP
B29C 45/00 20060101ALI20230802BHJP
B29C 44/00 20060101ALI20230802BHJP
【FI】
B29C45/60
B29C45/50
B29C45/00
B29C44/00 D
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022011374
(22)【出願日】2022-01-28
(71)【出願人】
【識別番号】300041192
【氏名又は名称】UBEマシナリー株式会社
(74)【代理人】
【識別番号】100100077
【弁理士】
【氏名又は名称】大場 充
(74)【代理人】
【識別番号】100136010
【弁理士】
【氏名又は名称】堀川 美夕紀
(74)【代理人】
【識別番号】100130030
【弁理士】
【氏名又は名称】大竹 夕香子
(74)【代理人】
【識別番号】100203046
【弁理士】
【氏名又は名称】山下 聖子
(72)【発明者】
【氏名】苅谷 俊彦
【テーマコード(参考)】
4F206
4F214
【Fターム(参考)】
4F206AB02
4F206AR02
4F206AR12
4F206AR18
4F206JA04
4F206JD03
4F206JF04
4F206JF12
4F206JL02
4F206JQ12
4F206JQ13
4F206JQ16
4F206JQ17
4F206JQ23
4F214AB02
4F214AR02
4F214AR12
4F214AR18
4F214UA08
4F214UB01
4F214UM12
4F214UM13
4F214UM16
4F214UM17
4F214UM23
(57)【要約】
【課題】発泡ガスの注入を容易にできる二つのステージを備える射出装置のスクリュを提供すること。
【解決手段】本発明の射出装置1のスクリュ20は、上流側Uに設けられる第1ステージ30と、第1ステージより下流側に設けられる第2ステージ40と、を備え、第2ステージ40において、一条または複数条のフライトを備え、溝深さD
40Aが上流側Uよりも下流側Lの方が深い樹脂圧抑制領域40Aが上流側Uに設けられる。
好ましくは、第1ステージ30は、主フライト33と、主フライト33よりも外径の小さい副フライト35が設けられる圧縮部30Bを備える。第2ステージ40は、樹脂圧抑制領域40Aよりも下流側Lに、円周方向に間隔をあけて設けられる複数の板状のフィン44からなるフィン群45を、中心軸Cの方向に間隔をあけて複数備える。
【選択図】
図1
【特許請求の範囲】
【請求項1】
上流側に設けられる第1ステージと、前記第1ステージより下流側に設けられる第2ステージと、を備え、
前記第2ステージにおいて、
上流側よりも下流側の溝深さが深い、一条または複数条のフライトを有する樹脂圧抑制領域が上流側に設けられる、
ことを特徴とする射出装置のスクリュ。
【請求項2】
前記第1ステージは、
主フライトと、前記主フライトよりも外径の小さい副フライトが設けられる圧縮部を備える、
請求項1に記載の射出装置のスクリュ。
【請求項3】
前記第2ステージは、
前記樹脂圧抑制領域よりも下流側に、円周方向に間隔をあけて設けられる複数の板状のフィンからなるフィン群を、中心軸の方向に間隔をあけて複数備える、
請求項1または請求項2に記載の射出装置のスクリュ。
【請求項4】
前記樹脂圧抑制領域は、
前記一条または複数条のフライトが設けられる範囲の全ての範囲または一部の範囲に設けられる、
請求項1から請求項3のいずれか一項に記載の射出装置のスクリュ。
【請求項5】
射出ノズルが設けられる加熱シリンダと、
前記加熱シリンダの内部に、中心軸を中心にして回転が可能で、かつ、前記中心軸に沿って前進及び後退が可能に設けられるスクリュと、
前記加熱シリンダの内部に発泡ガスを供給するガス供給機構と、を備え、発泡成形品を射出成形する射出装置であって、
前記スクリュが、請求項1~請求項4のいずれか一項に記載のスクリュである、
ことを特徴とする射出装置。
【請求項6】
前記発泡ガスの前記加熱シリンダの内部への供給圧力が、2~10MPaである、
請求項5に記載の射出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、溶融樹脂に発泡剤としてのガス、典型的には不活性ガスを注入して射出成形して発泡成形品を得る射出装置のスクリュに関するものである。
【背景技術】
【0002】
多数の微細な気泡を含む発泡成形品は、軽量であるにも関わらず強度にも優れているため、需要が多い。射出成形により発泡成形品を得るために用いられる発泡剤としては、化学発泡剤と物理発泡剤がある。化学発泡剤としては、例えばアゾジカルボン酸アミドのように熱により分解して気体を発生する物質が用いられる。物理発泡剤は、例えば窒素、二酸化炭素等の不活性ガスが用いられる。不活性ガスからなる物理発泡剤は高圧かつ高温で樹脂に注入されるので浸透力が強く、得られる発泡成形品において発泡ムラが生じにくい。
【0003】
物理発泡剤としての不活性ガスを用いる発泡成形において、特許文献1は、スクリュの停止時において不活性ガスの逆流が防止され、安定的に高品質の発泡成形品を得ることができる射出装置のスクリュを開示する。このスクリュは、スクリュの形状によって加熱シリンダ内を、第1ステージと第2ステージとに区分すされる。第1ステージには樹脂が圧縮される第1圧縮区間を、第2ステージには不活性ガスが注入される飢餓区間と樹脂が圧縮される第2圧縮区間とが形成される。そして、スクリュの第1圧縮区間に対応する部分には、メインフライトとメインフライトよりリード角が大きいサブフライトの組み合わせからなるバリアフライトを設ける。さらに、第2ステージには2条以上の多条フライトが設けられる。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1のスクリュは、第2ステージの飢餓区間における溝深さが第1ステージの計量部に比べて深い。特許文献1の飢餓区間は溝深さが一定とされており、溶融樹脂のスクリュ溝内の充満度を低下させることで溶融樹脂の圧力を低下させて、飢餓区間に発泡用の不活性ガスである発泡ガスを充填し易くしている。なお本発明における溝深さは、スクリュのフライトが形成されていない部分の底の部分(スクリュ谷径部)からフライト頂部(スクリュ最外径部)までの距離で特定される。
しかし、一般に可塑化工程の際の背圧が高い場合や、第2圧縮区間における圧縮比が高い場合には第2圧縮区間の溝深さが先細りとなっているので溶融樹脂の搬送抵抗が大きい。このため、第2圧縮区間との接続部に連なる飢餓区間の終端近傍における溶融樹脂の搬送量が低下してしまう。このとき飢餓区間の溝深さが、一定であったりまたは下流側の溝深さが上流側の溝深さよりも小さい圧縮形状であったりすると、上流側である第1ステージから送られてくる大量の溶融樹脂量によって、第1ステージよりも溝深さが大きくなっている飢餓区間であってもその終端近傍のスクリュ溝内が急激に充満してしまい空隙が小さくなり発泡ガスが入り込めなくなってしまうことがある。この場合、注入される発泡ガスの圧力が低いと当該飢餓区間の終端近傍のスクリュ溝内に発泡ガスを注入できないか、注入できたとしても少量になるおそれがある。特に射出装置のスクリュは可塑化工程の際に後退移動するのに伴って、発泡ガスの注入口は相対的にスクリュの先端側である飢餓区間の終端側に移動するので、発泡ガスの注入が難しくなる。
【0006】
以上より、本発明は、発泡ガスの注入を容易にできる二つのステージを備える射出装置のスクリュを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の射出装置のスクリュは、上流側に設けられる第1ステージと、第1ステージより下流側に設けられる第2ステージと、を備える。
本発明の第2ステージには、上流側よりも下流側の溝深さが深い、一条または複数条のフライトを有する樹脂圧抑制領域が上流側に設けられる。
【0008】
本発明における第1ステージは、好ましくは、主フライトと、主フライトよりも外径の小さい副フライトが設けられる圧縮部を備える。
【0009】
本発明における第2ステージは、好ましくは、樹脂圧抑制領域よりも下流側に、円周方向に間隔をあけて設けられる複数の板状のフィンからなるフィン群を、中心軸の方向に間隔をあけて複数備える。
【0010】
本発明における樹脂圧抑制領域は、好ましくは、一条または複数条のフライトが設けられる範囲の全ての範囲または一部の範囲に設けられる。
【0011】
本発明は、射出ノズルが設けられる加熱シリンダと、加熱シリンダの内部に、中心軸を中心にして回転が可能で、かつ、中心軸に沿って前進及び後退が可能に設けられるスクリュと、加熱シリンダの内部に発泡ガスを供給するガス供給機構と、を備え、発泡成形品を射出成形する射出装置を提供する。この射出装置には以上説明したスクリュが適用される。
発泡ガスの加熱シリンダの内部への供給圧力は、2~10MPaであることが好ましい。
【発明の効果】
【0012】
本発明によれば、発泡ガスの注入を容易にできる二つのステージを備える射出装置のスクリュを提供できる。
【図面の簡単な説明】
【0013】
【
図1】第1実施形態に係るスクリュを備える射出装置の正面断面図である。
【
図2】第1実施形態に係るスクリュにおいて、(a)は溶融樹脂の圧力(スクリュ内樹脂圧力)を示し、(b)は当該スクリュの外観を示し、(c)はスクリュ溝深さの変化を示している。
【
図3】スクリュの溝深さによる溶融樹脂の圧力の相違を説明し、(a)は溝深さが相対的に浅い場合を示し、(b)は溝深さが相対的に深い場合を示している。
【
図4】本発明の第1実施形態に係るスクリュを用いた可塑化工程から射出工程までを示す図である。
【
図5】第2実施形態に係るスクリュを示す図である。
【発明を実施するための形態】
【0014】
以下、添付図面を参照しながら、本発明の実施形態について説明する。本実施形態は、第1実施形態と第2実施形態を含んでおり、第1実施形態と第2実施形態はともに発泡成形品を得るものであり、かつ、発泡ガスの注入を容易にできる二つのステージを備える射出装置のスクリュを提供できる。
〔第1実施形態:
図1,
図2,
図3〕
図1、
図2および
図3を参照して、第1実施形態に係る射出装置1を説明する。
図1に示されているように、射出装置1は、内部が中空な処理領域11とされる加熱シリンダ10と、加熱シリンダ10の処理領域11において回転運動および軸方向への往復移動が可能に設けられているスクリュ20とを備えている。なお、
図1において、加熱シリンダ10とスクリュ20との間の間隙が意図的に広く描かれている。
なお、射出装置1において、
図1に示されるように樹脂の流れる向きに対応して、下流側L、上流側Uが特定される。下流側Lおよび上流側Uは相対的な意味を含んでいる。
【0015】
加熱シリンダ10には、その上流側Uに原料ホッパ13が設けられる。原料ホッパ13には射出成形の原料である樹脂ペレットPが蓄えられており、樹脂ペレットPは原料ホッパ13から加熱シリンダ10の内外を貫通する原料通路14を通って処理領域11に供給される。
加熱シリンダ10には、原料ホッパ13が設けられる位置よりも下流側Lに、ガス通路15が設けられる。ガス通路15は加熱シリンダ10の内外を貫通しており、発泡ガス供給源16に接続される供給配管17から供給される例えば不活性ガスからなる発泡ガスIGは、ガス通路15を通って処理領域11に至る。
加熱シリンダ10の最も下流側Lには、射出ノズル18が設けられる。加熱シリンダ10の内部で可塑化された溶融樹脂は、この射出ノズル18を通って、図示が省略される金型のキャビティに充填される。
加熱シリンダ10の外周には、樹脂ペレットPの溶融のための複数のヒータ19が設けられている。加熱シリンダ10の外側には、ヒータ19の他の構成を設けて、あるいは置換することを妨げない。
【0016】
[スクリュ20:
図1,
図2]
次に、スクリュ20について
図1および
図2を参照して説明する。
スクリュ20は、上流側Uに設けられる第1ステージ30と第1ステージ30に連なり下流側Lに設けられる第2ステージ40とを有している。
第1ステージ30は、樹脂ペレットPを溶融して溶融樹脂Mを生成するのに加えて、生成された溶融樹脂Mを第2ステージ40に向けて搬送する。
第2ステージ40は、第1ステージ30から供給される溶融樹脂Mに発泡ガスIGを注入するとともに分散させる。
【0017】
[第1ステージ30:
図1,
図2]
第1ステージ30は、一例として、
図1および
図2に示すように、上流側から順に第1領域30A、第2領域(圧縮部)30Bおよび第3領域30Cの3つの領域に区分される。樹脂ペレットPは、加熱シリンダ10の内部において第1領域30A、第2領域30Bおよび第3領域30Cを順に通過することで、溶融樹脂Mとされる。なお、
図2(c)の太線はスクリュ20の溝の底を示しており、ODで示されるスクリュ外径からの距離が長いところほど溝深さが深いことになる。
【0018】
第1領域30Aは、溝深さD
30Aが一定のスクリュ溝が形成されるように一条のフライト31が形成され、原料ホッパ13から供給される樹脂ペレットPを第2領域30Bに向けて搬送する。第1領域30Aの溝深さは、第2領域30Bおよび第3領域30Cにおける溝深さよりも大きい。第1領域30Aは、供給部と称される部分である。第1領域30Aにおいて樹脂ペレットPは固体のまま第2領域30Bに向けて搬送される。第1領域30Aは、可塑化開始時には原料ホッパ13に対応する位置に配置される(
図4(a))。
【0019】
次に、第2領域30Bは、一例として、第1領域30Aのフライト31に連なる主フライト33と、主フライト33よりも外径が小さく設定されている副フライト35とを備えている。副フライト35は、主フライト33よりリード角が大きく設定されている。第2領域30Bは、上流側Uから下流側Lに向けて溝深さD30Bが浅くなるように構成されている。なお、第2領域30Bと第1領域30Aの境界部分における溝深さはD30AとD30Bが等しい。第2領域30Bの上流側Uにおいて固体である樹脂ペレットPは下流側Lにおいて溶融樹脂Mとされる。第2領域30Bは圧縮部と称される部分である。
【0020】
副フライト35は、その両端が主フライト33に対して閉塞されていることが好ましい。副フライト35の両端あるいは片方が、主フライト33から離れていると、その隙間から固体の樹脂が漏れ出て溶融樹脂Mに混入するのに対して、閉塞していれば固体の樹脂が副フライト35を乗り越えることができず溶融樹脂Mのみが副フライト35を乗り越えることができる。これにより、溶融樹脂Mが副フライト35の頂部をもれなく乗り越えるので溶融樹脂Mにせん断力が付与されて下流に搬送できる。
第1ステージ30の第2領域30Bに副フライト35を設けることにより、固体樹脂と溶融樹脂を分離するとともに、比較的に弱い力で緩やかに圧縮することを想定している。これによって、第1ステージ30のスクリュ溝内で固体の樹脂ペレットPが目詰まりをおこし、それが加熱シリンダ10に対して楔となり、スクリュ20に偏加重、偏芯、振れ周りが発生するのを抑制することができる。
【0021】
副フライト35は、主フライト33の頂部における外径(直径)をDとすると、中心軸Cの方向の長さ(L35)が7D~12Dの範囲に収まるように設けることが好ましい。より好ましい長さ(L35)は8D~11Dであり、さらに好ましい長さ(L35)は9D~10Dである。外径Dは以後も同様である。
【0022】
次に、第3領域30Cは、一例として、第2領域30Bの主フライト33に連なる一条のフライト37が形成される。第3領域30Cは、溝深さD30Cが一定に形成されている。そうすることにより、第2領域30Bから搬送される溶融樹脂Mの密度を一定にすることを想定している。第3領域30Cは、計量部と称される部分である。
【0023】
[第2ステージ40:
図1,
図2]
第2ステージ40は、一例として、
図1および
図2に示すように、上流側Uから順に第1領域40A、第2領域40Bおよび第3領域40Cの3つの領域に区分される。加熱シリンダ10の内部において第1領域40A、第2領域40Bおよび第3領域40Cを順に通過することで、溶融樹脂Mに発泡ガスIGが注入されるともに分散される。第1領域40Aが本発明における樹脂圧抑制領域の一例に該当する。
【0024】
第1領域40Aは、加熱シリンダ10の内部の処理領域11に発泡ガスIGが注入されるガス通路15に対応して設けられる。ここでいう対応とは、スクリュ20が前進または後退したとしても、ガス通路15の直下に第1領域40Aが存在することをいう。第1領域40Aは、一例として、複数条のフライト41からなる多条フライトが形成されている。第1領域40Aは、好ましい形態として、その溝深さD40Aが上流側Uから下流側Lに向けて深くなるように形成される。第1領域40Aは、溝深さD40Aを上流側Uから下流側Lに向けて深くなるように形成することにより、溶融樹脂Mの内部における発泡ガスIGの溶解量のバラツキを小さくすることができる。
【0025】
多条フライトからなる第1領域40Aは、その中心軸Cの方向の長さ(L41)が一般的なスクリュの計量ストローク長の範囲である2D~5Dの範囲に設けることが好ましい。多条フライト部は注入された発泡ガスIGと溶融樹脂Mとを効率よく接触させて、溶融樹脂M中に浸透して分散する発泡ガスIGの量(ガス量)を多くするためのものである。具体的には、注入された発泡ガスIGは多条フライト部内で、各溝にそれぞれ分割された溶融樹脂Mと接触する。各溝内の樹脂は溝毎に分割されて小さな塊となっているため、単位重量当たりの表面積が大きくなっている。これにより発泡ガスIGと接触する表面積が大きくなるので、多条フライト内で溶融樹脂Mの単位重量あたりに浸透する、あるいは巻き込まれるガス量が多くなる。これにより溶融樹脂M中に浸透して分散するガス量が多くなり、成形時の発泡量を大きくすることができる。しかし、多条フライトは溝断面積が小さくなるので溶融樹脂Mの搬送能力が低くなる。ガス注入領域の下流の溶融樹脂Mの搬送能力が小さいとガス注入部領域の溝内充満度が大きくなりガスの入り込む空隙が小さくなり発泡ガスIGが入り込めなくなってしまうことがある。よって、ガス通路15からのガス注入領域の下流のフライトの条数は少ない方が好ましい。このためガス注入部で注入された発泡ガスIGを、溶融樹脂Mと効率よく接触させて溶融樹脂M中に浸透させる多条フライトの長さは、スクリュの計量ストローク長の範囲、つまりスクリュ20に対するガス通路15の相対的な移動範囲であるスクリュの計量ストローク長の範囲が好ましい。より好ましい長さ(L41)は2.5D~4.5Dであり、さらに好ましい長さ(L41)は2D~4Dである。
【0026】
また、溶融樹脂Mの分割数を多くするためには、第1領域40Aにおけるフライト41の条数は多い方が好ましいが、フライト41の条数が多すぎると、多条フライト部の溝内の断面積が小さくなり過ぎてしまう。そうすると、ガス注入部領域の溝内充満度が大きくなるので、発泡ガスIGの入り込む空隙が小さくなり発泡ガスIGの注入量が少なくなってしまうことがある。このため本発明者の鋭意研究による経験から、フライト41の条数は6~10とすることが好ましく、それぞれのフライト41の巻数は1~2とすることが好ましく、かつ、それぞれのフライト41は、同じ外径、同じリード角を有していることが好ましい。
【0027】
上流側Uから下流側Lに向けた全体の溝深さD40Aが第1ステージ30の第3領域30Cの溝深さD30Cよりも深ければ、溶融樹脂Mの充満度が低くなるため、第1領域40Aを飢餓部ということができる。
【0028】
次に、第2領域40Bは、一例として、一条のフライト43が形成される。第2領域40Bの溝深さD40Bは、上流側Uから下流側Lに向けて浅くなる。そうすることにより、第1領域40Aから搬送される溶融樹脂Mを圧縮する。第2領域40Bは、第2領域30Bと同様に、圧縮部と称される部分である。
【0029】
次に、第3領域40Cは、一例として、第2領域40Bのフライト43に連なるフライト43が形成される。第3領域40Cの溝深さD40cは、第1領域40Aの最も下流側Lと同様、一定に形成されている。そうすることにより、溶融樹脂Mの密度を一定にすることを想定している。第3領域40Cは、第3領域30Cと同様に、計量部と称される部分である。
【0030】
[射出装置1の動作:
図1]
射出装置1の概略の動作は以下の通りである。なお、
図1を参照願いたい。
加熱シリンダ10の内部に設けられるスクリュ20が回転すると、原料ホッパ13から供給される熱可塑性樹脂からなる樹脂ペレットPは、加熱シリンダ10の下流端の射出ノズル18に向けて送り出され、この過程で、樹脂ペレットPは溶融樹脂Mとなる。溶融樹脂Mは発泡ガス供給源16から供給される発泡ガスIGと混合された後に、図示が省略される型締装置の固定金型と可動金型の間に形成されるキャビティへ所定量だけ射出される。なお、樹脂ペレットPの溶融に伴いスクリュ20が背圧を受けながら後退した後に、前進することで射出を行なうというスクリュ20の基本動作を伴う。また、加熱シリンダ10の外側には、樹脂ペレットPの溶融のためにヒータ19の他の構成を適用し、あるいは置換することを妨げない。
【0031】
[第1領域40Aにおける溝深さD
40Aの規定:
図3,
図2]
第1領域40Aにおける溝深さD
40Aが下流側Lに向けて深くなることにより、溶融樹脂Mの内部における発泡ガスIGの溶解量のバラツキが小さくできる理由について、
図3および
図2を参照して説明する。これは可塑化工程におけるものである。
【0032】
スクリュScの隣接するフライトFRとフライトFRの間のスクリュ溝Dには、
図3(a),(b)に示すように、樹脂の存在しない空隙部GPと、溶融樹脂が存在する樹脂部PPと、が存在する。一般にスクリュScのスクリュ溝Dの内部のスクリュScの回転方向の圧力は、空隙部GPは略大気圧であるのに対して、樹脂部PPにおいて大気圧を超える。このとき、空隙部GPと樹脂部PPの境界部BOからフライトFRに達するまでの領域AAにおいて、スクリュScのポンプ作用により空隙部GP側からフライトFRに向かって溶融樹脂Mの圧力MPが上昇し、フライトFRを通過して隣のスクリュ溝Dの空隙部GPに至る領域ABにおいて圧力MPが低下する。
【0033】
圧力MPの上昇度合いは、溶融樹脂とシリンダSyの接触面積に比例するので、スクリュ溝Dの内部に同じ量の溶融樹脂が存在しており、かつスクリュ溝Dの中心軸Cの方向の寸法が同じ場合、スクリュ溝Dの深さが大きい方が、溶融樹脂Mが溝深さの方向に引き延ばされて溝幅方向に縮むのでシリンダSyと接触する面積が小さくなる。よって、
図3(a),(b)に示すように、中心軸Cの方向の溝の前後方向あたりの圧力MPは、溝深さが深いスクリュ溝D(
図3(b))の方が浅いスクリュ溝D(
図3(a))よりもその上昇の程度が小さい。
【0034】
本実施形態の場合、第1領域40Aには、第1ステージ30の第3領域30Cから一定量の溶融樹脂Mが搬送される。
また、第1領域40Aにおいて、
図2(c)に示されるように、溝深さD
40Aが上流側Uよりも下流側Lの方が深くなる。よって、第1領域40Aは、
図2(a)に実線で示されるように上流側Uから下流側Lに向けて圧力MPの上昇の度合いが小さく緩やかである。ここで、多条フライトからなる第1領域40Aにおける溝深さD
40Aが一定の比較スクリュ(破線)と本実施形態における溝深さD
40Aが深くなる第1領域40A(実線,本形態)との圧力MPを比較して
図2(a)に示してある。
図2(a)に示すように、本形態の第1領域40Aの方が、下流側Lの圧力MPの上昇を小さく抑えることができるので、上流側Uと下流側Lの溶融樹脂Mの圧力MPの差を小さく抑えることができる。
【0035】
発泡ガスとしての発泡ガスIGは、加熱シリンダ10の外部からの注入圧力によって加熱シリンダ10の内部に押し込まれる。したがって、加熱シリンダ10の内部の圧力MPが小さいほど発泡ガスIGの注入量は多くなり、加熱シリンダ10の内部の圧力MPが大きいほど発泡ガスIGの注入量は少なくなる。射出装置1のスクリュ20は可塑化工程時に上流側Uに後退するので、
図1を参照すれば、可塑化工程が進むにつれて加熱シリンダ10に設けられるガス通路15は相対的にスクリュ20の先端側に移動することを理解できる。このとき、多条フライトからなる第1領域40Aにおける圧力MPの差が上流側Uと下流側Lで大きいと、上流側Uと下流側Lで注入できる発泡ガスIGの量の差が大きくなる。これにより、第1領域40Aの上流側Uで注入される発泡ガスIGの量と下流側Lで注入される発泡ガスIGの量の差が大きくなり、溶融樹脂Mにおけるガス溶解量のバラツキが大きくなるおそれがある。
【0036】
ところが、前述したように、本実施形態の多条フライトからなる第1領域40Aは上流側Uと下流側Lの圧力差を小さく抑えることができる。したがって、可塑化工程においてスクリュ20が後退しても上流側Uと下流側Lで注入できる発泡ガスIGの量の差を小さく抑えることで、溶融樹脂Mの中のガス溶解量のバラツキを小さくすることができる。
【0037】
[射出成形の手順]
以上の要素を備える射出装置1は、以下の手順で射出成形を行なう。
射出成形は、よく知られているように、図示が省略される可動金型と固定金型を閉じて高圧で型締めする型締工程と、樹脂ペレットPを加熱シリンダ10の内部で加熱、溶融して可塑化させる可塑化工程と、可塑化された溶融樹脂Mを、可動金型と固定金型により形成されるキャビティに射出、充填する射出工程と、キャビティに充填された溶融樹脂Mが固化するまで冷却する保持工程と、金型を開放する型開き工程と、キャビティ内で冷却固化された成形品を取り出す取り出し工程と、を備え、上述した各工程をシーケンシャルに、あるいは一部を並行させて実施して1サイクルの射出成形が完了する。
【0038】
以上の射出成形の一連の手順の中で、本実施形態が関連する可塑化工程と射出工程の概略について、
図4を参照して説明する。可塑化工程中に発泡ガスIGが溶融樹脂Mに注入される。
[可塑化工程]
可塑化工程では、樹脂ペレットPを加熱シリンダ10の上流側の原料ホッパ13から供給する。可塑化開始当初のスクリュ20は、加熱シリンダ10の下流側Lに位置しており、その初期位置からスクリュ20を回転させながら上流側Uに後退させる(
図4(a)「可塑化開始」)。スクリュ20を回転させることで、スクリュ20と加熱シリンダ10の間に供給された樹脂ペレットPは、せん断力を受けて加熱されながら徐々に溶融して、下流に向けて搬送される。なお、可塑化工程におけるスクリュ20の回転(向き)を正転とする。樹脂ペレットPの供給を継続するとともに、スクリュ20を回転し続けると、溶融樹脂Mが加熱シリンダ10の下流側Lに搬送され、かつ、スクリュ20から吐出されるとともにスクリュ20よりも下流側Lに溜まる。スクリュ20の下流に溜まった溶融樹脂Mの樹脂圧力とスクリュ20の後退を抑制する背圧とのバランスによってスクリュ20を後退させる。この後、1ショットに必要な量の溶融樹脂Mが計量され溜まったところで、スクリュ20の回転及び後退を停止する(
図4(b)「可塑化完了」)。
【0039】
図4には、樹脂(樹脂ペレットP,溶融樹脂M)と発泡ガスIGの状態を、樹脂が溶融に至らない状態を「α」、樹脂が溶融した状態を「β」、発泡ガスIGが溶融樹脂Mの中に分散した状態を「γ」および発泡ガスIGの分散が完了したことを「γ’」の4段階に概ね区分して表記している。
「未溶融樹脂α」はせん断力を受けるが、溶融不足の樹脂が残存する状態であり全てが溶融するには到っていないことを示し、「樹脂溶融β」は、樹脂ペレットPがせん断力を受けることで徐々に溶融していることを示す。また、「ガス分散γ」は、スクリュ20の回転に伴い、注入された発泡ガスIGが溶融樹脂Mに分散され、さらに「ガス分散完了γ’」は、溶融樹脂Mの中に発泡ガスIGが十分に分散され、射出に供される状態を示している。ただし、「ガス分散完了」の領域には、発泡ガスIGが偏在することもある。
ここで、ガス通路15から供給される発泡ガスIGの供給圧力は、低いと溶融樹脂Mへの分散が進みにくく、高すぎると発泡ガスIGの注入量が過多になり溶融樹脂M中に浸透しきれずに大きなガス塊として残り成形不良の原因となる、または高圧ガスに押されて溶融樹脂Mが上流側に逆流するなど不具合の原因となる場合がある。したがって、この供給圧力は2~10MPaの範囲が好ましく、4~8MPaの範囲がより好ましい。
【0040】
[射出工程]
射出工程に入ると、
図4(c)に示すように、スクリュ20を前進させる。そうすると、スクリュ20の先端部に備えられている図示しない逆流防止弁が閉鎖することで、スクリュ20の下流に溜まった溶融樹脂Mの圧力(樹脂圧力)が上昇し、溶融樹脂Mは射出ノズル18から前述したキャビティに向けて吐出される。
以後は、保持工程と、型開き工程と、取り出し工程を経て、1サイクルの射出成形が完
了し、次のサイクルの型締め工程、可塑化工程が行われる。
【0041】
[効 果]
以上説明したように、本実施形態のスクリュ20は上流側Uに設けられる第1ステージ30と、第1ステージ30より下流側Lに設けられる第2ステージ40と、を備える。そして、スクリュ20は、第2ステージ40には、上流側Uよりも下流側Lの溝深さD40Aが深い、一条または複数条のフライト41を有する樹脂圧抑制領域である第1領域40Aが上流側Uに設けられる。この構成により、スクリュ20は、発泡ガスとしての発泡ガスIGの注入を容易にできる。
【0042】
また、スクリュ20における樹脂圧抑制領域40Aは、上流側Uよりも下流側Lの溝深さD40Aが深く、当該部分の断面積が上流側Uよりも大きくなる。したがって、可塑化工程における背圧が高い場合や、圧縮部である第2領域40Bにおける圧縮比が高い場合であっても、多条フライトからなる第1領域40Aの終端近傍(第2領域40Bとの接続部近傍)のスクリュ溝内に溶融樹脂Mが充満するのを防止あるいは抑制することができる。
【0043】
上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
【0044】
以上で説明したスクリュ20においては、多条フライトからなる第1領域40Aの下流側Lに圧縮部としての第2領域40Bを設けたが、本発明はこれに限定されない。つまり、本発明においては、第2ステージ40に圧縮部を設けなくてもよいし、多条フライトからなる第1領域40Aの一部に圧縮部を設けてもよい。
【0045】
また、以上で説明したスクリュ20においては、発泡ガスIGの注入に対応する第1領域40Aを好ましい例としての多条フライトとしたが、本発明はこれに限定されず、他の形態のフライト、例えば一条フライトを採用できる。つまり、本発明はフライトの条数に関わらずに、発泡ガスIGの注入に対応する第1領域40Aにおける溝深さD40Aが上流側Uよりも下流側Lの方が深くなっていればよい。ここで、スクリュ20は第1領域40Aの全範囲において連続的に溝深さD40Aが深くなる例を示しているが、第1領域40Aの一部において溝深さD40Aが上流側Uよりも下流側Lが深くてもよいし、上流側Uから下流側Lに向けて断続的に溝深さD40Aが深くなってもよい。また、溝深さD40Aが上流側Uよりも下流側Lの方が深い領域の長さは、ガスの注入部の長さより長くても短くてもよい。ただし、溝内の溶融樹脂Mの充満度が高くなる多条フライトを第1領域40Aに適用することが好ましい。充満度が高いほど昇圧度合いが高くなりやすいため、本発明の特徴を備えた第1領域40Aに充満度が高くなる多条フライトを適用することによって昇圧能力を低減させる本発明の効果が顕著になりやすい。
【0046】
また、以上で説明したスクリュ20においては、第2ステージ40の第2領域40Bおよび第3領域40Cを一条のフライト43としたが、本発明はこれに限定されない。例えば、
図5に示すように、多条フライトからなる第1領域40Aの下流側Lにフィン混練部40Dを設けることができる。
【0047】
フィン混練部40Dは、
図5に示すように、多条フィン型からなり、円周方向に間隔をあけて設けられる複数の板状のフィン44からなる複数のフィン群45を、中心軸Cの方向に間隔をあけて備えている。
このように、多条フライトからなる第1領域40Aの下流側Lに、長さが比較的に短いフィン44と、フィン44を設けない流路断面積が大きく流動抵抗の小さい領域とを設ける。この流動抵抗の小さい領域は、隣接するフィン44の中心軸Cの方向の間隔および周方向の間隔の双方を含む。このフィン混練部40Dを設けることにより、フィン44による攪拌効果と流動抵抗の緩和効果を溶融樹脂Mと発泡ガスIGの混合物に交互に与えることによって、注入される発泡ガスIGの圧力が低く注入ガス量が少なくても、溶融樹脂Mへのガスの溶解バラツキを抑制することができる。
【0048】
フィン混練部40Dにおいて、それぞれのフィン44の中心軸Cの方向の長さL44は0.05D~0.2D、中心軸Cの方向に隣接するフィン44とフィン44の間隔L46は0.1D~0.2Dとすることが好ましい。また、フィン群45の段数は、5~10段とすることが好ましい。
【符号の説明】
【0049】
1 射出装置
10 加熱シリンダ
11 処理領域
13 原料ホッパ
14 原料通路
15 ガス通路
16 発泡ガス供給源
17 供給配管
18 射出ノズル
19 ヒータ
20 スクリュ
30 第1ステージ
30A 第1領域
30B 第2領域
30C 第3領域
31 フライト
33 主フライト
35 副フライト
40 第2ステージ
40A 第1領域
40B 第2領域
40C 第3領域
40D フィン混練部
41,43 フライト
44 フィン
C 中心軸
D スクリュ溝
FR フライト
GP 空隙部
IG 発泡ガス
M 溶融樹脂
PP 樹脂部
P 樹脂ペレット
Sc スクリュ
Sy シリンダ
AA,AB 領域
BO 境界部