IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工業株式会社の特許一覧

<>
  • 特開-金属粉末製造装置及びその制御方法 図1
  • 特開-金属粉末製造装置及びその制御方法 図2
  • 特開-金属粉末製造装置及びその制御方法 図3
  • 特開-金属粉末製造装置及びその制御方法 図4
  • 特開-金属粉末製造装置及びその制御方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023111851
(43)【公開日】2023-08-10
(54)【発明の名称】金属粉末製造装置及びその制御方法
(51)【国際特許分類】
   B22F 9/08 20060101AFI20230803BHJP
   B33Y 70/00 20200101ALI20230803BHJP
   B22F 1/05 20220101ALN20230803BHJP
   B22F 10/00 20210101ALN20230803BHJP
【FI】
B22F9/08 A
B33Y70/00
B22F1/05
B22F10/00
【審査請求】有
【請求項の数】15
【出願形態】OL
(21)【出願番号】P 2022199593
(22)【出願日】2022-12-14
(31)【優先権主張番号】P 2022013192
(32)【優先日】2022-01-31
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】110001829
【氏名又は名称】弁理士法人開知
(72)【発明者】
【氏名】芝山 隆史
(72)【発明者】
【氏名】今野 晋也
【テーマコード(参考)】
4K017
4K018
【Fターム(参考)】
4K017EB07
4K017FA02
4K017FA04
4K017FA07
4K017FA09
4K017FA14
4K018BB04
(57)【要約】
【課題】るつぼに投入される溶解素材の形状の制限を緩和できる金属粉末製造装置及びその制御方法を提供すること。
【解決手段】溶解槽1に収納されたるつぼ100と、るつぼの底面に取り付けられた溶湯ノズル11と、噴霧槽4内において溶湯ノズルの周囲に設けられた複数のガス噴射ノズル71と、溶湯ノズルにおける流路の上流部に設けられたオリフィス部18とを備え、前記オリフィス部の内径が0.8mm以上3mm以下である金属粉末製造装置の制御方法であって、るつぼ内で溶解素材を溶解する時には、溶湯ノズルの上端に作用する圧力(Ph)と溶解槽の圧力(Pm)との合計値よりも噴霧槽の圧力(Ps)を高くし、るつぼ内の溶湯を溶湯ノズルを介して噴霧槽に流下させる時には、溶湯ノズルの上端に作用する圧力(Ph)と溶解槽の圧力(Pm)との合計値よりも噴霧槽の圧力(Ps)を低くする。
【選択図】 図2
【特許請求の範囲】
【請求項1】
溶解槽に収納され、溶解前の溶解素材を受け入れ可能なるつぼと、
前記るつぼの底面に設けられた開口部に取り付けられ、下端が噴霧槽内に位置する溶湯ノズルと、
前記噴霧槽内において前記溶湯ノズルの周囲に設けられ、前記溶湯ノズルから流下される溶融金属に対してガス流体を噴出する複数のガス噴射ノズルと、
前記溶湯ノズルにおける流路の上流部に設けられたオリフィス部とを備え、
前記オリフィス部の内径が0.8mm以上3mm以下である金属粉末製造装置の制御方法であって、
前記るつぼ内で溶解素材を溶解する時には、前記溶湯ノズルの上端に作用する圧力と前記溶解槽の圧力との合計値よりも前記噴霧槽の圧力を高くし、
前記るつぼ内の溶湯を前記溶湯ノズルを介して前記噴霧槽に流下させる時には、前記合計値よりも前記噴霧槽の圧力を低くすることを特徴とする金属粉末製造装置の制御方法。
【請求項2】
請求項1の金属粉末製造装置の制御方法において、
前記オリフィス部の内径は1mm以上2mm以下であることを特徴とする金属粉末製造装置の制御方法。
【請求項3】
請求項1の金属粉末製造装置の制御方法において、
前記るつぼ内で溶解素材を溶解する時には、前記噴霧槽の圧力は、前記溶湯ノズルの上端に作用する圧力と前記溶解槽の圧力との合計値に対して少なくとも1kPaより高く20kPaより低いことを特徴とする金属粉末製造装置の制御方法。
【請求項4】
請求項1の金属粉末製造装置の制御方法において、
前記溶湯ノズルの上端に作用する圧力の少なくとも1つであるヘッド圧を、前記溶解素材の密度と量に基づいて演算することを特徴とする金属粉末製造装置の制御方法。
【請求項5】
請求項1の金属粉末製造装置の制御方法において、
前記噴霧槽の圧力の調整は、前記噴霧槽にガスを供給することで行い、
前記溶解槽の圧力の調整は、前記溶解槽からガスを排出することで行うことを特徴とする金属粉末製造装置の制御方法。
【請求項6】
請求項3の金属粉末製造装置の制御方法において、
前記噴霧槽の圧力の調整は、前記噴霧槽へのガスの供給と前記噴霧槽からのガスの排出により行うことを特徴とする金属粉末製造装置の制御方法。
【請求項7】
請求項1の金属粉末製造装置の制御方法において、
前記溶湯ノズルは、前記るつぼに複数取り付けられた複数の溶湯ノズルであり、
前記複数のガス噴射ノズルは、前記複数の溶湯ノズルのそれぞれの周囲に設けられていることを特徴とする金属粉末製造装置の制御方法。
【請求項8】
溶解槽に収納され、溶解前の溶解素材を受け入れ可能なるつぼと、
前記るつぼの底面に設けられた開口部に取り付けられ、下端が噴霧槽内に位置する溶湯ノズルと、
前記噴霧槽内において前記溶湯ノズルの周囲に設けられ、前記溶湯ノズルから流下される溶融金属に対してガス流体を噴出する複数のガス噴射ノズルと、
前記溶湯ノズルにおける流路の上流部に設けられたオリフィス部とを備え、
前記オリフィス部の内径が0.8mm以上3mm以下であることを特徴とする金属粉末製造装置。
【請求項9】
請求項8の金属粉末製造装置において、
前記オリフィス部は、前記溶湯ノズルにおける流路の上端に設けられていることを特徴とする金属粉末製造装置。
【請求項10】
請求項8の金属粉末製造装置において、
前記オリフィス部は、前記溶湯ノズルの下端に向かって内径が拡大する逆テーパ型の流路を有することを特徴とする金属粉末製造装置。
【請求項11】
請求項8の金属粉末製造装置において、
前記溶湯ノズルの上端は、前記るつぼの底面より上方に位置することを特徴とする金属粉末製造装置。
【請求項12】
請求項8の金属粉末製造装置において、
前記オリフィス部の内径は1mm以上かつ2mm以下であることを特徴とする金属粉末製造装置。
【請求項13】
請求項8の金属粉末製造装置において、
前記オリフィス部の長さは10mm以下であることを特徴とする金属粉末製造装置。
【請求項14】
請求項8の金属粉末製造装置において、
前記オリフィス部の長さは1mm以上かつ5mm以下であることを特徴とする金属粉末製造装置。
【請求項15】
請求項8の金属粉末製造装置の制御方法において、
前記溶湯ノズルは、前記るつぼに複数取り付けられた複数の溶湯ノズルであり、
前記複数のガス噴射ノズルは、前記複数の溶湯ノズルのそれぞれの周囲に設けられていることを特徴とする金属粉末製造装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は金属粉末製造装置及びその制御方法に関する。
【背景技術】
【0002】
金属粉末製造装置には、溶解槽に収納され溶融金属を貯留するるつぼの下部に設けられた溶湯ノズルから溶湯を流下させ、噴霧槽内で当該溶湯ノズルの周囲に配置された複数の噴射孔より成るガス噴射ノズルから不活性ガスを当該溶湯に吹きつけることで微細な金属粉末を製造するガスアトマイザ(ガスアトマイズ装置)がある。
【0003】
近年、3Dプリンティング技術の普及により、アトマイズ法に従前求められていた金属粉末よりも粒径の小さいもののニーズが高まっている。粉末冶金や溶接等に用いられる従前からの金属粉末の粒径は例えば70-100μm程度であったが、3次元プリンタに用いられる金属粉末の粒径は例えば20-50μm程度と非常に細かい。
【0004】
金属粉末製造装置で微細な金属粉末を効率良く製造する方法として、特許文献1(国際公開第2019/112052号)は、噴霧槽内の溶湯ノズルの本数を増加することで1つの噴霧槽における単位時間あたりの出湯量を増加している。これにより各溶湯ノズルの断面積は変わらずガス圧の増加(変更)も不要となるので、噴霧槽の体型を変えずに微細な金属粉末を効率良く製造することができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2019/112052号
【発明の概要】
【発明が解決しようとする課題】
【0006】
ガスアトマイザにおいて、溶湯ノズルが取り付けられたるつぼ内で溶解素材を溶解する場合には、溶湯ノズルに繋がるるつぼの開口部を閉塞するストッパが通常設けられる。溶解素材を溶解するときには、るつぼの開口部をストッパで塞いだ状態でるつぼ内に溶解素材を投入し、るつぼをヒータで加熱する。溶解素材の溶解が完了したら、ストッパを上方に移動させ、るつぼの開口部からストッパを離間させることで溶湯ノズルから溶湯を流下(出湯)させ、金属粉末の製造を開始する。
【0007】
このようにストッパは溶湯の出湯制御に必要なものであるが、溶解素材の溶解時にるつぼ内に位置するため溶解素材の形状を制限してしまう。特に、1つのるつぼに溶湯ノズルが複数取り付けられている場合にはストッパも溶湯ノズルと同数必要であり、溶解素材の形状はさらに制限され得るし、ストッパの数に応じてコストも増加する。
【0008】
本発明の目的は、るつぼに投入される溶解素材の形状の制限を緩和できる金属粉末製造装置及びその制御方法を提供することにある。
【課題を解決するための手段】
【0009】
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、溶解槽に収納され、溶解前の溶解素材を受け入れ可能なるつぼと、前記るつぼの底面に設けられた開口部に取り付けられ、下端が噴霧槽内に位置する溶湯ノズルと、前記噴霧槽内において前記溶湯ノズルの周囲に設けられ、前記溶湯ノズルから流下される溶融金属に対してガス流体を噴出する複数のガス噴射ノズルと、溶湯ノズルにおける流路の上流部に設けられたオリフィス部とを備え、前記オリフィス部の内径が0.8mm以上3mm以下である金属粉末製造装置の制御方法であって、前記るつぼ内で溶解素材を溶解する時には、前記溶湯ノズルの上端に作用する圧力と前記溶解槽の圧力との合計値よりも前記噴霧槽の圧力を高くし、前記るつぼ内の溶湯を前記溶湯ノズルを介して前記噴霧槽に流下させる時には、前記合計値よりも前記噴霧槽の圧力を低くすることとした。
【発明の効果】
【0010】
本発明によれば、少なくとも1つのストッパを省略できるので、るつぼに投入される溶解素材の形状の制限を緩和でき、装置の簡素化及び部品の損傷リスクの低減が可能になる。
【図面の簡単な説明】
【0011】
図1】本発明の実施形態に係る金属粉末製造装置であるガスアトマイズ装置(ガスアトマイザ)の全体構成図である。
図2図1の実施形態に係るガスアトマイズ装置の溶湯ノズル11及びガス噴射器200周辺の断面図である。
図3】溶湯ノズル(オリフィス部)の変形例の1つを示した図である。
図4】溶湯ノズル(オリフィス部)の変形例の1つを示した図である。
図5】溶湯保持中(素材溶解中)の条件の異なる15の場合について出湯・粉末化の可否を観察した結果をまとめた図である。
【発明を実施するための形態】
【0012】
以下、本発明の実施の形態について図面を用いて説明する。
【0013】
図1は本発明の実施形態に係る金属粉末製造装置であるガスアトマイズ装置(ガスアトマイザ)の全体構成図である。図1のガスアトマイズ装置は、液体状の金属である溶融金属(溶湯)7が蓄えられるるつぼ(タンディッシュとも称する)100が収納される溶解槽1と、るつぼ100から溶湯ノズル11を介して細流となって流下する溶湯に対して高圧ガス(ガス流体)を吹き付けて多数の微粒子(金属粒子)に粉砕することで溶融金属を液体噴霧するガス噴射器200と、ガス噴射器200に高圧ガス41を供給するためのガス供給管(噴射流体供給管)31と、不活性ガス雰囲気に保持された容器であってガス噴射器200から噴霧された微粒子状の液体金属が落下中に急冷凝固される噴霧槽4とを備えている。
【0014】
(溶解槽1)
溶解槽1内は不活性ガス雰囲気に保持することが好ましい。ここでは溶解槽1の圧力をPmと表記する。溶解槽1にはガス排出管30が接続されており、ガス排出管30からは溶解槽1内の不活性ガス40を装置外(溶解槽1の外)に排気できる。ガス排出管30による排気量は例えば図示しないバルブの開度を変更することで調整可能であり、これにより溶解槽1内の圧力Pmを所望の値に調整できる。なお、溶解槽1にさらに給気用のガス供給管を接続し、当該ガス供給管による給気量とガス排出管30による排気量とを調整することで溶解槽1内の圧力Pmを調整しても良い。
【0015】
(るつぼ100)
るつぼ100は溶解前の溶解素材(金属)を受け入れ可能であり、るつぼ100の周囲には、溶解素材を加熱溶融するための加熱装置(例えば、るつぼ100の周囲に巻き付けられる高周波加熱コイル(図示せず))が取り付けられている。また、るつぼ100には、るつぼ100内の溶湯7を噴霧槽4内に流下させる溶湯ノズル11が取り付けられている。
【0016】
(噴霧槽4)
噴霧槽4は、上部及び中部では同一の径を有する円筒状の容器である。ここでは噴霧槽4の圧力をPsと表記する。噴霧槽4にはガス供給管32が接続されており、ガス供給管32からは噴霧槽4に不活性ガス42を給気できる。給気するガスは溶湯中の酸素を除去する目的等で還元性のガスを用いてもよい。ガス供給管32による給気量は例えば図示しないバルブの開度を変更することで調整可能であり、これにより噴霧槽4内の圧力Psを所望の値に調整できる。なお、噴霧槽4にさらに排気用のガス排出管を接続し、当該ガス排出管による排気量とガス供給管32による給気量とを調整することで噴霧槽4内の圧力Psを調整しても良い。
【0017】
(ホッパ2)
噴霧槽4の下部にはホッパ2が設けられている。ホッパ2は、噴霧槽4内で落下中に凝固した粉末状の固体金属を回収するためのものであり、採集部5とテーパ部3から構成されている。テーパ部3は、ホッパ2による金属粉末の回収を促進する観点から採集部5に近づくほど径が小さくなっている。テーパ部3の下端は採集部5の上端に接続されている。採集部5は不活性ガスの流れ方向の下流側に位置し、採集部5にはガス排出管33が接続されている。ガス排出管33からは凝固した金属粉末とともに不活性ガス43が装置外に排気されている。
【0018】
図2は本実施形態に係るガスアトマイズ装置の溶湯ノズル11及びガス噴射器200周辺の断面図である。
【0019】
(溶湯ノズル11)
図2に示すように、るつぼ100の底面101(底部)には開口部102が設けられており、開口部102に溶湯ノズル11が取り付けられている。溶湯ノズル11は、るつぼ100内の溶融金属7を噴霧槽4内に流下させるもので、るつぼ100の底面から鉛直下方に向かって突出して設けられている。溶湯ノズル11は、その内部に溶湯が流下する鉛直方向に延びた縦長の孔を有している。この縦長の孔は、るつぼ100の底面101から鉛直下方に向かって溶融金属が流下する溶湯流路となる。るつぼ100に取り付ける溶湯ノズル11の本数は1本に限定されず、例えば2本以上設けても構わない。
【0020】
溶湯ノズル11の下端に位置する開口端17は、ガス噴射器200の底面から突出して噴霧槽4内に位置している。るつぼ100内の溶融金属は溶湯ノズル11の内部の孔を溶湯流となって流下し開口端17を介して噴霧槽4内に放出(流下)される。
【0021】
(オリフィス部18)
溶湯ノズル11の最小内径は、溶湯ノズル11の内部に設けられるオリフィス部18の内径(オリフィス径)によって規定され、このオリフィス径(溶湯ノズル11の最小内径)は噴霧槽4内に導入される溶湯の径の大きさに寄与する。溶湯ノズル11の最小内径は溶湯ノズル11の開口端17の径以下の値にすることもできる。
【0022】
オリフィス部18は、溶湯ノズル11における溶湯の流路の上流部に設けることが好ましく、可能であれば図2に示すように溶湯ノズルにおける溶湯の流路の上端に設けることが好ましい。なお、上流部とは、溶湯ノズル11の流路長を3分割したときにるつぼ100側に位置する部分を示す。溶湯ノズル11の流路長を3分割した部分のうち、上流部の下流側の部分は「中央部」、中央部の下流側の部分は「下流部」と称する。
【0023】
オリフィス部18は、図2に示すように上下方向に所定の長さLを有しても良い。長さLは、10mm以下とすることが好ましく、可能であれば1mm以上かつ5mm以下とすることが好ましい。オリフィス部18の流路は凝固した溶湯により詰まりを生じることがあるが、長さLが10mm以下(より好ましくは5mm以下)とするとその詰まりを解消しやすい。ただし、長さLは、短すぎると溶湯の流れの安定性が阻害される可能性(溶湯流の軸がぶれる可能性)が高くなるため、1mm以上にした方が好ましい。
【0024】
オリフィス部18の内径は、0.8mm以上3mm以下とすることが好ましく、可能であれば1mm以上かつ2mm以下とすることが好ましい。内径を3mm以上とすると、溶湯保持中に溶湯がオリフィスを通って溶解槽に数滴垂れる湯漏れ(意図しない出湯)が生じ得る。ただし、内径が小さすぎると溶湯の流量の安定性が阻害される可能性が高くなるため、0.8mm以上にした方が好ましい。
【0025】
(ガス噴射器200)
略円柱状の外形を有するガス噴射器200は、図2に示すように、溶湯ノズル11が挿入される溶湯ノズル挿入孔12と、溶湯ノズル11から流下する溶融金属に対してガスを噴射して粉砕するガス噴射ノズル71を備えている。ガス噴射器200は、不活性の高圧ガスで満たされる中空構造の円柱形状の外形を有しており、その内部は溶湯ノズル挿入孔12の周囲にガス流を形成するガス流路50となっている。ガス流路50は、ガス噴射器200の側面(円柱の側面)に設けられたガス吸入孔(図示せず)に接続されるガス供給管31から高圧ガス41の供給を受ける。
【0026】
(ガス噴射ノズル71)
ガス噴射ノズル71は、溶湯ノズル挿入孔12の周囲に円を描くように配置された複数の噴射孔(貫通孔)91からなる。ガス噴射ノズル71は、溶湯ノズル11から流下する溶融金属に対して複数の噴射孔91からガスを噴射する。
【0027】
(噴霧ノズル20)
噴射ノズル71と溶湯ノズル11は、噴霧槽4内に溶融金属を液体噴霧する噴霧ノズル20を構成する。
【0028】
(溶湯ノズル11の上端に作用する圧力Ph)
溶湯ノズル11の上端に作用する圧力Ph(図2参照)の少なくとも1つとして、るつぼ100内の溶湯7の重量による圧力がある。この圧力を溶湯7のヘッド圧と称する。ヘッド圧は、るつぼ100に投入される溶解素材の密度と量(容積)とに基づいて演算できる。溶解素材の量(容積)は例えば溶湯7の液面高さ(湯面高さ)Hから把握できる。なお、溶湯ノズル11の上端に作用する圧力Phは、溶湯の表面張力など、ヘッド圧以外の圧力も含まれている。
【0029】
(ガスアトマイズ装置の制御)
上記のように構成されるガスアトマイズ装置の制御(使用方法)について説明する。
【0030】
まず、るつぼ100に溶解素材を投入してるつぼ100を加熱して溶湯7をつくる。るつぼ100内で溶解素材を溶解している間は、溶湯7が溶湯ノズル11を介して噴霧槽4に流下しないように(つまり、るつぼ100内に溶湯7を保持するために)、溶解槽1の圧力Pmと溶湯ノズル11の上端に作用する圧力Phとの合計値よりも高くなるように噴霧槽4の圧力Psを保持する(すなわち、Pm+Ph<Ps を保持する)。溶湯ノズル11の上端に作用する圧力Phは上記のように溶解素材の密度と量に関係する値なので、この圧力条件(Pm+Ph<Ps)を満たすように溶解槽1の圧力Pmと噴霧槽4の圧力Psを調整することになる。噴霧槽4の圧力Psの調整はガス供給管32による噴霧槽4へのガス供給により行い、溶解槽1の圧力Pmの調整はガス排出管30による溶解槽1からのガス排出により行う。ガス供給管32から噴霧槽4内に不活性ガス42を供給すると、噴霧槽4の圧力Psが上昇する。また、ガス排出管30から溶解槽1外に不活性ガス40を排出すると、溶解槽1の圧力Pmが低下する。なお、溶解槽1と噴霧槽4のそれぞれの内部に圧力計を設置して各圧力計の値をコンピュータ等の制御装置に入力し、Pm+Ph<Psが満たされるように当該制御装置からガス排出管30とガス供給管31の各バルブに制御信号(開度指令)を出力し、溶解槽1と噴霧槽4の圧力Pm,Psを自動的に調整しても良い。また、溶解槽と噴霧槽を繋ぐバイパスを作り、間に圧縮機を備え、ガスを循環しつつ圧力差を制御してもよい。
【0031】
Pm+Ph<Psが満たされるように圧力Pm,Psを調整すると、従前のようなストッパが無くても、るつぼ100内に溶湯7を保持することができる。このとき、噴霧槽4内の不活性ガス42が溶湯ノズル11を介してるつぼ100内に逆流し、るつぼ100内の溶湯7に泡9(図2参照)が発生する。このように噴霧槽4から溶解槽1に流入したガスは溶解槽1の圧力Pmを上昇させ得るが、溶解槽1に接続したガス排出管30から溶解槽1外にガスを適宜排出することで、溶解槽1の圧力Pmを安定させる(つまり、圧力Pmを所定値に近い状態で維持する)ことができる。
【0032】
溶解素材の溶解が完了したら、溶湯ノズル11からの出湯を開始しつつ、ガス噴射ノズル71からガスを噴射して金属粉末を製造する(出湯操作とも称する)。出湯を開始する場合(噴霧槽4内での溶融金属の噴霧を開始する場合)には、溶解槽1の圧力Pmと溶湯ノズル11の上端に作用する圧力Phとの合計値よりも噴霧槽4の圧力Psを低くする。すなわち、Pm+Ph>Ps とし、素材溶解時と圧力の大小関係を逆転させる。このように圧力を制御すると、るつぼ100内の溶湯7を溶湯ノズル11を介して噴霧槽4内に流下させることができる。そして、出湯中には、Pm+Ph>Psが満たされるように圧力Pm,Psを調整する。
【0033】
なお、溶湯ノズル11に詰まりが発生した場合には、出湯に際して、詰まりの無い場合よりも溶解槽1の圧力Pmを高くすることで当該詰まりを解消できる場合がある。詰まりが解消できた場合には、噴霧槽4の圧力Psが急上昇する可能性があるため、噴霧槽4にガス排出管を接続し、当該ガス排出管を介してガスを噴霧槽4外に排出することで噴霧槽4の圧力Psを低減することが好ましい。つまり、噴霧槽4にガス排出管を接続しておけば、溶湯ノズル11に詰まりが生じたときに噴霧槽4の圧力Psが急上昇することを防止でき、噴霧槽4の圧力Psを安定化できる。
【0034】
(効果)
上記のように、本実施形態では、るつぼ100内で溶解素材を溶解する時に、溶湯ノズル11の上端に作用する圧力Phと溶解槽1の圧力Pmとの合計値よりも噴霧槽4の圧力Psを高くし、るつぼ100内の溶湯7を溶湯ノズル11を介して噴霧槽4に流下させる時に、溶湯ノズル11の上端に作用する圧力Phと溶解槽1の圧力Pmとの合計値よりも噴霧槽の圧力Psを低くするようにガスアトマイズ装置を制御した。このようにガスアトマイズ装置を制御すると、素材溶解中に発生させた溶解槽1と噴霧槽4との圧力差で溶湯7をるつぼ100内に保持することができるので、素材溶解中に従前利用していたストッパを省略できる。これにより、るつぼ100に投入される溶解素材の形状の制限を緩和でき、また、ガスアトマイズ装置の簡素化やストッパが損傷した際の交換の手間をなくすことができる。
【0035】
また、上記のガスアトマイズ装置は、溶湯ノズル11における流路の上流部(好ましくは当該流路の上端)に設けられたオリフィス部18を備えている。素材溶解時に噴霧槽4のガスを溶湯ノズル11を介してるつぼ100内に導入すると、当該ガスによって溶湯が凝固してオリフィス部18に詰まりを生じさせることがある。しかし、本実施形態のように溶湯ノズル11の上流部にオリフィス部18を設けると、るつぼ100内で高温に保持された溶湯7とオリフィス部18の距離が近いため、詰まりを溶湯7の熱で再溶解させ易く、出湯時の詰まりの発生を抑制できる。また、発明者らは、素材溶解中(溶湯7の保持中)にるつぼ100内に発生する泡9が小さくなると溶湯ノズル11に詰まりが生じやすいことに気づいたが、上記の位置にオリフィス部18を設けると素材溶解中の泡9の縮小化を抑制でき、詰まりの発生を抑制できることを知見した。
【0036】
なお、上記では溶湯ノズル11がるつぼ100に1本だけ取り付けられている場合について説明したが、本実施形態は、るつぼ100に複数の溶湯ノズル11が取り付けられており、当該複数の溶湯ノズル11のそれぞれの周囲にガス噴射ノズル71が設けられているガスアトマイズ装置にも適用できる。このように溶湯ノズル11が複数存在する場合には、少なくとも1つのストッパを省略することもできるし、全てのストッパを省略することもできる。省略できたストッパの数に応じた相乗的な効果が得られるので、ストッパの省略に伴う上記の各効果が顕著になる。
【0037】
<溶湯ノズル(オリフィス部)の変形例>
図3は溶湯ノズル(オリフィス部)の変形例の1つを示した図である。図3の溶湯ノズル11Aは、溶湯ノズル11Aの下端(開口端17)に向かって内径が拡大する逆テーパ型の流路を有するオリフィス部18Aを備えている。このようなオリフィス部18Aを設けると、素材溶解中(溶湯7の保持中)に溶湯ノズル11(オリフィス部18A)の上端よりも下方に詰まりが生じても、流路が下方に向かって拡大しているのでその詰まりの位置まで溶湯7を導き易くなり、出湯時に詰まりを解消しやすくなる。
【0038】
図4は溶湯ノズル(オリフィス部)の変形例の1つを示した図である。図4の溶湯ノズル11Bは、その上端19がるつぼ100の底面101より上方に位置している。このように溶湯ノズル11Bを構成すると、図2に示した場合と比較して、るつぼ100内で高温に保持された溶湯7にオリフィス部18をさらに近づけることができるため、出湯時の詰まりの発生をさらに抑制できる。また、素材溶解中(溶湯7の保持中)にオリフィス部18が周囲の溶湯7によって加熱されるため、詰まりが発生し難い点もメリットとなる。
【0039】
<実施例>
図5は、溶湯保持中(素材溶解中)の条件の異なる15の場合について出湯・粉末化の可否を観察し、その結果を実施例としてまとめた図である。ここでは図中の番号を各実施例の番号として説明する(例えば、図中のNo.1は第1実施例と称する)。なお、図に記載の無い条件(例えば、オリフィスの内径や長さ等)は各実施例で共通とする。
【0040】
溶湯保持中の条件としては、噴霧槽と溶解槽の圧力差[kPa]、溶湯ノズルの上端に作用する圧力[kPa]、溶湯ノズルの本数、オリフィス位置がある。このうち「噴霧槽と溶解槽の圧力差[kPa]」は、噴霧槽4の圧力Psと溶解槽1の圧力Pmの測定値の差(Ps-Pm)を示す。「溶湯ノズルの上端に作用する圧力[kPa]」は、図2の圧力Phである。「溶湯ノズルの本数」は1つのるつぼ100に取り付けられた溶湯ノズル11の本数を示す。「オリフィスの位置」における“上流部”は、溶湯ノズル11の上端から10mm以内の位置にオリフィス部18を設けた場合を示し、“その他”は、溶湯ノズル11の上端から10mmより下側の位置にオリフィス部18を設けた場合を示す。「オリフィス部の詰まり」は溶湯保持中の泡9の発生状況から判定しており、泡が発生している場合には詰まりなしと判定し、泡9の発生が停止した場合には詰まりありと判定した。なお、溶湯保持中に詰まりが発生したと判定されても、出湯が可能であれば使用上の支障は無いと判断する。「出湯・粉末化可否」は、出湯操作後(つまり、Pm+Ph>Psとした後)に速やかに出湯が開始されるか否かで可否を判断した。
【0041】
各実施例の結果をまとめると下記のようになる。
【0042】
第1-9実施例では、溶湯保持中にオリフィス詰まりが生じたものもあったが、出湯操作を行ったところいずれも速やかな出湯が観察された。第10-11実施例では、出湯操作後、1分以上遅れて出湯が観察され、実用的ではないと判断して出湯・粉末化を「否」と判定した。なお、第10実施例では溶湯保持中に溶湯がオリフィスを通って溶解槽に数滴垂れるという湯漏れ(意図しない出湯)が生じた。第12-15実施例では、いずれも出湯は観察されなかった。
【0043】
オリフィス部を上流部以外に設けた第11,13-15実施例では、出湯・粉末化は「否」であった。
【0044】
オリフィス部を上流部に設けた第1-10,12実施例のうち、圧力差と溶湯ノズルの上端に作用する圧力との差(Ps-Pm-Ph)が1[kPa]と0[kPa]の第10,12実施例では、出湯・粉末化は「否」であった。その一方で、圧力差と溶湯ノズルの上端に作用する圧力との差が3.5[kPa]以上の第1-9実施例では出湯・粉末化は「可」であった。このことから、圧力差と溶湯ノズルの上端に作用する圧力との差は少なくとも1[kPa]より大きい(すなわち、噴霧槽4の圧力は、溶解槽1の圧力と溶湯ノズル11の上端に作用する圧力との合計値より少なくとも1kPaより高い(つまり、Ps>Pm+Ph+1[kPa]))ことが好ましく、さらに3.5[kPa]以上であること(つまり、Ps>Pm+Ph+3.5[kPa])がより好ましいと分かった。また、図5に示されていないが、圧力差と溶湯ノズルの上端に作用する圧力との差(Ps-Pm-Ph)が20[kPa]より大きいとき、溶湯が跳ねたり、溶湯の流れが不安定となり、熱電対の保護管が割れた。このことから、噴霧槽4の圧力Psは、溶湯ノズル11の上端に作用する圧力と溶解槽1の圧力との合計値に対して20[kPa]より低くなるように制御することが好ましく(つまり、20[kPa]+Pm+Ph>Ps)、さらには、同合計値に対して15[kPa]より低くなるように制御することがより好ましいこと(つまり、15[kPa]+Pm+Ph>Ps)が分かった。
【0045】
<その他>
なお、本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。
【符号の説明】
【0046】
1…溶解槽,2…ホッパ,4…噴霧槽,5…採集部,7…溶融金属(溶湯),9…泡,11,11A,11B…溶湯ノズル,12…溶湯ノズル挿入孔,17…溶湯ノズルの開口端(下端),18…オリフィス部,18A…オリフィス部,19…溶湯ノズルの上端,20…噴霧ノズル,30…ガス排出管,31…ガス供給管,32…ガス供給管,33…ガス排出管,40…不活性ガス,42…不活性ガス,43…不活性ガス,50…ガス流路,71…ガス噴射ノズル,91…噴射孔(貫通孔),101…底面,102…開口部,200…ガス噴射器
図1
図2
図3
図4
図5
【手続補正書】
【提出日】2022-12-20
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
溶解槽に収納され、溶解前の溶解素材を受け入れ可能なるつぼと、
前記るつぼの底面に設けられた開口部に取り付けられ、下端が噴霧槽内に位置する溶湯ノズルと、
前記噴霧槽内において前記溶湯ノズルの周囲に設けられ、前記溶湯ノズルから流下される溶融金属に対してガス流体を噴出する複数のガス噴射ノズルと、
前記溶湯ノズルにおける流路の上流部に設けられたオリフィス部とを備え、
前記オリフィス部の内径が0.8mm以上3mm以下である金属粉末製造装置の制御方法であって、
前記るつぼ内で溶解素材を溶解する時には、前記溶湯ノズルの上端に作用する圧力と前記溶解槽の圧力との合計値よりも前記噴霧槽の圧力を高くし、
前記るつぼ内の溶湯を前記溶湯ノズルを介して前記噴霧槽に流下させる時には、前記合計値よりも前記噴霧槽の圧力を低くすることを特徴とする金属粉末製造装置の制御方法。
【請求項2】
請求項1の金属粉末製造装置の制御方法において、
前記オリフィス部の内径は1mm以上2mm以下であることを特徴とする金属粉末製造装置の制御方法。
【請求項3】
請求項1の金属粉末製造装置の制御方法において、
前記るつぼ内で溶解素材を溶解する時には、前記噴霧槽の圧力は、前記溶湯ノズルの上端に作用する圧力と前記溶解槽の圧力との合計値に対して少なくとも1kPaより高く20kPaより低いことを特徴とする金属粉末製造装置の制御方法。
【請求項4】
請求項1の金属粉末製造装置の制御方法において、
前記溶湯ノズルの上端に作用する圧力の少なくとも1つであるヘッド圧を、前記溶解素材の密度と量に基づいて演算することを特徴とする金属粉末製造装置の制御方法。
【請求項5】
請求項1の金属粉末製造装置の制御方法において、
前記噴霧槽の圧力の調整は、前記噴霧槽にガスを供給することで行い、
前記溶解槽の圧力の調整は、前記溶解槽からガスを排出することで行うことを特徴とする金属粉末製造装置の制御方法。
【請求項6】
請求項3の金属粉末製造装置の制御方法において、
前記噴霧槽の圧力の調整は、前記噴霧槽へのガスの供給と前記噴霧槽からのガスの排出により行うことを特徴とする金属粉末製造装置の制御方法。
【請求項7】
請求項1の金属粉末製造装置の制御方法において、
前記溶湯ノズルは、前記るつぼに複数取り付けられた複数の溶湯ノズルであり、
前記複数のガス噴射ノズルは、前記複数の溶湯ノズルのそれぞれの周囲に設けられていることを特徴とする金属粉末製造装置の制御方法。
【請求項8】
溶解槽に収納され、溶解前の溶解素材を受け入れ可能なるつぼと、
前記るつぼの底面に設けられた開口部に取り付けられ、下端が噴霧槽内に位置する溶湯ノズルと、
前記噴霧槽内において前記溶湯ノズルの周囲に設けられ、前記溶湯ノズルから流下される溶融金属に対してガス流体を噴出する複数のガス噴射ノズルと、
前記溶湯ノズルにおける流路の上流部に設けられたオリフィス部とを備え、
前記オリフィス部の内径が0.8mm以上3mm以下であることを特徴とする金属粉末製造装置。
【請求項9】
請求項8の金属粉末製造装置において、
前記オリフィス部は、前記溶湯ノズルにおける流路の上端に設けられていることを特徴とする金属粉末製造装置。
【請求項10】
請求項8の金属粉末製造装置において、
前記オリフィス部は、前記溶湯ノズルの下端に向かって内径が拡大する逆テーパ型の流路を有することを特徴とする金属粉末製造装置。
【請求項11】
請求項8の金属粉末製造装置において、
前記溶湯ノズルの上端は、前記るつぼの底面より上方に位置することを特徴とする金属粉末製造装置。
【請求項12】
請求項8の金属粉末製造装置において、
前記オリフィス部の内径は1mm以上かつ2mm以下であることを特徴とする金属粉末製造装置。
【請求項13】
請求項8の金属粉末製造装置において、
前記オリフィス部の長さは10mm以下であることを特徴とする金属粉末製造装置。
【請求項14】
請求項8の金属粉末製造装置において、
前記オリフィス部の長さは1mm以上かつ5mm以下であることを特徴とする金属粉末製造装置。
【請求項15】
請求項8の金属粉末製造装置において、
前記溶湯ノズルは、前記るつぼに複数取り付けられた複数の溶湯ノズルであり、
前記複数のガス噴射ノズルは、前記複数の溶湯ノズルのそれぞれの周囲に設けられていることを特徴とする金属粉末製造装置。