IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テクノス株式会社の特許一覧

<>
  • 特開-測量用ターゲット及び測量方法 図1
  • 特開-測量用ターゲット及び測量方法 図2
  • 特開-測量用ターゲット及び測量方法 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023116855
(43)【公開日】2023-08-23
(54)【発明の名称】測量用ターゲット及び測量方法
(51)【国際特許分類】
   G01C 15/06 20060101AFI20230816BHJP
   G01C 15/00 20060101ALI20230816BHJP
【FI】
G01C15/06 T
G01C15/00 103Z
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022019189
(22)【出願日】2022-02-10
(71)【出願人】
【識別番号】596118530
【氏名又は名称】テクノス株式会社
(74)【代理人】
【識別番号】100141243
【弁理士】
【氏名又は名称】宮園 靖夫
(72)【発明者】
【氏名】森田 栄治
(72)【発明者】
【氏名】齋藤 孝志
(72)【発明者】
【氏名】金田 潤太
(57)【要約】
【課題】測量機の自動視準の視準光束を満たす状態を可能とし、測定対象物を連続的に捕捉を可能とする測量用ターゲットを提供する。
【解決手段】測量対象物に設けられ、測量機からの光が照射され、該光を反射する反射面を有する測量用ターゲットであって、前記反射面は、再帰性反射構造体により構成された第1反射部と、再帰性反射構造体により構成され、前記第1反射部よりも反射率が低く、かつ、測量精度が高い第2反射部とを備え、前記第1反射部と、前記第2反射部とが同一方向に面するように、前記第1反射部の中央部に前記第2反射部、又は、前記第2反射部の中央部に前記第1反射部を備えた構成とした。
【選択図】図1
【特許請求の範囲】
【請求項1】
測量対象物に設けられ、測量機からの光が照射され、該光を反射する反射面を有する測量用ターゲットであって、
前記反射面は、
再帰性反射構造体により構成された第1反射部と、
再帰性反射構造体により構成され、前記第1反射部よりも反射率が低く、かつ、測量精度が高い第2反射部と、を備え、
前記第1反射部と、前記第2反射部とが同一方向に面するように、
前記第1反射部の中央部に前記第2反射部、又は、前記第2反射部の中央部に前記第1反射部を備えた測量用ターゲット。
【請求項2】
前記第1反射部の輪郭形状及び前記第2反射部の輪郭形状は、点対称又は線対称の形状で構成された請求項1に記載の測量用ターゲット。
【請求項3】
前記反射面の裏面側に該測量用ターゲットを取り付けるための取付手段を備えた請求項1又は請求項2に記載の測量用ターゲット。
【請求項4】
前記取付手段がマグネットとされた請求項3に記載の測量用ターゲット。
【請求項5】
前記請求項1乃至請求項4いずれかに記載の測量用ターゲットを測量対象物に取り付け、撮像装置を備えた自動視準機能を有する測量機を用いて測量する測量方法であって、
前記測量機から前記測量用ターゲットに光を照射し、前記第1反射部から反射された光を受光して自動視準機能により測量機を前記測量用ターゲットに視準させる第1ステップと、
前記第1計測ステップにおいて獲得した光を前記撮像装置で取得し、画像診断により前記第2反射部の位置を特定し、自動視準機能により測量機を前記測量用ターゲットの前記第2反射部に視準させる第2ステップと、を含み、
前記第2ステップにおける視準により、前記第2反射部から反射された光に基づいて測量することを特徴とする測量方法。
【請求項6】
前記請求項1乃至請求項4いずれかに記載の測量用ターゲットを測量対象物に取り付け、自動視準機能を有する測量機を用いて測量する測量方法であって、
前記測量機から前記測量用ターゲットに光を照射し、前記第1反射部から反射された光を受光し、自動視準機能により測量機を前記測量用ターゲットに視準させる第1ステップと、
前記第1計測ステップにおいて獲得した光を前記第1反射部及び前記第2反射部から反射された反射光とし、当該反射光から前記第1反射部及び前記第2反射部による反射光の量の違いを計測することで第2反射部の位置を特定し、自動視準機能により測量機を前記第2反射部に視準させる第2ステップと、を含み、
前記第2ステップにおける視準により、前記第2反射部から反射された光に基づいて測量することを特徴とする測量方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測量用ターゲット及び測量方法に関し、特に、自動視準機能を有する測量機による測量に好適な測量用ターゲット等に関する。
【背景技術】
【0002】
従来、測地測量、土木工事測量および建築測量において、測定対象物の目標位置を測定者がトータルステーションおよびトランシットの望遠鏡を視準して捕捉していたが、自動視準機能の付いた測量機の出現により測定者の熟練度に関係がなく、目標位置を捕捉することが容易にできるようになった。測地測量、土木工事測量及び建築測量では、測定対象物の目標位置に、反射度の大きい反射シートや三角プリズム等の標的(ターゲット)を配置し、自動視準機能を有する測量機によりターゲットから反射された光を自動的に捕捉することでなされている。反射された光の強度は、目標物に対する視準線と、反射シートの反射面又はプリズム面とのなす角度により左右される。例えば、自動視準可能な角度は、反射シートでは約±20°、三角プリズムで約±45°の範囲がそれぞれ限界とされている。このため、近年では、特許文献1に開示されるような、全方向、360°の角度において自動視準可能な三角プリズムを主体とするターゲット装置が開発されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2020-98175号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、自動視準可能な三角プリズムを主体とするターゲット装置は、非常に高価であり、破損しやすい構造となっており、取り扱いに注意が必要とされる。また、反射シートや三角プリズムは、前述のように自動視準可能な範囲に制限があるため、自動視準機能を生かすには、測量機械の位置を都度変更する必要が生じていた。測量機械の位置を変更する都度、測量機械の運搬、組み立て、整準操作などの作業が発生し、測定対象物の連続的な捕捉を阻害している。
本発明は、上記問題を解決するために、仰角及び伏角について従来よりも広い範囲に設置しても測量機の自動視準の視準光束を満たす状態を可能とし、測定対象物を連続的に捕捉を可能とする測量用ターゲットを提供することを目的とする。
【課題を解決するための手段】
【0005】
上記課題を解決するための測量用ターゲットの構成として、測量対象物に設けられ、測量機からの光が照射され、該光を反射する反射面を有する平板状の測量用ターゲットであって、反射面は、再帰性反射構造体により構成された第1反射部と、再帰性反射構造体により構成され、第1反射部よりも反射率が低く、かつ、測量精度が高い第2反射部とを備え、第1反射部と第2反射部とが同一方向に面し、第2反射部が第1反射部の中央部、又は、第1反射部が第2反射部の中央部に備えた構成とした。
本構成によれば、仰角及び伏角について従来よりも広い範囲に測量用ターゲットを設置しても、測量機の自動視準の視準拘束を満たす状態とすることができ、広範囲に設置した測定対象物を連続的な補足を可能とすることができる。
また、測量用ターゲットの構成として、第1反射部の輪郭形状及び前記第2反射部の輪郭形状を点対称又は線対称の形状とすると良い。
また、測量用ターゲットの他の構成として、反射面の裏面側に該測量用ターゲットを取り付けるための取付手段を備える構成とすることにより、測量用ターゲットの設置作業を容易にすることができる。例えば、取付手段は、マグネットとすることで、測量用ターゲットの設置や移設を容易にすることができる。
また、請求項1乃至請求項4いずれかに記載の測量用ターゲットを測量対象物に取り付け、自動視準機能と撮像装置を有する測量機を用いて測量する測量方法として、測量機から測量用ターゲットに光を照射し、第1反射部から反射された光を獲得することによって自動視準機能により測量機を前記測量用ターゲットに視準させる第1ステップと、第1計測ステップにおいて獲得した光を前記撮像装置で取得し、画像診断により前記第2反射部の位置を特定し、自動視準機能により測量機を前記測量用ターゲットの前記第2反射部に視準させる第2ステップと、を含み、第2ステップにおける視準により、前記第2反射部から反射された光に基づいて測量するようにすると良い。
また、請求項1乃至請求項4いずれかに記載の測量用ターゲットを測量対象物に取り付け、自動視準機能を有する測量機を用いて測量する測量方法として、測量機から測量用ターゲットに光を照射し、前記第1反射部から反射された光を獲得し、自動視準機能により測量機を前記測量用ターゲットに視準させる第1ステップと、第1計測ステップにおいて獲得した光を前記第1反射部及び第2反射部から反射された反射光とし、当該反射光から第1反射部及び第2反射部による反射光の量の違いを計測することで第2反射部の位置を特定し、自動視準機能により測量機を前記第2反射部に視準させる第2ステップと、を含み、第2ステップにおける視準により、第2反射部から反射された光に基づいて測量すると良い。
このように測量することにより、仰角及び伏角について従来よりも広い範囲に測量用ターゲットを設置しても、測量機の自動視準の視準拘束を満たす状態とすることができ、広範囲に設置した測定対象物を連続的に補足できる。
【図面の簡単な説明】
【0006】
図1】本実施形態に係る測量用ターゲットの一例を示す概略図である。
図2】プリズム構造を有する再帰性反射構造体の一例を示す断面模式図である。
図3】測量用ターゲットの他の形態を示す概略図である。
【発明を実施するための形態】
【0007】
以下、発明の実施形態を通じて本発明を詳説するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明される特徴の組み合わせのすべてが発明の解決手段に必須であるとは限らず、選択的に採用される構成を含むものである。
【0008】
図1は、本実施形態に係る測量用ターゲットの概略図である。測量用ターゲット(以下、単にターゲットという)1は、測定対象物とされる柱や、鉄骨等の構造物に取り付けられる。なお、測定対象物は、柱や鉄骨等の構造物に限定されない。
【0009】
図1に示すように、本実施形態に係る測量用ターゲット(以下、単にターゲットという)1は、平板状とされ、例えば、平面視において矩形(長方形)状に形成される。ターゲット1は、一方の面が測量機から発光された視準光を反射するための反射面部1a、他方の面が該ターゲット1を測定対象物に取り付けるための取付面部1bとして機能する。反射面部1a及び取付面部1bは、互いに平行な平面状とされている。
【0010】
反射面部1aは、反射率の異なる2つの反射部2;4を有するように構成される。なお、以下の説明では、反射部2を第1反射部2、反射部4を第2反射部4という。図1(a)に示すように、本実施形態では、第2反射部4は、正方形状とされ、第1反射部2の中央部に設けられる。第2反射部4が第1反射部2の中央部に設けられるとは、例えば、第1反射部2の図心を視準点としたときに、第2反射部4の図心が第1反射部2の図心に一致するように配置されていることを言う。
【0011】
第1反射部2及び第2反射部4は、それぞれ再帰性反射構造体により構成される。再帰性反射構造体とは、入射した光を入射方向に反射可能に構成されたものを言う。即ち、第1,第2反射部2;4は、光源から受けた光をそのまま光源にはね返すように構成される。再帰性反射構造は、複数あるが、例えば、プリズム構造やビーズ構造等を挙げることができる。
【0012】
図2は、プリズム構造を有する再帰性反射構造体の一例を示す断面模式図である。例えば、プリズム構造で構成された再帰性反射構造体は、ベース層20に透明な三角錐(プリズム)を底面が上になるようにして、緻密な配列したプリズム層22を備え、このプリズム層22の下面に形成されたプリズム形状の再帰性反射面22aに、ハーフミラー層24を形成することで、三角錐の底面側から入射した光をプリズムの3面を使って反射させることで、光源に向けて反射させるように構成されている。
【0013】
第1反射部2及び第2反射部4は、それぞれ反射面部1aに対して入射した視準光を同一の入射方向に反射するように構成される。また、第1反射部2は、第2反射部4を構成する再帰性反射構造体よりも反射率が高く、かつ、測量精度が低い再帰性反射構造体で構成される。換言すれば、第2反射部4は、第1反射部2を構成する再帰性反射構造体よりも反射率が低く、かつ、測量精度が高い再帰性反射構造体で構成されているとも言うことができる。
【0014】
第1反射部2が第2反射部4よりも反射率が高い、或いは、第2反射部4が第1反射部2よりも反射率が低いとは、第1反射部2及び第2反射部4における視準光の反射に関する特性の相対的な違いを意味する。ここでいう第1反射部2が第2反射部4よりも反射率が高いとは、例えば、ターゲット1に対して、測量機から発光する視準光の入射角θ(図2参照)を徐々に大きく変化させたときに、第2反射部4を構成する再帰反射構造体よりも第1反射部2を構成する再帰性反射構造体の方が大きな角度で入射しても測量機の自動視準を満たす輝度で反射可能な特性を有することを言う。
【0015】
また、第2反射部4が第1反射部2よりも測量精度が高い、或いは、第1反射部2が第2反射部4よりも測量精度が低いとは、第1反射部2と第2反射部4とにおける反射特性の違いを相対的な関係として言うものである。即ち、第2反射部4が第1反射部2よりも測量精度が高いとは、例えば、同一面積で形成された第1反射部2を構成する再帰反射構造体と、第2反射部4を構成する再帰反射構造体に対して、測量機から視準光を発光させたときの、入射光に対する反射光のずれ、即ち、経路のずれδが小さいことを言う。
【0016】
例えば、図2に示すようなプリズム構造の再帰反射構造体では、プリズム層22を構成するプリズムの大きさが大きくなると経路のずれδが大きくなり、小さければ経路のずれδが小さくなると言える。つまり、プリズムの大きさが大きくなると測量精度が低くなり、プリズムの大きさが小さくなると測量精度が高くなるということができる。なお、ここで説明した測量精度の高低については、図2に示した構造の再帰反射構造体の場合であって、再帰反射構造体が他の構造で構成されたいる場合にはこの限りではない。
【0017】
図1(b)に示すように、ターゲット1は、例えば、ベース部6の一面側に再帰性反射構造を有する第1反射部2及び第2反射部4を構成する反射シートを貼り付けることで構成することができる。ベース部6は、例えば、樹脂材、ポリエチレン材等を素材とする板材を利用することができる。
そして、ベース部6の一方の面の全体に第1反射部2として機能する反射シートを貼り付け、さらにこの第1反射部2の反射シートの上に、第2反射部4として機能する反射シートを重ねるように貼り付けることでターゲット1における反射面部1aを構成することができる。
このように、ターゲット1は、簡単な構造で構成することができ、安価に作成することができる。
【0018】
図1(b),(c)に示すように、ターゲット1は、第1反射部2として機能する反射シートの上に、第2反射部4として機能する反射シートを貼り付けるものとして説明したが、これに限定されない。
例えば、図3に示すように、第2反射部4の図心が第1反射部2の図心に一致するように、第1反射部2に第2反射部4を収容可能とする収容部10を設け、第2反射部4と第1反射部2とを一体的にしても良い。この場合、例えば、第1反射部2を構成する再帰性反射構造体の入射面と、第2反射部4を構成する再帰性反射構造体の入射面とが面一となるようにすると良い。
【0019】
ターゲット1(第1反射部2)の平面視における輪郭形状は、上記長方形状に限定されず、他の矩形、円形、三角形、ひし形等の点対称若しくは線対称の形状であればいずれの形状であっても良い。また、第2反射部4の平面視における輪郭形状は、上記正方形状に限定されず、他の矩形、円形、三角形、ひし形等の点対称若しくは線対称の形状であればいずれの形状であっても良い。
【0020】
取付面部1bには、ターゲット1を測定対象物に取り付け可能とするための図外の取付手段を予め設けておくと良い。取付手段は、例えば、接着剤、粘着テープ、マグネット等が挙げられ、測定対象物に応じて変更すれば良い。例えば、測定対象物が、コンクリート部材、木製部材、樹脂部材等の非鉄のものの場合には、接着剤や粘着テープが好適である。例えば、測定対象物が、鋼製構造部材等のように磁性体である場合にはマグネットが好適であり、ターゲット1の設置や取り外し、転用を容易にすることができる。
【0021】
[ターゲット1の使用方法]
ターゲット1を用いた測量方法について説明する。本実施形態に係るターゲット1は、例えば、自動視準機能を有する測量機を用いた測量に好適とされる。以下の説明では、測量機の一例として、撮像装置を備えた自動視準機能を有する測量機を用いたときの測量方法について説明する。
【0022】
測量機は、例えば、測量装置と、撮像装置と、姿勢調整装置と、測量制御装置と、表示装置とを備えた所謂トータルステーション等を利用することができる。
【0023】
測量部は、水準器を備え、角度を計測するセオドライトに光波測距儀を組み合わせて構成されたものであり、測量対象物に設けられたターゲット1を視準したときに、光波測距儀により得られる距離とセオドライトで得られる角度に基づいて算出した視準点の方位(水平角、鉛直角)とを含む測量データを出力する。測量データは、例えば、測量制御装置に出力可能とされる。
【0024】
撮像装置は、例えば、CCD等の受光部を備え、測量部の視準方向と撮像装置の光軸方向を平行とし、測量部の視準方向と撮像装置による撮像画像の画像中心が所定の関係となるように測量部に固定されている。本実施形態では、視準方向が画像中心と一致するように調整され、撮像装置によって得られた画像の中心が視準方向に対応した画像が得られるように設定される。撮像装置により得られる画像は、例えば、測量部による測量処理と同期して測量制御装置に出力可能とされる。
【0025】
姿勢調整装置は、測量部及び撮像装置を水平軸周りに回転させる第1モータ及び垂直軸芯周りに回転させる第2モータと、各モータの駆動を制御するモータ制御部を備えて構成される。モータ制御部は、測量制御装置から入力される指令(信号)に基づいて、測量部の視準方向がターゲット1の中心と一致するように測量部の向きを調整する。姿勢調整装置は、例えば、ターゲット1に対する視準方向を自動追尾する自動追尾機能を備えているものであっても良い。
【0026】
測量制御装置は、CPU、メモリ及び入出力手段などを備えた所謂コンピュータであって、自動視準機能を可能とするための処理を実行するとともに、測量部をターゲットに視準させるための処理を実行し、姿勢調整装置が測量部の向きを調整するための指令を信号として姿勢調整装置に出力する。測量制御装置は、測量部と一体に設けられていても良く、測量部と無線や有線の通信手段を介して別体に設けられていても良い。
【0027】
例えば、測量機の自動視準機能が、測量部における光波測距儀から発光され、ターゲット1で反射した視準光を光波測距儀の受光部により受光し、受光部において受光した視準光に基づいて構成されている場合、以下のように測量制御装置によって処理するように構成すると良い。以下の説明では、視準光の発光に際し、第1反射部2からの反射光は測量機の自動視準を可能とするものの、第2反射部4からの反射光では測量機の自動視準を不可能とされる位置にターゲット1が設けられているときの処理として説明する。
【0028】
まず、測量制御装置は、自動視準機能により測量部から視準光をターゲット1に向けて発光し、ターゲット1(第1反射部2)から反射した反射光に基づいて測量部をターゲット1に視準させる(ステップ1)。このときに視準した視準点を仮の視準点という。また、仮の視準点がターゲット1に設定された視準点に一致している必要はない。
次に、ステップ1においての視準したときに、ターゲット1から反射した反射光を撮像装置で受光し、取得した画像を、測量制御装置において画像解析することにより、当該画像における第2反射部4の視準点の位置を特定する(ステップ2)。
次に、ステップ1においてターゲット1を視準したときの仮の視準点の位置(座標)と、ステップ2において特定された第2反射部4の視準点の位置(座標)とのずれを算出する(ステップ3)。
次に、ステップ3において算出された位置のずれを補正すべく、測量部が第2反射部4の視準点を視準するように修正するための指令を姿勢調整装置に出力して、視準位置を補正する(ステップ4)。
次に、ステップ4において測量部が視準を補正した位置からターゲット1に向けて視準光を発光し、第2反射部4に基づく視準位置を計測する(ステップ5)。
これにより、視準点までの正確な距離と方位(水平角、鉛直角)とを測定することができる。
そして、ステップ5において計測された視準点までの距離と方位(水平角、鉛直角)とを測量結果として表示装置に表示すれば良い。
【0029】
ここで、ステップ2における画像解析は、例えば、撮像装置で得られた画像に対し、パターンマッチング等の画像処理を行うことで、ターゲット1の輪郭形状(長方形)の4つの角の位置を特定し、対角線の交点を視準点として算出すれば良い。また、ステップ1乃至ステップ2の処理の実現には、記憶手段に予めターゲット1の輪郭形状、即ち、第1反射部2の輪郭形状が長方形であること、第2反射部4の輪郭形状が正方形であること、さらにそれらの寸法や、第1反射部2に対する第2反射部4の位置関係などの情報を記憶させておけば良い。
【0030】
また、ステップ2における画像解析は、上記パターンマッチングに限定されず、他の方法であっても良い。例えば、機械学習に基づいてターゲット1の輪郭形状を取得するプログラムを記憶手段に記憶させて、ターゲット1の輪郭形状を取得するようにしても良い。
【0031】
なお、測量制御装置によって実行される自動視準機能が、測量部における光波測距儀から発光され、ターゲット1で反射してきた視準光を撮像装置により受光して取得した画像を、測量制御装置が画像処理することにより、視準光と撮像装置の光軸とを一致させるように姿勢調整装置を制御するものとして構成された測量機であっても良い。
【0032】
また、測量機が、撮像装置を備えていない場合には、測量制御装置において、次のように処理するように構成すると良い。
まず、測量制御装置は、自動視準機能により測量部から視準光を発光し、ターゲット1(主として第1反射部4)から反射した反射光として測量部をターゲット1に視準させる(ステップ1)。
次に、ステップ1において視準したときの反射光を、第1反射部2及び第2反射部4から反射された反射光と仮定し、この反射光について第1反射部2から反射されたものと第2反射部4から反射されたものとを光量の違いに基づいて第2反射部4の視準点の位置を特定する(ステップ2)。
次に、ステップ1においてターゲット1を視準したときの仮の視準点の位置(座標)と、ステップ2において特定された第2反射部4の視準点の位置(座標)とのずれを算出する(ステップ3)。
次に、ステップ3において算出された位置のずれを修正するための指令を姿勢調整装置に出力して、測量部の視準方向を補正する(ステップ4)。
次に、ステップ4において測量部が視準を補正した位置からターゲット1に向けて視準光を発光し、第2反射部4に基づく視準位置を計測する(ステップ5)。
これにより、視準点までの正確な距離と方位(水平角、鉛直角)とを測定することができる。
そして、ステップ5において計測された視準点までの距離と方位(水平角、鉛直角)とを測量結果として表示装置に表示すれば良い。
【0033】
なお、ステップ2の、第1反射部2から反射されたものと第2反射部4から反射されたものとを光量の違いに基づいて第2反射部4の視準点の位置を特定する処理は、例えば、自動視準機能の実行において測量部から発光し、ターゲット1で反射した視準光(反射光)を受光する受光部で受光した光の分布を、例えば、所定の光度を閾値として第1反射部2から反射されたものとされる領域と、第2反射部4から反射されたものとされる領域とに区分し、閾値よりも低い光量の領域を第2反射部4から反射されたものとし、さらにその領域の図心を求めるように測量制御装置において処理すれば良い。
【0034】
以上説明したように、測量用ターゲットにおいて、測量機からの光が照射され、該光を反射する反射面を再帰性反射構造体により構成された第1反射部と、再帰性反射構造体により構成され、前記第1反射部よりも反射率が低く、かつ、測量精度が高い第2反射部とを備え、第1反射部と第2反射部とが同一方向に面するように、第1反射部の中央部に第2反射部が位置するように設けることにより、測量時において、まず、第1反射部に基づいて測量機をターゲット1に対して大体の位置に視準させ、さらに第2反射部の図心(視準点)の位置を特定して、測量機の視準方向を補正することにより、仰角及び伏角について従来よりも広い範囲にターゲット1を設置しても測量機の自動視準の視準光束を満たす状態を可能とし、測定対象物の連続的な捕捉を可能とすることができる。
【0035】
なお、上記実施形態では、第2反射部4が、第1反射部2よりも反射率が低く、かつ、測量精度が高いとして説明したが、第1反射部2が、第2反射部4よりも反射率が低く、かつ、測量精度が高くても良い。
【0036】
また、本実施形態では、ターゲット1を平板状としたが、形状はこれに限定されず、例えば、半円筒状としたり適宜変更しても良い。
【0037】
本発明において肝要とされる点は、ターゲット1が測量機から照射される視準光を反射する反射面部1aに複数の反射率が異なる反射部を備え、反射率が低い部分ほど、測量精度が高くなるように構成されていれば良い。
【符号の説明】
【0038】
1 測量用ターゲット、1a 反射面部、1b 取付面部、2;4 反射部。
図1
図2
図3