IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ソニーセミコンダクタソリューションズ株式会社の特許一覧

<>
  • 特開-半導体装置及び電子機器 図1
  • 特開-半導体装置及び電子機器 図2
  • 特開-半導体装置及び電子機器 図3
  • 特開-半導体装置及び電子機器 図4
  • 特開-半導体装置及び電子機器 図5
  • 特開-半導体装置及び電子機器 図6
  • 特開-半導体装置及び電子機器 図7
  • 特開-半導体装置及び電子機器 図8
  • 特開-半導体装置及び電子機器 図9
  • 特開-半導体装置及び電子機器 図10
  • 特開-半導体装置及び電子機器 図11
  • 特開-半導体装置及び電子機器 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023116098
(43)【公開日】2023-08-22
(54)【発明の名称】半導体装置及び電子機器
(51)【国際特許分類】
   H01L 27/146 20060101AFI20230815BHJP
   H01L 21/822 20060101ALI20230815BHJP
   H01L 27/06 20060101ALI20230815BHJP
   H01L 21/336 20060101ALI20230815BHJP
   H01L 21/8234 20060101ALI20230815BHJP
   H04N 25/60 20230101ALI20230815BHJP
   H04N 25/70 20230101ALI20230815BHJP
【FI】
H01L27/146 A
H01L27/04 H
H01L27/06 311Z
H01L29/78 301K
H01L29/78 301G
H01L29/78 301H
H01L27/088 B
H01L27/088 C
H04N5/357
H04N5/369
【審査請求】未請求
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2022018681
(22)【出願日】2022-02-09
(71)【出願人】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】100103850
【弁理士】
【氏名又は名称】田中 秀▲てつ▼
(74)【代理人】
【識別番号】100114177
【弁理士】
【氏名又は名称】小林 龍
(74)【代理人】
【識別番号】100066980
【弁理士】
【氏名又は名称】森 哲也
(72)【発明者】
【氏名】大石 秀俊
(72)【発明者】
【氏名】清水 暁人
【テーマコード(参考)】
4M118
5C024
5F038
5F048
5F140
【Fターム(参考)】
4M118AA05
4M118AA10
4M118AB02
4M118BA14
4M118BA19
4M118CA03
4M118CA22
4M118DD04
4M118DD09
4M118FA06
4M118FA33
4M118FA38
4M118GA02
4M118GC07
4M118GD03
4M118GD04
4M118HA22
4M118HA30
5C024CX03
5C024GX01
5C024GX16
5C024GY39
5C024GY41
5F038AV04
5F038AV06
5F038BH19
5F038CA02
5F038DF20
5F048AB10
5F048AC01
5F048AC02
5F048AC10
5F048BA01
5F048BB05
5F048BB11
5F048BB16
5F048BB17
5F048BB19
5F048BD06
5F048BF02
5F048BF07
5F048BG13
5F048CC09
5F048CC18
5F140AA03
5F140AB02
5F140AC38
5F140BA01
5F140BB05
5F140BC15
5F140BD05
5F140BD07
5F140BD10
5F140BD18
5F140BE07
5F140BF04
5F140BF42
5F140BF43
5F140BF47
5F140BJ07
5F140CA03
5F140CB04
5F140CC03
(57)【要約】
【課題】高集積化及びノイズ耐性の向上を図る。
【解決手段】半導体装置は、第1及び第2電界効果トランジスタを備えている。そして、上記第1及び第2電界効果トランジスタの各々は、上面部及び側面部を含む半導体部に設けられたチャネル形成部と、前記半導体部の一方向において前記上面部及び側面部に亘って設けられたゲート電極と、前記半導体部と上記ゲート電極との間に設けられたゲート絶縁膜と、を備えている。そして、上記第1トランジスタの上記ゲート電極と重畳する上記半導体層の上面部での上記一方向の幅が、上記第2トランジスタの上記ゲート電極と重畳する上記半導体層の上面部での上記一方向の幅よりも狭く、上記第2トランジスタの上記ゲート絶縁膜の膜厚が、上記第1トランジスタの上記ゲート絶縁膜の膜厚よりも薄い。
【選択図】図2
【特許請求の範囲】
【請求項1】
第1及び第2電界効果トランジスタを備え、
前記第1及び第2電界効果トランジスタの各々は、
上面部及び側面部を含む半導体部に設けられたチャネル形成部と、
前記半導体部の一方向において前記上面部及び側面部に亘って設けられたゲート電極と、
前記半導体部と前記ゲート電極との間に設けられたゲート絶縁膜と、
を備え、
前記第1トランジスタの前記ゲート電極と重畳する前記半導体層の上面部での前記一方向の幅が、前記第2トランジスタの前記ゲート電極と重畳する前記半導体層の上面部での前記一方向の幅よりも狭く、
前記第2トランジスタの前記ゲート絶縁膜の膜厚が、前記第1トランジスタの前記ゲート絶縁膜の膜厚よりも薄い、
半導体装置。
【請求項2】
前記第1電界効果トランジスタと前記第2電界効果トランジスタとは、異なる前記半導体部に設けられている、請求項1に記載の半導体装置。
【請求項3】
前記第1及び第2電界効果トランジスタの各々は、同一の前記半導体部に設けられている、請求項1に記載の半導体装置。
【請求項4】
前記第1及び第2電界効果トランジスタの各々は、前記ゲート電極のゲート長方向の両側の前記半導体部に設けられた一対の主電極領域を更に備え、
前記第1及び第2電界効果トランジスタは、各々の前記一対の主電極領域のうちの一方が共有されている、請求項1に記載の半導体装置。
【請求項5】
前記半導体部は、前記第1及び第2電界効果トランジスタの各々の前記ゲート電極の間に前記一方向の幅が異なる段差部を有する、請求項3に記載の半導体装置。
【請求項6】
前記第1電界効果トランジスタは、スイッチング素子であり、
前記第2電界効果トランジスタは、増幅トランジスタである、請求項1に記載の半導体装置。
【請求項7】
光電変換素子と、前記光電変換素子で光電変換された信号電荷を画素信号に変換する画素回路とを更に備え、
前記画素回路は、前記第2電界効果トランジスタで構成された増幅トランジスタと、前記増幅トランジスタと電気的に接続され、かつ前記第1電界効果トランジスタで構成されたスイッチング素子とを含む、請求項7に記載の半導体装置。
【請求項8】
平面視で前記半導体部と重畳して配置され、かつ前記光電変換素子が設けられた半導体層を更に備えている、請求項6に記載の半導体装置。
【請求項9】
前記第1及び第2電界効果トランジスタのうち、一方がpチャネル導電型で構成され、他方がnチャネル導電型で構成されている、請求項1に記載の半導体装置。
【請求項10】
前記第2ゲート電極のゲート長は、前記第1ゲート電極のゲート長よりも長い、請求項1に記載の半導体装置。
【請求項11】
前記第1電界効果トランジスタのゲート長は、200nm以下である、請求項1に記載の半導体装置。
【請求項12】
前記第1電界効果トランジスタの前記半導体層の上面部での幅と前記第2電界効果トランジスタの前記半導体層の上面部での幅との差分は、10nm以上である、請求項1に記載の半導体装置。
【請求項13】
前記第1電界効果トランジスタの前記ゲート絶縁膜と前記第2電界効果トランジスタの前記ゲート絶縁膜との膜厚の差分は、前記半導体層の上面部で1nm以上である、請求項1に記載の半導体装置。
【請求項14】
半導体装置と、
被写体からの像光を前記半導体装置の撮像面上に結像させる光学レンズと、
前記半導体層から出力される信号に信号処理を行う信号処理回路と、
を備え、
前記半導体装置は、
用途が異なる第1及び第2電界効果トランジスタを備え、
前記第1及び第2電界効果トランジスタの各々は、
上面部及び側面部を含む半導体部に設けられたチャネル形成部と、
前記半導体部の一方向において前記上面部及び側面部に亘って設けられたゲート電極と、
前記半導体部と前記ゲート電極との間に設けられたゲート絶縁膜と、
を備え、
前記第1トランジスタの前記ゲート電極と重畳する前記半導体層の上面部での前記一方向の幅が、前記第2トランジスタの前記ゲート電極と重畳する前記半導体層の上面部での前記一方向の幅よりも狭く、
前記第2トランジスタの前記ゲート絶縁膜の膜厚が、前記第1トランジスタの前記ゲート絶縁膜の膜厚よりも薄い、電子機器。
【発明の詳細な説明】
【技術分野】
【0001】
本技術(本開示に係る技術)は、半導体装置及び電子機器に関し、特に、フィン型の電界効果トランジスタを有する半導体装置及びそれを備えた電子機器に適用して有効な技術に関するものである。
【背景技術】
【0002】
半導体装置として、例えばCMOSイメージセンサと呼称される固体撮像装置が知られている。このCMOSイメージセンサは、光電変換素子で光電変換された信号電荷を読出し、この信号電荷に基づく画素信号に変換する画素回路(読出し回路)を備えている。この画素回路は、増幅トランジスタ、選択トランジスタ、リセットトランジスタなどの画素トランジスタを含む。
【0003】
また、半導体装置に搭載される電界効果トランジスタとして、島状の半導体部(フィン部)にゲート絶縁膜を介してゲート電極が設けられたフィン型の電界効果トランジスタ(Fin-FET)が知られている。このフィン型の電界効果トランジスタは、ゲートの電界制御性を向上させて短チャネル特性を改善し、ゲート長Lg(チャネル長L)を短くして必要な動作を実現することが可能であるため、平面サイズの微細化を図ることができ、高集積化に有用である。
【0004】
特許文献1には、画素回路に含まれる増幅トランジスタをフィン型の電界効果トランジスタで構成した固体撮像装置が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2017-183636号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ことろで、画素回路は、用途の異なる画素トランジスタを含んでいる。具体的には、スイッチング素子として機能する選択トランジスタやリセットトランジスタなどの画素トランジスタと、増幅素子として機能する増幅トランジスタと、を含んでいる。
【0007】
スイッチング素子として機能する画素トランジスタ(選択トランジスタ,リセットトランジスタ)をフィン型の電界効果トランジスタで構成する場合、半導体部の幅(フィン部の幅)を狭くすることにより、ゲートの電界制御性が向上し、短チャネル効果の抑制に優位なトランジスタを構築することができるため、ゲート長Lg(チャネル長L)を短くして平面サイズの微細化を図ることが可能となる。しかしながら、ゲート絶縁膜の膜厚が薄い場合にゲート絶縁膜の信頼性の要素を満たすことが難しくなる。また、逆に、半導体部の幅を広くすることにより、短チャネル効果の抑制が劣化し、ゲート長Lg(チャネル長L)の長さを短くすること(短縮化)が難しくなる。
【0008】
一方、増幅素子として機能する増幅トランジスタをフィン型の電界効果トランジスタで構成する場合、半導体部の幅を狭くすることにより、有効のチャネル面積(チャネル長L×チャネル幅W)が縮小してしまうため、増幅トランジスタの重要な指標である1/fノイズやRTS(Random Telegraph Signal)ノイズなどのノイズ特性の劣化が想定される。
【0009】
そこで、本技術者は、トランジスタの用途に着眼し、本技術を成した。
【0010】
本技術の目的は、高集積化及びノイズ耐性の向上を図ることにある。
【課題を解決するための手段】
【0011】
(1)本技術の一態様に係る半導体装置は、
第1及び第2電界効果トランジスタを備え、
上記第1及び第2電界効果トランジスタの各々は、
上面部及び側面部を含む半導体部に設けられたチャネル形成部と、
上記半導体部の一方向において上記上面部及び側面部に亘って設けられたゲート電極と、
上記半導体部と上記ゲート電極との間に設けられたゲート絶縁膜と、
を備え、
上記第1トランジスタの上記ゲート電極と重畳する上記半導体層の上面部での上記一方向の幅が、上記第2トランジスタの上記ゲート電極と重畳する上記半導体層の上面部での上記一方向の幅よりも狭く、
上記第2トランジスタの上記ゲート絶縁膜の膜厚が、上記第1トランジスタの上記ゲート絶縁膜の膜厚よりも薄い。
【0012】
(2)本技術の他の態様に係る電子機器は、上記半導体装置と、上記半導体装置に被写体からの像光を結像される光学系と、上記半導体装置から出力される信号に信号処理を行う信号処理回路と、を備えている。
【図面の簡単な説明】
【0013】
図1】本技術の第1実施形態に係る半導体装置の一構成例を示す模式的平面図である。
図2図1のa1-a1切断線に沿った縦断面構造を示す模式的縦断面図である。
図3図1のb1-b1切断線に沿った縦断面構造を示す模式的縦断面図である。
図4図1のc1-c1切断線に沿った縦断面構造を示す模式的縦断面図である。
図5】本技術の第2実施形態に係る半導体装置の一構成例を示す模式的平面図である。
図6図5のa5-a5切断線に沿った縦断面構造を示す模式的縦断面図である。
図7】本技術の第3実施形態に係る固体撮像装置の一構成例を示す模式的平面レイアウト図である。
図8】本技術の第3実施形態に係る固体撮像装置の一構成例を示すブロック図である。
図9】本技術の第3実施形態に係る固体撮像装置の画素及び画素回路の一構成例を示す等価回路図である。
図10】本技術の第3実施形態に係る固体撮像装置の画素アレイ部での縦断面構造を示す模式的縦断面図である。
図11】本技術の第4実施形態に係る固体撮像装置の一構成例を示す模式的縦断面図である。
図12】本技術の第5実施形態に係る電子機器の概略構成を示す図である。
【発明を実施するための形態】
【0014】
以下、図面を参照して本技術の実施形態を詳細に説明する。
以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。
【0015】
また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。また、本明細書中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
【0016】
また、以下の実施形態は、本技術の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものではない。即ち、本技術の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
【0017】
また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本技術の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。
【0018】
また、以下の実施形態では、半導体の導電型として、第1導電型がp型、第2導電型がn型の場合を例示的に説明するが、導電型を逆の関係に選択して、第1導電型をn型、第2導電型をp型としても構わない。
【0019】
また、以下の実施形態では、空間内で互に直交する三方向において、同一平面内で互に直交する第1の方向及び第2の方向をそれぞれX方向、Y方向とし、第1の方向及び第2の方向のそれぞれと直交する第3の方向をZ方向とする。そして、以下の実施形態では、後述する半導体層2の厚さ方向をZ方向として説明する。
【0020】
〔第1実施形態〕
この第1実施形態では、用途が異なる第1及び第2電界効果トランジスタを備えた半導体装置に本技術を適用した一例について説明する。
【0021】
≪半導体装置の全体構成≫
まず、半導体装置の全体構成について、図1から図4を用いて説明する。図1では、説明の便宜上、図2から図4に示す絶縁層17、コンタクト電極(18a,18b,18c,19a,19b,19c)及び配線(21a,21b,21c,22a,22b,22c)の図示を省略している。
図1及び図2に示すように、この第1実施形態に係る半導体装置1Aは、半導体層2と、この半導体層2に搭載された第1及び第2電界効果トランジスタQ1,Q2と、を備えている。
【0022】
<半導体層>
図1から図4に示すように、半導体層2は、X方向及びY方向において二次元状に広がるベース部4と、このベース部4から上方(Z方向)に突出する島状の半導体部5及び6を含む。半導体部5及び6の各々は、二次元平面内において互いに離間して点在している。この第1実施形態では、半導体部5及び6は、これに限定されないが、例えば、Y方向に延伸し、かつX方向に所定の間隔を空けて並列に配置されている。
【0023】
図1図2及び図3に示すように、半導体部5は、上面部5a及び4つの側面部5b,5b,5b,5bを有するメサ状の直方体形状で構成されている。同様に、図1図2及び図4に示すように、半導体部6も、上面部6a及び4つの側面部6b,6b,6b,6bを有するメサ状の直方体形状で構成されている。
【0024】
図2及び図3に示すように、半導体部5において、4つの側面部5b,5b,5b,5bのうち、2つの側面部5b及び5bは、X方向において互いに反対側に位置し、残りの2つの側面部5b及び5bは、Y方向において互いに反対側に位置している。そして、4つの側面部5b,5b,5b,5bの各々は、各々の上面部5a側が各々のベース部4側よりも内側に位置するように傾斜している。
【0025】
図2及び図4に示すように、半導体部6において、4つの側面部6b,6b,6b,6bのうち、2つの側面部6b及び6bは、X方向において互いに反対側に位置し、残りの2つの側面部6b及び6bは、Y方向において互いに反対側に位置している。そして、4つの側面部6b,6b,6b,6bの各々は、各々の上面部6a側が各々のベース部4側よりも内側に位置するように傾斜している。
【0026】
半導体部5及び6の各々は、半導体層2をベース部4が残る程度の深さまで選択的にエッチングすることによって形成することができる。半導体層2としては、これに限定されないが、半導体材料として例えばシリコン(Si)、結晶性として例えば単結晶、導電型としては例えばp型で構成された半導体基板を用いている。
【0027】
図2から図4に示すように、半導体層2には、例えばp型の半導体領域からなるp型のウエル領域3が設けられている。このp型のウエル領域3は、半導体部5及び6の全域に設けられていると共に、ベース部4の半導体部5,6側の表層部の全域に亘って設けられている。そして、p型のウエル領域3は、ベース部4の半導体部5,6側とは反対側の裏面から離間している。
【0028】
<絶縁層>
図2から図4に示すように、半導体層2のベース部4上には、半導体部5及び6を囲むようにして絶縁層7が設けられている。絶縁層7は、半導体層2のベース部4側とは反対側の表層部が平坦化されており、半導体部5及び6の各々の高さ(突出量)と同程度の膜厚で構成されている。絶縁層7は、例えば酸化シリコン(SiO)膜で構成されている。
【0029】
絶縁層7上には、後述する第1及び第2電界効果トランジスタQ1,Q2の各々のゲート電極11,12の頭部11a,12aを覆うようにして絶縁層17が設けられている。この絶縁層17も、例えば酸化シリコン(SiO)膜で構成されている。
【0030】
絶縁層17上には、配線21a、21b,21c、22a、22b及び22cを含む第1層目の配線層が設けられている。この配線層の配線21a、21b,21c、22a、22b及び22cは、例えばアルミニウム(Al)、銅(Cu)などの金属膜、又はAl、Cuを主体とする合金膜などで構成されている。
【0031】
<電界効果トランジスタ>
図1に示す第1及び第2電界効果トランジスタQ1及びQ2の各々は、これに限定されないが、例えばnチャネル導電型で構成されている。そして、第1及び第2電界効果トランジスタQ1及びQ2の各々は、酸化シリコン(SiO)膜をゲート絶縁膜とするMOSFET(Metal Oxide Semiconductor Field Effect transistor)で構成されている。第1及び第2電界効果トランジスタQ1及びQ2としては、pチャネル導電型でも構わない。また、窒化シリコン膜、或いは窒化シリコン(Si)膜及び酸化シリコン膜などの積層膜(複合膜)をゲート絶縁膜とするMISFET(Metal Insulator Semiconductor FET)でも構わない。
【0032】
図1及び図2に示すように、第1電界効果トランジスタQ1は、半導体部5に設けられている。一方、第2電界効果トランジスタQ2は、半導体部5とは異なる半導体部6に設けられている。即ち、この第1実施形態では、第1電界効果トランジスタQ1と第2電界効果トランジスタQ2とが、異なる半導体部5,6に個別に設けられている。
【0033】
第1及び第2電界効果トランジスタQ1,Q2の各々は、所定の回路を構成する構成素子として使用される。そして、半導体装置1に搭載される回路においては、用途の異なる電界効果トランジスタを含む回路がある。この第1実施形態では、例えば、第1電界効果トランジスタQ1は、スイッチング素子として機能し、第2電界効果トランジスタQ2は、増幅素子として機能する。即ち、この第1実施形態では、用途が異なる第1電界効果トランジスタQ1と第2電界効果トランジスタQ2とを搭載している。
【0034】
<第1電界効果トランジスタ>
図1図2及び図3に示すように、第1電界効果トランジスタQ1は、半導体部5に設けられたチャネル形成部15と、半導体部5の長手方向(Y方向)と交差する短手方向(X方向)において、半導体部5の上面部5a及び側面部5b,5bに亘って設けられたゲート電極11と、半導体部5とゲート電極11との間に設けられたゲート絶縁膜9と、を備えている。また、第1電界効果トランジスタQ1は、ゲート電極11のゲート長方向(チャネル形成部15のチャネル長方向)の両側の半導体部5に設けられた一対の主電極領域13a及び13bを更に備えている。一対の主電極領域13a及び13bは、ソース領域及びドレイン領域として機能する。そして、一対の主電極領域13a及び13bは、例えば、n型を呈する不純物を半導体部5に選択的に導入して形成されたn型の半導体領域で構成されている。この第1電界効果トランジスタQ1は、島状の半導体部(フィン部)5にゲート絶縁膜9を介してゲート電極11が設けられたフィン型で構成されている。
ここで、この第1実施形態では、半導体部5が本技術の「半導体部」の一具体例に相当する。そして、半導体部5の長手方向(Y方向)と交差する短手方向(X方向)が、本技術の「半導体部の一方向」の一具体例に相当する。
【0035】
第1電界効果トランジスタQ1は、例えば、ゲート電極11に閾値電圧以上のゲート電圧を印加することにより、ドレイン電流が流れるエンハンスメント型(ノーマリオフ型)、若しくは、ゲート電極11に電圧を印加しなくてもドレイン電流が流れるディプレッション型(ノーマリオフ型)で構成されている。この第1実施形態では、これに限定されないが、例えばエンハンスメント型で構成されている。エンハンスメント型の場合、第1電界効果トランジスタQ1は、ゲート電極11に印加される電圧により、一対の主電極領域13aと13bとを電気的に繋ぐチャネル(反転層)がチャネル形成部15に形成(誘起)され、電流(ドレイン電流)がドレイン領域側(例えば一方の主電極領域13a側)からチャネル形成部15のチャネルを通ってソース領域側(例えば他方の主電極領域13b)に流れる。
【0036】
<ゲート電極、ゲート絶縁膜>
図1図2及び図3に示すように、ゲート電極11は、これに限定されないが、例えば、半導体部5の上面部5a側にゲート絶縁膜9を介して設けられた頭部(第1部分)11aと、この頭部11aと一体化され、かつ半導体部5のX方向において互いに反対側に位置する2つの側面部5b及び5bの各々の外側にゲート絶縁膜9を介して設けられた2つの脚部(第2部分)11b及び11bと、を含む。即ち、ゲート電極11は、半導体部5の上面部5a及び2つの側面部5b,5bに亘って設けられ、そして、X方向に沿う縦断面形状がC字形状になっている。ゲート電極11は、例えば、抵抗値を低減する不純物が導入された多結晶シリコン膜で構成されている。
2つの脚部11b及び11bの各々は、絶縁層7の中に埋設されている。そして、頭部11aは、絶縁層7から上方に突出している。
【0037】
ゲート絶縁膜9は、半導体部5とゲート電極11との間において半導体部5の上面部5a及び2つの側面部5b,5bに亘って設けられている。ゲート絶縁膜9は、例えば酸化シリコン膜で構成されている。
【0038】
<第2電界効果トランジスタ>
図1図2及び図4に示すように、第2電界効果トランジスタQ2は、半導体部6に設けられたチャネル形成部16と、半導体部6の長手方向(Y方向)と交差する短手方向(X方向)において半導体部6の上面部5a及び側面部5b,5bに亘って設けられたゲート電極12と、半導体部6とゲート電極12との間に設けられたゲート絶縁膜10と、を備えている。また、第2電界効果トランジスタQ2は、ゲート電極12のゲート長方向(チャネル形成部16のチャネル長方向)の両側の半導体部6に設けられた一対の主電極領域14a及び14bを更に備えている。一対の主電極領域14a及び14bは、ソース領域及びドレイン領域として機能する。そして、一対の主電極領域13a及び13bは、例えば、n型を呈する不純物を半導体部6に選択的に導入して形成されたn型の半導体領域で構成されている。この第2電界効果トランジスタQ2も、第1電界効果トランジスタQ1と同様に、島状の半導体部(フィン部)6にゲート絶縁膜10を介してゲート電極12が設けられたフィン型で構成されている。
ここで、この第1実施形態では、半導体部6が本技術の「半導体部」の一具体例に相当する。そして、半導体部6の長手方向(Y方向)と交差する短手方向(X方向)が、本技術の「半導体部の一方向」の一具体例に相当する。
【0039】
第2電界効果トランジスタQ1は、例えば、エンハンスメント型(ノーマリオフ型)、若しくは、ディプレッション型(ノーマリオフ型)で構成されている。この第1実施形態では、これに限定されないが、例えばエンハンスメント型で構成されている。エンハンスメント型の場合、第2電界効果トランジスタQ2は、ゲート電極12に印加される電圧により、一対の主電極領域14aと14bとを電気的に繋ぐチャネル(反転層)がチャネル形成部16に形成(誘起)され、電流(ドレイン電流)がドレイン領域側(例えば一方の主電極領域14a側)からチャネル形成部16のチャネルを通ってソース領域側(例えば他方の主電極領域14b)に流れる。
【0040】
<ゲート電極、ゲート絶縁膜>
図1図2及び図4に示すように、ゲート電極12は、これに限定されないが、例えば、半導体部6の上面部6a側にゲート絶縁膜10を介して設けられた頭部(第1部分)12aと、この頭部12aと一体化され、かつ半導体部6のX方向において互いに反対側に位置する2つの側面部6b及び6bの各々の外側にゲート絶縁膜10を介して設けられた2つの脚部(第2部分)12b及び12bと、を含む。即ち、ゲート電極12は、半導体部6の上面部6a及び2つの側面部6b,6bに亘って設けられ、そして、X方向に沿う縦断面形状がC字形状になっている。ゲート電極12は、例えば、抵抗値を低減する不純物が導入された多結晶シリコン膜で構成されている。
2つの脚部12b及び12bの各々は、絶縁層7の中に埋設されている。そして、頭部12aは、絶縁層7から上方に突出している。
【0041】
ゲート絶縁膜10は、半導体部6とゲート電極12との間において半導体部6の上面部6a及び2つの側面部6b,6bに亘って設けられている。ゲート絶縁膜10は、例えば酸化シリコン膜で構成されている。
【0042】
<構成の差異>
第1及び第2電界効果トランジスタQ1,Q2において、図1及び図2に示すように、平面視で第1電界効果トランジスタQ1のゲート電極11と重畳する半導体部5の上面部5aでの半導体部5の長手方向(Y方向)と交差する短手方向(X方向)の幅Wが、平面視で第2電界効果トランジスタQ2のゲート電極12と重畳する半導体部6の上面部6aでの半導体部6の長手方向(Y方向)と交差する短手方向(X方向)の幅Wよりも狭く(幅狭に)なっている。換言すれば、半導体部6の上面部6aの幅Wが半導体部5の上面部5aの幅Wよりも広く(幅広に)なっている。この第1実施形態では、これに限定されないが、半導体部5の上面部5aの幅Wは、半導体部5の長手方向の一端側(側面部5b側)から他端側(側面部5b側)に亘って設計値で一定である。そして、半導体部6の上面部6aの幅Wも、半導体部6の長手方向の一端側(側面部6b側)から他端側(側面部6b側)に亘って設計値で一定である。
ここで、この第1実施形態では、半導体部5の幅W及び半導体部6の幅Wが、本技術の「半導体部の上面部での一方向の幅」の一具体例に相当する。
【0043】
また、図2から図4に示すように、第2電界効果トランジスタQ2のゲート絶縁膜10の膜厚Tが第1電界効果トランジスタQ1のゲート絶縁膜9の膜厚Tよりも薄くなっている。換言すれば、ゲート絶縁膜9の膜厚Tがゲート絶縁膜10の膜厚Tよりも厚くなっている。ゲート絶縁膜9とゲート絶縁膜10との相対的な膜厚差は、第1及び第2電界トランジスタQ1,Q2の各々のゲート電極(11,12)の頭部(11a,11b)と2つの脚部(11b及び11b,12b及び12b)とに亘って設計値で一定である。
【0044】
また、これに限定されないが、図3及び図4に示すように、第2電界効果トランジスタQ2のゲート電極12のゲート長Lgが第1電界トランジスタQ1のゲート電極11のゲート長Lgよりも長く(大きく)なっている。換言すれば、第1電界効果トランジスタQ1のゲート電極11のゲート長Lgが第2電界効果トランジスタQ2のゲート電極12ゲート長Lgよりも短く(小さく)なっている。
【0045】
ここで、フィン型の第1電界効果トランジスタQ1では、一対の主電極領域13aと13bとの間の長さがチャネル長L(≒ゲート長Lg)であり、ゲート電極11と半導体部5とが立体的に重畳する領域において半導体部5の上面部5aでの幅W及び2つの側面部5b,5bの高さを含む長さ(半導体部5の周囲の長さ)がチャネル幅W(≒ゲート幅)となる。
また、フィン型の第2電界効果トランジスタQ2においても、一対の主電極領域14aと14bとの間の長さがチャネル長(≒ゲート長Lg)であり、ゲート電極12と半導体部6とが立体的に重畳する領域において半導体部6の上面部6aでの幅W及び2つの側面部6b,6bの高さを含む長さ(半導体部6の周囲の長さ)がチャネル幅W(≒ゲート幅)となる。
したがって、フィン型の第1及び第2電界効果トランジスタQ1,Q2は、半導体部5,6の幅を狭くすることにより、チャネル幅Wが狭くなるので、チャネル面積(チャネル長L×チャネル幅W)を小さくすることができる。そして、逆に半導体部5,6の幅を広くすることにより、チャネル幅Wが広くなるので、チャネル面積(チャネル長L×チャネル幅W)を大きくすることができる。
【0046】
また、フィン型の第1及び第2電界効果トランジスタQ1,Q2は、半導体部5,6の高さを低くすることにより、チャネル幅Wが狭くなるので、チャネル面積(チャネル長L×チャネル幅W)を小さくすることができる。そして、逆に半導体部5,6の高さを高くすることにより、チャネル幅Wが広くなるので、チャネル面積(チャネル長L×チャネル幅W)を大きくすることができる。
【0047】
なお、この第1実施形態において、第2電界効果トランジスタQ2のゲート電極12のゲート長Lgは、第1電界効果トランジスタQ1のゲート電極11のゲート長Lgよりも長くなっている。そして、第1電界効果トランジスタQ1のゲート電極11のゲート長Lgは、例えば200nm以下であることが好ましい。
【0048】
また、第1電界効果トランジスタQ1のゲート電極11と重畳する半導体部5の上面部5aでの幅Wと、第2電界効果トランジスタQ2のゲート電極12と重畳する半導体部6の上面部6aでの幅Wとの差分は、10nm以上であることが好ましい。
【0049】
また、第1電界効果トランジスタQ1のゲート絶縁膜9の膜厚Tと、第2電界効果トランジスタQ2のゲート絶縁膜10の膜厚Tとの差分は、1nm以上であることが好ましい。
【0050】
<コンタクト電極及び配線>
第1電界効果トランジスタQ1において、図2及び図3に示すように、ゲート電極11は、絶縁層17に設けられたコンタクト電極18cを介して、絶縁層17上の配線21cと電気的に接続されている。また、図3に示すように、一対の主電極領域13a及び13bのうち、一方の主電極領域13aは、絶縁層17に設けられたコンタクト電極18aを介して、絶縁層17上の配線21aと電気的に接続されている。そして、一対の主電極領域13a及び13bのうち、他方の主電極領域13bは、絶縁層17に設けられたコンタクト電極18bを介して、絶縁層17上の配線21bと電気的に接続されている。
【0051】
第2電界効果トランジスタQ2において、図2及び図4に示すように、ゲート電極12は、絶縁層17に設けられたコンタクト電極19cを介して、絶縁層17上の配線22cと電気的に接続されている。また、図4に示すように、一対の主電極領域14a及び14bのうち、一方の主電極領域14aは、絶縁層17に設けられたコンタクト電極19aを介して、絶縁層17上の配線22aと電気的に接続されている。そして、一対の主電極領域14a及び14bのうち、他方の主電極領域14bは、絶縁層17に設けられたコンタクト電極19bを介して、絶縁層17上の配線22bと電気的に接続されている。
コンタクト電極18a,18b,18c,19a,19b,19cの材料としては、例えばチタン(Ti)、タングステン(W)などの高融点金属膜を用いることができる。
【0052】
≪第1実施形態の主な効果≫
次に、この第1実施形態の主な効果について説明する。
第1及び第2電界効果トランジスタQ1,Q2は、フィン型で構成されている。そして、図2に示すように、第1電界効果トランジスタQ1では、ゲート電極11と重畳する半導体部5の上面部5aでの幅Wが、第2電界トランジスタQ2のゲート電極12と重畳する半導体部6の上面部6aでの幅Wよりも狭くなっている。このように、半導体部5の上面部5aでの幅Wを狭くすることにより、第2電界効果トランジスタQ2と比較して、ゲートの制御性が向上し、短チャネル効果の抑制に優位な第1電界効果トランジスタQ1を構築することができるため、第1電界効果トランジスタQ1においてはゲート長を短くして平面サイズの微細化を図ることができる。この第1電界効果トランジスタQ1の平面サイズの微細化は、この第1電界効果トランジスタQ1を含む回路の占有面積を縮小することができ、半導体装置1Aの高集積化に寄与する。
また、第1電界効果トランジスタQ1では、ゲート絶縁膜9の膜厚Tが、第2電界効果トランジスタQ2のゲート絶縁膜10の膜厚Tよりも厚くなっていることから、平面サイズの微細化に伴うゲート絶縁膜10の信頼性の低下を抑制することができる。
したがって、第1電界効果トランジスタQ1においては、ゲート絶縁膜9の信頼性を確保しつつ、平面サイズの微細化を図ることでできる。
【0053】
一方、図2に示すように、第2電界効果トランジスタQ2では、ゲート電極12と重畳する半導体部6の上面部6aでの幅Wが、第1電界効果トランジスタQ1のゲート電極11と重畳する半導体部5の上面部5aでの幅よりも広くなっている。このように、半導体部6の上面部6aでの幅Wを広くすることにより、チャネル面積(L×W)を大きくすることができ、第1電界効果トランジスタQ1と比較して、1/fノイズやRTSノイズなどのノイズ耐性に優位な第2電界効果トランジスタQ2を構築することができる。
また、第2電界効果トランジスタQ2では、ゲート絶縁膜10の膜厚Tが、第1電界効果トランジスタQ1のゲート絶縁膜9の膜厚Tよりも薄くなっていることから、ゲート絶縁膜10の厚膜化に起因する1/fノイズやRTS(Random Telegraph Signal)ノイズなどのノイズ耐性の劣化を抑制することができる。
ここで、電界効果トランジスタでは、チャネル面積を大きくすることにより、1/fノイズやRTSノイズなどのノイズ耐性に優位となることが一般的に知られている。また、ゲート絶縁膜の膜厚を厚くすることにより、1/fノイズやRTSノイズなどのノイズ耐性が劣化することが一般的に知られている。
したがって、第2電界効果トランジスタQ2においては、チャネル幅W(ゲート幅Wg)を確保しつつ、ノイズ耐性の向上を図ることができる。
よって、この第1実施形態に係る半導体装置1Aによれば、第1電界効果トランジスタQ1及び第2電界効果トランジスタQ2を混載することで高集積化及びノイズ耐性の向上を図ることが可能となる。
【0054】
また、後述の実施形態で詳細に説明するが、半導体装置としての光検出装置では、光電変換素子で光電変換された信号電荷を画素信号に変換する画素回路を備えている。この画素回路は、用途が異なる画素トランジスタを含んでいる。具体的には、スイッチング素子として機能する選択トランジスタやリセットトランジスタなどの画素トランジスタと、増幅素子として機能する増幅トランジスタとしての画素トランジスタと、を含んでいる。
増幅トランジスタは、スイッチング素子として機能する画素トランジスタ(選択トランジスタ,リセットトランジスタ)と比較して、1/fノイズやRTSノイズなどのノイズ耐性の劣化の抑制が重要である。
一方、増幅トランジスタは、スイッチング素子として機能する選択トランジスタやリセットトランジスタなどの画素トランジスタと比較して、光検出装置に搭載される個数が少ない。
したがって、スイッチング素子として機能する選択トランジスタやリセットトランジスタなどの画素トランジスタを第1電界効果トランジスタQ1で構成し、増幅トランジスタを第2電界効果トランジスタQ2で構成することにより、高集積化及びノイズ耐性の向上を図ることが可能であり、本技術を適用した場合の有用性が高い。
【0055】
≪第1実施形態の変形例≫
なお、上述の第1実施形態では、第1及び第2電界効果トランジスタQ1,Q2の各々がnチャネル導電型で構成された場合について説明したが、本技術は、第1及び第2電界効果トランジスタQ1,Q2がpチャネル導電型で構成された場合にも適用することができる。
【0056】
また、本技術は、第1及び第2電界効果トランジスタQ1,Q2のうち、一方がpチャネル導電型で構成され、他方がnチャネル導電型で構成された場合にも適用することができる。
【0057】
また、上述の第1実施形態では、第1及び第2電界効果トランジスタQ1,Q2の各々がエンハンスメント型で構成された場合について説明したが、本技術は、第1及び第2電界効果トランジスタQ1,Q2がディプレッション型で構成された場合にも適用することができる。
【0058】
また、本技術は、第1及び第2電界効果トランジスタQ1,Q2のうち、一方がエンハンスメント型で構成され、他方がディプレッション型で構成された場合にも適用することができる。
【0059】
〔第2実施形態〕
本技術の第2実施形態に係る半導体装置1Bは、基本的に上述の第1実施形態に係る半導体装置1Aと同様の構成になっており、以下の構成が異なっている。
【0060】
即ち、図1及び図2に示すように、上述の第1実施形態に係る半導体装置1Aは、第1電界効果トランジスタQ1と第2電界効果トランジスタQ2とが、異なる半導体部5,6に個別に設けられた構成になっている。
【0061】
これに対し、図5及び図6に示すように、この第2実施形態に係る半導体装置1Bは、第1及び第2電界効果トランジスタQ1,Q2の各々が、同一の半導体部24に設けられた構成になっている。その他の構成は、概ね第1実施形態と同様である。
【0062】
図5及び図6に示すように、この第2実施形態の半導体層2は、X方向及びY方向において二次元状に広がるベース部4と、このベース部4から上方(Z方向)に突出する島状の半導体部24を含む。半導体部24は、例えば、Y方向に延伸している。そして、半導体部24は、上面部24a及び4つの側面部24b,24b,24b,24bを有するメサ状の直方体形状で構成されている。そして、半導体部24は、Y方向に延伸する第1部分25と、この第1部分25の長手方向(Y方向)の一端側からY方向に向かって延伸する第2部分26とを有する。第1部分25の上面部24aでの幅Wは、第2部分26の上面部24aでの幅Wよりも狭くなっている。換言すれば、第2部分26の上面部24aでの幅Wは、第1部分25の上面部24aでの幅Wよりも狭くなっている。そして、半導体部24は、第1部分25と第2部分26との間に、半導体部24の長手方向(Y方向)と交差する一方向(短手方向)の幅が異なる段差部27を有する。
【0063】
半導体部24において、4つの側面部24b,24b,24b,24bのうち、2つの側面部24b及び24bは、X方向において互いに反対側に位置し、残りの2つの側面部24b及び24bは、Y方向において互いに反対側に位置している。そして、4つの側面部24b,24b,24b,24bの各々は、各々の上面部24a側が各々のベース部4側よりも内側に位置するように傾斜している。
【0064】
図6に示すように、半導体層2には、例えばp型の半導体領域からなるp型のウエル領域3が設けられている。このp型のウエル領域3は、半導体部24の全域に設けられていると共に、ベース部4の半導体部24側の表層部の全域に亘って設けられている。
【0065】
半導体層2のベース部4上には、半導体部24を囲むようにして絶縁層7が設けられている。絶縁層7は、半導体層2のベース部4側とは反対側の表層部が平坦化されており、半導体部24の高さ(突出量)と同程度の膜厚で構成されている。
【0066】
図5及び図6に示すように、この第2実施形態では、第1電界効果トランジスタQ1は、半導体部24の第1部分25に設けられている。一方、第2電界効果トランジスタQ2は、半導体部24の第2部分26に設けられている。そして、この第2実施形態では、第1電界効果トランジスタQ1のチャネル形成部15、ゲート電極11及びゲート絶縁膜9が、半導体部24の第1部分25に設けられ、第2電界効果トランジスタQ2のチャネル形成部16、ゲート電極12及びゲート絶縁膜10が、半導体部24の第1部分25に設けられている。
【0067】
図5に示すように、上述した半導体部24の段差部27は、平面視で第1電界効果トランジスタQ1のゲート電極11と、第2電界効果トランジスタQ2のゲート電極12との間に設けられている。即ち、半導体部24は、第1電界効果トランジスタQ1のゲート電極11と、第2電界効果トランジスタQ2のゲート電極12との間に、半導体部24の長手方向(Y方向)と交差する一方向の幅(W,W)が異なる段差部27を有する。
【0068】
図5及び図6に示すように、この第2実施形態のゲート電極11は、上述の第1実施形態のゲート電極11と同様の構成になっている。具体的には、ゲート電極11は、半導体部24の第1部分25の上面部5a側にゲート絶縁膜9を介して設けられた頭部(第1部分)11aと、この頭部11aと一体化され、かつ半導体部24のX方向において互いに反対側に位置する2つの側面部24b及び24bの各々の外側にゲート絶縁膜9を介して設けられた2つの脚部11b及び11b(上述の第1実施形態の図2参照)と、を含む。
【0069】
また、図5及び図6に示すように、この第2実施形態のゲート電極12においても、上述の第1実施形態のゲート電極12と同様の構成になっている。具体的には、ゲート電極12は、半導体部24の第2部分26の上面部5a側にゲート絶縁膜9を介して設けられた頭部(第1部分)12aと、この頭部12aと一体化され、かつ半導体部24のX方向において互いに反対側に位置する2つの側面部24b及び24bの各々の外側にゲート絶縁膜10を介して設けられた2つの脚部12b及び12b(上述の第1実施形態の図2参照)と、を含む。
【0070】
図6に示すように、この第2実施形態においても、第1電界効果トランジスタQ1のゲート絶縁膜9の膜厚Tは、第2電界効果トランジスタQ2のゲート絶縁膜10の膜厚Tよりも厚くなっている。換言すれば、第2電界効果トランジスタQ2のゲート絶縁膜10の膜厚Tは、第1電界効果トランジスタQ1のゲート絶縁膜9の膜厚Tよりも薄くなっている。
【0071】
図6に示すように、第1及び第2電界効果トランジスタQ1,Q2は、第1電界効果トランジスタQ1の他方の主電極領域13bと、第2電界効果トランジスタQ2の一方の主電極領域14aと、を共有している。即ち、この第2実施形態の第1及び第2電界効果トランジスタQ1,Q2は、半導体部24に直列接続で設けられている。
【0072】
この第2実施形態において、上述したように、第1電界効果トランジスタQ1では、ゲート電極11と重畳する半導体部24の第1部分25の上面部24aでの幅Wが、第2トランジスタQ2のゲート電極12と重畳する半導体部24の第2部分26の上面部24aでの幅Wよりも狭くなっている。また、第1電界効果トランジスタQ1では、ゲート絶縁膜9の膜厚Tが、第2電界効果トランジスタQ2のゲート絶縁膜10の膜厚Tよりも厚くなっている。
【0073】
一方、第2電界効果トランジスタQ2では、ゲート電極12と重畳する半導体部24の第2部分26の上面部24aでの幅Wが、第1電界効果トランジスタQ1のゲート電極11と重畳する半導体部24の第1部分25の上面部24aでの幅Wよりも広くなっている。また、第2電界効果トランジスタQ2では、ゲート絶縁膜10の膜厚Tが、第1電界効果トランジスタQ1のゲート絶縁膜9の膜厚Tよりも薄くなっている。
【0074】
したがって、この第2実施形態に係る半導体装置1Bにおいても、上述の第1実施形態に係る半導体装置1Aと同様の効果が得られる。
【0075】
また、この第2実施形態の第1及び第2電界効果トランジスタQ1,Q2は、第1電界効果トランジスタQ1の他方の主電極領域13bと、第2電界効果トランジスタQ2の一方の主電極領域14aとを共有しているので、この第1及び第2電界効果トランジスタQ1,Q2を含む回路の占有面積を、上述の第1実施形態の第1及び第2電界効果トランジスタQ1,Q2を含む回路の占有面積と比較して、より縮小することが可能である。
【0076】
なお、この第2実施形態では、半導体部24が本技術の「半導体部」の一具体例に相当する。そして、半導体部24の長手方向(Y方向)と交差する短手方向(X方向)が、本技術の「半導体部の一方向」の一具体例に相当する。そして、半導体部24の第1部分25の幅W及び第2部分26の幅Wが、本技術の「半導体部の上面部での一方向の幅」の一具体例に相当する。
【0077】
≪第2実施形態の変形例≫
なお、上述の第2実施形態では、第1及び第2電界効果トランジスタQ1,Q2の各々がnチャネル導電型で構成された場合について説明したが、本技術は、同一の半導体部24に設けられる第1及び第2電界効果トランジスタQ1,Q2がpチャネル導電型で構成された場合にも適用することができる。
【0078】
また、本技術は、同一の半導体部24に設けられる第1及び第2電界効果トランジスタQ1,Q2のうち、一方がpチャネル導電型で構成され、他方がnチャネル導電型で構成された場合にも適用することができる。但し、この場合は、第1電界効果トランジスタQ1の他方の主電極領域13bと第2電界効果トランジスタQ2の一方の主電極領域14aとを個別に構成する必要がある。
【0079】
また、上述の第2実施形態では、第1及び第2電界効果トランジスタQ1,Q2の各々がエンハンスメント型で構成された場合について説明したが、本技術は、同一の半導体部24に設けられる第1及び第2電界効果トランジスタQ1,Q2がディプレッション型で構成された場合にも適用することができる。
【0080】
また、本技術は、同一の半導体部24に設けられる第1及び第2電界効果トランジスタQ1,Q2のうち、一方がエンハンスメント型で構成され、他方がディプレッション型で構成された場合にも適用することができる。
【0081】
〔第3実施形態〕
この第3実施形態では、半導体装置に含まれる光検出装置として、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサと呼称される固体撮像装置に本技術を適用した一例について、図7から図10を用いて説明する。
【0082】
≪固体撮像装置の全体構成≫
まず、固体撮像装置1Cの全体構成について説明する。
図7に示すように、本技術の第7実施形態に係る固体撮像装置1Cは、平面視したときの二次元平面形状が方形状の半導体チップ102を主体に構成されている。即ち、固体撮像装置1Cは半導体チップ102に搭載されており、半導体チップ102を固体撮像装置1Cとみなすことができる。この固体撮像装置1C(201)は、図12に示すように、光学レンズ202を介して被写体からの像光(入射光206)を取り込み、撮像面上に結像された入射光206の光量を画素単位で電気信号に変換して画素信号(画像信号)として出力する。
【0083】
図7に示すように、固体撮像装置1Cが搭載された半導体チップ102は、互いに直交するX方向及びY方向を含む二次元平面において、中央部に設けられた方形状の画素アレイ部102Aと、この画素アレイ部102Aの外側に画素アレイ部102Aを囲むようにして設けられた周辺部102Bとを備えている。
【0084】
画素アレイ部102Aは、例えば図12に示す光学レンズ(光学系)202により集光される光を受光する受光面である。そして、画素アレイ部102Aには、X方向及びY方向を含む二次元平面において複数の画素103が行列状に配置されている。換言すれば、画素103は、二次元平面内で互いに直交するX方向及びY方向のそれぞれの方向に繰り返し配置されている。
【0085】
図7に示すように、周辺部102Bには、複数のボンディングパッド114が配置されている。複数のボンディングパッド114の各々は、例えば、半導体チップ102の二次元平面における4つの辺の各々の辺に沿って配列されている。複数のボンディングパッド114の各々は、半導体チップ102と外部装置とを電気的に接続する入出力端子として機能する。
【0086】
<ロジック回路>
半導体チップ102は、図8に示すロジック回路113を備えている。ロジック回路113は、図8に示すように、垂直駆動回路104、カラム信号処理回路105、水平駆動回路106、出力回路107及び制御回路108などを含む。ロジック回路113は、電界効果トランジスタとして、例えば、nチャネル導電型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)及びpチャネル導電型のMOSFETを有するCMOS(Complementary MOS)回路で構成されている。
【0087】
垂直駆動回路104は、例えばシフトレジスタによって構成されている。垂直駆動回路104は、所望の画素駆動線110を順次選択し、選択した画素駆動線110に画素103を駆動するためのパルスを供給し、各画素103を行単位で駆動する。即ち、垂直駆動回路104は、画素アレイ部102Aの各画素103を行単位で順次垂直方向に選択走査し、各画素103の光電変換部(光電変換素子)が受光量に応じて生成した信号電荷に基づく画素103からの画素信号を、垂直信号線111を通してカラム信号処理回路105に供給する。
【0088】
カラム信号処理回路105は、例えば画素103の列毎に配置されており、1行分の画素103から出力される信号に対して画素列毎にノイズ除去等の信号処理を行う。例えばカラム信号処理回路105は、画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)及びAD(Analog Digital)変換等の信号処理を行う。
【0089】
水平駆動回路106は、例えばシフトレジスタによって構成されている。水平駆動回路106は、水平走査パルスをカラム信号処理回路105に順次出力することによって、カラム信号処理回路105の各々を順番に選択し、カラム信号処理回路105の各々から信号処理が行われた画素信号を水平信号線112に出力させる。
【0090】
出力回路107は、カラム信号処理回路105の各々から水平信号線112を通して順次に供給される画素信号に対し、信号処理を行って出力する。信号処理としては、例えば、バッファリング、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を用いることができる。
【0091】
制御回路108は、垂直同期信号、水平同期信号、及びマスタクロック信号に基づいて、垂直駆動回路104、カラム信号処理回路105、及び水平駆動回路106等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路108は、生成したクロック信号や制御信号を、垂直駆動回路104、カラム信号処理回路105、及び水平駆動回路106等に出力する。
【0092】
<画素の回路構成>
図9に示すように、複数の画素103の各々の画素103は、光電変換領域121及び画素回路(読出し回路)115を備えている。光電変換領域121は、光電変換部124と、転送トランジスタTRと、電荷保持領域(フローティングディフュージョン:Floating Diffusion)FDとを備えている。画素回路115は、光電変換領域121の電荷保持領域FDと電気的に接続されている。この第3実施形態では、一例として1つの画素103に1つの画素回路115を割り与えた回路構成としているが、これに限定されるものではなく、1つの画素回路115を複数の画素103で共有する回路構成としてもよい。例えば、X方向及びY方向の各々の方向に2つずつ配置された2×2配置の4つの画素103で1つの画素回路115を共有する回路構成としてもよい。
【0093】
図9に示す光電変換部124は、例えばpn接合型のフォトダイオード(PD)で構成され、受光量に応じた信号電荷を生成する。光電変換部124は、カソード側が転送トランジスタTRのソース領域と電気的に接続され、アノード側が基準電位線(例えばグランド)と電気的に接続されている。
【0094】
図9に示す転送トランジスタTRは、光電変換部124で光電変換された信号電荷を電荷保持領域FDに転送する。転送トランジスタTRのソース領域は光電変換部124のカソード側と電気的に接続され、転送トランジスタTRのドレイン領域は電荷保持領域FDと電気的に接続されている。そして、転送トランジスタTRのゲート電極は、画素駆動線110(図2参照)のうちの転送トランジスタ駆動線と電気的に接続されている。
【0095】
図9に示す電荷保持領域FDは、光電変換部124から転送トランジスタTRを介して転送された信号電荷を一時的に保持(蓄積)する。
【0096】
光電変換部124、転送トランジスタTR及び電荷保持領域FDを含む光電変換領域121は、後述する第2半導体層としての半導体層130(図10参照)に搭載されている。
【0097】
図9に示す画素回路115は、電荷保持領域FDに保持された信号電荷を読み出し、この信号電荷に基づく画素信号に変換して出力する。換言すれば、画素回路115は、光電変換素子PDで光電変換された信号電荷を、この信号電荷に基づく画素信号に変換して出力する。画素回路115は、これに限定されないが、画素トランジスタとして、例えば、増幅トランジスタAMPと、選択トランジスタSELと、リセットトランジスタRSTと、切替トランジスタFDGと、を備えている。これらの画素トランジスタ(AMP,SEL,RST,FDG)、及び上述の転送トランジスタTRの各々は、電界効果トランジスタとして、例えば、MOSFETで構成されている。また、これらのトランジスタとしては、MISFETでも構わない。
【0098】
画素回路115に含まれる画素トランジスタのうち、選択トランジスタSEL、リセットトランジスタRST、及び切替トランジスタFDGの各々は、スイッチング素子として機能し、増幅トランジスタAMPは、増幅素子として機能する。即ち、画素回路115は、用途が異なる電界効果トランジスタを含む。
なお、選択トランジスタSEL及び切替トランジスタFDGは、必要に応じて省略してもよい。
【0099】
図9に示すように、増幅トランジスタAMPは、ソース領域が選択トランジスタSELのドレイン領域と電気的に接続され、ドレイン領域が電源線Vdd及びリセットトランジスタRSTのドレイン領域と電気的に接続されている。そして、増幅トランジスタAMPのゲート電極は、電荷保持領域FD及び切替トランジスタFDGのソース領域と電気的に接続されている。
【0100】
選択トランジスタSELは、ソースが垂直信号線111(VSL)と電気的に接続され、ドレイン領域が増幅トランジスタAMPのソース領域と電気的に接続されている。そして、選択トランジスタSELのゲート電極は、画素駆動線110(図8参照)のうちの選択トランジスタ駆動線と電気的に接続されている。
【0101】
リセットトランジスタRSTは、ソース領域が切替トランジスタFDGのドレイン領域と電気的に接続され、ドレイン領域が電源線Vdd及び増幅トランジスタAMPのドレイン領域と電気的に接続されている。そして、リセットトランジスタRSTのゲート電極は、画素駆動線110(図8参照)のうちのリセットトランジスタ駆動線と電気的に接続されている。
【0102】
切替トランジスタFDGは、ソース領域が電荷保持領域FD及び増幅トランジスタAMPのゲート電極と電気的に接続され、ドレイン領域が電源線Vdd及び増幅トランジスタAMPのドレイン領域と電気的に接続されている。そして、切替トランジスタFDGのゲート電極は、画素駆動線110(図8参照)のうちの切替トランジスタ駆動線と電気的に接続されている。
【0103】
なお、選択トランジスタSELを省略する場合は、増幅トランジスタAMPのソース領域が垂直信号線111(VSL)と電気的に接続される。また、切替トランジスタFDGを省略する場合は、リセットトランジスタRSTのソース領域が増幅トランジスタAMPのゲート電極及び電荷保持領域FDと電気的に接続される。
【0104】
転送トランジスタTRは、転送トランジスタTRがオン状態となると、光電変換部124で生成された信号電荷を電荷保持領域FDに転送する。
【0105】
リセットトランジスタRSTは、リセットトランジスタRSTがオン状態となると、電荷保持領域FDの電位(信号電荷)を電源線Vddの電位にリセットする。選択トランジスタSELは、画素回路115からの画素信号の出力タイミングを制御する。
【0106】
増幅トランジスタAMPは、画素信号として、電荷保持領域FDに保持された信号電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMPは、ソースフォロア型のアンプを構成しており、光電変換部124で生成された信号電荷のレベルに応じた電圧の画素信号を出力するものである。増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、電荷保持領域FDの電位を増幅して、その電位に応じた電圧を、垂直信号線111(VSL)を介してカラム信号処理回路105に出力する。
【0107】
切替トランジスタFDGは、電荷保持領域FDによる電荷保持を制御すると共に、増幅トランジスタAMPで増幅される電位に応じた電圧の増倍率を調整する。
【0108】
この第3実施形態に係る固体撮像装置1Cの動作時には、画素103の光電変換部124で生成された信号電荷が画素103の転送トランジスタTRを介して電荷保持領域FDに保持(蓄積)される。そして、電荷保持領域FDに保持された信号電荷が画素回路115により読み出されて、画素回路115の増幅トランジスタAMPのゲート電極に印加される。画素回路115の選択トランジスタSELのゲート電極には水平ラインの選択用制御信号が垂直シフトレジスタから与えられる。そして、選択用制御信号をハイ(H)レベルにすることにより、選択トランジスタSELが導通し、増幅トランジスタAMPで増幅された、電荷保持領域FDの電位に対応する電流が垂直信号線111に流れる。また、画素回路115のリセットトランジスタRSTのゲート電極に印加するリセット用制御信号をハイ(H)レベルにすることにより、リセットトランジスタRSTが導通し、電荷保持領域FDに蓄積された信号電荷をリセットする。
【0109】
≪固体撮像装置の縦断面構造≫
次に、半導体チップ102(固体撮像装置1C)の縦断面構造について、図10を用いて説明する。図10は、図7の画素アレイ部における縦断面構造を示す模式的縦断面図であり、図面を見易くするため、図7に対して上下が反転している。
【0110】
<半導体チップ>
図10に示すように、半導体チップ102は、厚さ方向(Z方向)において互いに反対側に位置する第1の面S1及び第2の面S2を有する半導体層130と、この半導体層130の第1の面S1側に設けられた絶縁層131と、この絶縁層131の半導体層130側とは反対側に設けられた半導体層2と、を備えている。
【0111】
また、半導体チップ102は、半導体層130の第2の面S2側に、この第2の面S2側から順次積層された平坦化層141、カラーフィルタ層142及びレンズ層143などを備えている。
【0112】
半導体層130は、例えば単結晶シリコンで構成されている。
【0113】
平坦化層141は、例えば酸化シリコン膜で構成されている。そして、平坦化層141は、半導体層130の第2の面S2(光入射面)側が凹凸のない平坦面となるように、画素アレイ部102Aにおいて、半導体層130の第2の面S2側の全体を覆っている。
【0114】
カラーフィルタ層142には、赤色(R)、緑色(G)、青色(B)などのカラーフィルタが画素103毎に設けられ、半導体チップ102の光入射面側から入射した入射光を色分離する。
【0115】
レンズ層143には、照射光を集光し、集光した光を光電変換領域121に効率良く入射させるマイクロレンズが画素103毎に設けられている。
【0116】
図10に示すように、この第3実施形態の半導体層2は、上述の第1実施形態の図2に示す半導体層2と同様の構成になっており、半導体層2の半導体部5に電界効果トランジスタQ1が設けられ、半導体層2の半導体部6に電界効果トランジスタQ2が設けられている。そして、半導体層2のベース部4上には、半導体部5及び6を囲むようにして絶縁層7が設けられている。この第3実施形態の第1及び第2電界効果トランジスタQ1,Q2は、上述の第1実施形態の第1及び第2電界効果トランジスタQ1,Q2と同様の構成になっている。
【0117】
ここで、この第3実施形態では、半導体部5が本技術の「半導体部」の一具体例に相当する。そして、半導体部5の長手方向(Y方向)と交差する短手方向(X方向)が、本技術の「半導体部の一方向」の一具体例に相当し、半導体部6の長手方向(Y方向)と交差する短手方向(X方向)が、本技術の「半導体部の一方向」の一具体例に相当する。
また、この第3実施形態では、半導体部5の幅W及び半導体部6の幅Wが、本技術の「半導体部の上面部での一方向の幅」の一具体例に相当する。
【0118】
半導体層130は、半導体層2の半導体部5及び6と重畳して配置されている。即ち、半導体チップ102は、半導体層130と半導体層2とを、各々の厚さ方向(Z方向)に積層した2段階構造になっている。
【0119】
この第3実施形態において、図9に示す光電変換部124、転送トランジスタTR及び電荷保持領域FDの各々は、詳細に図示していないが、図10に示す半導体層130に設けられている。
一方、図9の画素回路115に含まれる画素トランジスタ(AMP,SEL,RST,FDG)の各々は、詳細に図示していないが、図10に示す半導体層2に設けられている。そして、画素回路115に含まれる画素トランジスタ(AMP,SEL,RST,FDG)のうち、増幅トランジスタとして機能する増幅トランジスタAMPは、第2電界効果トランジスタQ2で構成されている。また、画素回路115に含まれる画素トランジスタ(AMP,SEL,RST,FDG)のうち、スイッチング素子として機能する選択トランジスタSEL、リセットトランジスタRST、及び切替トランジスタFDGの各々は、詳細に図示していないが、第1電界効果トランジスタQ1で構成されている。図10では、一例として、選択トランジスタSELを図示している。リセットトランジスタRST及び切替トランジスタFDGの各々は、図示していないが、半導体部5及び6とは異なる他の半導体部に設けられている。そして、この他の半導体部も半導体部5と同様の構成になっており、半導体部5を参照して説明すると上面部5aでの幅Wが半導体部6の上面部での幅Wよりも狭くなっている。
【0120】
即ち、画素回路115は、第2電界効果トランジスタQ2で構成された増幅トランジスタAMPと、この増幅トランジスタAMPと電気的に接続され、かつ第1電界効果トランジスタQ1で構成されたスイッチング素子(スイッチングトランジスタ)としての画素トランジスタ(AMP,SEL,RST,FDG)とを含む。
【0121】
≪第3実施形態の主な効果≫
この第3実施形態に係る固体撮像装置1Cは、上述したように、画素回路115に含まれる画素トランジスタのうち、スイッチング素子として機能する選択トランジスタSELが、半導体部5に設けられた第1電界効果トランジスタQ1で構成されている。また、画素回路115に含まれる画素トランジスタのうち、スイッチング素子として機能するリセットトランジスタRST及び切替トランジスタFDGの各々が、半導体部5と同様の構成の他の半導体部に設けられた第1電界効果トランジスタQ1で構成されている。そして、画素回路115に含まれる画素トランジスタのうち、増幅素子として機能する増幅トランジスタAMPが、半導体部6に設けられた第2電界効果トランジスタQ2で構成されている。
したがって、この第3実施形態に係る固体撮像装置1Cにおいても、上述の第1実施形態に係る半導体装置1Aと同様の効果が得られる。
【0122】
ここで、増幅トランジスタAMPは、スイッチング素子として機能する画素トランジスタ(SEL,RST,FDG)と比較して、1/fノイズやRTSノイズなどのノイズ耐性の劣化の抑制が重要である。
一方、増幅トランジスタAMPは、スイッチング素子として機能する選択トランジスタSEL、リセットトランジスタRST及び切替トランジスタFDGなどの画素トランジスタと比較して、画素アレイ部2Aに搭載される個数が少ない。
したがって、スイッチング素子として機能する選択トランジスタSEL、リセットトランジスタRST及び切替トランジスタFDGなどの画素トランジスタを第1電界効果トランジスタQ1で構成し、増幅トランジスタAMPを第2電界効果トランジスタQ2で構成することにより、高集積化及びノイズ耐性の向上を図ることが可能であり、本技術を適用した場合の有用性が高い。
【0123】
また、画素回路115に含まれる画素トランジスタは、光電変換部124、転送トランジスタTR及び電荷保持領域FDが設けられた半導体層130とは異なる半導体層2に設けられているので、画素回路115に含まれる画素トランジスタ(AMP,SEL,RST,FDG)の配置自由度を高めることができると共に、同一の半導体層に光電変換部124、転送トランジスタTR及び電荷保持領域FDや画素トランジスタを設けた場合と比較して、より高集積化及びノイズ耐性の向上を図ることが可能である。
【0124】
≪第3実施形態の変形例≫
なお、画素回路115に含まれるスイッチング素子としての画素トランジスタ(SEL,RST,FDG)の少なくとも何れか1つを電界効果トランジスタQ1で構成してもよい。
【0125】
また、画素回路115に含まれる画素トランジスタ(AMP,SEL,RST,FDG)のうち、選択トランジスタSEL、リセットトランジスタRST及び切替トランジスタFDGの少なくとも何れか1つを図5及び図6に示す第1電界効果トランジスタQ1で構成し、増幅トランジスタAMPを図5及び図6に示す第2電界効果トランジスタQ2で構成してもよい。
【0126】
また、図5及び図6に示す半導体部24の第1部分25に第1電界効果トランジスタQ1で構成された複数のスイッチング素子を設け、第2部分26に第2電界効果トランジスタQ2からなる増幅トランジスタAMPを設けた構成としてもよい。
【0127】
〔第4実施形態〕
上述の第1実施形態から第3実施形態では、頭部11aと、2つの脚部11b及び11bとを含むゲート電極11、並びに、頭部12aと、2つの脚部12b及び12bとを含むゲート電極12について説明した。しかしながら、ゲート電極11及び12の脚部は2つに限定されるものではない。例えば、図11に示すように、3つの脚部11b,11b,11bを含むゲート電極11、並びに、3つの脚部12b,12b,12bを含むゲート電極12であってもよく、また、図示していないが、4つ以上の脚部を含むゲート電極11、並びに、4つ以上の脚部を含むゲート電極12であってもよい。この場合、半導体部5(半導体部24の第1部分25)の数は、ゲート電極11の脚部の数をnとしたとき、n-1となり、半導体部6(半導体部24の第2部分26)の数は、ゲート電極12の脚部の数をnとしたとき、n-1となる。この場合においても、本技術を適用することができる。
【0128】
〔第5実施形態〕
≪電子機器への応用例≫
本技術(本開示に係る技術)は、例えば、デジタルスチルカメラ、デジタルビデオカメラ等の撮像装置、撮像機能を備えた携帯電話機、又は、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
【0129】
図12は、本技術の第5実施形態に係る電子機器(例えば、カメラ)の概略構成を示す図である。
【0130】
図12に示すように、電子機器200は、固体撮像装置201と、光学レンズ202と、シャッタ装置203と、駆動回路204と、信号処理回路205とを備えている。この電子機器200は、固体撮像装置201として、本技術の第3実施形態に係る固体撮像装置1Cを電子機器(例えばカメラ)に用いた場合の実施形態を示す。
【0131】
光学レンズ202は、被写体からの像光(入射光206)を固体撮像装置201の撮像面上に結像させる。これにより、固体撮像装置201内に一定期間にわたって信号電荷が蓄積される。シャッタ装置203は、固体撮像装置201への光照射期間及び遮光期間を制御する。駆動回路204は、固体撮像装置201の転送動作及びシャッタ装置203のシャッタ動作を制御する駆動信号を供給する。駆動回路204から供給される駆動信号(タイミング信号)により、固体撮像装置201の信号転送を行なう。信号処理回路205は、固体撮像装置201から出力される信号(画素信号(画像信号)に各種信号処理を行う。信号処理が行われた映像信号は、メモリ等の記憶媒体に記憶され、或いはモニタに出力される。
【0132】
このような構成により、第9実施形態の電子機器200では、固体撮像装置201において光反射抑制部により、遮光膜や、空気層と接する絶縁膜での光反射が抑制させているため、フレを抑制することができ、画質の向上を図ることができる。
【0133】
なお、上述の実施形態の固体撮像装置を適用できる電子機器200としては、カメラに限られるものではなく、他の電子機器にも適用することができる。例えば、携帯電話機やタブレット端末等のモバイル機器向けカメラモジュール等の撮像装置に適用してもよい。
【0134】
また、本技術は、上述したイメージセンサとしての固体撮像装置の他、ToF(Time of Flight)センサと呼称され、距離を測定する測定する測距センサなども含む光検出装置全般に適用することができる。測距センサは、物体に向かって照射光を発光し、その照射光が物体の表面で反射されて返ってくる反射光を検出し、照射光が発光されてから反射光が受光されるまでの飛行時間に基づいて物体までの距離を算出するセンサである。この測距センサの素子分離領域の構造として、上述した素子分離領域の構造を採用することができる。
【0135】
〔その他の実施形態〕
上述の第1実施形態では、Y方向に延伸する直方体形状の半導体部5,6の各々に第1及び第2電界効果トランジスタQ1,Q2が個別に設けられた場合について説明した。しかしながら、本技術は直方体形状の半導体部5,6に限定されない。
例えば、平面形状がL字形状で構成された半導体部の隅角部にチャネル形成部及びゲート電極が設けられた電界効果トランジスタにも本技術を適用することができる。
【0136】
また、上述の第1実施形態から第4実施形態では、半導体部として、半導体層2のベース部4と一体化された島状の半導体部5,6,24について説明した。しかしながら、本技術はベース部4と一体化された島状の半導体部5,6,24に限定されない。
例えば、本技術は、絶縁層上に半導体部が設けられたSOI(Silicon On Insulator)構造においても適用することができる。この場合、半導体部は、上面部とは反対側に絶縁層と接する底面部を有する。
【0137】
なお、本技術は、以下のような構成としてもよい。
(1)
第1及び第2電界効果トランジスタを備え、
前記第1及び第2電界効果トランジスタの各々は、
上面部及び側面部を含む半導体部に設けられたチャネル形成部と、
前記半導体部の一方向において前記上面部及び側面部に亘って設けられたゲート電極と、
前記半導体部と前記ゲート電極との間に設けられたゲート絶縁膜と、
を備え、
前記第1トランジスタの前記ゲート電極と重畳する前記半導体層の上面部での前記一方向の幅が、前記第2トランジスタの前記ゲート電極と重畳する前記半導体層の上面部での前記一方向の幅よりも狭く、
前記第2トランジスタの前記ゲート絶縁膜の膜厚が、前記第1トランジスタの前記ゲート絶縁膜の膜厚よりも薄い、
半導体装置。
(2)
前記第1電界効果トランジスタと前記第2電界効果トランジスタとは、異なる前記半導体部に設けられている、上記(1)に記載の半導体装置。
(3)
前記第1及び第2電界効果トランジスタの各々は、同一の前記半導体部に設けられている、上記(1)に記載の半導体装置。
(4)
前記第1及び第2電界効果トランジスタの各々は、前記ゲート電極のゲート長方向の両側の前記半導体部に設けられた一対の主電極領域を更に備え、
前記第1及び第2電界効果トランジスタは、各々の前記一対の主電極領域のうちの一方が共有されている、上記(3)に記載の半導体装置。
(5)
前記半導体部は、前記第1及び第2電界効果トランジスタの各々の前記ゲート電極の間に前記一方向の幅が異なる段差部を有する、上記(3)又は(4)に記載の半導体装置。
(6)
前記第1電界効果トランジスタは、スイッチング素子であり、
前記第2電界効果トランジスタは、増幅トランジスタである、上記(1)から(5)の何れかに記載の半導体装置。
(7)
光電変換素子と、前記光電変換素子で光電変換された信号電荷を画素信号に変換する画素回路とを更に備え、
前記画素回路は、前記第2電界効果トランジスタで構成された増幅トランジスタと、前記増幅トランジスタと電気的に接続され、かつ前記第1電界効果トランジスタで構成されたスイッチング素子とを含む、上記(1)から(5)の何れかに記載の半導体装置。
(8)
平面視で前記半導体部と重畳して配置され、かつ前記光電変換素子が設けられた半導体層を更に備えている、上記(7)に記載の半導体装置。
(9)
前記第1及び第2電界効果トランジスタのうち、一方がpチャネル導電型で構成され、他方がnチャネル導電型で構成されている、上記(1)から(8)の何れかに記載の半導体装置。
(10)
前記第2ゲート電極のゲート長は、前記第1ゲート電極のゲート長よりも長い、上記(1)から(9)の何れかに記載の半導体装置。
(11)
前記第1電界効果トランジスタのゲート長は、200nm以下である、上記(1)から(10)の何れかに記載の半導体装置。
(12)
前記第1電界効果トランジスタの前記半導体層の上面部での幅と前記第2電界効果トランジスタの前記半導体層の上面部での幅との差分は、10nm以上である、上記(1)から(11)の何れかに記載の半導体装置。
(13)
前記第1電界効果トランジスタの前記ゲート絶縁膜と前記第2電界効果トランジスタの前記ゲート絶縁膜との膜厚の差分は、前記半導体層の上面部で1nm以上である、上記(1)から(12)の何れかに記載の半導体装置。
(14)
半導体装置と、
被写体からの像光を前記半導体装置の撮像面上に結像させる光学レンズと、
前記半導体層から出力される信号に信号処理を行う信号処理回路と、
を備えた電子機器であって、
前記半導体装置は、
用途が異なる第1及び第2電界効果トランジスタを備え、
前記第1及び第2電界効果トランジスタの各々は、
上面部及び側面部を含む半導体部に設けられたチャネル形成部と、
前記半導体部の一方向において前記上面部及び側面部に亘って設けられたゲート電極と、
前記半導体部と前記ゲート電極との間に設けられたゲート絶縁膜と、
を備え、
前記第1トランジスタの前記ゲート電極と重畳する前記半導体層の上面部での前記一方向の幅が、前記第2トランジスタの前記ゲート電極と重畳する前記半導体層の上面部での前記一方向の幅よりも狭く、
前記第2トランジスタの前記ゲート絶縁膜の膜厚が、前記第1トランジスタの前記ゲート絶縁膜の膜厚よりも薄い。
【0138】
本技術の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本技術が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本技術の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
【符号の説明】
【0139】
1A,1B, 半導体装置
1C 固体撮像装置
2 半導体層
3 ウエル領域
4 ベース部
5 半導体部
5a 上面部
5c,5c,5c,5c 側面部
6 半導体部
6a 上面部
6c,6c,6c,6c 側面部
7 絶縁層
9,10ゲート絶縁膜
11,12 ゲート電極
11a,12a 頭部(第1部分)
11b,11b,11b,12b,12b2,12b 脚部(第2部分)
13a,13b,14a,14b 主電極領域
15,16 チャネル形成部
17 絶縁層
18a,18b,18c コンタクト電極
19a,19b,19c コンタクト電極
21a,21b,21c 配線
22a,22b,22c 配線
24 半導体部
24a 上面部
24b,24b,24b,24b 側面部
25 第1部分
26 第2部分
102 半導体チップ
102A 画素アレイ部
102B 周辺部
103 画素
104 垂直駆動回路
105 カラム信号処理回路
106 水平駆動回路
107 出力回路
108 制御回路
110 画素駆動線
111 垂直信号線
113 ロジック回路
114 ボンディングパッド
115 読出し回路
130 半導体層(第2半導体層)
131 配線層
141 平坦化層
142 フィルタ層
143 レンズ層
200 電子機器
201 固体撮像装置
202 光学レンズ
203 シャッタ装置
204 駆動回路
205 信号処理回路
206 入射光
AMP 増幅トランジスタ
FD 電荷保持領域
FDG 切替トランジスタ
PD 光電変換素子
RST リセットトランジスタ
SEL 選択トランジスタ
TR 転送トランジスタ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12