IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧

特開2023-117504光情報記録媒体および光記録再生装置
<>
  • 特開-光情報記録媒体および光記録再生装置 図1
  • 特開-光情報記録媒体および光記録再生装置 図2
  • 特開-光情報記録媒体および光記録再生装置 図3
  • 特開-光情報記録媒体および光記録再生装置 図4
  • 特開-光情報記録媒体および光記録再生装置 図5
  • 特開-光情報記録媒体および光記録再生装置 図6
  • 特開-光情報記録媒体および光記録再生装置 図7
  • 特開-光情報記録媒体および光記録再生装置 図8
  • 特開-光情報記録媒体および光記録再生装置 図9
  • 特開-光情報記録媒体および光記録再生装置 図10
  • 特開-光情報記録媒体および光記録再生装置 図11
  • 特開-光情報記録媒体および光記録再生装置 図12
  • 特開-光情報記録媒体および光記録再生装置 図13
  • 特開-光情報記録媒体および光記録再生装置 図14
  • 特開-光情報記録媒体および光記録再生装置 図15
  • 特開-光情報記録媒体および光記録再生装置 図16
  • 特開-光情報記録媒体および光記録再生装置 図17
  • 特開-光情報記録媒体および光記録再生装置 図18
  • 特開-光情報記録媒体および光記録再生装置 図19
  • 特開-光情報記録媒体および光記録再生装置 図20
  • 特開-光情報記録媒体および光記録再生装置 図21
  • 特開-光情報記録媒体および光記録再生装置 図22
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023117504
(43)【公開日】2023-08-24
(54)【発明の名称】光情報記録媒体および光記録再生装置
(51)【国際特許分類】
   G11B 7/007 20060101AFI20230817BHJP
   G11B 7/0045 20060101ALI20230817BHJP
   G11B 7/005 20060101ALI20230817BHJP
   G11B 20/12 20060101ALI20230817BHJP
   G11B 20/10 20060101ALI20230817BHJP
   G11B 7/24018 20130101ALI20230817BHJP
   G11B 7/24038 20130101ALI20230817BHJP
   G11B 7/24082 20130101ALI20230817BHJP
   G11B 7/24094 20130101ALI20230817BHJP
   G11B 7/24097 20130101ALI20230817BHJP
   G11B 7/26 20060101ALI20230817BHJP
【FI】
G11B7/007
G11B7/0045 Z
G11B7/005 Z
G11B20/12
G11B20/10 301Z
G11B7/24018
G11B7/24038
G11B7/24082
G11B7/24094
G11B7/24097
G11B7/26 531
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2022020096
(22)【出願日】2022-02-14
(71)【出願人】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100106116
【弁理士】
【氏名又は名称】鎌田 健司
(74)【代理人】
【識別番号】100131495
【弁理士】
【氏名又は名称】前田 健児
(72)【発明者】
【氏名】川原 友太郎
(72)【発明者】
【氏名】中村 敦史
(72)【発明者】
【氏名】槌野 晶夫
(72)【発明者】
【氏名】深田 孝志
(72)【発明者】
【氏名】加藤 寿恵
【テーマコード(参考)】
5D029
5D044
5D090
【Fターム(参考)】
5D029JB05
5D029PA01
5D029RA41
5D029RA44
5D029WA02
5D044BC02
5D044CC04
5D044DE43
5D044DE49
5D044DE52
5D044GK20
5D090AA01
5D090BB03
5D090BB04
5D090CC01
5D090CC04
5D090CC14
5D090GG27
5D090GG32
5D090GG33
5D090GG38
(57)【要約】
【課題】良好な信号品質を示す情報層を有し、高記録密度の光情報記録媒体を提供する。
【解決手段】2層以上の積層された複数の情報層を有し、レーザ光の照射により情報層にデータを記録するとともに情報層からデータを再生する光情報記録媒体において、当該光情報記録媒体に関する固有情報を記録するBCAを有し、少なくとも情報層の1つが凹凸形状からなる誘導溝を有し、誘導溝は、レーザ光の入射側から見て凸側をGrooveトラック、凹側をLandトラックとし、Grooveトラック及びLandトラックの両方にデータを記録するとき、BCAに、Grooveトラックからデータを記録するのか、またはLandトラックから記録するかを示す溝記録順情報を予め記録していることを特徴とする光情報記録媒体。
【選択図】図9
【特許請求の範囲】
【請求項1】
2層以上の積層された複数の情報層を有し、レーザ光の照射により前記情報層にデータを記録するとともに前記情報層からデータを再生する光情報記録媒体において、
当該光情報記録媒体に関する固有情報を記録するBCAを有し、
少なくとも前記情報層の1つが凹凸形状からなる誘導溝を有し、
前記誘導溝は、前記レーザ光の入射側から見て凸側をGrooveトラック、凹側をLandトラックとし、前記Grooveトラック及び前記Landトラックの両方にデータを記録するとき、前記BCAに、前記Grooveトラックからデータを記録するのか、または前記Landトラックから記録するかを示す溝記録順情報を予め記録していることを特徴とする光情報記録媒体。
【請求項2】
前記溝記録順情報は、情報層毎に設定されることを特徴とする請求項1に記載の光情報記録媒体。
【請求項3】
前記溝記録順情報が少なくとも1ビット以上で付与されている請求項1または2に記載の光情報記録媒体。
【請求項4】
2層以上の前記情報層を基板で挟んで両面に有し、少なくとも片面側の前記情報層に前記BCAを有する請求項1に記載の光情報記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、光学的手段によって情報を記録または再生する、高密度な光情報記録媒体および光記録再生装置に関するものである。
【背景技術】
【0002】
ネットワーク環境の整備、およびコンピュータの処理速度の向上に伴い、インターネット接続機器から生成される音声・映像・動画などのデジタルデータが急速に増大している。
【0003】
光情報記録媒体である光ディスクはこれまで、CD(Compact Disc)、DVD(Digital Versatile Disc)、BD(Blu-ray(登録商標) Disc)と進化してきた。BDにおいては、BD-XL規格が2010年6月に策定され、この規格に準じた3層ディスク(3つの情報層を備える光ディスク)は、1情報層あたり33.4ギガバイト(GB)の記録容量を有し、片面で100GBの記録容量を実現している。BD-XL規格の次の規格として、業務用光ディスク規格「アーカイバル・ディスク(Archival Disc)」が2014年3月に策定された(例えば、非特許文献1参照)。アーカイバル・ディスクは、ランド・アンド・グルーブ記録方式の採用により、BDよりも高い記録密度を実現する。アーカイバル・ディスク規格のロードマップは、ディスク1枚あたりの記録容量を順次増やすように策定されており、具体的には、第1世代として300GBのシステムを、第2世代として500GBのシステムを、第3世代として1TBのシステムを開発する計画となっている。
【0004】
第2世代の500GB容量のアーカイバル・ディスクは、250GBの情報を保存できる3層ディスクを基板の両面に設けることで、1枚あたり500GBの情報の記録再生を可能とする。第3世代の1TB容量のアーカイバル・ディスクを実現するためには片面の記録容量を500GBに増やす必要がある。
【0005】
記録容量を増やすために、1TB容量のアーカイバル・ディスクではトラックピッチが狭小化されるため、信号を再生する際に隣接する両側のトラックの信号も使用してノイズをキャンセルする3トラッククロストークキャンセル方法(3Track Cross Talk Cancel: 3Trk―XTC、例えば、特許文献2参照)が導入される。
【0006】
また、記録される信号も、記録状態と未記録状態からなる0、1の2値記録から、記録の深さ方向にマークレベルを割り当てた3値以上の多値記録(例えば、特許文献1参照)になる。また、片面あたりの情報層を従来の3層から4層に増やす技術もある(例えば、特許文献3参照)。これらの取り組みによって1枚あたりの信号密度を上げ、1面500GB、1枚あたり1TBの容量を実現する。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】国際公開第2020/100777号
【特許文献2】国際公開第2021/145016号
【特許文献3】国際公開第2007/099835号
【非特許文献】
【0008】
【非特許文献1】Archival Disc White Paper:Archival Disc Technology 1st Edition July 2015
【発明の概要】
【発明が解決しようとする課題】
【0009】
トラックピッチの狭小化、記録信号の多値化によって記録容量が増加した反面、高い信号品質を担保するのが難しくなっており、レイヤーごとに最適な条件で信号を記録することが求められる。3Trk―XTCを行う場合隣接するGrooveトラックとLandトラックのどちらの溝極性から信号を先に記録するかによって再生信号品質に差が出ることがわかっており、より良好な再生信号品質を得るにはメディア・レイヤー(4層ディスクの場合、L0、L1、L2、L3の情報記録層)ごとに記録順序を最適化することがよい。Grooveトラックとは、情報層が有する凹凸形状からなる誘導溝において、レーザ入射側から見て凸側のトラックのことであり、凹側のトラックがLandトラックである。
【0010】
ここでクロストークとは隣接トラック(信号再生するトラックがGrooveであれば隣り合うLand)からの信号の漏れこみで定義される。例えば、波長λ=405nm、開口数NA=0.91の対物レンズを用いた光学系を用いた光ピックアップにおいては、焦点のスポットサイズは1.22λ/NAから概略543nmであり、トラックピッチ0.18μmの溝を有する情報記録媒体においてGrooveに記録された信号を再生するときには、両隣接のLandにも光スポットが広がり、Landに記録された信号がノイズ成分となり、Grooveの再生信号に漏れこんでくる。この漏れこみは、従来のアーカイバル・ディスクのトラックピッチ0.225μmにおいても同様であるが、トラックピッチが狭くなると顕著に漏れこみが増加する。
【0011】
また、アーカイブディスク用途として長期保存性に優れた材料である酸化タングステン系の材料を記録膜に用いる場合、この記録膜の記録メカニズムは、記録膜に大きな酸素のバブルを発生させマークを形成するモードであるので、記録膜がトラック方向にも広がり、クロストークが悪化しやすい。
【0012】
この課題を解決する手段として、従来の再生対象となるトラックだけでなく、その両隣接トラックを再生して、その情報から信号処理によりクロストークのノイズ成分を除去する3Trk―XTC方法が有用である。
【0013】
そのため再生対象となるトラック、およびその両隣接のトラックの信号品質が重要となるが、ここで再生対象となるトラック、およびその両隣接のトラックの信号品質はその記録順によって影響されることが分かっている。例えば、再生対象をGrooveとして、Grooveを先に、Landを後で記録した場合、先に記録したGrooveはLand記録時の影響を受け、後から記録するLandよりも信号品質が悪化しやすい傾向がある。そのときのGrooveの信号品質がLandよりもよければその記録順でもよいが、Landよりも悪化する場合は、記録順を先にLandを記録し、後からGrooveを記録したほうがよくなる場合もある。
【0014】
従来のアーカイバル・ディスクでは、再生対象となるトラックからの波形のみを使用して再生していた(1ビーム再生)。先に記録されていた信号が、後から記録される信号の記録時に影響を受けるため、1ビーム再生では先に記録する溝極性の再生信号品質が悪化した。これは、Grooveトラックから先に記録した場合でも、Landトラックから記録した場合でも同様であるため、溝極性の記録順序は一意的に決めることができた。しかし、3Trk―XTCを行う場合、再生対象のトラックとその隣接するトラック、つまり両方の溝極性の再生信号を使用するため。一意的に決めることが難しい。
【0015】
Land/Groove、またクロストークの影響は、溝形状(溝深さやLand/Groove比率)やディスクを構成する樹脂や膜の材料によって依存する。また溝形状や樹脂/膜材料は各メディア・レイヤーで異なる。そのため、溝形状や膜材料により、Grooveを先に記録した場合のLand/Grooveの信号品質、またLandを先に記録した場合のLand/Grooveの信号品質が変わってくるため、3Trk―XTC方法においては、Grooveを先に記録するか、Landを先に記録するかをメディアに応じて最適に選択することが高い再生信号品質を実現する上で非常に重要かつ有効である。
【0016】
記録順に関する情報をスタンパに直接付与することも可能である。従来のアーカイバル・ディスクでは、使用するスタンパはレイヤーごとに分かれており、各層指定のスタンパを使用している。各層共通のスタンパを使用することができれば生産性の向上が見込める。この場合、スタンパに記録順に関する情報を付与すると、記録順序は使用するスタンパによって固定されてしまう。GrooveトラックとLandトラックのどちらを先に記録した方がより高い再生信号品質を得られるかは、スタンパのパラメータのみによって決まるものではなく、挟まれた樹脂層の硬さや膜材料によって異なる。そのため、スタンパによって記録順が決まってしまうと、適切な記録順序が選択されない可能性がある。
【0017】
BCA(Burst Cutting Area)情報はディスク出荷時に予め記録されている再生専用領域である。ディスクのBCAに記録順に関する情報を付与しておけば、どんなメディアでもレイヤーごとにディスクの製造者が指定した最適な記録順で記録を行うことができる。そこで本開示では、ディスクのBCAにレイヤーごとの記録順についての情報を付与することで、高い信号品質を実現する方法を提供する。
【課題を解決するための手段】
【0018】
本開示にかかる光情報記録媒体は、2層以上の積層された複数の情報層を有し、レーザ光の照射により情報層にデータを記録するとともに情報層からデータを再生する光情報記録媒体において、当該光情報記録媒体に関する固有情報を記録するBCAを有し、少なくとも情報層の1つが凹凸形状からなる誘導溝を有し、誘導溝は、レーザ光の入射側から見て凸側をGrooveトラック、凹側をLandトラックとし、Grooveトラック及びLandトラックの両方にデータを記録するとき、BCAに、Grooveトラックからデータを記録するのか、またはLandトラックから記録するかを示す溝記録順情報を予め記録していることを特徴とする。
【発明の効果】
【0019】
本発明の実施形態にかかる光情報記録媒体は、良好な信号品質を示す情報層を有し、高記録密度の光情報記録媒体の実現を可能とする。
【図面の簡単な説明】
【0020】
図1】本実施の形態における光情報記録媒体の上面図
図2】本実施の形態における光情報記録媒体の中心から半径方向の領域とトラッキング方向を示した図
図3】本実施の形態における光情報記録媒体の断面図
図4】本実施の形態における光情報記録媒体の中間層樹脂層の構成を示す概略図
図5】L0層の構成を示す概略図
図6】L1層の構成を示す概略図
図7】L2層の構成を示す概略図
図8】L3層の構成を示す概略図
図9】BCAに記録される情報の内訳を説明する図
図10】本実施の形態における光記録再生装置の構成を示すブロック図
図11】BCA読み取りから記録完了までのフローチャート
図12】BCAにおける記録順に関する情報付与の例を示す図
図13】再生信号期待波形と記録期待波形を示す図
図14】記録期待波形に基づいた記録パルスと記録の状態を示す図
図15】記録期待波形に基づいた記録を検出した再生信号を示す図
図16】Landトラックからトラックごとに記録する方法について示す図
図17】Landトラックから順に小ブロックごとに記録する方法を説明する図
図18】Grooveトラックから順に小ブロックごとに記録する方法を説明する図
図19】光記録再生装置に記録された記録順に関する情報を利用したBCA読み取りから記録完了までのフローチャート
図20】L0層、L2層の場合におけるトラックの配置、記録順序、トラック配置識別子、トラック配置情報の関係の例を示す図
図21】L1層、L3層の場合におけるトラックの配置、記録順序、トラック配置識別子、トラック配置情報の関係の例を示す図
図22】ディスク使用情報の例を示す図
【発明を実施するための形態】
【0021】
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
(実施の形態)
以下、本発明の一実施の形態に係る多層情報記録媒体について図面を参照しながら説明
する。
[1.光情報記録媒体の構成]
まず、本実施の形態における光情報記録媒体100について説明する。
【0022】
主な光学条件は、波長405nmのレーザと、NA=0.91の対物レンズとを用いる。ディスク構造は、トラックピッチが0.18μmであり、溝の深さは25nm~35nm、レーザ入射面から情報面までの厚みが概略50.5μm~106.5μmである。1層当たりの記録容量が125GBの多層・両面貼り合わせ光ディスク媒体を例として説明する。また、書き込み時の速度としては、線速度15.63m/sである。この線速度は一例であり、この条件のみに限定するものではない。
【0023】
図1は、本実施の形態における光情報記録媒体100の上面図である。図2は、光情報記録媒体100の中心から半径方向の領域とトラッキング方向を示した図である。図3は、光情報記録媒体100の断面図である。
【0024】
図3に示すように、光情報記録媒体100は、A面光情報記録媒体110とB面光情報記録媒体111を貼り合わせた、両面光情報記録媒体である。A面光情報記録媒体110およびB面光情報記録媒体111は各々、基板112上に中間層113、114および115などを介して、情報層として順次積層されたL0層116、L1層117、L2層118およびL3層119を有し、さらに、L3層119上にカバー層120が設けられている。A面光情報記録媒体110およびB面光情報記録媒体111は、それらの基板112の裏面(情報層を有する面と逆側)を貼り合わせており、A面光情報記録媒体110とB面光情報記録媒体111を同時に記録再生することができる。なお、A面光情報記録媒体110とB面光情報記録媒体111は、各情報層のスパイラルの向きがレーザ照射側から見て逆向きでもよいし、同じ向きでもよい。
【0025】
図1に示すように、本実施の形態の光情報記録媒体100の平面領域としては、内周側から、インナーゾーン104と、データ領域101と、アウターゾーン105とが配置されている。インナーゾーン104は、BCA102と記録可能領域103を備える。 インナーゾーン104は、光情報記録媒体100の中心からおよそ24mmより内側に位置している。BCA102は、光情報記録媒体100の中心から21mm~22.2mmの位置に媒体固有のユニークID等をレーザ照射等で出荷時に予め所定の長さで記録した再生専用領域である。BCA102は、記録マークを同心円状に並べるように形成することで、バーコード状の記録データが形成される。BCA102には、0.7mmの幅を使用して記録するものと、0.2mmの幅を使用して記録するものがあるが、本開示ではどちらか一方に限定するものではない。
【0026】
記録可能領域103は、光情報記録媒体100の中心から22.2mm~24mmの位置に設けられる記録可能な領域であり、試し記録を行う学習領域及びディフェクトマネジメントエリア(DMA)が設けられている。学習領域は、光記録再生装置に光情報記録媒体100が挿入された起動時や、動作中に温度変動が大きく生じた際に、記録パワーや記録パルス条件の変動分をキャリブレーションするために、試し記録が行われる。ディフェクトマネジメントエリアは、光情報記録媒体100上のディフェクト情報を管理するための領域である。
【0027】
データ領域101は、光情報記録媒体100の中心から24.0~58.0mmの位置に設けられる。データ領域101は、実際にユーザが希望するデータが書き込まれる領域である。データ領域101には、ディフェクト等により記録再生できない部分が存在した場合、記録再生できない部分を交替する交替エリアとして、ユーザデータを記録再生するデータエリアの前後にISA(Inner Spare Area)、OSA(Outer Spare Area)を設定する。
【0028】
アウターゾーン105は、光情報記録媒体100の中心から58.0mm~58.75mmの位置に設けられる。アウターゾーン105は、インナーゾーン104と同様のディフェクトマネジメントエリアが設けられたり、また、シークの際、オーバーランしてもよいようにバッファエリアとして使われる。半径22.2mm、つまりBCA領域より外側のインナーゾーンから、外周のアウターゾーンまでが、マークが記録再生されるデータ領域(記録可能領域)とされる。
【0029】
本実施の形態の光情報記録媒体100において、L0層116以外の情報記録層には、BCA102に相当するエリアは設けられているが、ユニークIDの記録は行わない。L0層116のBCAには、高出力のレーザで酸素のバブルを発生させる記録方式により、半径方向にバーコード状の信号が記録される。
【0030】
BCA102の記録に用いるレーザ波長は、赤外~青紫領域を用いることができる。出力的には(または生産性を考慮して半径方向のビーム幅を広げるためには)赤外レーザが好ましいが、高品質を得るには、実際マークの記録で用いる青紫レーザを用いることが好ましい。さらにパルス変調されたレーザにおいて、ON/OFFの2変調ではなく、高パワー/低パワー/OFFの変調を用いた制御により、より高品質のBCA102を得ることができる。また、BCA102は、L0情報記録層116の成膜後、中間層113形成後、またはカバー層120形成後とどの工程で記録してもよいが、高品質のBCAを得るには、中間層113形成後が好ましい。またその場合、溝がない基板側からレーザを照射することが好ましい。
【0031】
また、L0層116の内周側がインナーゾーンとなり、外周側がアウターゾーンとなる。その場合、L0層116のアドレスのオーダーは、内周から外周の方向に記録されており、記録再生は内周から外周の方向に行う。L1層117のアドレスのオーダーは、外周から内周の方向に記録されており、記録再生は外周から内周の方向に行う。L2層118のアドレスのオーダーは、内周から外周の方向に記録されており、記録再生は内周から外周の方向に行う。L3層119のアドレスのオーダーは、外周から内周の方向に記録されており、記録再生は外周から内周の方向に行う。このような記録再生の進行が行われることで、外周から内周へのフルシークを必要とせず、L0層116は内周側から外周側に向かって、L1層117は外周側から内周側に向かって、L2層118は内周側から外周側に向かって、L3層119は外周側から内周側に向かって、順次記録再生することができ、高転送レートのリアルタイム記録を長時間行うことができる。
【0032】
次に、図3を用いて、光情報記録媒体100のスタック構成を詳細に説明する。基板112の厚みは概略0.475mmであり、光情報記録媒体100の総厚みは1.2mm以下である。カバー層120の厚みは少なくとも50.5μm以上である。また、基板112の材料はポリカーボネート材料、中間層113~115及びカバー層120はアクリル系紫外線硬化樹脂を用いた。基板112とカバー層120の弾性率は、それぞれ10Paオーダー、10Paオーダーである。
【0033】
次に、中間層113~115を詳細に説明する。ここでは、中間層113を例に説明する。図4は、A面光情報記録媒体110の中間層113の断面図である。図4に示すように、中間層113は、接着層401と溝が転写される転写層402で構成されており、接着層401と転写層402は、それぞれ、レーザ照射方向から見て奥側と手前側に形成される。接着層401と転写層402の弾性率は、それぞれが10Paオーダー、10Paオーダーである、従って、転写層402、接着層401、カバー層120の順に硬い。基板112は、転写層402と比較すると柔らかい。また、ポリカーボネート材料は熱可塑性樹脂であるため、マークの記録時に熱が加えられると常温の状態から柔らかくなる。各中間層に使用する樹脂材料に関しては、硬さが共通の材料を使用してもよいし、レイヤーごとに別の材料を使用してもよい。本実施の形態においては、カバー層120の厚みは54μmであり、中間層115の厚みは11.5μmであり、中間層114の厚みは19.5μmであり、中間層113の厚みは15.5μmである。113~115中間層の厚みは、前述のように設定したが、各情報面からの回折光の干渉(層間干渉)が少なくなるよう最適化されていればよく、中間層の厚みは前述の厚みに限定されるわけではない。なお、4層の情報層からなる光情報記録媒体の場合は、10μm~24.5μmの間であればよい。
【0034】
次に各情報面の膜構造を説明する。図5にL0層116の構成を示す。L0層116はレーザ入射側より奥の方から順に、第1誘電体膜501、記録膜502および第2誘電体膜503が設けられている。第1誘電体膜501には少なくとも酸化亜鉛を含む材料が用いられ、その膜厚は5~20nmである。記録膜502は信号となるマークを形成/保存する役割を有し、少なくとも酸化タングステンと酸化マンガンを含む材料が用いられ、その膜厚は25~50nmである。また、BCA102も記録膜502に記録される。第2誘電体膜503には少なくとも酸化ジルコニウムを含む材料が用いられ、その膜厚は5~20nmである。L1層117、L2層118、L3層119に関しても、第1誘電体膜501、記録膜502、第2誘電体膜503の位置関係については同じであり、レーザ入射側より奥の方から順に、第1誘電体膜501、記録膜502および第2誘電体膜503である。
【0035】
図6にL1層117の構成を示す。L1層117はレーザ入射側より奥の方から順に、第1誘電体膜601、記録膜602および第2誘電体膜603が設けられている。第1誘電体膜601には少なくとも酸化亜鉛を含む材料が用いられ、その膜厚は5~25nmである。記録膜602は信号となるマークを形成/保存する役割を有し、少なくとも酸化タングステンと酸化マンガンを含む材料が用いられ、その膜厚は25~50nmである。第2誘電体膜603には少なくとも酸化ジルコニウムを含む材料が用いられ、その膜厚は5~25nmである。
【0036】
図7にL2層118の構成を示す。L2層118はレーザ入射側より奥の方から順に、第1誘電体膜701、記録膜702および第2誘電体膜703が設けられている。第1誘電体膜701には少なくとも酸化亜鉛を含む材料が用いられ、その膜厚は5~30nmである。記録膜702は信号となるマークを形成/保存する役割を有し、少なくとも酸化タングステンと酸化マンガンを含む材料が用いられ、その膜厚は25~55nmである。第2誘電体膜703には少なくとも酸化ジルコニウムを含む材料が用いられ、その膜厚は5~30nmである。
【0037】
図8にL3層119の構成を示す。L3層119はレーザ入射側より奥の方から順に、第1誘電体膜801、記録膜802および第2誘電体膜803が設けられている。第1誘電体膜510には少なくとも酸化亜鉛を含む材料が用いられ、その膜厚は5~35nmである。記録膜511は信号となるマークを形成/保存する役割を有し、少なくとも酸化タングステンと酸化マンガンを含む材料が用いられ、その膜厚は25~55nmである。第2誘電体膜803には少なくとも酸化ジルコニウムを含む材料が用いられ、その膜厚は5~35nmである。
【0038】
図9は、BCA102に記録される情報の内訳を示したものである。BCA102は、18バイトの領域(I0~I17)を有し、例えば、I1にはAB面識別情報、I5~I6にはメディアタイプID情報902を記録している。本開示では、BCA102のI7もしくはI8に、溝記録順情報901としてL0層116~L3層119ごとの記録順を記録する。図12に示す通り、記録順に関する情報はGrooveトラックから記録する場合(表中では「G→L」と示す)を0、Landトラックから記録する場合(表中では「L→G」と示す)を0のように、1ビットの情報で表し、4層分の情報を個別に記録するので、合計4ビットの情報量である。BCA102は、A面光情報記録媒体110とB面光情報記録媒体111の両面に記録されてもよいし、A面光情報記録媒体110だけに記録されてもよい。光情報記録媒体100の両面に対しては、光記録再生装置に備えた上下2つの光ピックアップを同期させて記録再生を行うため、原則としてA面光情報記録媒体110とB面光情報記録媒体111に記録された記録順に関する情報は一致している必要がある。そのため、溝記録順情報901をBCA102に付与するのは、どちらか一方の面のみでもよいし、A面光情報記録媒体110とB面光情報記録媒体111の両方のBCA102に溝記録順情報901を付与してもよい。片方のBCA102にのみ溝記録順情報901を付与するメリットとしては、生産性の向上が挙げられる。BCA102は光情報記録媒体100の生産時にあらかじめ記録されるが、溝記録順情報901をA面光情報記録媒体110とB面光情報記録媒体111のいずれか片面にのみ記録すればよい場合、片面分の溝記録順情報901を記録する工数を削減することができる。
【0039】
また、ここで示す溝記録順情報901とは、データゾーンにおける記録順序であり、管理領域における記録順序はその限りではない。管理領域とデータゾーンでは、データのクラスターサイズが異なっており、管理領域ではより強い誤り訂正機能が備えられているため、データゾーンに比べ求められる再生信号品質は低い。そのため管理領域においては記録順を指定しなくてもよいとされる。しかし、管理領域における溝記録順情報901を情報層ごとに指定したい場合は、BCA102に管理領域における溝記録順情報901を、データゾーンにおける溝記録順情報901と同じ方法で、別に付与してもよい。 次に光情報記録媒体100に対して記録・再生を行う光記録再生装置について説明する。
[2.光記録再生装置の構成]
図10は、本実施の形態における光記録再生装置1000の構成図である。図10に示すように、光記録再生装置1000は、光ヘッド1001、スピンドルモータ1002、サーボコントローラ1003、記録パルス生成回路1004、記録期待波形生成回路1005、変調回路1006、誤り訂正符号化回路1007、再生信号復号回路1008、復調回路1009、誤り訂正復号回路1010、記録条件評価回路1011、I/F回路1012、バッファメモリ1013、システムコントローラ1014、ROM(Read Only Memory)1015、再生信号メモリ回路1017及びノイズ波形加算回路1018を備える。
【0040】
光記録再生装置1000は、光情報記録媒体100に対してユーザデータの記録及び再生を行う。
【0041】
スピンドルモータ1002は、光情報記録媒体100を回転させる。光ヘッド1001は、光情報記録媒体100に光ビームを照射することにより、光情報記録媒体100へのユーザデータの記録及び光情報記録媒体100からのユーザデータの再生を行う。
【0042】
サーボコントローラ1003は、光ヘッド1001及びスピンドルモータ1002を制御し、光ヘッド1001から光情報記録媒体100に照射された光ビームを光情報記録媒体100上に設けられたトラックに集光して走査する制御、及び、目的のトラックにアクセスする移動制御を行う。サーボコントローラ1003は、光ヘッド1001が光情報記録媒体100を所定の線速度で走査するように、光ヘッド1001の位置とスピンドルモータ1002の回転数とを制御する。
【0043】
I/F回路1012は、光情報記録媒体100に記録するユーザデータをホスト1016から受け取り、バッファメモリ1013に格納する。また、I/F回路1012は、光情報記録媒体100から再生し得られたバッファメモリ1013に格納されているユーザデータをホスト1016へ送る。他の内部ブロックに対してバッファメモリ1013に格納されたユーザデータなどを送出したり、逆に、他の内部ブロックから受け取ったユーザデータなどをバッファメモリ1013に格納することも行う。
【0044】
誤り訂正符号化回路1007は、I/F回路1012から受け取ったユーザデータに、誤り訂正するためのパリティコードを付加して符号化データを生成する。
【0045】
変調回路1006は、誤り訂正符号化回路1007からの符号化データを受け取り、所定の変調符号にしたがって変調した変調信号を生成する。
【0046】
記録期待波形生成回路1005は、変調信号から、ユーザデータが記録されたトラックを再生したときに得られることを期待する再生信号の波形(記録期待波形)を記録時に生成する。
【0047】
記録パルス生成回路1004は、記録期待波形生成回路1005により生成された記録期待波形から記録パルス信号に変換し、光ヘッド1001の光ビームを駆動する。照射された光ビームの熱により、光情報記録媒体100上にマークが形成される。 一方、光情報記録媒体100上に記録されたユーザデータは、再生信号復号回路1008、復調回路1009、誤り訂正復号回路1010によって再生される。
【0048】
光ヘッド1001は、波長λの光ビームを発光するレーザと、開口数Nの対物レンズとを有した光ピックアップを構成する。光ヘッド1001は、光情報記録媒体100に光ビームを照射し、光情報記録媒体100からの反射光を検出する。光ヘッド1001は検出した反射光に基づいて再生信号を出力する。
【0049】
再生信号復号回路1008は、再生信号を復号して復号信号を生成する。具体的には、再生信号と期待値波形との比較から最も近い期待値波形を選択し、期待値波形の元となるパターン信号を復号信号として出力するPRML信号処理(最尤復号の一例)を行う。期待値波形の特性は、光ビームでの検出の周波数特性による帯域制限の影響を加味したものとする。
【0050】
復調回路1009は、所定の変調符号に従って、復号信号から符号化データを復調する。
【0051】
誤り訂正復号回路1010は、復調された符号化データの誤りを訂正し、ユーザデータを復元する。
【0052】
ROM1015は、フラッシュメモリで構成される。ROM1015は、システムコントローラ1014が光記録再生装置1000全体を制御するためのプログラムを記憶する。
【0053】
システムコントローラ1014は、ROM1015に記憶されたプログラムを読み出して実行することにより、各回路の制御及びホスト1016との通信の制御を行う。なお、図10においては便宜上、システムコントローラ1014から各構成要素に対する制御を示す矢印を省略している。本実施の形態における光記録再生装置1000のシステムコントローラ1014は、ユーザデータの記録および再生に関連する各回路の動作を制御する。
【0054】
再生信号メモリ回路1017は、光ヘッド1001から得られた再生信号をサンプリングし、サンプリングしたデジタル波形データを、I/F回路1012を通して、バッファメモリ1013に記憶させる。ユーザデータが記録されていない未記録トラックを再生すると、光情報記録媒体100のトラックの形状や反射率のばらつきなどから発生するディスクノイズ成分を含むディスクノイズ再生信号が得られる。再生信号メモリ回路1017の容量は2GBであり、そのうちの1.5GBを波形の保存に使用する場合、約210クラスター分の波形を保存することができる。
【0055】
ノイズ波形加算回路1018は、I/F回路1012を通して、バッファメモリ1013に記憶されているディスクノイズ再生信号のデジタル波形データを読み出し、記録期待波形生成回路1005へと出力する。ディスクノイズ再生信号には、再生したときのレーザノイズや回路ノイズなども含まれているため、これらの影響を低減するローパスフィルタ処理をした後に、記録期待波形生成回路1005へと出力する。
【0056】
BCA102に付与された記録順序の情報は再生順序を制限するものではない。3Trk―XTC方法によるデータの再生時に必要なのは、対象のトラックの波形と隣接するトラックの波形であるため、波形取得の順番とトラックの記録順序は関係ない。例えば、Landトラック→Grooveトラックの順に記録したトラックにおいて、Landトラックを再生する場合もGrooveトラックから波形の取得を行ってもよい。
[3.光記録再生装置の動作]
まず、本実施の形態における光記録再生装置1000による光情報記録媒体100のデータゾーンのトラックへの記録動作について説明する。
【0057】
図11にBCAの再生から記録を行うまでのフローチャートを示す。ディスク起動後、BCAにアクセスし、各レイヤーの溝記録順情報901を読み取る。溝記録順情報901が0の場合は隣接するGrooveトラックからLandトラックの順番で記録して、溝記録順情報901が1の場合は隣接するLandトラックからGrooveトラックの順に記録する。
【0058】
前記隣接するトラックとは、物理アドレスが共通するトラックのことである。スタンパの溝には蛇行部分があり、その蛇行部分にアドレス情報が記録されている。物理アドレスはスタンパの片側の極性に記録されるため、隣接するトラック同士には共通のアドレスが付与される。アドレスはスパイラルの向きと同じ方向に付与される。GrooveトラックとLandトラックのどちらの溝を中心に蛇行するかは、スタンパ作成過程の極性によって異なり、Groove側を原盤作成過程でカッティングするスタンパではGrooveトラックから、Land側を原盤作成過程でカッティングするスタンパではLandトラックから物理アドレスが付与される。
【0059】
対象のレイヤーが未記録(ブランク)の場合、先頭のアドレスから記録を行い、対象のレイヤーが途中まで記録されている場合は、続きのアドレスから記録を行う。図12に溝記録順情報901の例を示す。このようにBCAの信号から各レイヤーの溝記録順情報901を読み取ることができる。図12の例ではL0層116、L3層119はGrooveトラックから先に記録し、L1層117、L2層118はLandトラックから先に記録する。4層・狭ピッチで多値記録・3Trk―XTCを行うディスクには、Groove・Landトラックどちらの溝極性から記録するかによって信号品質に差が出ることがわかっており、特に記録層の両側を硬く膨らみにくい中間層樹脂層に挟まれているL1層117・L2層118ではLandから先に記録した方がより良い特性が出る傾向がある。BCAで各層ごとに記録順を指定できることで、ディスクの層ごとにより良い再生信号品質を実現することができる。
【0060】
I/F回路1012は、ホスト1016から送信されたユーザデータと記録先の論理アドレス(LSN:Logical Sector Number)とを取得する。ユーザデータは所定の単位のデータブロックに分割され、データブロック毎に誤り訂正符号化回路1007へと送られる。
【0061】
誤り訂正符号化回路1007は、データブロック単位のユーザデータに、再生時の誤りを訂正するためのパリティコードを付加して符号化データとする。
【0062】
変調回路1006は、パリティコードが付加された符号化データを、所定の変調符号に従って変調信号に変調する。
【0063】
記録期待波形生成回路1005と記録パルス生成回路1004は、再生したときに記録期待波形に近い再生信号が得られるように、光情報記録媒体100上にマークを形成する。従来は、RLL変調符号により生成された2値の変調信号をそのままマークあるいはスペースとして記録していた。
【0064】
本実施の形態の記録期待波形生成回路1005と記録パルス生成回路1004は、変調信号系列の値が1の区間をマーク、0の区間をスペースとした2値レベルによる記録方法ではなく、再生したときに記録期待波形に近い再生信号が得られるように、光情報記録媒体100上に多値レベルのマークを形成する記録方法に基づくものである。
【0065】
図13は、記録期待波形生成回路1005が生成する記録期待波形を示している。歪のない再生信号の期待波形1302を、記録する変調信号系列1301から生成する。光ビームでの検出の周波数特性から求められるインパルス応答波形と記録する変調信号系列1301との畳み込み演算により、歪のない再生信号の期待波形1302を算出することができる。記録期待波形1303は、1T間隔でサンプリングされた状態の波形として算出されるが、その周波数帯域の最大値は0.15と低い。標本化定理により、0.15の2倍である0.3以上の周波数、すなわち3.33Tより小さい間隔でサンプリングすれば劣化なく表現することができる。本実施の形態の場合には、3.33T間隔よりも容易に実現できる2T間隔としている。記録期待波形1303は、歪のない再生信号の期待波形1302を2T間隔でサンプリング(リサンプリング)して生成される。記録期待波形1303は、第2の期待波形の一例に相当する。再生したときに歪のない再生信号の期待波形1302に近い波形が得られるようにするためには、2T間隔で、記録期待波形1303の信号振幅値に相当する大きさの記録マークを形成すればよい。記録期待波形1303のサンプリング間隔は、再現したい再生信号の周波数特性の最大値に応じて適宜設定すればよい。
【0066】
図14は、記録期待波形1303の信号振幅値に相当する大きさの記録マークを形成する様子を示している。変調信号系列の値に対応したレーザ発光波形ではなく、記録期待波形1303の信号振幅値に基づいた記録パルス信号1404によるレーザ発光波形とする。記録期待波形1303の信号振幅値が大きいときには、パワーを高く、発光幅を広くし、信号振幅値が小さいときには、パワーを低く、発光幅を狭くすればよい。これにより、図14に示すように、トラック1405上に、記録期待波形1303のサンプリング点毎に2T間隔でサイズの異なる記録マーク1406が連続的に形成される。このように形成された記録マーク1406は、光ビームを照射して再生したときに、変調信号系列に対応した期待される再生波形が得られるマーク形状となる。記録マークの形成において、直前のレーザ発光による熱の影響の伝播もあるため、直前との組み合わせ条件で記録パルス信号のパワー高さと発光幅を制御してもよい。図15は、図14に示す記録状態を再生したときの再生信号を示している。連続的に形成された記録マークから、記録時に生成した歪のない再生信号の期待波形1302に近い再生信号のサンプリング波形1503が得られる。マークとスペースの2値レベルの記録ではなく、多値レベルの記録により、良好な再生信号のサンプリング波形1503が得られ、さらには再生信号のサンプリング波形1503から、良好な復号された変調信号系列1504を得ることができる。
【0067】
光ヘッド1001は、記録パルス信号1404に基づいてレーザ出力を駆動する。光情報記録媒体100上のトラックにレーザパルスを照射することで記録パルス信号に対応したマークが連続的に形成される。
【0068】
システムコントローラ1014は、上記の記録動作を制御する。システムコントローラ1014は、光情報記録媒体100上に記録する位置を決定し、サーボコントローラ1003を制御して光ヘッド1001を目的位置に移動させる。目的位置となるトラックに到達する前に、誤り訂正符号化回路1007を動作させる。目的位置に到達したところから、変調回路1006、記録期待波形生成回路1005、記録パルス生成回路1004を動作させて記録を行う。
【0069】
記録はBCAで指定された溝記録順情報901に従って行う。指定された記録順が隣接するLandトラックからGrooveトラックの順番だった場合、先にLandトラックにシークし記録を開始する。
【0070】
記録の方法としては、図16に示すように層内の片方の溝極性を全て(全面)記録してから、もう一方の溝を記録する方法がある。図16はLandトラックを先に記録する場合を示しており、物理アドレス方向1604がディスクの内周側→外周側であるL0層116、L2層118では図の左側が内周側、図の右側が外周側である。逆に物理アドレス方向1604がディスクの外周側→内周側であるL1層117、L3層119では図の左側が外周側、図の右側が内周側である。Landトラックは、L0層116、L2層118では隣接するGrooveトラックより内周側、L1層117、L3層118では隣接するGrooveトラックより外周側に配置される。
【0071】
図中の丸で囲んだ番号はGrooveトラック1602・Landトラック1601各々の記録順を簡易的に示している。Landトラック1601に先に記録する場合、L(1)→L(2)→L・・・を記録した後にG(1)→G(2)→G・・・という順番で記録を行う。トラック内の矢印の方向1603に記録を行うと仮定する。この方法では、片側の溝極性を一気に記録するため、途中のパラメータ変更等が不要であるという利点がある。隣接するトラックが記録されるまでは隣接トラックからの信号の漏れ込み(クロストーク)が少ない状態が維持されるため、高い再生信号品質が期待できる。また、記録時にGrooveトラック1602とLandトラック1601の切り替えが少ないため、溝極性切り替え時の摂動条件の調整も少なくて済む。
また、図17図18に示すように数トラック程度の比較的小さなブロックごとに隣接する溝極性を記録する方法でもよい。図17はLandトラック1601を先に記録する場合を表しており、図18はGrooveトラック1602を先に記録する場合を表している。ディスクの内周外周の関係やトラック内での記録方向は図16と同様であり、トラック内の矢印の方向1603に記録を行うと仮定する。図中の丸で囲んだ番号は記録を行う順番であり、(1)→(2)→(3)→・・・の順番で記録を行う。ここでは、Grooveトラック1602・Landトラック1601それぞれ4トラックずつを1ブロックとして扱う場合を例にとる。小ブロックの単位に指定はないが、再生時に3Trk―XTCを行うため、Grooveトラック1602・Landトラック1601それぞれ3トラック以上あることが望ましい。この方法を使用する場合、隣接するトラックに連続した情報が記録されることになる。例えば、図16のようにトラックごとに記録する方法で図中のL(2)、L(3)、L(4)、L(5)、L(6)、L(7)、L(8)及びL(9)の計8トラックに記録された連続した情報を再生する場合、G(1)、G(2)、G(3)、G(4)、G(5)、G(6)、G(7)、G(8)及びG(9)の計9トラックの波形が追加で必要になる。
【0072】
対して、図17及び図18のように比較的小さなブロックで記録する場合は、図中の(9)~(16)の1ブロック計8トラックに連続した情報を記録し、それらのトラックを再生するのに追加で必要な波形は、図17の場合は(8)、(17)、図18の場合は(4)、(21)と、計2トラックのみである。このように図16のトラックごとの記録では、関連のない情報が記録されているトラックの波形を9トラック分取得しなければならないのに対して、図17図18の場合は関連のない情報が記録されているトラックの波形取得は2本ですみ、転送レートの向上が期待できる。さらに、比較的小さなブロックごとに記録することで再生時の各トラックへのアクセス回数を減らすことができ、再生光照射回数が増えることによる膜の劣化を抑えることができ、再生耐久性の向上に期待できる。ブロックごとに記録を行う場合は、ダミー記録等を利用して、ブロック内の全てまたは一部のトラックを記録された状態にすることもでき、これを行うことで続きから記録を行う際にGrooveトラック1602とLandトラック1601の記録順が逆転してしまうことや、記録部分と未記録部分の境界が頻繁に発生することでトラッキングサーボが不安定になることを防ぐことができる。また、本実施の形態では、トラック単位で記録順の説明を行ったが、実際の記録単位はクラスター単位で記録を行う。Grooveトラック1602とLandトラック1601の記録するクラクラスター単位は同じであり、図16図17図18はスパイラル状に連続記録された一部のトラックを模式的に示している。
【0073】
また、光記録再生装置1000では1mm程度の間隔でディスクの回転数を一定に保つゾーンが指定されている。これは、記録と再生時の線速度がディスクの内周から外周にかけて一定になるようにするためのものであるが、このゾーンごとに、一気に片側の溝極性を記録し、その後の同じゾーンのもう片側の溝極性を記録するという方法でもよい。この方法では図16に示したトラックごとに記録する方法と図17及び図18に示した比較的小さなブロックごとに記録する方法の両方の利点を得ることができる。
【0074】
また、再生信号メモリ1017に保存できるクラスター数単位ごとを1ブロックとして記録してもよい。再生信号メモリ1017には約210クラスター分の波形を保存することができるため、GrooveトラックとLandトラック各105クラスターを1ブロックとして記録してもよい。この方法を行うことで、メモリを無駄なく効率的に使用することができる。
【0075】
図20は、L0層116、L2層118の場合におけるトラックの配置と記録順序、トラック配置識別子、トラック配置情報の関係の例を示す図である。図21は、L1層117、L3層119の場合におけるトラックの配置と記録順序、トラック配置識別子、トラック配置情報の関係の例を示す図である。以下、図20を参照して説明する。PSN(Physical Sector Number)は、光記録再生装置1000が記録再生するときに使用する物理セクタ番号である。500GBのアーカイバル・ディスクのPSNは、GrooveトラックとLandトラックを識別するためのビット情報(GrooveLand識別子)を付与しているが、本開示ではこのビット情報の代わりに、トラックの位置関係を識別するためのビット情報(トラック配置識別子)を付与する。しかし、これにより、PSNからアクセスするトラックがGrooveトラックなのかLandトラックなのか判別することができない。また、図20に示すようにGrooveトラックとLandトラックの配置は2パターン存在し、どちらのパターンなのか識別する必要がある。そこで、図22に示すようなディスク使用情報(DUI:Disc Usage Information)を記録する領域を、図2の記録可能領域103にさらに設ける。そして、ディスクの初期化時にその領域にDUIを記録する。DUIには、各レイヤーのトラック配置情報(Track Assign)2201を格納する。トラック配置情報2201には、図20の2008のように内周側に配置されたトラックの情報がビット形式で格納される。これにより、例えば、図16の場合は、図20の2002になり、DUIのトラック配置情報2008から、LandトラックがGrooveトラックより内周側に配置されることが識別できる。そしてトラック配置識別子が0の場合は、そのPSNはLandトラックを表し、1の場合はそのPSNがGrooveトラックを表すと識別できる。
ここで、BCAから読み取った溝記録順序情報2006が各レイヤーで異なる場合等により先に記録するトラックが各レイヤーで異なる場合において、先に記録するトラックをL0層116、L2層118では内周側、L1層117、L3層119では外周側に配置するものとする。これは、図20の2001と2002のように配置することになる。また、PSNにGrooveLand識別子の代わりにトラック配置識別子を用いることにより、トラックの配置とPSNの関係が、2001と2002の両方とも500GBのアーカイバル・ディスクと同じになるので、同じ記録方法で記録することができ、ファームウェアの開発にかかる時間を短縮できる。また、トラック配置識別子2007は先に記録するトラックの方が小さいので、PSN順に記録することもできる。ユーザから指示されるLSNをPSN順に割り当てた場合、LSN順に記録することもできる。すなわち、ユーザデータを高い信号品質が実現できる記録順で記録することができる。なお、図20の2003と2004のように先に記録するトラックを外周側に配置してもよい。先に記録するトラックが各レイヤーで異なっても、PSNとトラックの位置関係が同じになるので、記録方法は1つになる。したがって、先に記録するトラックを内周側に配置する場合と同じ効果が得られる。記録方法として図16を用いて説明したが、図17図18の記録方法であっても、同様の効果が得られる。なお、先に記録するトラックを2001や2002のように内周側に配置するか、2003と2004のように外周側に配置するかは、光記録再生装置1000の製造者が記録方法に応じて最適な配置になるように決定し、DUIのトラック配置情報として記録する。なお、トラック配置情報2201は、GrooveトラックとLandトラックの配置が判別できればよく、これに限るものではない。例えば、Grooveトラックが外周側の場合が0、Landトラックが外周側の場合が1を示してもよい。また、ビット形式でなくてもよい。なお、PSNにGrooveLand識別子を割り当ててもよい。トラック配置識別子をGrooveLand識別子より上位ビットに割り当てることにより、内周側のトラックのPSNが外周側のトラックのPSNより小さくなり、PSNとトラックの配置の関係がGrooveLand識別子を割り当てない場合と同じになるため、同じ記録方法で記録することができる。本開示では、L0層116、L2層118のときの図20を用いて説明したが、L1層117、L3層119のときは図21のようになり、2101が2001、2102が2002、2103が2003、21044が2004に相当する。L1層117、L3層119は外周から内周に向かって記録するので、2007、2008、2009は、内周側と外周側が逆転するが、記録方法は同じである。
本開示では、DUIはディスクの初期化時に記録するとした。これは、ディスク配置情報2201をディスクの初期化後に変更しない場合、DUIを初期化時に記録すればよく、効率よくDUIを記録することができるからである。DUIは冗長性や再生耐久性を確保するために、同じDUIを複数クラスターに記録してもよい。また、位置が離れた複数の領域に記録してもよい。位置が離れた複数の領域に記録することで、埃などによる欠陥の影響を受けて記録再生できなくなることを防ぐことができる。
なお、インナーゾーンの記録可能領域103にDUIを記録する領域をさらに設けるとしたが、DMAに記録してもよい。これにより、新たに専用の領域を設けなくてもよく、ディフェクト情報の更新に応じて、同じDUIを追記していくことで冗長性を確保することもできる。また、トラック配置情報をディスクの初期化後に変更したい場合、DMAの最新情報と合わせて追記することで、トラック配置情報を変更することができる。
本開示では、BCAに付与される記録順序は、データゾーンにおける記録順序であり、管理領域の記録順序は付与されていない。管理領域はデータゾーンに比べ、強い誤り訂正機能が備えられているため、BCAに付与された記録順序で記録しなくても再生信号品質を確保することができる。例えば図20の2004のように、データゾーンを外周側のトラックから記録する場合であっても、管理領域は内周側のGrooveトラックから記録することができる。これにより、管理領域の記録は、500GBのアーカイバル・ディスクと同じ内周側のトラックから記録する方法で記録することができ、ファームウェアの開発にかかる時間を短縮できる。ここで、管理領域は1つの追記位置から順次記録していく。まず、先に記録するトラックから記録していき、そのトラックを全て使いきったら、もう一方のトラックに記録していく。したがって、管理領域を記録再生する場合、管理領域の記録順序の情報が必要になる。しかしながら、BCAには管理領域の記録順序は付与されていないため、図22に示すようにDUIに管理領域の先書きトラック情報(Inner Zone First Write Track)2202を格納し、インナーゾーンの記録可能領域103に、ディスクの初期化時にDUIを記録する。管理領域の先書きトラック情報2202には、各レイヤーの先書きトラックの情報がビット形式で格納される。例えば、図20の2001において内周側のGrooveトラックから管理情報を記録する場合、先書きトラック情報は0を示す。外周側のLandトラックから管理情報を記録する場合は、先書きトラック情報は1を示す。これにより、管理領域のトラックの記録順序が判別できる。また、DUIに記録することにより、光情報記録媒体100の製造者ではなく、光記録再生装置1000に最適な記録順序を光記録再生装置1000の製造者が決めることができる。なお、本開示では先書きトラック情報として、L0層、L2層は内周側先書き、L1層、L3層は外周側先書きとしたが、GrooveトラックとLandトラックのどちらのトラックから使用したかが分かればよく、これに限るものではない。例えば、先書きトラックがGrooveトラックなら0、Landトラックなら1としてもよい。またビット形式でなくてもよい。
【0076】
次に、本実施の形態における光記録再生装置1000の再生動作について説明する。
【0077】
再生信号復号回路1008は、図に示すように、光ヘッド1001が出力する再生信号をPRML信号処理により復号して復号信号を生成する。復調回路1009は、復号信号をd=1制限のRLL変調符号に従って復調し、誤り訂正復号回路1010は、復調された符号化データの誤りを訂正してユーザデータを復元する。
【0078】
システムコントローラ1014は、上記の再生動作を制御する。システムコントローラ1014は、サーボコントローラ1003を制御して光ヘッド1001を目的位置に移動させる。目標位置に到達したときに、再生信号復号回路1008と復調回路1009とを動作させ、続いて誤り訂正復号回路1010を動作させてユーザデータを復元する。復元されたユーザデータはバッファメモリ1013に格納されており、I/F回路1012を通して、ホスト1016へとユーザデータを送出することで再生動作が完了する。
【0079】
また、記録条件評価回路1011は、再生したときに得られた図15に示す再生信号のサンプリング波形1503と、図13に示す歪のない再生信号の期待波形1302を比較することで、記録条件のずれを測定する。システムコントローラ714は、この測定結果に基づいて、図13に示す記録期待波形1303の信号振幅値に対する記録パルス信号1404のパワー高さと発光幅の条件の調整を行う。すなわち、記録条件評価回路1011により、記録期待波形の振幅値に応じたパワーと時間幅の関係が補正される。これにより、光ヘッド1001の発光パワーの変化などによる記録状態のずれを補正することが可能である。
【0080】
また、分割素子で反射光を各光量信号に分離することによって、光量信号それぞれ異なる隣接トラック成分の特性を持たせることができ、その積の信号を生成することで、トラック間で相関する非線形なクロストーク成分を効果的に制御することが可能になり、狭いトラックピッチでも高精度の再生信号を取得することができるようになる。(詳細は特許文献2参照)
BCAに付与された記録順序の情報は再生順序を制限するものではない。3Trk―XTC方法によるデータの再生時に必要なのは、対象のトラックの波形と隣接するトラックの波形であるため、波形取得の順番とトラックの記録順序は関係ない。例えば、Landトラック→Grooveトラックの順に記録したトラックにおいて、Landトラックを再生する場合もGrooveトラックから波形の取得を行ってもよい。
【0081】
なお、光情報記録媒体100に記録した溝記録順情報901が何らかの理由で書き込まれなかったり、読み出せなかった場合には、光記録再生装置1000に記録順序をバッファメモリ1013あるいはROM1015に持たせることにより、光情報記録媒体100へのデータの最適な記録方法を設定することもできる。その場合の溝記録順情報901の読み取りから記録まで流れを図19に示す。BCAを再生してメディアタイプID情報を読み取る。ディスクのBCAに記録順に関する情報が付与されている場合は、光記録再生装置1000のファームウェアに保存されている溝記録順情報901とBCAから読み取った溝記録順情報901の情報を照合し、一致すればその指定順序で記録を行う。一致しなかった場合はBCAに記録されている、溝記録順情報901を優先する。メディアタイプIDに記録順に関する情報を紐づけることで、メディア生産時のBCA記録の工数が減るというメリットもあるが、最適な記録順序に変更がある度にメディアタイプIDの変更を行わないといけなくなるというデメリットもある。
なお、BCA102と光記録再生装置1000の双方に溝記録順情報901がない場合は、GrooveトラックからLandトラックの順番で記録を行う。
【0082】
また、本開示では、片面4層で両面を貼り合わせた構成のアーカイバル・ディスクにおいて、多値記録を行う場合を例に、GrooveトラックとLandトラックにおける記録順序とその付与方法について述べてきたが、この例のみに限定するものではない。
【0083】
3Trk―XTCを行う場合、Grooveトラックを再生する際でも隣接する両側のLandトラックの波形が必要となる。トラックピッチの狭い光情報記録媒体100でGrooveトラックとLandトラックの両方を記録する場合、先に書いた溝極性のトラックに記録されたマークは、後から記録されたもう一方の溝極性のマークにより一部オーバーライトされてしまう可能性があるため、3Trk―XTCを行わない場合は後に記録したトラックの方が再生信号品質は高くなる。しかし、3Trk―XTC方法でGrooveトラック・Landトラックの両方の波形を使用する場合、両方の溝極性の波形を使用するため、記録順序と再生信号品質の良し悪しの関係が複雑になり、前述したような樹脂層の硬さ等によりレイヤーごとに最適な記録順序が異なるという現象が発生する。
【0084】
すなわち、情報層ごとに最適な記録順序に関する情報を付与するという内容は、ディスクの情報記録層の数や信号の多値数によらず有効であり、例えば2層構成で片面のみに情報記録層を有するディスクに、0、1の2値記録を行う場合でも、トラックピッチが狭く、3Trk―XTCを行う際には有効である。
【産業上の利用可能性】
【0085】
本開示の光情報記録媒体とその記録再生方法は、より高い再生信号品質を示す情報層を有するように構成されるので、高記録密度で情報を記録するのに適しており、大容量のコンテンツを記録する光情報記録媒体に有用である。具体的にはアーカイバル・ディスク規格に準じて両面に4層の情報層を備える、次世代の光情報記録媒体(例えば、記録容量1TB)に有用である。
【符号の説明】
【0086】
100 光情報記録媒体
101 データゾーン
102 BCA領域
103 インナーゾーン中の記録可能領域
104 インナーゾーン
105 アウターゾーン
110 A面光情報記録媒体
111 B面光情報記録媒体
112 基板
113、114、115 中間層
116 L0層
117 L1層
118 L2層
119 L3層
401 接着層
402 転写層
501、601、701、801 第1誘電体膜
502、602、702、802 記録膜
503、603、703、803 第2誘電体膜
901 溝記録順情報
902 メディアタイプID情報
1000 光記録再生装置
1001 光ヘッド
1002 スピンドルモータ
1003 サーボコントローラ
1004 記録パルス生成回路
1005 記録期待波形生成回路
1006 変調回路
1007 誤り訂正符号化回路
1008 再生信号復号回路
1009 復調回路
1010 誤り訂正復号回路
1011 記録条件評価回路
1012 I/F回路
1013 バッファメモリ
1014 システムコントローラ
1015 ROM
1016 ホスト
1017 再生信号メモリ回路
1018 ノイズ波形加算回路
1301 記録する変調信号系列
1302 期待波形
1303 記録期待波形
1404 記録パルス信号
1405 トラック
1406 記録マーク
1503 再生信号のサンプリング波形
1504 復号された変調信号系列
1601 Landトラック
1602 Grooveトラック
1603 トラック内の記録方向
1604 物理アドレス方向
2001 Groove先・内周側から記録
2002 Land先・内周側から記録
2003 Groove先・外周側から記録
2004 Land先・外周側から記録
2006 溝記録順情報
2007 PSNトラック配置識別子
2008 DUI Track Assign bit
2009 Track配置図
2101 Groove先・外周側から記録
2102 Land先・外周側から記録
2103 Groove先・内周側から記録
2104 Land先・内周側から記録
2201 Track Assign
2202 Inner Zone First Write Track
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22