(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023116125
(43)【公開日】2023-08-22
(54)【発明の名称】測定装置
(51)【国際特許分類】
G01S 7/481 20060101AFI20230815BHJP
【FI】
G01S7/481 Z
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2022018733
(22)【出願日】2022-02-09
(71)【出願人】
【識別番号】000001133
【氏名又は名称】株式会社小糸製作所
(74)【代理人】
【識別番号】110000176
【氏名又は名称】弁理士法人一色国際特許事務所
(72)【発明者】
【氏名】林 幸雄
(72)【発明者】
【氏名】伊藤 義朗
(72)【発明者】
【氏名】曽根 秀倫
(72)【発明者】
【氏名】本橋 和也
(72)【発明者】
【氏名】春瀬 祐太
【テーマコード(参考)】
5J084
【Fターム(参考)】
5J084AA05
5J084AD01
5J084BA04
5J084BA06
5J084BA07
5J084BA36
5J084BA39
5J084BA40
5J084BA49
5J084BA50
5J084BB02
5J084BB04
5J084BB28
5J084CA03
5J084DA08
5J084EA04
(57)【要約】
【課題】解像度を向上できる測定装置を提供すること。
【解決手段】対象物に向けて光を発光する発光素子を有する発光部と、前記対象物に反射された前記発光部の光を受光する受光素子と、を備え、前記発光素子の第1方向における瞬時画角は、前記受光素子の前記第1方向における瞬時画角より小さい、測定装置。
【選択図】
図5
【特許請求の範囲】
【請求項1】
対象物に向けて光を発光する発光素子を有する発光部と、
前記対象物に反射された前記発光部の光を受光する受光素子と、を備え、
前記発光素子の第1方向における瞬時画角は、前記受光素子の前記第1方向における瞬時画角より小さい、測定装置。
【請求項2】
前記発光部は、前記発光素子として、前記第1方向に並んだ複数の第1発光素子を有し、
前記受光素子は、前記第1方向に並ぶ前記複数の第1発光素子の反射光を受光可能である、請求項1に記載の測定装置。
【請求項3】
前記発光部は、前記発光素子として、前記第1方向に交差する第2方向に並ぶ複数の第2発光素子を有し、
前記受光素子は、前記第2方向に並ぶ前記複数の第2発光素子の反射光を受光可能である、請求項2に記載の測定装置。
【請求項4】
前記発光部は、発光を行う度に、発光させる前記発光素子を切り替える、請求項2または3に記載の測定装置。
【請求項5】
前記発光素子から出射した光を前記第1方向及び前記第1方向に交差する第2方向の少なくとも1つの方向に走査する走査部をさらに備える、請求項1から3のいずれか1項に記載の測定装置。
【請求項6】
前記発光部は、前記第1方向の位置が異なる第1位置及び第2位置に光を走査可能であり、
前記受光素子は、前記第1位置及び前記第2位置に照射された光の反射光を受光可能である、請求項1から5のいずれか1項に記載の測定装置。
【請求項7】
第1位置に前記発光部が光を照射したときに前記受光素子が受光した受光結果と、前記第1位置とは前記第1方向の位置が異なる第2位置に前記発光部が光を照射したときに前記受光素子が受光した受光結果と、をそれぞれ記憶する記憶部を更に有する、請求項1から6のいずれか1項に記載の測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定装置に関する。
【背景技術】
【0002】
特許文献1には、パルス光を射出してから反射光を受光するまでの光の飛行時間に基づいて、反射物までの距離を測定する測距装置が記載されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
LiDARなどの測定装置を使用する際には、取得する画像の解像度をなるべく向上させることが好ましい。
【0005】
本発明は、上記点に鑑み、解像度を向上できる測定装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本発明は一態様として、対象物に向けて光を発光する発光素子を有する発光部と、前記対象物に反射された前記発光部の光を受光する受光素子と、を備え、前記発光素子の第1方向における瞬時画角は、前記受光素子の前記第1方向における瞬時画角より小さい、測定装置を提供する。
【0007】
その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。
【発明の効果】
【0008】
本発明によれば、解像度を向上できる測定装置が提供される。
【図面の簡単な説明】
【0009】
【
図1】第1実施形態における、測定装置1の構成を示す図である。
【
図2】第1実施形態における、測定装置1の機能構成の説明図である。
【
図3】光源12及び受光センサ22の図である。なお、理解を容易にするため、裏面(-Z側)からの透視図としている。
【
図4】発光素子123、受光素子222、及び対称物90における照射領域の関係を示す図である。
【
図5】第1実施形態における、範囲R及び領域Sでの発光位置及び照射位置の時刻歴を示す図である。
【
図6】測定方法の一例の説明するためのタイミングチャートである。
【
図7】第2実施形態における測定装置100の構成を示す図である。
【
図8】第2実施形態における光源112及び受光センサ22の図である。理解を容易にするため、裏面(-Z側)からの透視図としている。
【
図9】第2実施形態における、照射位置の時刻歴を示す図である。
【
図10】変形例における発光素子及び受光素子の(a)1次元配列の例、(b)1次元配列及び1次元走査の例、及び(c)組み合わせ構成例を示す。
【発明を実施するための形態】
【0010】
以下、本発明を実施するための形態について図面を参照しつつ説明する。なお、以下の説明において、同一の又は類似する構成について共通の符号を付して重複した説明を省略することがある。
【0011】
===第1実施形態===
(概要)
図1は、第1実施形態における測定装置1の全体構成の説明図である。
図2では、測定装置1における各機能部に関する機能ブロックが示されている。
【0012】
測定装置1は、対象物90までの距離を測定する装置である。測定装置1は、測定光を出射し、対象物90の表面で反射した反射光を検出し、測定光を出射してから反射光を受光するまでの時間を計測することによって、対象物90までの距離をTOF方式(Time of flight)で測定する。測定装置1は、照射部10と、受光部20と、制御部30と、記憶部50とを有する。
【0013】
照射部10は、対象物90に向かって測定光を照射する。照射部10は、所定の画角で測定光を照射することになる。照射部10は、光源12と、投光用光学系14とを有する。光源12は、光を出射する。光源12は、例えば面発光レーザー(VCSEL)により構成される。投光用光学系14は、光源12から出射された光を対象物90に照射する光学系である。
【0014】
以下の説明では、投光用光学系14の光軸(
図1において一点鎖線で示す)に沿った方向をZ方向とする。なお、測定装置1の測定対象となる対象物90は、測定装置1に対してZ方向に離れていることになる。また、Z方向に垂直な方向であって、投光用光学系14と受光用光学系24の並ぶ方向をY方向とする。また、Z方向及びY方向に垂直な方向をX方向とする。
【0015】
投光用光学系14は、光源12から出射される光を対象物90に向かって照射するための光学系である。投光用光学系14の焦点面内に光源12が配置されている。投光用光学系14は、光源12の発光素子123(後述)から射出された光をコリメート光として対象物90に照射する。投光用光学系14は、複数枚(例えば5~7枚)のレンズで構成されたレンズ群によってそれぞれ構成される(
図1では、投光用光学系14のレンズ群が簡易的に示されている)。
【0016】
受光部20は、対象物90からの反射光を受光する。受光部20は、対象物90からの反射光を受光することになる。受光部20は、受光センサ22と、受光用光学系24とを有する。
【0017】
受光用光学系24は、対象物90からの反射光を受光センサ22に受光させるための光学系である。受光用光学系24の焦点面内に受光センサ22が配置されている。受光用光学系24は、対象物90の反射光を受光センサ22の受光素子222(後述)に集光する。受光用光学系24も、投光用光学系14と同様に、複数枚(例えば5~7枚)のレンズで構成されたレンズ群によってそれぞれ構成されている(
図1では、受光用光学系24のレンズ群が簡易的に示されている)。
【0018】
光源12及び受光センサ22の詳しい構成については、後述する。
【0019】
制御部30は、測定装置1の制御を司る(
図2)。制御部30は、照射部10からの光の照射を制御する。また、制御部30は、受光部20の出力結果に基づいて、対象物90までの距離をTOF方式(Time of flight)で測定する。制御部30は、不図示の演算装置及び記憶装置を有する。演算装置は、例えばCPU、GPUなどの演算処理装置である。演算装置の一部がアナログ演算回路で構成されても良い。
【0020】
記憶部50は、主記憶装置と補助記憶装置とにより構成され、プログラムやデータを記憶する装置である。記憶部50に記憶されているプログラムを演算装置が実行することにより、対象物90までの距離を測定するための各種処理が実行される。
【0021】
記憶部50は、制御部30が取得したデータを記憶することができる。例えば、受光部20が反射光を受光して得られたデータが記憶部50に保存され、その後の解析処理等に利用される。
【0022】
制御部30は、設定部32と、タイミング制御部34と、測距部36とを有する。設定部32は、各種設定を行う。タイミング制御部34は、各部の処理タイミングを制御する。例えば、タイミング制御部34は、光源12から光を射出させるタイミングなどを制御する。測距部36は、対象物90までの距離を測定する。測距部36は、信号処理部362と、時間検出部364と、距離算出部366とを有する。信号処理部362は、受光センサ22の出力信号を処理する。時間検出部364は、光の飛行時間(光を照射してから反射光が到達するまでの時間)を検出する。距離算出部366は、対象物90までの距離を算出する。
【0023】
(光源及び受光センサ)
光源12は、
図3に示すように、XY平面(X方向及びY方向に平行な面)に平行な発光面を有する。発光面は、矩形状に構成されている。光源12から射出された光は、投光用光学系14を介して、対象物90に照射される。
【0024】
光源12は、2次元配置された複数の発光素子123を有している。第1実施形態では、それぞれの発光素子123は、制御部30によって生成される画像の1画素に対応する。
【0025】
受光センサ22は、
図3に示すように、2次元配置された複数の受光素子222を有している。受光素子222は、受光量に応じた信号を出力する。受光素子222の具体例としては様々な種類の素子が考えられるが、一例としてSPAD(Single Photon Avalanche Diode)である。SPADで構成された受光素子222は、フォトンを検出するとパルス信号を出力する。発光素子123は投光用光学系14を介して対象物90に光を照射する。
【0026】
ある発光素子123によって発せられた光を受光する受光素子222の対応関係は予め決められている。詳細に述べると、1つの発光素子123に対して複数の受光素子222が反射光を受光可能に対応付けられており、或る受光素子222の検出位置は、対応する発光素子123の発光位置と共役である。
【0027】
本実施形態では、
図3及び
図4に示すように、4つの発光素子123が1つの受光素子222に対応付けられている。
図3では、対応関係にある4つの発光素子123及び受光素子222の範囲を範囲Rとして太線にて示している。範囲Rは、a、b、c…の各行、及び、1、2、3…の各列に形成される。
【0028】
換言すれば、受光素子222は、対応する範囲R内に有る4つの発光素子123の反射光を受光することができる。例えば、a行1列の受光素子222は、a行1列の範囲Rにある4つの発光素子123の発光を受光、検知できる。このとき、発光素子123から出射した測定光は、対象物90上の領域Sで反射し、対応する受光素子222によって受光される(
図4)。
【0029】
受光素子222の瞬時画角は発光素子123の瞬時画角の2倍以上であり、受光素子222は、対応する4つの発光素子123が発した光を受光可能である。瞬時画角は、一例として発光素子123において0.1度と設定され、受光素子222において0.2度と設定される。受光素子222の瞬時画角が発光素子123の2倍以上であるため、受光素子222は、対応する範囲R内にある4つの発光素子123の光を受光できる。
【0030】
なお、発光素子123や受光素子222の数、配列または瞬時画角は、上記のものに限られない。例えば、9つの発光素子123に対して、1個の受光素子222が受光可能に対応付けられていてもよい。また、光源12及び受光センサ22が一次元(つまり直線状)に配列されていてもよい。いずれの構成においても、発光素子123の瞬時画角よりも受光素子222の瞬時画角は大きい。
【0031】
(測定時の処理)
測定時における、制御部30(タイミング制御部34)による発光素子123の制御は
図5に示すように、各範囲Rにおいて実行される。制御部30(タイミング制御部34)は、照射部10の光源12に所定の周期でパルス光を出射させても良い。
【0032】
詳細に述べると、制御部30は各範囲R内にある4つの発光素子123を、定められた順番、かつ、一定の周期で順次発光させる。
図3及び
図5の例では、各範囲Rにおいて+X-Y側、+X+Y側、-X-Y側、-X+Y側の発光素子123の発光が、一定時間間隔で順次行われ、繰り返される。これに伴い、各領域S内においても、+X-Y側、+X+Y側、-X-Y側、-X+Y側の4つの異なる位置に順次測定光が照射される。対応する受光素子222は、
図4に示すように、4つの発光素子123に対応するパルス状の反射光を順次受光する。
【0033】
受光部20による反射光の受光により得られたデータは、記憶部50に保存されるとともに、以下のように処理される。
【0034】
図6は、測定方法の一例の説明するためのタイミングチャートである。
図6の上側には、光源12がパルス光を出射するタイミング(出射タイミング)が示されている。
図6の中央には、パルス状の反射光が到達するタイミング(到達タイミング)が示されている。受光素子222は、受光量に応じた信号を出力する。
図6の下側には、受光素子222の出力信号が示されている。
【0035】
制御部30の測距部36(信号処理部362)は、受光素子222の出力信号に基づいて、反射光の到達タイミングを検出する。例えば、信号処理部362は、受光素子222の出力信号のピークのタイミングに基づいて、反射光の到達タイミングを検出する。なお、信号処理部362は、外乱光(例えば太陽光)の影響を除去するため、受光素子222の出力信号のDC成分をカットした信号のピークに基づいて、反射光の到達タイミングを求めても良い。
【0036】
次に、測距部36(時間検出部364)は、光の出射タイミングと、光の到達タイミングとに基づいて、光を照射してから反射光が到達するまでの時間Tfを検出する。時間Tfは、測定装置1と対象物90との間を光が往復する時間に相当する。そして、測距部36(距離算出部366)は、時間Tfに基づいて、対象物90までの距離を算出する。
【0037】
上記のような処理により、制御部30は、各発光素子123に対応した画素を持つ画像を生成するとともに、画素毎に対象物90までの距離を算出し、距離画像を生成することができる。
【0038】
===第2実施形態===
第2実施形態による測定装置100について、
図7から
図9を用いて以下に説明する。
【0039】
測定装置100の照射部110は、光源12とは構成の異なる光源112を備える。また、測定装置100は、走査部40をさらに備える(
図7)。測定装置100における、その他の構成は、測定装置1と同様である。以下では、第1実施形態の測定装置1と同様の構成または部品等に対しては同じ参照番号を付し、説明を省略する。
【0040】
走査部40は、測定光の照射される角度を変化させることにより、測定光を走査させる機能を有する。走査方法は、フォトニック結晶、液晶などさまざまなものが採用され得る。例えば、走査部40がガルバノスキャナやMEMSミラー等のように、回転または移動する鏡を備え、この鏡にレーザー光を反射させてレーザー光を走査させる構成とすることができる。鏡は、1以上の平面鏡でもよいし、多面体形状に形成されてもよい。あるいは、走査部40がモータ等の駆動装置を備え、投光用光学系14をXY方向に移動させることによって測定光を走査させてもよい。
【0041】
光源112は発光素子123を備えるが、発光素子123の数は第1実施形態と異なり、受光素子222の数と同じである。
図8に示すように、発光素子123は範囲R内に1つずつ配列され、受光素子222は対応する1つの発光素子123の光を受光可能である。
【0042】
受光センサ22は、
図8に示すように、2次元配置された複数の受光素子222を有している。この構成は第1実施形態と同じである。受光素子222は発光素子123と同じ行数及び同じ列数で配列される。
【0043】
測定時における制御部30(タイミング制御部34)による制御は
図9に示すように実行される。制御部30は、各範囲Rにおいて発光素子123を一定周期で発光させる。同時に制御部30は、走査部40を制御して、走査光の方向を発光素子123の発光の度に変更する。具体的には、
図10に示すように、領域S内の4つの異なる位置(+X-Y側、+X+Y側、-X-Y側、-X+Y側)に順次測定光を照射し、これを繰り返す。
【0044】
このように測定光の出射方向を変えることにより、1つの領域Sに対して4つの測定箇所に測定光を照射し、測定を実行できる。各測定箇所は、取得される画像における画素に相当する。
【0045】
信号処理部362の制御、及び距離画像の生成方法は、第1実施形態と同じである。
【0046】
このような処理を行うことにより、制御部30は、発光素子123の数の4倍の画素数を持つ距離画像を生成し、画素毎に対象物90までの距離を算出することができる。
【0047】
===変形例===
上記各実施形態では、発光素子123及び受光素子222はX方向及びY方向に2次元配列されていたが、1次元配列とできる。具体的には、
図10(a)の光源312及び受光センサ322に示すように、X方向またはY方向だけに発光素子123または受光素子222を並べてもよい。また、1つの素子(単素子)だけの構成とすることも可能である。
【0048】
また、上記各実施形態において、走査部40は、X方向及びY方向に測定光を走査させていたが、1方向(1次元)に走査を実行してもよい。例えば、
図10(b)の光源412及び受光センサ422に示すように、発光素子123をX方向に1次元配列し、走査部40によって測定光をX方向に走査させることで、取得する画像の画素数を増加させることが可能である。
【0049】
その他変形例として、
図10(c)には発光素子123及び受光素子222の配列、並びに走査部40の走査方法の組み合わせを列挙している。これらは例示であり、それ以外の配列、走査方法も考えられる。
【0050】
===小括===
上記各実施形態及び変形例では、測定装置1、100は、対象物90に向けて光を発光する発光素子123を有する光源12(発光部に相当する)と、対象物90に反射された光源12、112の光を受光する受光素子222と、を備え、発光素子123のX方向またはY方向(第1方向に相当)における瞬時画角は、受光素子222の第1方向における瞬時画角より小さい。
【0051】
上記構成により、受光素子222の数よりも多くの画素及び測定点を有する、すなわち高い解像度を有する画像を生成することが可能となる。換言すれば、画像の画素数に比較して、少ない受光素子222の数とし、簡易な構成で測定装置1、100を構成することができる。
【0052】
光源12、112は、第1方向に並んだ複数の発光素子123(第1発光素子に相当)を有し、受光素子222は、第1方向に並ぶ複数の発光素子123の反射光を受光可能である。また、発光素子123の第1方向における瞬時画角は、受光素子222の第1方向における瞬時画角よりも小さい。
【0053】
上記構成では、受光素子222が複数の発光素子123から受光するため、受光素子222の数よりも多くの画素及び測定点を有する、すなわち高い解像度を有する画像を生成することが可能となる。
【0054】
光源12は、第1方向に交差する第2方向に並ぶ複数の発光素子123(第2発光素子に相当)を有し、受光素子222は、第2方向に並ぶ複数の発光素子123の反射光を受光可能である。
【0055】
上記構成では、2次元配列された複数の発光素子123の光を受光素子222が受光可能であるから、受光素子222は、2次元に配列された画素を取得することが可能である。高い解像度を有する画像を生成することが可能となる。
【0056】
光源12は、発光を行う度に、発光させる発光素子123を切り替える。
【0057】
上記構成により、受光素子222の数よりも多くの画素及び測定点を有する、すなわち高い解像度を有する画像を生成することが可能となる。
【0058】
測定装置100は、発光素子123から出射した光を第1方向及び第1方向に交差する第2方向の少なくとも1つの方向に走査する走査部40をさらに備える。
【0059】
上記構成では走査部40を用いて測定光を走査するため、発光素子123の数をさらに減少させることが可能である。
【0060】
光源12、112は、第1方向において異なる位置に光を走査可能であり、受光素子222は、異なる位置に照射された光の反射光を受光可能である。
【0061】
上記構成とすることにより、各位置の受光結果を画素とした画像を生成することが可能となる。また、測定光を走査するため、発光素子123の数よりも画素数を増やし、解像度の高い画像を生成することが可能となる。
【0062】
測定装置1、100は、第1位置に光源12が光を照射したときに受光素子222が受光した受光結果と、第1位置とは第1方向の位置が異なる第2位置に光源12が光を照射したときに受光素子222が受光した受光結果と、をそれぞれ記憶する記憶部50を更に有する。
【0063】
上記構成では、異なる位置における受光結果が記憶されることにより、位置毎の受光結果を解析し、各位置の受光結果を画素とした画像を生成することが可能となる。
【0064】
以上、本発明の実施形態につき詳述したが、本発明は上記の実施形態に限定されるものではなく、様々な変形例が含まれる。また、上記の実施形態は本発明を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の実施形態の構成の一部について、他の構成に追加、削除、置換することが可能である。
【符号の説明】
【0065】
1、100 測定装置
10、110 照射部
12、112 光源
14 投光用光学系
20 受光部
22 受光センサ
222 受光素子
24 受光用光学系
90 対象物