(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023114124
(43)【公開日】2023-08-17
(54)【発明の名称】検眼用のレンズフレーム、視覚に関する数値の測定方法、及び、眼鏡レンズ設計方法
(51)【国際特許分類】
G02C 7/02 20060101AFI20230809BHJP
G02C 7/06 20060101ALI20230809BHJP
G02C 13/00 20060101ALI20230809BHJP
G02B 3/10 20060101ALI20230809BHJP
G02C 9/00 20060101ALI20230809BHJP
A61B 3/04 20060101ALI20230809BHJP
A61B 3/09 20060101ALI20230809BHJP
【FI】
G02C7/02
G02C7/06
G02C13/00
G02B3/10
G02C9/00
A61B3/04
A61B3/09
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022016281
(22)【出願日】2022-02-04
(71)【出願人】
【識別番号】509333807
【氏名又は名称】ホヤ レンズ タイランド リミテッド
【氏名又は名称原語表記】HOYA Lens Thailand Ltd
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100144451
【弁理士】
【氏名又は名称】鈴木 博子
(74)【代理人】
【識別番号】100170634
【弁理士】
【氏名又は名称】山本 航介
(72)【発明者】
【氏名】山口 英一郎
(72)【発明者】
【氏名】曽根原 寿明
(72)【発明者】
【氏名】伊藤 歩
【テーマコード(参考)】
2H006
4C316
【Fターム(参考)】
2H006AC01
2H006BD03
2H006DA05
4C316AA15
4C316AA21
4C316AA26
4C316FC21
4C316FY05
(57)【要約】
【課題】下方視などの水平視以外の状態であっても、適切な状態で検眼を行うことができる検眼用のレンズフレームを提供する。
【解決手段】レンズフレーム1は、それぞれレンズを保持する一対のレンズ枠220を有するレンズ保持部材20と、一対のテンプル部材10と、を備え、テンプル部材10は、それぞれ、レンズ保持部材20を支持する前方テンプル部32と、前方テンプル部32の後方に接続された後方テンプル部34と、後方テンプル部34に対する前方テンプル部32の角度を、回動中心部を中心として調整可能な角度調整可能接続部36と、を備え、前方テンプル部32は、前方テンプル部32の長さを調整する長さ調整機構324を有する。
【選択図】
図2
【特許請求の範囲】
【請求項1】
それぞれ検眼用のレンズを保持する一対のレンズ保持部を有するレンズ保持部材と、一対のテンプルと、を備えた検眼用のレンズフレームであって、
前記テンプルは、それぞれ、
前記レンズ保持部材を支持する前方テンプル部と、
前記前方テンプル部の後方に接続された後方テンプル部と、
前記後方テンプル部に対する前記前方テンプル部の角度を、回動中心部を中心として調整可能な角度調整機構と、を備え、
前記前方テンプル部は、当該前方テンプル部の長さを調整することができる前方長さ調整機構を有する、
検眼用のレンズフレーム。
【請求項2】
前記後方テンプル部は、当該後方テンプル部の長さを調整することができる後方長さ調整機構を有する、
請求項1に記載の検眼用のレンズフレーム。
【請求項3】
さらに、前記一対のレンズ保持部の間の距離を調整することができるレンズ間隔調整機構を有する、
請求項1又は2に記載の検眼用のレンズフレーム。
【請求項4】
さらに、一対のレンズ保持部に保持されたレンズのそり角を調整するそり角調整機構を備える、
請求項1~3の何れか1項に記載の検眼用のレンズフレーム。
【請求項5】
さらに、前記テンプルに接続され、前記回動中心部に対する位置を調整可能に構成されたノーズレストを備える、
請求項1~4の何れか1項に記載の検眼用のレンズフレーム。
【請求項6】
それぞれ検眼用のレンズを保持する一対のレンズ保持部を有するレンズ保持部材と、
被験者の顔に取り付けられるフレーム本体と、を備えた検眼用のレンズフレームであって、
前記フレーム本体は、回動中心部と前記レンズとの距離を所定の距離に保った状態で、前記レンズ保持部に保持された前記レンズを、当該回動中心部を中心に回動できるように構成されており、
前記フレーム本体は、前記被験者の顔に前記フレーム本体を取り付けた状態で、前記回動中心部の位置を前後上下方向に移動可能である、
検眼用のレンズフレーム。
【請求項7】
前記レンズ保持部材は、前記フレーム本体の前方テンプル部に接続され、
前記前方テンプル部は長さが調整可能である、
請求項6に記載の検眼用のレンズフレーム。
【請求項8】
請求項1~7の何れか1項に記載のレンズフレームを使用した視覚に関する数値の測定方法であって、
被験者の顔に前記レンズフレームを装着し、前記回動中心部を前記被験者の回旋中心点の側方に位置させる装着ステップと、
前記回動中心部と前記レンズの基準点との距離が所定の長さになるようにレンズフレームを調整する調整ステップと、
前記レンズ保持部に検眼用のレンズを取り付けた状態で、前記被験者の視覚に関する第1の数値を測定する第1の測定ステップと、
前記レンズ保持部を、前記回動中心部までの距離を変えることなく前記回動中心部を中心として回転させた後、前記被験者の視覚に関する第2の数値を測定する第2の測定ステップと、
を備える、視覚に関する数値の測定方法。
【請求項9】
請求項8に記載された方法により測定された前記第1の数値及び前記第2の数値に基づき、眼鏡レンズを設計する、眼鏡レンズ設計方法。
【請求項10】
前記眼鏡レンズは、
近方距離を見るための近用部と、前記近方距離よりも遠くの距離を見るための遠用部と、前記近用部と前記遠用部との間に設けられた、累進屈折機能を有する中間部と、を備える累進屈折力レンズであり、
前記第1の測定ステップ及び前記第2の測定ステップの一方では、遠方視における視覚に関する第1の数値を測定し、
前記第1の測定ステップ及び前記第2の測定ステップの他方では、近方視における視覚に関する第2の数値を測定し、
前記第1の数値及び前記第2の数値に基づき、少なくとも、眼鏡レンズに適用する遠用度数、加入度数および累進帯長を決定する、
請求項9に記載の眼鏡レンズの設計方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、検眼用のレンズフレーム、視覚に関する数値の測定方法、及び、眼鏡レンズ設計方法に関する。
【背景技術】
【0002】
通常、眼鏡の作成に必要な処方せんを作成するために、被験者が検眼用のレンズフレームを装着した状態で自覚的に屈折度を検査する方法が用いられる。検眼用のレンズフレームはレンズ保持枠を有し、このレンズ保持枠に異なる特性の複数の検眼用レンズを順次装着して、被験者に適切な眼鏡の処方を決定する。
【0003】
このような検眼用のレンズフレームとして、例えば、特許文献1には、一対のレンズ保持装置と、各レンズ保持装置に取り付けられたテンプルとを備え、レンズ保持装置とテンプル端部の間に、テンプル端部の傾斜を調整するための回動手段が設けられたレンズフレームが開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、検眼用レンズフレームを用いて検眼を行う際に、
図12Aに示すように、水平視(水平方向を見た状態)で検眼レンズLを通して指標Tを見た状態で視力を測定する場合には、視線Sが検眼レンズLの光軸と平行にレンズの光学中心を通るため、視力を正確に測定できる。
【0006】
しかしながら、
図12Bに示すように、被験者が下方視(水平方向に対して下方を見た状態)で検眼レンズLを通して指標Tを見た状態では視力を正確に測定できない場合がある。これは、下方視すると、視線Sが検眼レンズLの光学中心を通らず、軸ずれが生じることによって、検眼レンズLの収差や度数誤差によるぼやけが生じてしまったり、水平視と下方視において検眼レンズLと角膜頂点の距離が変わってしまったり、意図しないプリズムが加わったりするためである。検眼時にこのような視線の使い方を指示されることはほとんどないが、特に累進屈折力レンズを使用するユーザが近方を見る際にはこのような下方視が日常的に必要とされる。このため、このような下方視の状態での屈折力を正確に測定したいという潜在的なニーズはあるものの、従来の検眼用レンズフレームを用いて正確な屈折力の測定を行うことは困難であった。
【0007】
本開示は、上記の課題に鑑みなされたものであり、その目的は、下方視などの水平視以外の状態であっても、適切な状態で検眼を行うことができる検眼用のレンズフレームを提供することである。なお、本明細書における検眼とは、視覚に関する数値の測定方法であって、被験者が目標を視認し、その自覚的応答によって屈折値やプリズム値などを求める一連の操作を指す。
【課題を解決するための手段】
【0008】
本開示によれば、それぞれレンズを保持する一対のレンズ保持部を有するレンズ保持部材と、一対のテンプルと、を備えた検眼用のレンズフレームであって、テンプルは、それぞれ、レンズ保持部材を支持する前方テンプル部と、前方テンプル部の後方に接続された後方テンプル部と、後方テンプル部に対する前方テンプル部の角度を、回動中心部を中心として調整可能な角度調整機構と、を備え、前方テンプル部は、前方テンプル部の長さを調整する長さ調整機構を有する、検眼用のレンズフレームが提供される。
【発明の効果】
【0009】
本発明によれば、下方視などの水平視以外の状態であっても、適切な状態で検眼を行うことができる検眼用のレンズフレームが提供される。
【図面の簡単な説明】
【0010】
【
図1A】発明者らが提案する視覚に関する数値の測定方法における水平視において検眼を行う状態を示す図である。
【
図1B】発明者らが提案する視覚に関する数値の測定方法における下方視において検眼を行う状態を示す図である。
【
図2】本発明の一実施形態によるレンズフレームを示す斜視図である。
【
図3】本発明の一実施形態によるレンズフレームを示す正面図である。
【
図4】本発明の一実施形態によるレンズフレームを示す側面図である。
【
図5】本発明の一実施形態による視覚に関する数値の測定方法及び設計方法により製造される累進屈折力レンズを示す正面図である。
【
図6】本実施形態による視覚に関する数値の測定方法及び設計方法により製造される累進屈折力レンズを示す正面図である。
【
図7】本発明の一実施形態によるレンズフレームを用いた視覚に関する数値の測定方法及びその測定結果に基づき眼鏡レンズを設計する方法の流れを示すフローチャートである。
【
図8】撮像装置により撮像された画像データの一例を示す図である。
【
図9】本発明の一実施形態によるレンズフレームを被験者に装着させた状態を示す側面図である。
【
図10】レンズフレームを、角度調整可能接続部の回動中心部が回旋中心点と一致するように調整する様子を示す図である。
【
図11】前方テンプル部を角度調整可能接続部により、下方に向けて回動させる様子を示す図である。
【
図12A】従来技術における水平視で検眼レンズを通して指標を見た状態で視力を測定する様子を示す図である。
【
図12B】従来技術における下方視で検眼レンズを通して指標を見た状態で視力を測定する様子を示す図である。
【発明を実施するための形態】
【0011】
発明者らは、上記の課題に鑑み鋭意検討の結果、以下のような手順によって、正確な検眼を行うことができると考えた。
図1A及び
図1Bは、それぞれ、発明者らが提案する視覚に関する数値の測定方法における水平視及び下方視において検眼を行う状態を示す図である。眼球Eは略球体とみなすことができ、水平視から下方視に移行する際に、眼球Eは視線が下方に向かうように回動する。この際、眼球Eを球体としてみなした状態における球体の中心点である回旋中心点Oを中心として、眼球Eは回動すると考えることができる。
【0012】
この回旋中心点Oは、眼球表面の断面形状を円弧と近似した時の円の中心を通る水平線上または近傍に位置する。加齢等による眼瞼下垂などが著しくない場合には、便宜的に水平視において眼裂高(瞼裂高)を上下に二等分した点を通る水平線上、又は、その近傍に位置するとみなしてもよい。眼裂高とは、下眼瞼縁LEから上眼瞼縁UEまでの上下方向の距離である。
【0013】
図1Aに示すように、水平視において検眼を行う際には、視線が検眼レンズの光軸XLと一致し、さらに、視線が検眼レンズの光軸XL及びレンズの裏面の基準点CLを通るとともに、基準点CLから角膜頂点までの距離が所定の距離VCとなる位置に、検眼レンズを保持した状態で行う。
【0014】
そして、
図1Bに示すように、下方視において検眼を行う際には、被験者は水平方向に対して所定の角度だけ下方に視線Sを向ける。この際、検眼レンズLを、回旋中心点Oを中心として、検眼レンズの裏面の基準点CLと回旋中心点Oとの距離rを保ちながら、眼球Eの回転角度と同じ角度だけ回動させる。この距離rは、検眼レンズの裏面の基準点CLから被験者の眼球Eの角膜Cの頂点までの距離VCの値と、角膜Cの頂点から眼球Eの回旋中心点Oまでの距離CRとの和として算出することができる。これにより、検眼レンズLの裏面の基準点CLから角膜Cの頂点までの距離は、水平視における距離VCと等しくなる。また、視線Sが検眼レンズLの光軸XLと一致する。
【0015】
このように下方視における検眼を行うことにより、視線Sが検眼レンズLの光学中心軸ずれが生じることがなく、収差によるぼやけやプリズムが生じることなく、精度の高い検眼を行うことができる。
【0016】
以下、本発明の一実施形態による検眼用のレンズフレームについて図面を参照しながら説明する。本実施形態のレンズフレームは、上述した発明者らが考えた視覚に関する数値の測定方法を実現するためのものである。
図2~
図4は、本発明の一実施形態によるレンズフレームを示し、
図2は斜視図、
図3は正面図、
図4は側面図である。
図2~4に示すように、本実施形態のレンズフレーム1は、フレーム本体10と、レンズ保持部材20と、を備える。
【0017】
フレーム本体10は、一対のテンプル部材30と、ノーズレスト枠40と、を有する。
テンプル部材30は、それぞれ、前方テンプル部32と、後方テンプル部34と、前方テンプル部32を後方テンプル部34に対して回転可能に接続する角度調整可能接続部36と、を含む。
【0018】
後方テンプル部34は、前部が前後方に向かって直線状に延び、後端部が下方に向かって湾曲する形状を有する。後方テンプル部34は、前方に位置する第1の後方テンプル材340と、後方に位置する第2の後方テンプル材342とを含む。
【0019】
第1の後方テンプル材340は、中空の矩形状断面を有し、直線状に延びている。第2の後方テンプル材342は、中空の矩形状断面を有し、後端部には下方に向かって湾曲する湾曲部342Aが形成されている。この第2の後方テンプル材342の湾曲部342Aは、被験者がレンズフレーム1を装着する際に耳あてとして機能する。
【0020】
第2の後方テンプル材342の断面の内面の幅及び高さは、第1の後方テンプル材340の断面の外面の幅及び高さと略等しくなっている。そして、第1の後方テンプル材340の後端部が、第2の後方テンプル材342の前端部内に入れ子状に収容されている。このような入れ子構造により、第1の後方テンプル材340に対して第2の後方テンプル材342を前後方向に移動させることができる。すなわち、この入れ子構造が後方テンプル部34の長さを調整するための長さ調整機構344として機能する。なお、後方テンプル部の長さ調整機構の構成は入れ子構造に限らず、例えば、第1の後方テンプル材340及び第2の後方テンプル材342の一方にスリットを形成しておき、第2の後方テンプル材342に突部を形成し、この突部がスリット内を摺動可能な構成など、長さを調整及び保持する適宜な構成を採用すればよい。なお、第1の後方テンプル材340及び第2の後方テンプル材342の断面形状については、矩形に限らず、円形等適宜な形状を採用することができる。
【0021】
前方テンプル部32は、前方に向かって直線状に延びる形状を有する。前方テンプル部32は、前方に位置する第1の前方テンプル材320と、後方に位置する第2の前方テンプル材322とを含む。
【0022】
第1の前方テンプル材320は、中空の矩形状断面を有し、直線状に延びている。
第2の前方テンプル材322は、中空の矩形状断面を有し、直線状に延びている。第2の前方テンプル材322の断面の内面の幅及び高さは、第2の前方テンプル材322の断面の外面の幅及び高さと略等しくなっている。そして、第1の前方テンプル材320の後端部が、第2の前方テンプル材322の前端部内に入れ子状に収容されている。このような入れ子構造により、第1の前方テンプル材320に対して第2の前方テンプル材322を前後方向に移動させることができる。すなわち、この入れ子構造が前方テンプル部32の長さを調整するための長さ調整機構324として機能する。なお、前方テンプル部32の長さ調整機構324の構成も、後方テンプル部34の長さ調整機構344の構成と同様に適宜な構成を作用することができる。なお、第1の前方テンプル材320及び第2の前方テンプル材322の断面形状についても、矩形に限らず、円形等適宜な形状を作用することができる。
【0023】
角度調整可能接続部36は、後方テンプル部34に対して、前方テンプル部32及びノーズレスト枠40を回動可能に接続する。すなわち、角度調整可能接続部36の中央に、後方テンプル部34に対して前方テンプル部32及びノーズレスト枠40が回動する回動中心部が位置する。角度調整可能接続部36は、後方テンプル部34に対して前方テンプル部32及びノーズレスト枠40が上下方向及び前後方向で規定される面内を回動可能であるとともに、後方テンプル部34に対する前方テンプル部32及びノーズレスト枠40の各々の角度を所望の角度に保持することができる。このような角度調整可能接続部36の機構としては、ラチェット機構などを採用することができる。なお、角度調整可能接続部36の機構としては、ラチェット機構のように段階的に角度を変更できる構成に限らず、連続的に角度を変更できる構成であってもよい。
【0024】
前方テンプル部32は、後方テンプル部34に対して平行な状態から、前方が上方及び下方に傾斜する方向にそれぞれ回動させることができる。前方テンプル部32の回動可能な角度範囲としては、上下方向にそれぞれ60度であることが好ましく、上下方向にそれぞれ30度であることがより好ましい。
【0025】
ノーズレスト枠40は、各角度調整可能接続部36から水平視において前方に向かって延びる一対の第1の枠材400と、それぞれの第1の枠材400の前方に接続された一対の第2の屈曲枠材402と、一対の第2の屈曲枠材の間にかけ渡された第3の横枠材404とを有する。
【0026】
第1の枠材400は、後端が角度調整可能接続部36に接続されている。第1の枠材400は中空の矩形状断面を有し、直線状に延びている。
第2の屈曲枠材402は、中空の矩形状断面を有し、基端部と先端部との間で垂直に屈曲している。第2の屈曲枠材402の断面の内面の幅及び高さは、第1の枠材400の断面の外面の幅及び高さと略等しくなっている。そして、第1の枠材400の前端部が、第2の屈曲枠材402の後端部内に入れ子状に収容されている。このような入れ子構造により、第1の枠材400に対して第2の屈曲枠材402を前後方向に移動させることができる。すなわち、この入れ子構造が、ノーズレスト枠40の前後方向の長さを調整及び保持するための長さ調整機構410として機能する。
【0027】
第3の横枠材404は、中空の矩形状断面を有し、横方向に直線状に延びている。第3の横枠材404の断面の外面の幅及び高さは、第2の屈曲枠材402の断面の内面の幅及び高さと略等しくなっている。そして、第3の横枠材404の両端が、第2の屈曲枠材402の先端内に入れ子状に収容されている。このような入れ子構造により、第3の横枠材404に対して、第2の屈曲枠材402をそれぞれ横方向に相対移動させることができ、すなわち、ノーズレスト枠40の横方向幅を自在に変更することができる。すなわち、この入れ子構造が、ノーズレスト枠40の横方向幅を調整するための幅調整機構420として機能する。
【0028】
ノーズレスト枠40の横方向中央には左右対称に一対のノーズレスト支持部430が取り付けられている。ノーズレスト支持部430はノーズレスト枠40の中央部から下方に向かって延びるように取り付けられており、先端にノーズパッド32が取り付けられている。レンズフレーム1を装着する際には、ノーズパッド支持部430のノーズレスト432を被験者の鼻の両側面に当接するように配置される。ノーズレスト支持部430はゴムなどの弾性材料により構成してもよいし、変形可能な樹脂により構成してもよい。
【0029】
レンズ保持部材20は、前方テンプル部32の間にかけ渡されたブリッジ部材と、ブリッジ部材200の両端をそれぞれ前方テンプル部32の前端部に接続する接続部230と、ブリッジ部材200に取り付けられた一対のレンズ枠220と、を備える。
【0030】
ブリッジ部材200は、一対の第1の屈曲部材202と、第1の屈曲部材202の間に設けられた第2の横部材204と、を有する。
第1の屈曲部材202は、上端が接続部230を介して前方テンプル部32の前端に接続されて延びる縦部202Aと、縦部202Aから垂直に屈曲して横方向内側に向かって延びる横部202Bとを有する。第1の屈曲部材202は、中空の矩形状断面を有する。
【0031】
第2の横部材204は、中空の矩形状断面を有し、横方向に直線状に延びている。第2の横部材204の断面の外面の幅及び高さは、第1の屈曲部材202の断面の内面の幅及び高さと略等しくなっている。そして、第2の横部材204の両端が、第1の屈曲部材202の先端内に入れ子状に収容されている。このような入れ子構造により、第2の横部材204に対して、第1の屈曲部材202をそれぞれ横方向に相対移動させることができ、すなわち、ブリッジ部材200の横方向幅を自在に変更することができる。すなわち、この入れ子構造が、ブリッジ部材200の横方向幅を調整保持するための幅調整機構210として機能する。
【0032】
接続部230は、前方テンプル部32の前端と、ブリッジ部材200の第1の屈曲部材202の縦部202Aの上端とを接続する。接続部230は、ブリッジ部材200の第1の屈曲部材202の縦部202Aの長さに応じて任意の高さに設定することができるが、本実施形態では、レンズ枠220に装着される検眼レンズ中心と同一の高さに位置している。これにより、後に述べるような前方テンプル部32の長さ調整機構324による所定の長さへの変更をより円滑に行うことができる。
【0033】
レンズ枠220はそれぞれ、レンズ枠本体222と、レンズ枠本体222を支持する柱部224とを備える。レンズ枠本体222は検眼レンズを保持できる剛性を持った円弧状の部材であり、上面には、トライアルレンズ、検眼レンズなど、最大3枚の検眼レンズを装着するための溝が形成されている。
【0034】
柱部224は円柱状であり、レンズ枠220の下端から下方に向かって延びている。
レンズ枠220は、ブリッジ部材200の第1の屈曲部材202の横部202Bの上面に取り付けられている。ブリッジ部材200には、レンズ枠220を横部202Bに沿って横方向に移動可能とするレンズ間隔調整機構212が組み込まれるとともに、レンズ枠220を柱部224の中心軸周りに回動可能とするそり角調整機構214が組み込まれている。
【0035】
レンズ間隔調整機構212及びそり角調整機構214としては、例えば、横部202Bにスリットを形成しておき、そのスリット内に柱部224の基部が回動可能な状態で挿入されているような構成などを採用することができ、ダイヤル部材212、214を回動させることにより、レンズ枠220の間隔(検眼レンズの間隔)及びレンズ枠220の角度(検眼レンズの角度)を変更することができる。
【0036】
なお、レンズ間隔調整機構212によるレンズ枠220の横方向移動は、一対のレンズ枠220が左右対称に移動するように構成するのが望ましい。このような構成としては、第1の屈曲部材202及び第2の横部材内に、左右対称に螺子溝が形成された螺子棒を配置しておき、柱部224の下端部にこの螺子棒に螺合するナットを取り付けておき、螺子棒を回転させる構成などを採用できる。
【0037】
以下、上記のレンズフレーム1を用いた視覚に関する数値の測定方法及びその測定結果に基づき眼鏡レンズを設計する方法について説明する。
以下の説明では、累進屈折力レンズを製造するための検眼を行う場合について説明する。
図5は、本実施形態による視覚に関する数値の測定方法及び設計方法により製造される累進屈折力レンズを示す正面図である。
図5に示すように、累進屈折力レンズ500は、下方に位置する近方距離を見るための近用部520と、上方から中央にわたって位置する、近方距離よりも遠くの距離を見るための遠用部510と、近用部520及び遠用部510の間に位置し、レンズの度数が連続的に変化する累進屈折機能を有する中間部530と、を備える。
【0038】
また、本実施形態の視覚に関する数値の測定方法は、
図6に示すフレーム位置調整システム50を用いて行う。
図6に示すように、フレーム位置調整システム50は、処理装置52と、処理装置52に通信可能に接続された一対の撮像装置54と、処理装置52に通信可能に接続されたディスプレイ56と、処理装置52に通信可能に接続された入力装置58と、を備える。
【0039】
一対の撮像装置54は、被験者の頭を挟むように被験者の頭の両側に配置されている。撮像装置54は、例えば、デジタルカメラであり、被験者の頭の眼球近傍を真横から撮影する。撮像装置54により撮影された画像データは逐次、処理装置52に送られる。
【0040】
処理装置52は、例えば、パーソナルコンピュータなどの、CPU、メモリ、記録媒体、入力インターフェース、出力インターフェースを備えた装置である。処理装置52は、記録媒体に記録されたプログラムをメモリに読み込み、CPUがプログラムを実行することにより、後に詳述するように、撮像装置54から受信した画像データに基づき被験者の眼球の回旋中心を特定する。そして、処理装置52は、回旋中心の位置を、撮像装置54により撮像された画像に重ねた画像データをディスプレイ56に出力する。
【0041】
ディスプレイ56は、処理装置52から受信した画像データを画像表示する。
入力装置58は、例えば、キーボードやタッチパネルであり、後述するように決定したCR及びVCの入力を受け付ける。
【0042】
図7は、本実施形態によるレンズフレームを用いた視覚に関する数値の測定方法及びその測定結果に基づき眼鏡レンズを設計する方法の流れを示すフローチャートである。
図7に示すように、まず、被験者の角膜頂点から回旋中心点までの距離CRを決定する(S10)。CRの決定方法としては、例えば、特開2011-39552号公報に開示されている方法などの公知の方法を採用することができる。すなわち、眼球回旋点測定装置を使用する方法、異なった方向の視線の交差点から演算により求める方法などを採用することができる。
【0043】
また、簡易的な方法で実用的な方法としては、一般的に普及している眼軸長測定装置を利用できる。具体的には、眼軸長を測定し、測定した眼軸長から眼球回旋点を算出する方法などが挙げられる。この方法では、予め、実測された眼軸長に対する眼球回旋点の相対的位置の一般的統計データを利用して、角膜頂点から回旋中心点までの距離の眼軸長に対する相対位置係数を算出しておく。例えば、平均的データとして眼軸長24ミリ、角膜頂点から回旋中心点までの距離CRが13ミリとすると、13/24=0.54が計算に用いられる相対位置係数となる。従って、眼軸長測定装置により被験者の眼軸長が27ミリと検出された場合は、この相対位置係数0.54を使用して、この被験者のCRの値を、27ミリ×0.54=14.6ミリとする。また、その他、種々の方法により、眼軸長とCRとの相関関係を特定し、この相対関係と実測した眼軸長に基づき、角膜頂点から回旋中心点までの距離CRを設定してもよい。
【0044】
なお、CRの値としては平均値のデータを予め記録しておき、この平均値を採用してもよい。例えば、年齢、身長等で分類してCRの平均値のデータを記録しておき、被験者の年齢、身長等に基づきこのデータからCRの平均値を取得し、その値を被験者のCRの値として採用してもよい。
【0045】
次に、被験者の眼鏡装用時における眼鏡レンズの裏面の基準点から眼鏡装用者の眼球の角膜頂点までの距離VCを決定する(S12)。この距離VCは、角膜頂点間距離(CVD)とも呼ばれる。この距離VCの算出方法としては、例えば、特開2016-167038号公報、及び、国際出願公開第2014-133166号公報に記載された方法を採用することができる。
【0046】
そして、検眼担当者は、フレーム位置調整システム50の入力装置58にこのようにして決定したCR及びVCを、入力装置58に入力する(S14)。入力装置58が入力を受け付けたCR及びVCに関するデータは処理装置52に送られる。なお、これらCR及びVCを決定するステップは、フレーム位置調整システム50を利用し、撮像装置54により取得された画像データに基づいて行ってもよい。この場合には、被験者の正面にも撮像装置を設けることが好ましい。
【0047】
次に、被験者に、顔の両側に一対の撮像装置54が位置するように着席して水平視してもらい、フレーム位置調整システム50を起動する。フレーム位置調整システム50が起動されると、処理装置52は、撮像装置54により撮像された画像データを取得する(S16)。
図8は、撮像装置により撮像された画像データの一例を示す図である。フレーム位置調整システム50の処理装置52は、撮像装置54により撮像された画像データにおいて被験者の顔の側面を検知すると、画像データにおける回旋中心点Oを決定する(S18)。具体的には、まず、
図8に示すように、画像データにおける上瞼の縁UEと、下瞼の縁LEと、眼球表面Cの領域とを画像処理により決定する。そして、被験者の眼裂高(瞼裂高)を二等分する水平線HL、すなわち、上瞼の縁UEの頂点と下瞼の縁LEの下点の中間点を通る水平線を画像処理により決定する。そして、この水平線HL上の角膜Cの頂点から距離CRだけ後方の点を被験者の回旋中心点Oとして決定する。なお、この水平線HLは、眼裂高を二等分する水平線に限らず、画像データ上の眼球表面形状を円弧とみなしたときの円の中心を通過する水平線とすることで精度を上げられる。
【0048】
次に、被験者にレンズフレーム1を装着させる(S20)。
図9は、本実施形態によるレンズフレームを被験者に装着させた状態を示す側面図である。
図9に示すように、ノーズレスト支持部430のノーズレスト432を被験者Pの鼻Nの両側に当接させるとともに、一対の後方テンプル部34の湾曲部342Aをそれぞれ被験者Pの耳EAにかけることにより、レンズフレーム1を被験者Pに装着させることができる。また、この際、被験者Pの顔の幅に合わせて、一対のテンプル部材30の幅を変更する。一対のテンプル部材30の幅は、ブリッジ部材200の幅を幅調整機構210により調整するとともに、ノーズレスト枠40の幅を長さ調整機構410により調整することにより変更できる。また、被験者の瞳孔間距離PDに応じて、レンズ枠220の基準点が被験者の瞳孔中心と一致するように、レンズ間隔調整機構212により、レンズ枠220をそれぞれ横方向に移動させる。
【0049】
次に、
図10に示すように、レンズフレーム1を、角度調整可能接続部36の回動中心部が画像データにおける回旋中心点Oと一致するように調整する(S22)。具体的には、後方テンプル部34の長さを長さ調整機構344により調整し、ノーズレスト枠40の長さを長さ調整機構410により調整し、後方テンプル部34に対するノーズレスト枠40の角度を調整する。これにより、レンズフレームの角度調整可能接続部36の位置を前後方向の垂直平面内で移動させることができる。そして、ディスプレイ56の表示を参照しながら、角度調整可能接続部36の回動中心軸を、回旋中心点Oと一致するように移動させることができる。
【0050】
なお、この調整作業は、レンズフレーム1を装着する前に、予め、後方テンプル部34の長さの調整、ノーズレスト枠40の長さの調整、及び、後方テンプル部34に対するノーズレスト枠40の角度の調整を行っておくことで、微調整のみとすることができる。
【0051】
このように、ステップS20及びS22を行うことにより、レンズフレーム1の角度調整可能接続部36の回動中心が被験者Pの回旋中心点Oの側方に位置するように、レンズフレーム1を被験者Pの顔に装着することができる。
【0052】
次に、レンズ枠220に検眼レンズLを取り付ける。レンズ枠220には、最大3枚の検眼レンズLを取り付ける。検眼レンズとしては、球面度数用レンズ、円柱度数用レンズ、プリズム用レンズを適宜組み合わせて使用する。そして、水平線HLを検眼レンズLの検眼レンズの光軸XLと一致させ、検眼レンズLの裏面の基準点CLから角膜頂点までの距離がVCとなるように、検眼レンズLの位置を調整する(S24)。これにより、検眼レンズの裏面の基準点CLから回旋中心点Oまでの距離がr=VC+CRとなる。なお、検眼レンズLの位置の調整は、前方テンプル部32を角度調整可能接続部36周りに後方テンプル部34に対して回転させ、前方テンプル部32の長さを長さ調整機構324により調整することにより行うことができる。
【0053】
次に、水平視における検眼データを測定する(S26)。具体的には、被験者が眼鏡レンズを必要とする視距離、例えば、2m程度前方に視標Tを提示し、被験者に検眼レンズを通して水平視で視標Tを見させる。そして、被験者の応答をもとに検眼レンズを入れ替えて、視力または装用感を確認しながら、水平視における検眼データを測定する。
【0054】
次に、
図11に示すように、前方テンプル部32を角度調整可能接続部36により、指定の角度、例えば15度だけ下方に向けて回動させる(S28)。この時、レンズ枠220を、所定のそり角となるように回動させてもよい。そして、下方視における検眼データを測定する(S30)。具体的には、被験者の2m程度前方であって、15度下方に位置する高さに視標Tを提示する。そして、被験者に、頭を動かさないようにした状態で、検眼レンズを通して指標Tを見させる。そして、被験者の応答をもとに検眼レンズを入れ替えて、視力または装用感を確認し、下方視における検眼データを測定する。
【0055】
この際、回旋中心点Oに一致した角度調整可能接続部36を中心として前方テンプル部32を所定の角度だけ下方に回転させることにより、検眼レンズLと被験者の瞳孔の相対位置が水平視の場合と変わらないようにすることができる。すなわち、被験者の視線Sが検眼レンズLの光軸XLと一致し、検眼レンズLの裏面の基準点CLから角膜頂点までの距離がVCとなる。
【0056】
なお、下方視や水平視における検眼データを測定する際には、被験者が頭を動かすことを許容しつつ、指定の角度にある視標を自然な姿勢で見るように指示し、その際の被験者の頭部の回転角度を画像データの処理などにより測定することにより、指定の角度と頭部の回転角度の差分の角度だけ前方テンプル部32を角度調整可能接続部36により下方に回転してもよい。このような場合であっても、被験者の視線Sが検眼レンズLの光軸XLと一致し、検眼レンズLの裏面の基準点CLから角膜頂点までの距離がVCとなる。なお、被験者の頭部の回転角度は被験者正面画像あるいは側方画像やジャイロセンサー等の測定装置を用いて求めることも可能である。
【0057】
以上の工程により、検眼が完了する。
【0058】
なお、下方視における検眼データを測定するステップと、水平視における検眼データを測定するステップは逆の順序で行ってもよい。
【0059】
そして、水平視における検眼データと、下方視における検眼データと、水平視の検眼時及び下方視の検眼時の前方テンプル部の角度の差などに基づき、眼鏡レンズの設計を行う(S32)。具体的には、検眼データ及び角度に基づき、少なくとも、被験者が眼鏡レンズを必要とする視距離における球面度数、円柱度数、乱視軸方向と、プリズム量とプリズム基底方向を含む眼鏡レンズのための設計情報を決定する。
以上の工程により、眼鏡レンズの設計が完了する。
【0060】
そして、このようにして決定したレンズ設計情報に基づき、レンズブランクを切削、研磨等を行い、下方視の際に必要なプリズム量を正確に反映させたレンズを製造することができる。
【0061】
また、水平視における検眼データを測定するステップ(S26)と、下方視における検眼データを測定するステップ(S30)において、被験者に提示する視標までの距離を、例えば、それぞれ5m程度と40cm程度とし、遠方視と近方視の検眼データを測定することによって、累進屈折力レンズを設計することもできる。
【0062】
このとき、近方視における検眼データを測定する際に、被験者が手に持った本や新聞を自然な姿勢で見るように指示し、測定者がレンズフレーム1の前方から被験者の瞳の位置を観察することで、検眼レンズの中心に位置するように前方テンプル部32の角度を調整してもよい。
【0063】
そして、遠方視における検眼データと、近方視における検眼データと、遠方視の検眼時及び近方視の検眼時の前方テンプル部の角度の差などに基づき、累進屈折力レンズの設計を行う(S32)。具体的には、検眼データ及び角度に基づき、少なくとも、遠方視における遠用度数(SPH:球面度数、CYL:円柱度数、AX:乱視軸方向)と、加入度数(ADD:加入度)及び、累進帯長などを含む累進屈折力レンズのための設計情報を決定する。
以上の工程により、累進屈折力レンズの設計が完了する。
【0064】
そして、このようにして決定した累進設計情報に基づき、レンズブランクを切削、研磨等を行い、累進屈折力レンズを製造することができる。
【0065】
本実施形態によれば、以下の効果が奏される。
本実施形態のレンズフレーム1によれば、テンプル部材30は、それぞれ、レンズ保持部材20を支持する前方テンプル部32と、前方テンプル部32の後方に接続された後方テンプル部34と、後方テンプル部34に対する前方テンプル部32の角度を、回動中心部を中心として調整可能な角度調整可能接続部36と、を備え、前方テンプル部32は、前方テンプル部32の長さを調整することができる長さ調整機構324を有する。これにより、回動中心部を回旋中心点Oに一致するように装着し、水平視において長さ調整機構324により前方テンプル部32の長さを調整することにより、角膜Cの頂点と検眼レンズLの距離を所定の距離VCに設定して水平視における検眼を行うことができる。さらに、角度調整可能接続部36により回動中心部を中心として下方に回動させることにより、角膜Cの頂点と検眼レンズLの距離を所定の距離VCに保った状態で下方視における検眼を行うことができる。
【0066】
また、本実施形態によれば、後方テンプル部34は、後方テンプル部34の長さを調整することができる長さ調整機構344を有する。これにより、後方テンプル部34の長さを調整することができ、回動中心点の位置を容易に変更することができる。
【0067】
また、本実施形態によれば、レンズフレーム1は、一対のレンズ枠220の間の距離を調整するレンズ間隔調整機構を有する。これにより、被験者の瞳孔間距離PDに応じてレンズ枠220に保持された検眼レンズLの基準点を、所望の位置に調整することができる。
【0068】
また、本実施形態によれば、レンズフレーム1は、一対のレンズ枠220に保持された検眼レンズLのそり角を調整するそり角調整機構を備える。これにより、レンズ枠220により保持された検眼レンズLのそり角を、レンズフレームに合わせて調整した状態で、検眼を行うことができる。
【0069】
また、本実施形態によれば、さらに、テンプル部材30に接続され、回動中心部に対する位置を調整可能に構成されたノーズレスト432を備える。このような構成によれば、ノーズレスト432及びテンプル部材30によりレンズフレーム1を被験者の顔に装着した状態で、回動中心部の位置を調整することが可能になる。
【0070】
本実施形態のレンズフレーム1によれば、フレーム本体10は、回動中心部と検眼レンズLとの距離を所定の距離に保った状態で、レンズ枠220に保持された検眼レンズLを、回動中心部を中心に回動できるように構成されており、フレーム本体10は、被験者の顔にフレーム本体10を取り付けた状態で、回動中心部の位置を前後上下方向に移動可能である。
【0071】
また、本実施形態によれば、レンズ保持部材20は、フレーム本体10の前方テンプル部32に接続され、前方テンプル部32は長さが調整可能である。これにより、検眼レンズLを、検眼レンズLの裏面の基準点CLから角膜頂点までの距離が所定の距離VCとなる位置に保持することができる。
【0072】
また、本実施形態の視覚に関する数値の測定方法によれば、上記のレンズフレーム1を使用し、被験者の顔にレンズフレーム1を装着し、回動中心部を被験者の回旋中心点の側方に位置させる装着ステップ(S20)と、回動中心部と検眼レンズLの基準点との距離が所定の長さCVになるように前方テンプル部32の長さを調整する調整ステップ(S24)と、レンズ枠220に検眼レンズLを取り付けた状態で被験者の視覚に関する第1の数値(水平視における検眼データ)を測定する第1の測定ステップ(S26)と、レンズ枠220を、回動中心部までの距離を変えることなく回動中心部を中心として回転させた(S28)後、被験者の視覚に関する第2の数値(下方視における検眼データ)を測定する第2の測定ステップと、を備える。
【0073】
これにより、遠方視における検眼データ及び近方視における検眼データを、水平視と下方視において検眼レンズLと眼球の回旋中心点Oの距離を保ちながら、軸ずれを生じることなく測定することができる。
【0074】
そして、本実施形態の眼鏡レンズ設計方法によれば、上記のように水平視において遠方視の検眼データを測定し、下方視において近方視の検眼データを測定するため、近方距離を見るための近用部520と、近方距離よりも遠くの距離を見るための遠用部510と、近用部520と遠用部510との間に設けられた、累進屈折機能を有する中間部530と、を備える累進屈折力レンズ500のための設計を行なう際に、実際の装用状態に合わせて精度よく設計できる。
【0075】
なお、本実施形態では、眼球の回旋中心の特定、及び、レンズフレームの位置調整を、フレーム位置調整システム50を用いて行っているが、本発明はこれに限られない。検眼を実施する眼科医が目視により被験者の顔の側面を見て、被験者の眼球の回旋中心を特定し、これに合わせてレンズフレームの位置を調整してもよい。
【0076】
また、本実施形態では、ノーズレスト枠40を、角度調整可能接続部36を中心として回動可能とし、かつ、長さ調整機構410により長さ調整可能としたが、必ずしもノーズレスト枠40は回動可能である必要はなく、長さ調整可能である必要もない。たとえば、ノーズレスト支持部430を、レンズフレーム1を支持可能かつ変形可能な部材とすることによっても、前方テンプル部32の回動中心部を前後方向及び上下方向に自由に移動可能とすることができる。
【符号の説明】
【0077】
1 :レンズフレーム
10 :フレーム本体
20 :レンズ保持部材
30 :テンプル部材
32 :前方テンプル部
34 :後方テンプル部
36 :角度調整可能接続部
40 :ノーズレスト枠
50 :フレーム位置調整システム
52 :処理装置
54 :撮像装置
56 :ディスプレイ
58 :入力装置
200 :ブリッジ部材
202 :第1の屈曲部材
202A :縦部
202B :横部
204 :第2の横部材
210 :幅調整機構
212 :レンズ間隔調整機構(ダイヤル部材)
214 :そり角調整機構(ダイヤル部材)
220 :レンズ枠
222 :レンズ枠本体
224 :柱部
230 :接続部
320 :第1の前方テンプル材
322 :第2の前方テンプル材
324 :長さ調整機構
340 :第1の後方テンプル材
342 :第2の後方テンプル材
342A :湾曲部
344 :長さ調整機構
400 :第1の枠材
402 :第2の屈曲枠材
404 :第3の横枠材
410 :長さ調整機構
420 :幅調整機構
430 :ノーズレスト支持部
432 :ノーズレスト
500 :累進屈折力レンズ
510 :遠用部
520 :近用部
530 :中間部
C :角膜
CL :光軸中心
E :眼球
EA :耳
HL :水平線
L :検眼レンズ
LE :縁
N :鼻
O :回旋中心点
P :被験者
S :視線
T :指標
UE :上眼瞼の縁
XL :光軸