(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023113673
(43)【公開日】2023-08-16
(54)【発明の名称】1つ以上の動脈セグメントの血行動態情報を決定するための方法およびシステム
(51)【国際特許分類】
A61B 6/03 20060101AFI20230808BHJP
A61B 34/20 20160101ALI20230808BHJP
【FI】
A61B6/03 370A
A61B6/03 360J
A61B6/03 360T
A61B6/03 360G
A61B34/20
【審査請求】有
【請求項の数】36
【出願形態】OL
(21)【出願番号】P 2023079562
(22)【出願日】2023-05-12
(62)【分割の表示】P 2020519335の分割
【原出願日】2018-10-08
(31)【優先権主張番号】62/569,269
(32)【優先日】2017-10-06
(33)【優先権主張国・地域又は機関】US
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.WCDMA
(71)【出願人】
【識別番号】504391260
【氏名又は名称】エモリー ユニバーシティー
(74)【代理人】
【識別番号】110000578
【氏名又は名称】名古屋国際弁理士法人
(72)【発明者】
【氏名】サマディー ハビブ
(72)【発明者】
【氏名】ヴェネツィアーニ アレッサンドロ
(72)【発明者】
【氏名】ギデンス ドン
(72)【発明者】
【氏名】モロニー デイビッド
(72)【発明者】
【氏名】レフュー エイドリアン
(72)【発明者】
【氏名】ヴィゲリー アレクサンダー フラー
(57)【要約】 (修正有)
【課題】動脈セグメントの境界条件を正確かつ効率的に決定し、それにより、そのセグメントの血行動態情報を効率的に決定する。
【解決手段】方法は、患者の医療画像データを受信することを含み得る。方法は、医療画像データから1つ以上の動脈セグメントの幾何学的表現を生成することをさらに含み得る。方法は、各動脈セグメントの境界および幾何学的データを決定することをさらに含み得る。方法は、流入境界および各流出境界の境界条件を決定することをさらに含み得る。各流出境界の境界条件は、流出分布パラメータを使用して決定され得る。流出分布パラメータは、1つ以上の流出境界のうちの1つ以上の幾何学的データ、保存された血行動態データ、またはそれらの組み合わせを使用して決定され得る。方法は、各動脈セグメントの流れ場を決定することと、血行動態情報を決定することと、をさらに含み得る。
【選択図】なし
【特許請求の範囲】
【請求項1】
患者の血行動態情報を決定するコンピュータ実装方法であって、
医療画像取得デバイスによって取得された患者の医療画像データを受信することであって、前記医療画像データが、1つ以上の動脈セグメントおよび周囲の区域を含む、受信することと、
前記医療画像データから前記1つ以上の動脈セグメントの幾何学的表現を生成することと、
各動脈セグメントの境界および幾何学的データを決定することであって、前記境界が、流入境界および1つ以上の流出境界を含み、前記流入境界および前記1つ以上の流出境界が、前記各動脈セグメントの断面に対応し、かつ前記幾何学的データが、前記流入境界の半径および各流出境界の半径を含む、決定することと、
前記幾何学的表現の1つ以上の境界条件を決定することであって、前記1つ以上の境界条件が、前記流入境界の流入境界条件および各流出境界の流出境界条件を含み、各流出境界の前記流出境界条件が、流出分布パラメータを使用して決定され、かつ前記流出分布パラメータが、前記1つ以上の流出境界のうちの1つ以上の前記幾何学的データ、保存された血行動態データ、またはそれらの組み合わせを使用して決定される、決定することと、
前記幾何学的表現、前記境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することと、
前記患者の前記境界条件、前記流れ場、および圧力データのうちの1つ以上を使用して、血行動態情報を決定することと、
前記血行動態情報の表示出力を提供することと、を含む、方法。
【請求項2】
前記1つ以上の流出境界が、第1の流出境界および第2の流出境界を含み、かつ
前記第2の流出境界が、前記第1の流出境界と前記流入境界との間に配置される、請求項1に記載の方法。
【請求項3】
前記1つ以上の動脈セグメントが、前記1つ以上の冠状動脈セグメントに対応する、請求項1または2に記載の方法。
【請求項4】
前記流出分布パラメータが、前記第1の流出境界の半径と前記第2の流出境界の半径との比率、および前記保存された血行動態データを使用して決定され、かつ
前記保存された血行動態データが、(i)前記第1の流出境界の前記半径と前記第2の流出境界の前記半径との前記比率と、(ii)前記第1の流出境界の流出境界条件と前記第2の流出境界の流出境界条件との比率と、の間の経験的関係を定義する、請求項2または3に記載の方法。
【請求項5】
前記1つ以上の流出境界が、前記流入境界と前記第1の流出境界との間に配置された追加の流出境界を含み、かつ
前記流出分布パラメータが、前記第1の流出境界、前記第2の流出境界、および各追加の流出境界の流出境界条件を決定するために使用される、請求項4に記載の方法。
【請求項6】
前記幾何学的表現が、前記1つ以上の動脈セグメントの空間体積の多次元デジタルモデルに対応し、
前記1つ以上の動脈セグメントの前記幾何学的表現が、3次元体積メッシュに離散化され、かつ
前記幾何学的表現が、各セグメントの血管壁の境界を表す表面メッシュを含む、請求項1~5のいずれかに記載の方法。
【請求項7】
前記圧力場が、前記幾何学的表現と、前記幾何学的データと、前記境界条件のうちの1
つ以上と、のみを使用して、決定される、請求項1~6のいずれかに記載の方法。
【請求項8】
前記医療画像データが、前記患者のコンピュータ断層撮影画像データである、請求項1~7のいずれかに記載の方法。
【請求項9】
前記血行動態情報が、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせを含む、請求項1~8のいずれかに記載の方法。
【請求項10】
前記幾何学的表現の前記セグメントのうちの1つ以上に沿って配置された仮想ステントの位置に関する情報を受信することと、
前記血行動態情報の前記表示出力を更新することと、をさらに含む、請求項1~9のいずれかに記載の方法。
【請求項11】
患者の血行動態情報を決定するためのシステムであって、前記システムが、
少なくとも1つのプロセッサと、
メモリと、を含み、前記プロセッサが、
医療画像取得デバイスによって取得された患者の医療画像データを取得することであって、前記医療画像データが、1つ以上の動脈セグメントおよび周囲の区域を含む、取得することと、
前記医療画像データから前記1つ以上の動脈セグメントの幾何学的表現を生成することと、
各動脈セグメントの境界および幾何学的データを決定することであって、前記境界が、流入境界および1つ以上の流出境界を含み、前記流入境界および前記1つ以上の流出境界が、各動脈セグメントの断面に対応し、前記幾何学的データが、前記流入境界および各流出境界の半径を含む、決定することと、
前記幾何学的表現の1つ以上の境界条件を決定することであって、前記1つ以上の境界が、前記流入境界の流入境界条件および各流出境界の流出境界条件を含み、各流出境界の前記境界条件が、流出分布パラメータを使用して決定され、前記流出分布パラメータが、前記1つ以上の流出境界のうちの1つ以上の前記幾何学的データ、保存された血行動態データ、またはそれらの組み合わせを使用して決定される、決定することと、
前記幾何学的表現、前記境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することであって、前記流れ場が、圧力場を含む、決定することと、
前記患者の前記境界条件、前記流れ場、および圧力データを使用して、血行動態情報を決定することと、
前記血行動態情報の表示出力を提供することと、を行うように構成される、システム。
【請求項12】
前記1つ以上の流出境界が、第1の流出境界および第2の流出境界を含み、かつ
前記第2の流出境界が、前記第1の流出境界と前記流入境界との間に配置される、請求項11に記載のシステム。
【請求項13】
前記1つ以上の動脈セグメントが、前記1つ以上の冠状動脈セグメントに対応する、請求項11または12に記載のシステム。
【請求項14】
前記流出分布パラメータが、前記第1の流出境界の半径と前記第2の流出境界の半径との比率、および前記保存された血行動態データを使用して決定され、かつ
前記保存された血行動態データが、(i)前記第1の流出境界の前記半径と前記第2の流出境界の前記半径との前記比率と、(ii)前記第1の流出境界の前記流出境界条件と
第2の流出境界の前記流出境界条件との比率と、の間の経験的関係を定義する、請求項11~13のいずれかに記載のシステム。
【請求項15】
前記1つ以上の流出境界が、前記流入境界と前記第1の流出境界との間に配置された追加の流出境界を含み、かつ
前記流出分布パラメータが、前記第1の流出境界、前記第2の流出境界、および各追加の流出境界の流出境界条件を決定するために使用される、請求項14に記載のシステム。
【請求項16】
前記幾何学的表現が、前記1つ以上の動脈セグメントの空間体積の多次元デジタルモデルに対応しており、
前記1つ以上の動脈セグメントの前記幾何学的表現が、3次元体積メッシュに離散化され、かつ
前記幾何学的表現が、各セグメントの血管壁の境界を表す表面メッシュを含む、請求項11~15のいずれかに記載のシステム。
【請求項17】
前記圧力場が、前記幾何学的表現と、前記幾何学的データと、前記境界条件のうちの1つ以上と、のみを使用して、決定される、請求項11~16のいずれかに記載のシステム。
【請求項18】
前記医療画像データが、前記患者のコンピュータ断層撮影画像データである、請求項11~17のいずれかに記載のシステム。
【請求項19】
前記血行動態情報が、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせを含む、請求項11~18のいずれかに記載のシステム。
【請求項20】
前記幾何学的表現の前記セグメントのうちの1つ以上に沿って配置された仮想ステントの位置に関する情報が、受信され、かつ前記血行動態情報の前記表示出力が、前記情報に従って更新される、請求項11~19のいずれかに記載のシステム。
【請求項21】
患者の動脈の解剖学的構造の幾何学的表現の境界条件を決定するコンピュータ実装方法であって、
医療画像取得デバイスによって取得された患者の医療画像データを受信することであって、前記医療画像データが、1つ以上の動脈セグメントおよび周囲の区域を含む、受信することと、
前記医療画像データから前記1つ以上の動脈セグメントの幾何学的表現を生成することと、
各動脈セグメントの境界および幾何学的データを決定することであって、前記境界が、流入境界および1つ以上の流出境界を含み、前記流入境界および前記1つ以上の流出境界が、前記各動脈セグメントの断面に対応し、前記1つ以上の流出境界が、第1の流出境界および第2の流出境界を含み、前記第2の流出境界が、前記第1の流出境界と前記流入境界との間に配置され、前記幾何学的データが、前記流入境界および各流出境界の半径を含む、決定することと、
前記1つ以上の流出境界のうちの1つ以上の前記幾何学的データおよび保存された血行動態データを使用して、流出分布パラメータを決定することであって、前記血行動態データが、(i)前記第1の流出境界の前記半径と前記第2の流出境界の前記半径との前記比率と、(ii)前記第1の流出境界の前記流出境界条件と第2の流出境界の前記流出境界条件との比率と、の間の経験的関係を定義する、決定することと、
前記流出分布パラメータおよび前記流入境界を使用して、各流出境界の流出境界条件を
決定することと、
前記幾何学的表現の表示出力を提供することと、を含む、方法。
【請求項22】
前記1つ以上の動脈セグメントが、前記1つ以上の冠状動脈セグメントに対応する、請求項21に記載の方法。
【請求項23】
前記流出分布パラメータが、前記第1の流出境界と前記第2の流出境界の半径の比率、および前記保存された血行動態データを使用して決定され、かつ
前記1つ以上の流出境界が、前記流入境界と前記第1の流出境界との間に配置された追加の流出境界を含む、請求項21または22に記載の方法。
【請求項24】
前記幾何学的表現、前記境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することであって、前記流れ場が、圧力場を含む、決定することと、
前記患者の前記境界条件、前記流れ場、および圧力データのうちの1つ以上を使用して、血行動態情報を決定することと、をさらに含む、請求項21~23のいずれかに記載の方法。
【請求項25】
前記血行動態情報が、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせを含む、請求項24に記載の方法。
【請求項26】
前記幾何学的表現が、前記1つ以上の動脈セグメントの空間体積の多次元デジタルモデルに対応し、
前記1つ以上の動脈セグメントの前記幾何学的表現が、3次元体積メッシュに離散化され、
前記幾何学的表現が、各セグメントの血管壁の境界を表す表面メッシュを含む、請求項21~25のいずれかに記載の方法。
【請求項27】
前記圧力場が、前記幾何学的表現、前記幾何学的データ、および前記境界条件のみを使用して、決定される、請求項24~26のいずれかに記載の方法。
【請求項28】
前記医療画像データが、前記患者のコンピュータ断層撮影画像データである、請求項21~26のいずれかに記載の方法。
【請求項29】
前記幾何学的表現の前記セグメントのうちの1つ以上に沿って配置された仮想ステントの位置に関する情報を受信することと、
前記血行動態情報の前記表示出力を更新することと、をさらに含む、請求項21~28のいずれかに記載の方法。
【請求項30】
患者の動脈の解剖学的構造の幾何学的表現の境界条件を決定するシステムであって、前記方法が、
少なくとも1つのプロセッサと、
メモリと、を含み、前記プロセッサが、
医療画像取得デバイスによって取得された患者の医療画像データを受信することであって、前記医療画像データが、1つ以上の動脈セグメントおよび周囲の区域を含む、受信することと、
前記医療画像データから前記1つ以上の動脈セグメントの幾何学的表現を生成することと、
各動脈セグメントの境界および幾何学的データを決定することであって、前記境界が、流入境界および1つ以上の流出境界を含み、前記流入境界および前記1つ以上の流出境界が、前記各動脈セグメントの断面に対応し、前記1つ以上の流出境界が、第1の流出境界および第2の流出境界を含み、前記第2の流出境界が、前記第1の流出境界と前記流入境界との間に配置され、前記幾何学的データが、前記流入境界および各流出境界の半径を含む、決定することと、
前記1つ以上の流出境界のうちの1つ以上の前記幾何学的データおよび保存された血行動態データを使用して、流出分布パラメータを決定することであって、前記血行動態データが、(i)前記第1の流出境界の前記半径と前記第2の流出境界条件の前記半径との前記比率と、(ii)前記第1の流出境界の前記流出境界条件と第2の流出境界の前記流出境界条件との比率と、の間の経験的関係を定義する、決定することと、
前記流出分布パラメータおよび前記流入境界を使用して、各流出境界の流出境界条件を決定することと、を行うように構成されている、システム。
【請求項31】
前記1つ以上の動脈セグメントが、前記1つ以上の冠状動脈セグメントに対応する、請求項30に記載のシステム。
【請求項32】
前記流出分布パラメータが、前記第1の流出境界の半径と前記第2の流出境界の半径との比率、および前記保存された血行動態データを使用して決定され、
前記1つ以上の流出境界が、前記流入境界と前記第1の流出境界との間に配置された追加の流出境界を含む、請求項30または31に記載のシステム。
【請求項33】
前記プロセッサが、
前記幾何学的表現、前記境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することであって、前記流れ場が、圧力場を含む、決定することと、
前記患者の前記境界条件、前記流れ場、および圧力データのうちの1つ以上を使用して、血行動態情報を決定することと、をさらに行うように構成される、請求項30~32のいずれかに記載のシステム。
【請求項34】
前記血行動態情報が、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせを含む、請求項33に記載のシステム。
【請求項35】
前記幾何学的表現が、前記1つ以上の動脈セグメントの空間体積の多次元デジタルモデルに対応し、
前記1つ以上の動脈セグメントの前記幾何学的表現が、3次元体積メッシュに離散化され、かつ
前記幾何学的表現が、各セグメントの血管壁の境界を表す表面メッシュを含む、請求項30~34のいずれかに記載のシステム。
【請求項36】
前記圧力場が、前記幾何学的表現、前記幾何学的データ、および前記境界条件のみを使用して、決定される、請求項33~35のいずれかに記載のシステム。
【請求項37】
前記医療画像データが、前記患者のコンピュータ断層撮影画像データである、請求項30~36のいずれかに記載のシステム。
【請求項38】
前記幾何学的表現の前記セグメントのうちの1つ以上に沿って配置された仮想ステントの位置に関する情報が受信され、かつ前記血行動態情報の前記表示出力が、前記情報に従
って更新される、請求項30~37のいずれかに記載のシステム。
【発明の詳細な説明】
【背景技術】
【0001】
冠状動脈性心疾患(CHD)は、進行して虚血および狭心症を引き起こす可能性のあるアテローム性動脈硬化症による米国で最も一般的な死因である。血管造影の解剖学的所見、および増加する血流予備量比(FFR)は、閉塞性病変を通る血流を改善するために、ステント留置または冠動脈バイパス移植(CABG)手術などのより侵襲的な手技が必要であるかどうかを決定するための決定的なツールとして使用されてきた。現在、FFRは、例えば、プレッシャーワイヤーを用いて侵襲的に測定することができる。そのような介入は、患者にとって危険であり、かつ費用がかかる可能性がある。または代替的に、FFRを、FDAが承認した唯一のサービスを使用して、医療画像から非侵襲的に計算することができる。しかしながら、そのサービスは、スーパーコンピュータのパワーを必要とする中心的な施設を使用するため、これらの画像を処理するためにかなりの時間が必要である。したがって、現在の方法は、費用がかかり、非効率的であり、かつ患者にとって危険である可能性があり、したがって、ケアの質、患者の経験、およびヘルスケア提供のコストに悪影響を及ぼす可能性がある。
【発明の概要】
【0002】
したがって、血行動態情報の迅速かつ正確な決定を提供するシステムおよび方法が必要である。
【0003】
本開示は、流出分布パラメータを使用して、1つ以上のセグメントの幾何学的表現の境界条件を正確に決定することができ、それによって、ほぼリアルタイム(例えば、比較的短時間)で境界条件を決定することができる、システムおよび方法に関する。流出分布パラメータを使用して、システムおよび方法は、ほぼリアルタイムで各セグメントの流れ場情報および血行動態情報を決定することができる。したがって、システムおよび方法は、正確で費用対効果の高い患者の血行動態情報を術者に提供することができ、術者がポイントオブケアの臨床決定を下すことを可能にし、それによって患者の医療の質および経験を改善することができる。
【0004】
いくつかの実施形態では、方法は、患者の血行動態情報を決定するコンピュータ実装方法を含み得る。方法は、医療画像取得デバイスにより取得された患者の医療画像データを受信することを含み得る。医療画像データは、1つ以上の動脈セグメントおよび周囲の区域を含み得る。方法は、医療画像データから1つ以上の動脈セグメントの幾何学的表現を生成することを含み得る。方法は、各動脈セグメントの境界および幾何学的データを決定することを含み得る。境界は、流入境界および1つ以上の流出境界を含み得る。いくつかの実施形態では、流入境界および1つ以上の流出境界は、各動脈セグメントの断面に対応し得る。幾何学的データは、流入境界の半径および各流出境界の半径を含み得る。方法は、幾何学的表現の1つ以上の境界条件を決定することを含み得る。1つ以上の境界条件は、流入境界の流入境界条件および各流出境界の流出境界条件を含み得る。各流出境界の流出境界条件は、流出分布パラメータを使用して決定され得る。流出分布パラメータは、1つ以上の流出境界のうちの1つ以上の幾何学的データ、保存された血行動態データ、またはそれらの組み合わせを使用して決定され得る。方法は、幾何学的表現、境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することと、患者の境界条件のうちの1つ以上、流れ場、および圧力データのうちの1つ以上を使用して、血行動態情報を決定することと、をさらに含み得る。
【0005】
いくつかの実施形態では、方法は、生成された幾何学的表現および/または血行動態情
報を、ユーザインターフェース上に表示することをさらに含み得る。いくつかの実施形態では、方法は、ユーザインターフェース上に表示される幾何学的表現のうちの1つ以上のセグメントに沿って配置された仮想ステントの位置に関する情報を受信することと、更新された幾何学的表現および/または血行動態情報を生成することと、をさらに含み得る。
【0006】
いくつかの実施形態では、システムは、患者の血行動態情報を決定するためのシステムを含み得る。システムは、少なくとも1つのプロセッサおよびメモリを含み得る。プロセッサは、医療画像取得デバイスにより取得された患者の医療画像データを取得することを行うように構成されてもよい。医療画像データは、1つ以上の動脈セグメントおよび周囲の区域を含み得る。プロセッサは、医療画像データから1つ以上の動脈セグメントの幾何学的表現を生成することを行うように構成されてもよい。プロセッサは、各動脈セグメントの境界および幾何学的データを決定することを行うように構成されてもよい。境界は、流入境界および1つ以上の流出境界を含み得る。流入境界および1つ以上の流出境界は、各動脈セグメントの断面に対応していてもよい。幾何学的データは、流入境界および各流出境界の半径を含み得る。いくつかの実施形態では、プロセッサは、幾何学的表現の1つ以上の境界条件を決定することを行うように構成されてもよい。1つ以上の境界は、流入境界についての流入境界および各流出境界についての流出境界を含み得る。各流出境界の境界条件は、流出分布パラメータを使用して決定され得る。流出分布パラメータは、1つ以上の流出境界のうちの1つ以上の幾何学的データ、保存された血行動態データ、またはそれらの組み合わせを使用して決定され得る。プロセッサは、幾何学的表現、境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することであって、流れ場が、圧力場を含む、決定することを行うように構成されてもよい。プロセッサは、患者の境界条件、流れ場、および圧力データを使用して、血行動態情報を決定することを行うようにさらに構成されてもよい。
【0007】
いくつかの実施形態では、プロセッサは、生成された幾何学的表現および/または血行動態情報を、ユーザインターフェース上に表示することを行うようにさらに構成されてもよい。いくつかの実施形態では、プロセッサは、ユーザインターフェース上に表示される幾何学的表現のうちの1つ以上のセグメントに沿って配置された仮想ステントの位置に関する情報を受信することと、更新された幾何学的表現および/または血行動態情報を生成することと、を行うようにさらに構成されてもよい。
【0008】
いくつかの実施形態では、コンピュータ可読媒体は、患者の血行動態情報を決定するための命令を格納する非一時的コンピュータ可読媒体を含み得る。命令は、医療画像取得デバイスにより取得された患者の医療画像データを受信することを含み得る。医療画像データは、1つ以上の動脈セグメントおよび周囲の区域を含み得る。命令は、医療画像データから1つ以上の動脈セグメントの幾何学的表現を生成することを含み得る。命令は、各動脈セグメントの境界および幾何学的データを決定することを含み得る。境界は、流入境界および1つ以上の流出境界を含み得る。いくつかの実施形態では、流入境界および1つ以上の流出境界は、各動脈セグメントの断面に対応し得る。幾何学的データは、流入境界の半径および各流出境界の半径を含み得る。命令は、幾何学的表現の1つ以上の境界条件を決定することを含み得る。1つ以上の境界条件は、流入境界の流入境界条件および各流出境界の流出境界条件を含み得る。各流出境界の流出境界条件は、流出分布パラメータを使用して決定され得る。流出分布パラメータは、1つ以上の流出境界のうちの1つ以上の幾何学的データ、保存された血行動態データ、またはそれらの組み合わせを使用して決定され得る。命令は、幾何学的表現、境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することと、患者の境界条件のうちの1つ以上、流れ場、および圧力データを使用して、血行動態情報を決定することと、をさらに含み得る。
【0009】
いくつかの実施形態では、命令は、生成された幾何学的表現および/または血行動態情報を、ユーザインターフェース上に表示することをさらに含み得る。いくつかの実施形態では、命令は、ユーザインターフェース上に表示される幾何学的表現のうちの1つ以上のセグメントに沿って配置された仮想ステントの位置に関する情報を受信することと、更新された幾何学的表現および/または血行動態情報を生成することと、をさらに含み得る。
【0010】
いくつかの実施形態では、流入境界条件は、数ある中でも患者情報、患者データのプール、またはそれらの組み合わせから決定される、保存された値であり得る。
【0011】
いくつかの実施形態では、1つ以上の流出境界は、第1の流出境界および第2の流出境界を含み得る。第2の流出境界は、第1の流出境界と流入境界との間に配置されてもよい。いくつかの実施形態では、1つ以上の流出境界は、第3の流出境界を含み得る。第3の流出境界は、第1の流出境界と第2の流出境界との間に配置されてもよい。
【0012】
いくつかの実施形態では、1つ以上の動脈セグメントは、1つ以上の冠状動脈セグメントに対応していてもよい。
【0013】
いくつかの実施形態では、流出分布パラメータは、第1の流出境界の半径と第2の流出境界の半径との比率、および保存された血行動態データを使用して決定されてもよい。いくつかの実施形態では、保存された血行動態データは、(i)第1の流出境界の半径と第2の流出境界の半径との比率と、(ii)第1の流出境界の流出境界条件と第2の流出境界の流出境界条件との比率と、の間の経験的関係を定義し得る。
【0014】
いくつかの実施形態では、1つ以上の流出境界は、流入境界と第1の流出境界との間に配置された追加の流出境界を含み得る。流出分布パラメータは、第1の流出境界、第2の流出境界、および各追加の流出境界の流出境界条件を決定するために使用され得る。
【0015】
いくつかの実施形態では、幾何学的表現は、1つ以上の動脈セグメントの空間体積の多次元デジタルモデルに対応していてもよい。1つ以上の動脈セグメントの幾何学的表現は、3次元体積メッシュに離散化されてもよい。幾何学的表現は、各セグメントの血管壁の境界を表す表面メッシュを含み得る。
【0016】
いくつかの実施形態において、圧力場は、幾何学的表現と、幾何学的データと、境界条件のうちの1つ以上と、のみを使用して決定され得る。いくつかの実施形態では、流れ場は、速度場を含んでもよい。
【0017】
いくつかの実施形態では、医療画像データは、磁気共鳴画像(MRI)、血管造影、血管内超音波(IVUS)、光干渉断層法(OCT)、および/またはコンピュータ断層撮影(CT)画像データであり得る。いくつかの実施形態では、画像データは、患者の1つ以上の冠状動脈セグメントのコンピュータ断層撮影画像データであり得る。
【0018】
いくつかの実施形態では、血行動態情報は、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせを含み得る。
【0019】
いくつかの実施形態では、方法は、患者の動脈の解剖学的構造の幾何学的表現の境界条件を決定するコンピュータ実装方法を含み得る。方法は、医療画像取得デバイスにより取得された患者の医療画像データを受信することを含み得る。医療画像データは、1つ以上の動脈セグメントおよび周囲の区域を含み得る。方法は、医療画像データから1つ以上の
動脈セグメントの幾何学的表現を生成することをさらに含み得る。方法は、各動脈セグメントの境界および幾何学的データを決定することをさらに含み得る。境界は、流入境界および1つ以上の流出境界を含み得る。流入境界および1つ以上の流出境界は、各動脈セグメントの断面に対応し得る。1つ以上の流出境界は、第1の流出境界および第2の流出境界を含み得る。第2の流出境界は、第1の流出境界と流入境界との間に配置され得る。幾何学的データは、流入境界および各流出境界の半径を含み得る。方法は、1つ以上の流出境界および保存された血行動態データのうちの1つ以上の幾何学データを使用して、流出分布パラメータを決定することをさらに含み得る。血行動態データは、(i)第1の流出境界の半径と第2の流出境界の半径との比率と、(ii)第1の流出境界の流出境界条件と第2の流出境界の流出境界条件との比率と、の間の経験的関係を定義し得る。方法は、流出分布パラメータおよび流入境界を使用して、各流出境界の流出境界条件を決定することをさらに含み得る。
【0020】
いくつかの実施形態では、方法は、幾何学的表現、境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することをさらに含んでもよく、流れ場は圧力場を含んでもよい。方法は、患者の境界条件、流れ場、および圧力データのうちの1つ以上を使用して、血行動態情報を決定することをさらに含み得る。いくつかの実施形態では、流れ場は、速度場を含んでもよい。
【0021】
いくつかの実施形態では、システムは、患者の動脈の解剖学的構造の幾何学的表現の境界条件を決定するシステムを含み得る。システムは、少なくとも1つのプロセッサおよびメモリを含み得る。プロセッサは、医療画像取得デバイスにより取得された患者の医療画像データを受信することを行うように構成されてもよい。医療画像データは、1つ以上の動脈セグメントおよび周囲の区域を含み得る。方法は、医療画像データから1つ以上の動脈セグメントの幾何学的表現を生成することをさらに含み得る。プロセッサは、各動脈セグメントの境界および幾何学的データを決定することを行うように構成されてもよい。境界は、流入境界および1つ以上の流出境界を含み得る。流入境界および1つ以上の流出境界は、各動脈セグメントの断面に対応していてもよい。1つ以上の流出境界は、第1の流出境界および第2の流出境界を含み得る。第2の流出境界は、第1の流出境界と流入境界との間に配置されてもよい。幾何学的データは、流入境界および各流出境界の半径を含み得る。プロセッサは、1つ以上の流出境界および保存された血行動態データのうちの1つ以上の幾何学データを使用して、流出分布パラメータを決定することを行うようにさらに構成されてもよい。血行動態データは、(i)第1の流出境界の半径と第2の流出境界の半径との比率と、(ii)第1の流出境界の流出境界条件と第2の流出境界の流出境界条件との比率と、の間の経験的関係を定義し得る。プロセッサは、流出分布パラメータおよび流入境界を使用して、各流出境界の流出境界条件を決定することを行うようにさらに構成されてもよい。
【0022】
いくつかの実施形態では、プロセッサは、幾何学的表現、境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することを行うようにさらに構成されてもよい。いくつかの実施形態では、流れ場は、圧力場を含んでもよい。プロセッサは、患者の境界条件、流れ場、および圧力データのうちの1つ以上を使用して、血行動態情報を決定することを行うようにさらに構成されてもよい。いくつかの実施形態では、流れ場は、速度場を含んでもよい。
【0023】
いくつかの実施形態では、コンピュータ可読媒体は、患者の動脈の解剖学的構造の幾何学的表現の境界条件を決定するための命令を格納する非一時的コンピュータ可読媒体を含み得る。命令は、医療画像取得デバイスにより取得された患者の医療画像データを受信することを含み得る。医療画像データは、1つ以上の動脈セグメントおよび周囲の区域を含み得る。方法は、医療画像データから1つ以上の動脈セグメントの幾何学的表現を生成す
ることをさらに含み得る。命令は、各動脈セグメントの境界および幾何学的データを決定することをさらに含み得る。境界は、流入境界および1つ以上の流出境界を含み得る。流入境界および1つ以上の流出境界は、各動脈セグメントの断面に対応していてもよい。1つ以上の流出境界は、第1の流出境界および第2の流出境界を含み得る。第2の流出境界は、第1の流出境界と流入境界との間に配置され得る。幾何学的データは、流入境界および各流出境界の半径を含み得る。命令は、1つ以上の流出境界および保存された血行動態データのうちの1つ以上の幾何学データを使用して、流出分布パラメータを決定することをさらに含み得る。血行動態データは、(i)第1の流出境界の半径と第2の流出境界の半径との比率と、(ii)第1の流出境界の流出境界条件と第2の流出境界の流出境界条件との比率と、の間の経験的関係を定義し得る。命令は、流出分布パラメータおよび流入境界を使用して、各流出境界の流出境界条件を決定することをさらに含み得る。
【0024】
いくつかの実施形態では、命令は、幾何学的表現、境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することをさらに含んでもよく、流れ場は圧力場を含んでもよい。命令は、患者の境界条件、流れ場、および圧力データのうちの1つ以上を使用して、血行動態情報を決定することをさらに含み得る。いくつかの実施形態では、流れ場は、速度場を含んでもよい。
【0025】
いくつかの実施形態では、1つ以上の動脈セグメントは、1つ以上の冠状動脈セグメントに対応していてもよい。流出分布パラメータは、第1の流出境界と第2の流出境界の半径の比率、および保存された血行動態データを使用して決定され得る。いくつかの実施形態では、1つ以上の流出境界は、流入境界と第1の流出境界との間に配置された追加の流出境界を含み得る。
【0026】
いくつかの実施形態では、血行動態情報は、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせを含み得る。
【0027】
いくつかの実施形態では、幾何学的表現は、1つ以上の動脈セグメントの空間体積の多次元デジタルモデルに対応し得る。1つ以上の動脈セグメントの幾何学的表現は、3次元体積メッシュに離散化されてもよい。幾何学的表現は、各セグメントの血管壁の境界を表す表面メッシュを含み得る。
【0028】
いくつかの実施形態において、圧力場は、幾何学的表現、幾何学的データ、および境界条件のみを使用して決定され得る。
【0029】
いくつかの実施形態では、医療画像データは、磁気共鳴画像(MRI)、血管造影、血管内超音波(IVUS)、光干渉断層法(OCT)、および/またはコンピュータ断層撮影(CT)画像データであり得る。いくつかの実施形態では、画像データは、患者の1つ以上の冠状動脈セグメントのコンピュータ断層撮影画像データであり得る。
【0030】
本開示の追加的な利点は、一部は以下の説明に記載され、かつ一部はその説明から明らかであり、または本開示の実施により習得され得る。本開示の利点は、添付の特許請求の範囲で特に指摘される要素および組み合わせによって実現および達成されるであろう。前述の一般的な説明および以下の詳細な説明の両方は、例示および説明のみであり、かつ特許請求されるように、本開示を限定するものではないことを理解されたい。
【図面の簡単な説明】
【0031】
本開示は、以下の図面および説明を参照することでよりよく理解することができる。図
中の構成要素は必ずしも縮尺通りではなく、本開示の原理を説明することに重点が置かれている。
【0032】
【
図1】いくつかの実施形態による、血行動態情報を決定するために使用することができるシステムの一実施例を示す。
【
図2】いくつかの実施形態による、血行動態情報を決定する方法を示す。
【
図3】いくつかの実施形態による、医療画像データを使用して1つ以上の動脈セグメントの幾何学的表現を生成する方法を示す。
【
図4A-4E】実施形態による、幾何学的表現を生成するための画像の実施例を示す。
【
図5】実施形態による、境界条件を決定する方法を示す。
【
図6】コンピューティングシステムの一実施例を示すブロック図を示す。
【発明を実施するための形態】
【0033】
以下の説明では、本開示の実施形態の完全な理解を提供するために、特定の構成要素、デバイス、方法などの実施例などの多くの特定の詳細が述べられている。しかしながら、本開示の実施形態を実施するためにこれらの特定の詳細を使用する必要がないことは、当業者には明らかであろう。他の実例では、本開示の実施形態を不必要に曖昧にすることを避けるために、周知の材料または方法は詳細に説明されていない。本開示は、様々な修正形態および代替形態が可能であるが、その特定の実施形態は、実施例として図面に示されており、かつ本明細書で詳細に説明されることになる。しかしながら、当然のことながら、本開示を開示された特定の形態に限定する意図はなく、それどころか、本開示は、本開示の趣旨および範囲内にある全ての修正、均等物、および代替物を網羅する。
【0034】
本開示のシステムおよび方法は、冠状動脈セグメントなどの動脈セグメントの境界条件を正確に決定し、それにより、流れ測定などの侵襲的測定を必要とせずに、そのセグメントの血行動態情報(例えば、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせ)を決定することができる。安静時の拡張期Pd/Paは、iFRと類似していることが示されている。対照的に、平均拡張期血流は、冠状動脈の心周期全体にわたる平均流量よりも大きくなるため、充血性拡張期Pd/Paは、実施形態ではFFRよりも敏感である場合がある。加えて、最近の結果は、WSSが心筋梗塞を予測する可能性があることを示している。APSも同様に、iFRおよびFFRに関連する診断および予後の評価を改善する可能性がある。さらに、本開示のシステムおよび方法は、スーパーコンピュータなどのかなりの計算要件を必要とせずに、これらの尺度を効率的かつタイムリーに決定することができる。したがって、システムおよび方法は、臨床の設定において最小限の費用でかなり迅速な様式で、正確な境界条件および血流予備量比決定などの血行動態情報を提供することができる。これにより、患者のほぼリアルタイム(例えば、比較的短時間)の評価を提供することができ、例えば、病院の救急部門で患者が胸痛を呈する場合に、術者が臨床上の決定を下すことができ、それによって患者のための医療の質が改善する。
【0035】
図1は、実施形態による、患者の1つ以上の動脈セグメントの各幾何学的表現の血行動態情報を決定することができる、システム100を示している。いくつかの実施形態では、システム100は、医療画像取得デバイス110と、幾何学的決定ユニット120と、境界条件生成デバイス130と、流れ場決定デバイス140と、血行動態情報決定デバイス150と、を含んでもよい。
【0036】
医療画像取得デバイス110は、対象の血管系のうちの1つ以上の医療画像を取得するように構成されてもよい。いくつかの実施形態では、数ある中でも医療画像取得デバイス
100は、コンピュータ断層撮影(CT)取得デバイス、血管内超音波(IVUS)、二方向血管造影、血管内超音波(IVUS)、光干渉断層撮影(OCT)、磁気共鳴画像(MRI)、またはそれらの組み合わせを含んでもよいが、これらに限定されない。いくつかの実施形態では、システム100は、医療画像取得デバイス100によって取得された医療画像を保存するように構成された医療画像保存デバイスを含んでもよい。
【0037】
いくつかの実施形態では、幾何学的表現決定ユニット110は、少なくとも取得された医療画像データから1つ以上の動脈セグメントの幾何学的表現を生成するように構成されてもよい。1つ以上の動脈セグメントは、1つ以上の動脈のうちの一部分と、そこから延在する1つ以上の枝部と、を含んでもよい。
【0038】
いくつかの実施形態では、1つ以上の動脈セグメントは、1つ以上の冠状動脈セグメントを含んでもよい。1つ以上の冠状動脈セグメントは、対象の大動脈から生じる1つ以上の冠状動脈の一部分と、そこから延在する1つ以上の枝部と、を含んでもよい。1つ以上の冠状動脈セグメントは、左冠状動脈(LCA)および/または右冠状動脈(RCA)のうちの1つ以上の部分を含み得るが、これらに限定されない。左冠状動脈(LCA)の1つ以上の冠状動脈セグメントは、数ある中でも左主冠状動脈(LM)、左前下行枝(LAD)、左回旋動脈(「回旋」とも呼ばれる)、またはそれらの組み合わせを含み得るが、これらに限定されない。
【0039】
本開示は、冠状動脈セグメントに関して説明されている。しかしながら、1つ以上の動脈セグメントは、説明した冠状動脈セグメントに限定されず、数ある中でも他の冠状動脈セグメント、他のタイプの動脈セグメント、またはそれらの組み合わせを含み得ることが理解されよう。例えば、1つ以上の動脈セグメントは、脳動脈セグメント(複数可)、大腿動脈セグメント(複数可)、腸骨動脈セグメント(複数可)、膝窩動脈セグメント(複数可)、頸動脈セグメント(複数可)などを含み得る。
【0040】
いくつかの実施形態では、幾何学的表現は、1つ以上の動脈セグメントの空間体積の多次元(3-D)デジタルモデルであってもよい。例えば、1つ以上の動脈セグメントの幾何学的表現は、例えば、多面体(例えば、4面体)などの3次元体積メッシュに離散化されてもよい。いくつかの実施形態では、幾何学的表現は、各動脈セグメントの管腔の境界を表す表面メッシュを含み得る。
【0041】
いくつかの実施形態では、幾何学的表現決定ユニット110は、各動脈セグメントの境界を決定するように構成され得る。「境界」は、動脈セグメントの表現の断面を指してもよく、かつ数ある中でも血液が通って流れる断面に対応する流入境界、血流が通って外側に方向付けられる流入境界の下流または遠位に配置された断面に対応する1つ以上の流出境界、動脈壁の内側表面と流れる血液との間の境界面に対応する1つ以上の血管壁境界、またはそれらの組み合わせを含み得るが、これらに限定されない。
【0042】
いくつかの実施形態では、1つ以上の流出境界は、接合点(例えば、分岐、3分岐など、およびそれらの組み合わせ)に配置された、またはそれに隣接して配置された流出境界を含み得る。いくつかの実施形態では、1つ以上の流出境界は、左回旋動脈に配置された、またはそれに隣接して配置された流出境界を含み得る。いくつかの実施形態では、1つ以上の流出境界は、第1の流出境界と、流入境界と第1の流出境界との間に配置された第2の流出境界と、を含み得る。いくつかの実施形態では、第1の流出境界は、セグメントの遠位境界(すなわち、流入境界の下流に、またはそれから遠位に配置された断面)に対応し得る。いくつかの実施形態では、例えば、幾何学的表現が左冠状動脈を含む場合、第2の流出境界は、回旋に対応し得る。いくつかの実施形態では、第1の流出境界および第2の流出境界は、1つ以上の追加の流出境界、例えば少なくとも第3の流出境界によって
分離されてもよい。第3の流出境界は、枝部または分岐などの接合点に対応するか、またはそれに隣接していてもよい。
【0043】
いくつかの実施形態では、幾何学的表現決定ユニット110は、生成された幾何学的表現を使用して、各境界の幾何学的データを決定するように構成され得る。いくつかの実施形態では、幾何学的データは、数ある中でも半径、直径、円周、面積、またはそれらの組み合わせを含み得るが、これらに限定されない。
【0044】
いくつかの実施形態では、境界条件生成デバイス120は、各動脈セグメントの各境界の境界条件を決定するように構成され得る。実施例として、各セグメントの境界条件は、数ある中でも流入境界条件、流出境界条件、1つ以上の血管壁境界条件、またはそれらの組み合わせを含み得る。流入境界条件は、速度、流量、圧力、または他の特性についての値または値の範囲であり得る。各流入境界条件は、速度、流量、圧力、流入境界の割合、または他の特性についての値または値の範囲であり得る。各血管壁境界条件は、速度、流量、圧力、それらの組み合わせ、または他の特性についての値または値の範囲であり得る。
【0045】
いくつかの実施形態において、流入境界条件および/または流出境界条件の決定は、数ある中でも患者情報、安静状態、充血状態、他の生理学的状態(例えば、歩行、様々なレベルの運動など)、セグメントのタイプ(例えば、LCAまたはRCA)、またはそれらの組み合わせに基づいて決定され得る。
【0046】
いくつかの実施形態では、流入境界条件は、保存された値および/またはユーザによって指定された値であり得る。
【0047】
いくつかの実施形態では、流出境界条件は、流出分布パラメータを使用して決定され得る。流出分布パラメータは、幾何学的データおよび/または保存された血行動態データ132を使用して決定され得る。血行動態データ132は、流出境界の半径とそれぞれの流量との間の経験的関係を定義してもよく、またはそれを定義するために使用されてもよい。例えば、境界条件生成デバイス130は、保存された血行動態データ132と、セグメントの第1および第2の流出境界の半径とを使用して、流出分布パラメータを決定することができる。別の実施例では、境界条件生成デバイス130は、幾何学的データ(例えば、セグメントの第1の流出境界(遠位境界)の半径)のみを使用して、流出分布パラメータを決定することができる。流出分布パラメータを使用して、各流出境界の流出(例えば、速度、流量、流入の割合)を決定し、それによって各流出境界条件を決定することができる。
【0048】
実施例として、境界条件決定デバイス130によって決定された境界条件を、定常および/または非定常流量計算で使用して、流れ場(例えば、血流、圧力場、速度場、壁せん断応力など)およびその他の血行動態情報(例えば、FFR、iFRなど)を決定することができる。境界条件決定デバイス130はまた、最適化アプローチを使用して、動脈セグメントの流れの分割を定義する。したがって、境界条件生成デバイス130は、境界条件を決定する際の柔軟性、正確性、および効率性を提供することができる。
【0049】
いくつかの実施形態では、流れ場決定デバイス140は、患者の幾何学的表現、1つ以上の境界条件、および圧力データを使用して、各動脈セグメントの流れ場を決定するように構成され得る。いくつかの実施形態では、流れ場は、数ある中でも圧力場、速度場、壁せん断応力場、軸方向プラーク応力、またはそれらの組み合わせを含み得るが、これらに限定されない。
【0050】
いくつかの実施形態では、流れ場パラメータ(例えば、圧力場、速度など)は、幾何学的データおよび境界条件のみに基づいていてもよい。このようにして、流れ場決定デバイス140は、空間的位置のみに基づいて(すなわち、時間とは無関係に)流れ場を決定するように構成されてもよい。
【0051】
いくつかの実施形態では、血行動態情報決定デバイス150は、境界条件生成デバイス130によって決定された境界条件、流れ場決定デバイス140によって決定された流れ場、および患者固有の圧力データを使用して、患者の血行動態情報を決定するように構成することができる。いくつかの実施形態では、圧力データは、数ある中でも計算された流れ/圧力場、例えば、血圧カフによって決定される患者の平均血圧の非侵襲的決定、またはそれらの組み合わせから決定することができる。血行動態情報は、数ある中でも血流予備量比(FFR)、冠血流予備能(CFR)、瞬時血流予備量比(iFR)、充血応力予備比(HSR)、基底狭窄抵抗(BSR)、微小循環抵抗(IMR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指数、またはそれらの組み合わせを含み得るが、これらに限定されない。実施例としては、数ある中でもFFR、iFR、圧力比、および圧力指数について、血行動態情報は、セグメントの連続圧力比、インターフェース上でユーザが選択したユーザインターフェース上に表示される幾何学的表現上の位置に対応する離散圧力値、またはそれらの組み合わせを含み得るが、これらに限定されない。
【0052】
いくつかの実施形態では、血行動態情報を使用して、1つ以上の狭窄の機能的評価を決定することができる。いくつかの実施形態では、血行動態情報決定デバイスは、意思決定支援および介入計画のために血行動態情報および幾何学的表現を使用して、仮想介入シミュレーションを生成することができる。
【0053】
血行動態情報決定デバイス150は、数ある中でも幾何学的表現が表示され得るユーザインターフェースとインターフェースし、これによりユーザは血行動態情報(例えば、計算された圧力比)が決定される幾何学的表現上の位置を選択してもよく、例えば、局所狭窄を除去することにより、幾何学的表現を修正し、これにより血行動態情報が更新され得るようしてもよく、またはそれらの組み合わせを行ってもよい。このようにして、臨床医は、患者を評価しているときにほぼリアルタイムの意思決定を行うことができる。
【0054】
いくつかの実施形態では、医療画像取得デバイス110、幾何学的決定デバイス120、境界条件生成デバイス130、流れ場決定デバイス140、および血行動態情報決定デバイス150、ならびに保存された血行動態データ132は、通信ネットワークを介した接続性を有し得る。実施例として、システム100の通信ネットワークは、データネットワーク、無線ネットワーク、電話ネットワーク、またはそれらの任意の組み合わせなどの1つ以上のネットワークを含むことができる。データネットワークは、任意のローカルエリアネットワーク(LAN)、メトロポリタンエリアネットワーク(MAN)、広域ネットワーク(WAN)、公衆データ網(例えば、インターネット)、短距離無線ネットワーク、もしくは例えば、専用のケーブルもしくは光ファイバネットワークなどの商業所有の専用のパケット交換ネットワークなどの任意のその他の適切なパケット交換ネットワーク、NFC/RFID、RFメモリタグ、タッチディスタンス無線、またはそれらの任意の組み合わせとし得る。さらに、無線ネットワークは、例えば、セルラーネットワークであり得、グローバル進化型高速データレート(EDGE)、汎用パケット無線サービス(GPRS)、モバイル通信用グローバルシステム(GSM)、インターネットプロトコルマルチメディアサブシステム(IMS)、ユニバーサルモバイルテレコミュニケーションシステム(UMTS)など、ならびに例えば、マイクロ波アクセスの世界的な相互運用性(WiMAX)、ロングタームエボリューション(LTE)ネットワーク、コード分割多重アクセス(CDMA)、広帯域コード分割多重アクセス(WCDMA)、ワイヤレスフィ
ディリティー(WiFi)、無線LAN(WLAN)、Bluetooth(登録商標)、インターネットプロトコル(IP)データキャスティング、衛星、モバイルアドホックネットワーク(MANET)などのその他の任意の適切な無線媒体、またはそれらの任意の組み合わせ、を含む様々な技術を採用し得る。
【0055】
システム100のシステム/デバイスは直接的に接続されているように示されているが、システム/デバイスは、システム100の他のシステム/デバイスのうちの1つ以上に間接的に接続されてもよい。いくつかの実施形態では、システム/デバイスは、システム100の他のシステム/デバイスのうちの1つ以上にのみ直接的に接続されてもよい。
【0056】
また、システム100は、図示されたデバイスのいずれかを省略してもよく、かつ/または示されていない追加のシステムおよび/もしくはデバイスを含んでもよいことも理解されたい。システム100には各デバイスおよび/またはシステムのうちの1つが示されているが、複数のデバイスおよび/またはシステムがシステム100の部分であってもよいことをまた理解されたい。さらに、複数のデバイスおよび/またはシステムの各々は、異なっていてもよく、または同じであってもよいことを理解されたい。例えば、複数のデバイスのデバイスのうちの1つ以上は、他のデバイスのうちのいずれかでホストされる場合がある。別の実施例として、境界条件決定デバイス130は、異なる血行動態情報決定デバイスと通信してもよい。
【0057】
いくつかの実施形態では、システム100のデバイスのうちのいずれかは、ユーザデバイス上で動作可能であるプログラム命令を格納する、非一時的なコンピュータ可読媒体を含んでもよい。ユーザデバイスは、モバイルハンドセット、ステーション、ユニット、デバイス、マルチメディアコンピュータ、マルチメディアタブレット、インターネットノード、コミュニケータ、デスクトップコンピュータ、ラップトップコンピュータ、ノートブックコンピュータ、ネットブックコンピュータ、タブレットコンピュータ、パーソナルコミュニケーションシステム(PCS)デバイス、もしくはこれらのデバイスのアクセサリおよび周辺機器もしくはこれらの任意の組み合わせを含む、それらの組み合わせを含む、任意のタイプのモバイル端末、固定端末、もしくはポータブル端末、またはこれらの組み合わせであり得る。
図6は、ユーザデバイスの一実施例を示している。
【0058】
図2~
図5は、実施形態による、1つ以上の動脈セグメントの幾何学的表現の血行動態情報を決定する方法を示す。以下の考察から明らかなように別段の定めがない限り、当然のことながら、例えば、「更新する」、「修正する」、「生成する」、「決定する」、「表示する」、「得る」、「処理する」、「演算する」、「選択する」、「受信する」、「検出する」、「推定する」、「計算する」、「定量化する」、「出力する」、「取得する」、「分析する」、「検索する」、「入力する」、「評価する」、「実行する」などの用語は、コンピュータシステムのレジスタおよびメモリ内の物理的(例えば、電子的)量として表されるデータを、同様にコンピュータシステムのメモリもしくはレジスタ、またはその他のそのような情報の保存、送信、もしくは表示デバイス内の物理量として表される他のデータに操作および変換する、コンピュータシステムまたは同様の電子コンピューティングデバイスのアクションおよびプロセスを指し得る。本明細書に開示される方法の実施形態を実行するためのシステムは、
図1および
図6に示されるシステムに限定されない。他のシステムもまた、使用されてもよい。
【0059】
本開示の方法は、本明細書で説明されるステップに限定されない。ステップは、個別に修正または省略されてもよく、また追加的なステップが加えられてもよい。また、ステップのうちの少なくともいくつかは並行して実行されてもよいことが理解されよう。
【0060】
図2は、いくつかの実施形態による、患者の1つ以上の動脈セグメントの血行動態情報
を決定する方法200を示す。
【0061】
いくつかの実施形態では、方法200は、医療撮像システム110などの医療撮像システムによって取得された患者の医療画像データを受信するステップ210を含み得る。画像データとしては、数ある中でもCT画像データ、二方向血管造影、血管内超音波(IVUS)、光干渉断層撮影(OCT)、磁気共鳴画像(MRI)、またはそれらの組み合わせが挙げられ得るが、これらに限定されない。画像データは、患者の動脈を含む周囲の血管の1つ以上の領域を含んでもよい。
【0062】
実施例として、医療画像データは、臨床CTシステムを使用して患者の心臓CTスキャンから得られる、デジタル化された画像データであり得る。いくつかの実施形態では、画像データは、関心のある動脈および周囲の血管を含み得る、関心のある領域のうちの1つ以上の画像スライスを含み得る。CT画像に加えて、画像データは、数ある中でも二方向血管造影、血管内超音波(IVUS)、光干渉断層法(OCT)、磁気共鳴画像(MRI)、またはそれらの組み合わせなどの、他のソースからのものであってもよい。
【0063】
いくつかの実施形態では、患者の画像データをユーザに提示して、血行動態情報が生成されるべきである1つ以上の動脈セグメントを選択してもよい。代替として、システムは、どの動脈セグメントの血行動態情報を分析するべきかを自動的に決定してもよい。
【0064】
次に、いくつかの実施形態では、方法200は、患者のCT画像データから1つ以上の動脈セグメントの幾何学的表現を決定するステップ220を含み得る。いくつかの実施形態では、幾何学的表現は、1つ以上の動脈セグメントの空間体積の多次元(3-D)デジタルモデルであってもよい。1つ以上の動脈セグメントの幾何学的表現は、例えば、多面体(例えば、4面体)などの3次元メッシュ体積メッシュに離散化されてもよい。いくつかの実施形態では、幾何学的表現は、各動脈セグメントの血管壁(例えば、管腔)の境界を表す表面メッシュを含み得る。
【0065】
ステップ220は、幾何学的表現を使用して各動脈セグメントの境界を決定することと、各セグメントの各境界と関連付けられた幾何学的データを決定することと、を含んでもよい。各セグメントについて、境界は、数ある中でも流入境界、1つ以上の流出境界、血管壁境界、またはそれらの組み合わせを含み得る。例えば、このステップでは、幾何学的データは、流入境界および1つ以上の流出境界の半径を決定することを含んでもよい。
【0066】
次に、方法200は、幾何学的表現の各セグメントについて1つ以上の境界条件を決定するステップ230を含み得る。1つ以上の境界条件は、流入境界条件、1つ以上の流出境界条件、および1つ以上の血管壁境界条件を含み得る。
【0067】
いくつかの実施形態では、ステップ230は、流入境界条件を決定することを含み得る。流入境界条件は、数ある中でも得られた患者情報(例えば、心拍出量、心筋質量など)、またはそれらの組み合わせから決定される、ユーザによって入力された保存された値であり得る。いくつかの実施形態では、システムは、流入境界条件の1つ以上の値を保存してもよく、選択は、数ある中でも実行されるべき血行動態情報分析、医療画像データのタイプ(例えば、ニトログリセリンを用いたCTデータ、ニトログリセリンを用いないCTデータなど)、またはそれらの組み合わせに基づいてもよい。例えば、システムは、FFR分析(例えば、充血状態または高流量)の流入境界条件およびiFR分析(例えば、ベースラインまたは正常流量)、または様々な生理学的状態にわたる拡張期血圧(Pd)/大動脈圧(Pa)分析についての1つ以上の異なる値を保存してもよい。
【0068】
いくつかの実施形態では、ステップ230は、流出分布パラメータを使用して、1つ以
上の流出境界条件を決定することを含むことができる。流出分布パラメータは、幾何学的データおよび/または保存された血行動態データを使用して決定することができる。
【0069】
いくつかの実施形態では、流出分布パラメータが保存された血行動態データおよび幾何学的データを使用して決定される場合、方法200は、流出分布パラメータを決定するためにシステム上にローカルで、またはリモートで保存された血行動態データを取得するステップ232を含み得る。流出分布パラメータは、血行動態データを使用して、関連付けられた流出境界点半径の比率から決定される流出境界の比率を使用して決定されてもよい。
【0070】
いくつかの実施形態では、流出分布パラメータが幾何学的データのみを使用して決定される場合、流出分布パラメータは、流出境界の半径を使用して決定されてもよい。
【0071】
いくつかの実施形態では、ステップ230は、1つ以上の血管壁境界条件を決定することを含み得る。いくつかの実施形態において、1つ以上の血管壁境界条件は、数ある中でも血管壁上のヌル境界条件(すなわち、ゼロ速度)、正の境界条件、またはそれらの組み合わせを使用して決定されてもよい。
【0072】
次に、方法は、幾何学的表現(ステップ210)、1つ以上の境界条件、および圧力データ(例えば、大動脈圧データ)を使用して、各動脈セグメントの流れ場を決定するステップ240を含んでもよい。いくつかの実施形態では、例えば、カフ圧などの圧力データは、患者について取得されてもよく、かつ/または保存された値であってもよい。いくつかの実施形態では、流れ場は、数ある中でも圧力場、速度場、またはそれらの組み合わせを含み得るが、これらに限定されない。
【0073】
いくつかの実施形態では、速度場および/または圧力場は、境界および境界条件のみに基づいて決定されてもよい。例えば、速度場および/または圧力場は、速度変数および圧力変数が空間位置のみの関数である(すなわち、時間は考慮されない)定常流ナビエストークス方程式を使用して決定されてもよい。このようにして、圧力および速度をほぼリアルタイムで正確かつ効率的に決定することができ、これにより臨床医によるポイントオブケア分析が可能になる。
【0074】
いくつかの実施形態では、方法200は、圧力データを取得するステップ242を含み得る。いくつかの実施形態では、圧力データは、充血に対応し得る。いくつかの実施形態では、圧力データは、非侵襲的に取得された患者の圧力に対応し得る。例えば、圧力データは、上腕カフによって測定された平均圧力データから決定されてもよい。
【0075】
次に、方法200は、ステップ242からの圧力データ、およびステップ240で決定された流れ場(例えば、圧力場および/または速度場)を使用して、血行動態情報を決定するステップ250を含んでもよい。いくつかの実施形態では、血行動態情報としては、数ある中でも血流予備量比(FFR)、冠血流予備能(CFR)、瞬時血流予備量比(iFR)、充血応力予備比(HSR)、基底狭窄抵抗(BSR)、微小循環抵抗(IMR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指数、またはそれらの組み合わせが挙げられ得るが、これらに限定されない。
【0076】
実施例として、FFRおよびiFRの決定のために、セグメントの連続圧力比、および/またはインターフェース上でユーザが選択したユーザインターフェース上に表示される幾何学的表現上の位置に対応する離散圧力値が、決定され得る。FFRの決定のために、圧力比および/または個別の圧力値は、高流量または充血流量(例えば、流入境界条件の
値によって特徴付けられる)のものであり得、かつステップ240で決定された圧力データおよび圧力場を使用して決定され得る。iFRの決定のために、圧力比および/または個別の圧力値は、通常の流量またはベースラインの流量(例えば、流入境界条件の値によって特徴付けられる)のものであり得、かつステップ240で決定された圧力データおよび圧力場を使用して決定され得る。充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標の決定のために、圧力比および/または個別の圧力値は、それぞれ高流量または充血流量および正常の流量またはベースラインの流量に対して、拡張期の流れ(例えば、心周期の拡張期、または心周期の拡張期のサブセットにわたる流入境界条件の値によって特徴付けられる)について計算されてもよい。様々な生理学的状態にわたる圧力指数の決定のために、圧力指数(例えば、圧力比、2つの異なる幾何学的位置での圧力差、2つの異なる幾何学的位置での圧力差の比、および例えば、カフ圧または大動脈圧などの正規化圧力値)、圧力比および/または個別の圧力値は、充血および安静状態または正常状態などの異なる生理学的状態、ならびに例えば、歩行、軽度の運動、激しい運動などの様々な身体活動を表す他の生理学的状態を特徴付ける、様々な流れ値について計算されてもよく、その流れ値は、心周期全体もしくは拡張期のみ、または拡張期の任意のサブセットにわたっている。
【0077】
いくつかの実施形態では、WSSは、速度場を使用して決定され得る。いくつかの実施形態では、APSは、圧力場および速度場の両方を使用して決定され得る。WSSおよびAPSは、プラークもしくは損傷、または任意の関心のある領域などの境界壁の領域にわたって平均化されて、局在化された情報を提供することができる。境界壁のプラークもしくは損傷、または任意の関心のある領域の決定は、境界壁の幾何学的特性、圧力および速度場、またはそれらの組み合わせを使用して決定され得る。WSSおよびAPSは、iFRの決定、FFRの決定、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標の決定、様々な生理学的状態にわたる圧力指数の決定、またはそれらの組み合わせに加えて決定することができる。
【0078】
次に、方法200は、数ある中でも血行動態情報、幾何学的表現(複数可)を出力するステップ260を含み得る。例えば、血行動態情報の値は、ユーザインターフェース(例えば、表示デバイス)上に表示されてもよい。いくつかの実施形態では、血行動態情報の値は、ユーザインターフェース上の関連付けられた幾何学的表現上のそれらの対応する位置で、それらの値を重ね合わせることによって表示することができる。
【0079】
ユーザは、例えば、幾何学的表現で表される冠状動脈セグメントのうちの1つ以上に冠状ステントを配置する(例えば、1つ以上の狭窄をそれによって除去する仮想ステント留置)1つ以上の治療を、例えば、モデル化するために、幾何学的表現および/または境界条件を修正してもよいことが理解されよう。次に、更新された幾何学的表現および/または血行動態情報を生成するために、例えば、治療オプション(複数可)が適用される場合に血流速度および/または圧力に変化があるかどうかを決定するために、上述のようにコンピュータ分析を実行してもよい。1つ以上の生成された幾何学的表現および/または血行動態情報は、ユーザインターフェース上でユーザ(例えば、臨床医)に表示されてもよい。
【0080】
幾何学的表現の生成
図3は、1つ以上の動脈セグメントの幾何学的表現を生成し、かつ生成された幾何学的表現を使用して、境界および境界と関連付けられた幾何学的データを決定する方法300を示す。
【0081】
いくつかの実施形態では、方法300は、画像データをセグメント化して、1つ以上の冠状動脈セグメントを含む1つ以上の主要血管の3D幾何学的表現を生成するステップ3
10を含んでもよい。
図4Aは、セグメント化されたCT画像データの一実施例を示す。
【0082】
次に、方法300は、セグメント化された画像において提供される各動脈セグメントの血管壁(例えば、管腔境界)を表す表面を再構成するステップ320を含んでもよい。いくつかの実施形態では、ステップ320は、血管壁と流れる血液との間の区域/境界面の表面メッシュを生成することと、表面メッシュをさらに平滑化して、例えば、局所的なアーチファクトによる表面不規則性を低減することと、を含み得る。例えば、数ある中でも表面メッシュは、マーチングキューブ、制限ドローネ三角形分割、またはそれらの組み合わせを使用して生成され得る。
図4Bは、
図4Aに示すセグメント化された画像から再構成された表面を示す。
【0083】
次に、方法300は、処理された画像データ(ステップ320)から1つ以上の動脈セグメントを決定するステップ330を含んでもよい。例えば、冠状動脈セグメントに関して、1つ以上の動脈セグメントは、RCA、LCA、左前下行枝ジオメトリ、左主ジオメトリ、および/または左回旋(LCx)を含んでもよい。
【0084】
いくつかの実施形態では、ステップ330は、RCAおよびLCAなどの分析される1つ以上の動脈セグメントを、大動脈および他の木構造などの周囲の血管から分離することを含んでもよい。
【0085】
いくつかの実施形態では、ステップ330は、分離されたセグメントを、1つ以上の動脈セグメントにクリッピングまたはトリミングすることをさらに含んでもよい。例えば、LCAは、2つのセグメント:1)LM/LAD、および2)回旋に分離されてもよく、これらのセグメントのうちの一方または両方は、個別に分析され得る。
図4Cは、
図4Bに示した、異なるセグメントでラベル付けされたセグメント化された画像を示す。
【0086】
いくつかの実施形態では、方法300は、各セグメントに関連付けられた境界を決定および識別するステップ340を含んでもよい。例えば、境界は、流入境界(Bin)、1つ以上の流出境界、血管壁境界、またはそれらの組み合わせを含み得る。いくつかの実施形態では、1つ以上の流出境界(例えば、Bi、Bd、Bc、Bi+1)は、第1の流出境界と、流入境界と第1の流出境界との間に配置された第2の流出境界と、を含み得る。いくつかの実施形態では、第1の流出境界は、セグメントの遠位境界(例えば、Bd)に対応し得る。いくつかの実施形態では、例えば、幾何学的表現が左冠状動脈を含む場合、第2の流出境界は、回旋(Bc)に対応し得る。いくつかの実施形態では、第1の流出境界および第2の流出境界は、第3の流出境界によって分離されてもよい。
【0087】
いくつかの実施形態では、方法300は、各セグメントについて体積メッシュを生成するステップ350を含んでもよい。複数の体積要素によって表される体積メッシュは、幾何学的表現の体積を離散化し得る。例えば、システムは、各ジオメトリの内部を複数の体積要素で満たすことを含してもよい。体積要素は、数ある中でも四面体、六面体、楔形、またはそれらの組み合わせを含むが、これらに限定されない、任意の閉じた多面体の形態をとってもよい。
【0088】
いくつかの実施形態では、方法は、各セグメントに関して境界にインデックスを付けるステップ360を含んでもよい。各セグメントの境界は、数ある中でも別個の識別子で、表現における異なる色で、またはそれらの組み合わせでインデックス付けされてもよい。実施例として、各境界は、幾何学的表現において異なる色で示されてもよい。
図4Dは、流入境界442および流出境界444が識別され、かつインデックス付けされた、(ステップ350からの)生成された幾何学的表現440の分離されたセグメントの一実施例を示す。
【0089】
いくつかの実施形態では、方法300は、各セグメントの境界の幾何学的データを決定するステップ370を含み得る。この実施例では、幾何学的データは、流入境界および各セグメントの各流出境界の半径を決定することを含み得る。
【0090】
図4Eは、冠状動脈セグメント:1)LMの一部分を有するLAD、2)回旋、および3)RCA、を有するラベル付けされた幾何学的表現の一実施例を示す。この実施例では、各セグメントについて、境界が識別されており、かつ各境界について、半径(R)が決定されている。この実施例に示すように、LADおよびLMの一部分に対応するセグメントについて、境界および関連付けられた半径は、流入境界(Bin)および関連付けられた半径(Rin)と、回旋境界(Bc)および関連付けられた半径(Rc)と、追加の流出境界(Bi)および関連付けられた半径(Ri)と、遠位流出境界(Bd)および関連付けられた半径(Rd)と、を含み得る。左回旋(Cflex)に対応するセグメントについて、境界および関連付けられた半径は、流入境界(Bin)および関連付けられた半径(Rin)と、第1の追加の流出境界(Bi)および関連付けられた半径(Ri)と、第2の追加の流出境界(Bi+1)および関連付けられた半径(Ri+1)と、遠位流出境界(Bd)および関連付けられた半径(Rd)と、を含み得る。左右の冠状動脈(RCA)に対応するセグメントについては、流入境界(Bin)および関連付けられた半径(Rin)、追加の流出境界(Bi)および関連付けられた半径(Ri)、ならびに遠位流出境界(Bd)および関連付けられた半径(Rd)である。
【0091】
境界条件の決定
図5は、いくつかの実施形態による、流出分布パラメータを使用して、各セグメントの各境界の境界条件を決定する方法500を示す。いくつかの実施形態では、流出分布パラメータは、セグメントの幾何学的データおよび/または保存された血行動態データを使用して決定され得る。
【0092】
いくつかの実施形態では、方法500は、流入境界条件(Qin)を決定するステップ510を含み得る。流入境界条件は、数ある中でも、例えば、セグメントタイプに基づいて、患者情報(例えば、BMI、心臓質量、年齢、性別、患者がニトログリセリンを受けたかどうかなど)に基づいて、実行される血行動態情報分析に基づいて(例えば、iFRまたはFFR)、様々な生理学的活動(例えば、安静、充血、運動レベルなど)に基づいて、またはそれらの組み合わせにおいて、ユーザがシステムに保存されているデフォルト値を特定してもよい。
【0093】
いくつかの実施形態では、流出分布パラメータは、幾何学的データおよび保存された血行動態データを使用して決定され得る。
【0094】
いくつかの実施形態では、方法500は、関連付けられた半径比(すなわち、セグメントのそれぞれの流出境界の半径)に基づいて、流出境界条件比を決定するステップ520を含んでもよい。いくつかの実施形態では、ステップ520は、(i)流出境界の半径とそれぞれの流量との間の経験的関係を定義する取得された血行動態データ、および(ii)セグメントの関連付けられた半径比を使用して、流出境界のうちの1つ以上の間の流出境界条件比(すなわち、流量比)を決定することを含み得る。例えば、第1の流出境界および第2の流出境界の半径を使用して、流出条件比を決定し得る。
【0095】
実施例として、LM+LADセグメントについて、遠位流出境界(Rd)および回旋境界(Rc)の半径の比率(Rc/Rd)は、保存された血行動態データを使用して、これらの流出境界間の流出流量の流出境界比(Qc/Qd)を決定するために使用され得る。
【0096】
いくつかの実施形態では、方法500は、セグメントの保存された血行動態データおよび半径から決定された流出境界条件比に基づいて、流出分布パラメータ(k)を決定するステップ530を含んでもよい。LM+LADを含むセグメントの実施例として、流出分布パラメータは、周知のマレーの法則(別名、3乗法則)の以下の適応に対応し得る:
【数1】
本システムは3乗法則に限定されず、通常は2~3の範囲内の指数3とは異なる他の累乗パラメータが考慮され得る。
いくつかの実施形態では、流出分布パラメータは、幾何学的データのみを使用して決定され得る。いくつかの実施形態では、ステップ520および530は、修正および/または省略されてもよい。流出分布パラメータは、流出境界の半径のみを使用して決定され得る。実施例として、流出分布パラメータは、周知の以下のマレーの法則
【数2】
(別名、3乗法則)の適応に対応し得る。本システムは3乗法則に限定されず、通常は2~3の範囲内の指数3とは異なる他の累乗パラメータを考慮することができる。
【0097】
次に、方法500は、流出分布パラメータおよび流入境界条件を使用して、遠位流出境界条件を含む各流出境界条件を決定するステップ540を含み得る。例えば、いくつかの実施形態では、ステップ550は、最小二乗最小化アプローチを使用して、セグメントの流出境界間の流量分布を決定することを含み得る。
【0098】
コンピュータシステム
システム100のデバイスおよび/またはシステムのうちの1つ以上は、コンピュータシステムおよび/もしくはデバイスであってもよく、かつ/またはそれらを含んでもよい。
図6は、コンピュータシステム600の一実施例を示すブロック図である。コンピュータシステム600のモジュールは、システムおよび/またはモジュールのうちの少なくともいくつか、ならびにシステム100の他のデバイスおよび/またはシステムに含まれ得る。
【0099】
本明細書に開示される方法の実施形態を実行するためのシステムは、
図1および
図6に示されるシステムに限定されない。他のシステムがまた、使用されてもよい。また、システム600は、図示されたモジュールのいずれかを省略してもよく、かつ/または示されていない追加のモジュールを含んでもよいことも理解されたい。
【0100】
図6に示されるシステム600は、電気接続またはデータ接続(図示せず)を介して互いに通信する、任意の数のモジュールを含んでもよい。いくつかの実施形態では、モジュールは、任意のネットワーク(例えば、有線ネットワーク、無線ネットワーク、またはそれらの組み合わせ)を介して接続されてもよい。
【0101】
システム600は、例えば、ワークステーション、コンピュータなどのコンピューティングシステムであってもよい。システム600は、1つ以上のプロセッサ612を含み得る。プロセッサ(複数可)612(中央処理装置、またはCPUとも称される)は、任意の既知の中央処理装置、プロセッサ、またはマイクロプロセッサであり得る。CPU61
2は、1つ以上のコンピュータ可読記憶媒体(例えば、メモリ)614に直接的または間接的に連結されてもよい。メモリ614は、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、ディスクドライブ、テープドライブなど、またはそれらの組み合わせを含んでもよい。メモリ614は、データ構造を含むプログラムおよびデータを保存するように構成されてもよい。いくつかの実施形態では、メモリ614はまた、データアレイを保存するためのフレームバッファも含んでもよい。
【0102】
いくつかの実施形態では、別のコンピュータシステムは、CPU612のデータ分析または他の機能を担う場合がある。入力デバイスから受信したコマンドに応じて、メモリ614に保存されたプログラムまたはデータは、長期ストレージにアーカイブされてもよく、またはプロセッサによってさらに処理されて、ディスプレイ上に表示されてもよい。
【0103】
いくつかの実施形態では、システム600は、システムおよび/またはネットワーク上の他のモジュール間でデータの受信および送信を行うように構成された通信インターフェース616を含んでもよい。通信インターフェース616は、有線および/もしくは無線インターフェース、交換回線無線インターフェース、データ処理デバイスのネットワーク(LAN、WAN、インターネットなど)、またはそれらの組み合わせであってもよい。通信インターフェースは、ネットワーク上の少なくとも別のモジュールとの通信を確立および維持するために、Bluetooth、無線、およびEthernetなどの様々な通信プロトコルを実行するように構成され得る。
【0104】
いくつかの実施形態では、システム610は、1つ以上の入力デバイス620(例えば、キーボード、マウスなど)から情報を受信し、かつ/または1つ以上の出力デバイス620(例えば、プリンタ、CDライター、DVDライター、ポータブルフラッシュメモリなど)に情報を伝達するように構成された入力/出力インターフェース618を含み得る。いくつかの実施形態では、1つ以上の入力デバイス620は、数ある中でも、管理計画および/またはプロンプトの生成、ディスプレイ上への管理計画および/またはプロンプトの表示、プリンタインターフェースによる管理計画および/またはプロンプトの印刷、管理計画および/またはプロンプトの送信などを制御するように構成され得る。
【0105】
いくつかの実施形態では、開示された方法(例えば、
図2~
図5)は、メモリに保存され、かつシステム100に設けられたプロセッサ(例えば、CPU)によって実行される、ソフトウェアアプリケーションを使用して実装され得る。いくつかの実施形態では、開示された方法は、メモリに保存され、かつシステム全体に分配されたCPUによって実行される、ソフトウェアアプリケーションを使用して実装され得る。
【0106】
このように、システム100のシステムおよび/またはモジュールのいずれかは、本開示のルーチンおよび方法を実行するときに特定用途のコンピュータシステムになる、システム600などの汎用コンピュータシステムであってもよい。システム100のシステムおよび/またはモジュールはまた、オペレーティングシステムおよびマイクロ命令コードも含んでもよい。本明細書で説明される様々なプロセスおよび機能は、オペレーティングシステムを介して実行されるマイクロ命令コードの一部、またはアプリケーションプログラムもしくはルーチン(またはそれらの組み合わせ)の一部のいずれかであり得る。
【0107】
認識された標準に準拠したプログラミング言語で記述されている場合、方法を実装するように設計された一連の命令をコンパイルして、様々なハードウェアシステムで実行し、かつ様々なオペレーティングシステムにインターフェースすることができる。さらに、実施形態は、いかなる特定のプログラミング言語を参照して説明されていない。本開示の実施形態を実装するために、様々なプログラミング言語を使用し得ることが理解されよう。説明した機能を実施するためのハードウェアの実施例は、
図1および
図6に示される。さ
らに、添付の図に示されている構成システム構成要素および方法ステップの一部はソフトウェアで実装することができるため、システム構成要素(またはプロセスステップ)間の実際の接続は、開示がプログラムされている様式によって異なる場合がある。本明細書で提供される本開示の教示を仮定すると、当業者は、本開示のこれらおよび同様の実装形態または構成を企図することができるであろう。
【0108】
本開示を例示的な実施形態を参照して詳細に説明してきたが、当業者は、添付の特許請求の範囲に記載の本開示の趣旨および範囲から逸脱することなく、これらに対して様々な修正および置換がなされてもよいことを理解するであろう。例えば、異なる例示的な実施形態の要素および/または特徴は、本開示および添付の特許請求の範囲内で互いに組み合わされてもよく、かつ/または互いに置き換えられてもよい。
【手続補正書】
【提出日】2023-06-07
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
患者の血行動態情報を決定するコンピュータ実装方法であって、
医療画像取得デバイスによって取得された患者の医療画像データを受信することであって、前記医療画像データが、1つ以上の動脈セグメントおよび周囲の区域における組織および血液の表現を含み、様々なグレースケールのボクセルにより特徴付けられる、受信することと、
前記医療画像データから前記1つ以上の動脈セグメントの幾何学的表現を生成することであって、得られる幾何学的表現は、前記1つ以上の動脈セグメントの管腔の空間体積の3次元モデルである、生成することと、
各動脈管腔セグメントの境界および幾何学的データを決定することであって、前記動脈管腔セグメントの境界が、各動脈セグメントの管腔容積および前記管腔容積の流入境界と、1つ以上の流出境界と、追加の流出境界であって、その各々が前記1つ以上の動脈セグメントの枝部または分岐部を表し、前記流入境界と前記1つ以上の流出境界の第1の流出境界との間に配置された追加の流出境界とを含み、前記流入境界および前記1つ以上の流出境界が、前記各動脈セグメントの管腔断面に対応し、かつ前記幾何学的データが、前記流入境界の半径および各流出境界の半径を含む、決定することと、
前記3次元モデルを使用して前記幾何学的表現の境界条件を決定することであって、前記境界条件が、前記管腔容積と動脈壁との間の境界面と、診断対象の選択された血行動態パラメータの決定のために最適化された経験的パラメータに基づく前記流入境界の流入境界条件と、各流出境界の流出境界条件とを含み、各流出境界の前記流出境界条件が、流出分布パラメータを使用して決定され、前記流出分布パラメータが、前記1つ以上の流出境界のうちの1つ以上の前記幾何学的データ、前記追加の流出境界、保存された血行動態データ、またはそれらの組み合わせを使用して決定され、前記セグメントの前記流出境界の各々の最終的な流出量の分布が、全流出境界を包含する流出エネルギーの最小化アプローチを使用して決定される、決定することと、
前記幾何学的表現内でメッシュ技術を使用し、前記境界条件のすべてを組み込み、各動脈セグメントの患者特有の流れ場を決定することであって、計算の反復が収束に進むにつれて流出分布境界条件を更新することを含む、決定することと、
前記流れ場からの、前記管腔容積内の圧力、速度および壁せん断応力を含む血行動態情報と、血流予備量比、安静圧比、または動脈プラークに作用する力を含む診断血行動態指標とを決定することと、
前記血行動態情報のインタラクティブ表示出力を提供することであって、前記血行動態情報のインタラクティブ表示出力は、ユーザ入力の受信により、動脈セグメントを操作し、前記セグメント内の圧力比をクエリし、血管セグメンテーションを編集し、前記血行動態情報に関連する診断情報を評価することを可能にする、提供することと、を含む、方法。
【請求項2】
前記1つ以上の動脈セグメントが、前記1つ以上の冠状動脈セグメントに対応する、請求項1に記載の方法。
【請求項3】
前記流出分布パラメータが、前記第1の流出境界の半径と第2の流出境界の半径との比率、および前記保存された血行動態データを使用して決定され、かつ
前記保存された血行動態データが、(i)前記第1の流出境界の前記半径と前記第2の流出境界の前記半径との比率と、(ii)前記第1の流出境界の流出境界条件と前記第2の流出境界の流出境界条件との第2の比率と、の間の経験的関係を定義する、請求項2に記載の方法。
【請求項4】
前記1つ以上の流出境界が、前記流入境界と前記第1の流出境界との間に配置された追加の流出境界を含み、かつ
前記流出分布パラメータが、前記第1の流出境界、前記第2の流出境界、および各追加の流出境界の流出境界条件を決定するために使用される、請求項3に記載の方法。
【請求項5】
前記1つ以上の動脈セグメントの前記幾何学的表現が、3次元体積メッシュに離散化され、かつ
前記幾何学的表現が、各セグメントの血管壁の境界を表す表面メッシュを含む、請求項1~4のいずれかに記載の方法。
【請求項6】
前記流れ場が、前記幾何学的表現と、前記幾何学的データと、前記境界条件と、のみを使用して、決定される、請求項1~5のいずれかに記載の方法。
【請求項7】
前記医療画像データが、前記患者のコンピュータ断層撮影画像データである、請求項1~6のいずれかに記載の方法。
【請求項8】
前記血行動態情報が、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせを含む、請求項1~7のいずれかに記載の方法。
【請求項9】
前記幾何学的表現の前記セグメントのうちの1つ以上に沿って配置された仮想ステントの位置に関する情報を受信することと、
前記血行動態情報の前記表示出力を更新することと、をさらに含む、請求項1~8のいずれかに記載の方法。
【請求項10】
患者の血行動態情報を決定するためのシステムであって、前記システムが、
少なくとも1つのプロセッサと、
メモリと、を含み、前記プロセッサが、
医療画像取得デバイスによって取得された前記患者の医療画像データを取得することであって、前記医療画像データが、1つ以上の動脈セグメントおよび周囲の区域における組織および血液の表現を含み、様々なグレースケールのボクセルにより特徴付けられる、取得することと、
前記医療画像データから前記1つ以上の動脈セグメントの幾何学的表現を生成することであって、得られる幾何学的表現は、前記1つ以上の動脈セグメントの管腔の空間体積の3次元モデルである、生成することと、
各動脈管腔セグメントの境界および幾何学的データを決定することであって、前記動脈管腔セグメントの境界が、各動脈セグメントの管腔容積および前記管腔容積の流入境界と、1つ以上の流出境界と、追加の流出境界であって、その各々が前記1つ以上の動脈セグメントの枝部または分岐部を表し、前記流入境界と前記1つ以上の流出境界の第1の流出境界との間に配置された追加の流出境界とを含み、前記流入境界および前記1つ以上の流出境界が、各動脈セグメントの管腔断面に対応し、前記幾何学的データが、前記流入境界および各流出境界の半径を含む、決定することと、
前記3次元モデルを使用して前記幾何学的表現の境界条件を決定することであって、前記境界条件が、前記管腔容積と動脈壁との間の境界面と、診断対象の選択された血行動態パラメータの決定のために最適化された経験的パラメータに基づく前記流入境界の流入境界条件と、各流出境界の流出境界条件とを含み、各流出境界の前記流出境界条件が、流出分布パラメータを使用して決定され、前記流出分布パラメータが、前記1つ以上の流出境界のうちの1つ以上の前記幾何学的データ、前記追加の流出境界、保存された血行動態データ、またはそれらの組み合わせを使用して決定され、前記セグメントの前記流出境界の各々の最終的な流出量の分布が、全流出境界を包含する流出エネルギーの最小化アプローチを使用して決定される、決定することと、
前記幾何学的表現内でメッシュ技術を使用し、前記境界条件のすべてを組み込み、各動脈セグメントの患者特有の流れ場を決定することであって、計算の反復が収束に進むにつれて流出分布境界条件を更新することを含む、決定することと、
前記流れ場からの、前記管腔容積内の圧力、速度および壁せん断応力を含む血行動態情報と、血流予備量比、安静圧比、または動脈プラークに作用する力を含む診断血行動態指標とを決定することと、
前記血行動態情報のインタラクティブ表示出力を提供することであって、前記血行動態情報のインタラクティブ表示出力は、ユーザ入力の受信により、動脈セグメントを操作し、前記セグメント内の圧力比をクエリし、血管セグメンテーションを編集し、前記血行動態情報に関連する診断情報を評価することを可能にする、提供することと、を行うように構成される、システム。
【請求項11】
前記1つ以上の動脈セグメントが、前記1つ以上の冠状動脈セグメントに対応する、請求項10に記載のシステム。
【請求項12】
前記流出分布パラメータが、前記第1の流出境界の半径と第2の流出境界の半径との比率、および前記保存された血行動態データを使用して決定され、かつ
前記保存された血行動態データが、(i)前記第1の流出境界の前記半径と前記第2の流出境界の前記半径との前記比率と、(ii)前記第1の流出境界の前記流出境界条件と前記第2の流出境界の前記流出境界条件との第2の比率と、の間の経験的関係を定義する、請求項10または11に記載のシステム。
【請求項13】
前記1つ以上の流出境界が、前記流入境界と前記第1の流出境界との間に配置された追加の流出境界を含み、かつ
前記流出分布パラメータが、前記第1の流出境界、前記第2の流出境界、および各追加の流出境界の流出境界条件を決定するために使用される、請求項12に記載のシステム。
【請求項14】
前記1つ以上の動脈セグメントの前記幾何学的表現が、3次元体積メッシュに離散化され、かつ
前記幾何学的表現が、各セグメントの血管壁の境界を表す表面メッシュを含む、請求項10~13のいずれかに記載のシステム。
【請求項15】
前記流れ場が、前記幾何学的表現と、前記幾何学的データと、前記境界条件と、のみを使用して、決定される、請求項10~14のいずれかに記載のシステム。
【請求項16】
前記医療画像データが、前記患者のコンピュータ断層撮影画像データである、請求項10~15のいずれかに記載のシステム。
【請求項17】
前記血行動態情報が、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせを含む、請求項10~16のいずれかに記載のシステム。
【請求項18】
前記幾何学的表現の前記セグメントのうちの1つ以上に沿って配置された仮想ステントの位置に関する情報が、受信され、かつ前記血行動態情報の前記表示出力が、前記情報に従って更新される、請求項10~17のいずれかに記載のシステム。
【請求項19】
患者の動脈の解剖学的構造の幾何学的表現の境界条件を決定するコンピュータ実装方法であって、
医療画像取得デバイスによって取得された前記患者の医療画像データを受信することであって、前記医療画像データが、1つ以上の動脈セグメントおよび周囲の区域における組織および血液の表現を含み、様々なグレースケールのボクセルにより特徴付けられる、受信することと、
前記医療画像データから前記1つ以上の動脈セグメントの幾何学的表現を生成することであって、得られる幾何学的表現は、前記1つ以上の動脈セグメントの管腔の空間体積の3次元モデルである、生成することと、
前記3次元モデルを使用して各動脈管腔セグメントの境界および幾何学的データを決定することであって、前記動脈管腔セグメントの境界が、各動脈セグメントの前記管腔容積の流入境界および1つ以上の流出境界を含み、前記流入境界および前記1つ以上の流出境界が、前記各動脈セグメントの管腔断面に対応し、前記1つ以上の流出境界が、第1の流出境界および第2の流出境界を含み、前記第2の流出境界が、前記1つ以上の動脈セグメントの枝部または分岐部を表し、前記第1の流出境界と前記流入境界との間に配置され、前記幾何学的データが、前記流入境界および各流出境界の半径を含む、決定することと、
前記1つ以上の流出境界のうちの1つ以上の前記幾何学的データおよび保存された血行動態データを使用して、流出分布パラメータを決定することであって、前記血行動態データが、(i)前記第1の流出境界の前記半径と前記第2の流出境界の前記半径との比率と、(ii)前記第1の流出境界の前記流出境界条件と前記第2の流出境界の前記流出境界条件との比率と、の間の経験的関係を定義し、前記セグメントの前記流出境界の各々の最終的な流出量の分布が、全流出境界を包含する流出エネルギーの最小化アプローチを使用して決定される、決定することと、
前記流出分布パラメータおよび前記流入境界を使用して、各流出境界の流出境界条件を決定することと、
前記幾何学的表現のインタラクティブ表示出力を提供することであって、前記幾何学的表現のインタラクティブ表示出力は、ユーザ入力の受信により、動脈セグメントを操作し、前記セグメント内の圧力比をクエリし、血管セグメンテーションを編集することを可能にする、提供することと、を含む、方法。
【請求項20】
前記1つ以上の動脈セグメントが、前記1つ以上の冠状動脈セグメントに対応する、請求項19に記載の方法。
【請求項21】
前記流出分布パラメータが、前記第1の流出境界と前記第2の流出境界の半径の前記比率、および前記保存された血行動態データを使用して決定され、かつ
前記1つ以上の流出境界が、前記流入境界と前記第1の流出境界との間に配置された追加の流出境界を含む、請求項19または20に記載の方法。
【請求項22】
前記幾何学的表現、前記境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することであって、前記流れ場が、圧力場を含む、決定することと、
前記患者の前記境界条件、前記流れ場、および圧力データのうちの1つ以上を使用して、血行動態情報を決定することと、をさらに含む、請求項19~21のいずれかに記載の方法。
【請求項23】
前記保存された血行動態情報が、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせを含む、請求項22に記載の方法。
【請求項24】
前記1つ以上の動脈セグメントの前記幾何学的表現が、3次元体積メッシュに離散化され、
前記幾何学的表現が、各セグメントの血管壁の境界を表す表面メッシュを含む、請求項19~23のいずれかに記載の方法。
【請求項25】
前記流れ場が、前記幾何学的表現、前記幾何学的データ、および前記境界条件のみを使用して、決定される、請求項22~24のいずれかに記載の方法。
【請求項26】
前記医療画像データが、前記患者のコンピュータ断層撮影画像データである、請求項19~24のいずれかに記載の方法。
【請求項27】
前記幾何学的表現の前記セグメントのうちの1つ以上に沿って配置された仮想ステントの位置に関する情報を受信することと、
血行動態情報の前記表示出力を更新することと、をさらに含む、請求項19~26のいずれかに記載の方法。
【請求項28】
患者の動脈の解剖学的構造の幾何学的表現の境界条件を決定するシステムであって、前記システムが、
少なくとも1つのプロセッサと、
メモリと、を含み、前記プロセッサが、
医療画像取得デバイスによって取得された前記患者の医療画像データを受信することであって、前記医療画像データが、1つ以上の動脈セグメントおよび周囲の区域における組織および血液の表現を含み、様々なグレースケールのボクセルにより特徴付けられる、受信することと、
前記医療画像データから前記1つ以上の動脈セグメントの幾何学的表現を生成することであって、得られる幾何学的表現は、前記1つ以上の動脈セグメントの管腔の空間体積の3次元モデルである、生成することと、
前記3次元モデルを使用して各動脈管腔セグメントの境界および幾何学的データを決定することであって、前記動脈管腔セグメントの境界が、各動脈セグメントの前記管腔容積の流入境界および1つ以上の流出境界を含み、前記流入境界および前記1つ以上の流出境界が、前記各動脈セグメントの管腔断面に対応し、前記1つ以上の流出境界が、第1の流出境界および第2の流出境界を含み、前記第2の流出境界が、前記1つ以上の動脈セグメントの枝部または分岐部を表し、前記第1の流出境界と前記流入境界との間に配置され、前記幾何学的データが、前記流入境界および各流出境界の半径を含む、決定することと、
前記1つ以上の流出境界のうちの1つ以上の前記幾何学的データおよび保存された血行動態データを使用して、流出分布パラメータを決定することであって、前記血行動態データが、(i)前記第1の流出境界の前記半径と前記第2の流出境界の前記半径との比率と、(ii)前記第1の流出境界の前記流出境界条件と前記第2の流出境界の前記流出境界条件との比率と、の間の経験的関係を定義し、前記セグメントの前記流出境界の各々の最終的な流出量の分布が、全流出境界を包含する流出エネルギーの最小化アプローチを使用して決定される、決定することと、
前記流出分布パラメータおよび前記流入境界を使用して、各流出境界の流出境界条件を決定することと、
前記幾何学的表現のインタラクティブ表示出力を提供することであって、前記幾何学的表現のインタラクティブ表示出力は、ユーザ入力の受信により、動脈セグメントを操作し、前記セグメント内の圧力比をクエリし、血管セグメンテーションを編集することを可能にする、提供することと、を行うように構成されている、システム。
【請求項29】
前記1つ以上の動脈セグメントが、前記1つ以上の冠状動脈セグメントに対応する、請求項28に記載のシステム。
【請求項30】
前記流出分布パラメータが、前記第1の流出境界の半径と前記第2の流出境界の半径との前記比率、および前記保存された血行動態データを使用して決定され、
前記1つ以上の流出境界が、前記流入境界と前記第1の流出境界との間に配置された追加の流出境界を含む、請求項28または29に記載のシステム。
【請求項31】
前記プロセッサが、
前記幾何学的表現、前記境界条件のうちの1つ以上、および圧力データを使用して、各動脈セグメントの流れ場を決定することであって、前記流れ場が、圧力場を含む、決定することと、
前記患者の前記境界条件、前記流れ場、および圧力データのうちの1つ以上を使用して、血行動態情報を決定することと、をさらに行うように構成される、請求項28~30のいずれかに記載のシステム。
【請求項32】
前記保存された血行動態情報が、血流予備量比(FFR)、瞬時血流予備量比(iFR)、壁せん断応力(WSS)、軸方向プラーク応力(APS)、充血および安静拡張期圧(Pd)/大動脈圧(Pa)指標、様々な生理学的状態にわたる圧力指標、またはそれらの組み合わせを含む、請求項31に記載のシステム。
【請求項33】
前記1つ以上の動脈セグメントの前記幾何学的表現が、3次元体積メッシュに離散化され、かつ
前記幾何学的表現が、各セグメントの血管壁の境界を表す表面メッシュを含む、請求項28~32のいずれかに記載のシステム。
【請求項34】
前記流れ場が、前記幾何学的表現、前記幾何学的データ、および前記境界条件のみを使用して、決定される、請求項31~33のいずれかに記載のシステム。
【請求項35】
前記医療画像データが、前記患者のコンピュータ断層撮影画像データである、請求項28~34のいずれかに記載のシステム。
【請求項36】
前記幾何学的表現の前記セグメントのうちの1つ以上に沿って配置された仮想ステントの位置に関する情報が受信され、かつ血行動態情報の表示出力が、前記情報に従って更新される、請求項28~35のいずれかに記載のシステム。