(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023011964
(43)【公開日】2023-01-25
(54)【発明の名称】電気化学デバイスの電極触媒及び電極触媒層、膜/電極接合体、並びに、電気化学デバイス
(51)【国際特許分類】
H01M 4/96 20060101AFI20230118BHJP
H01M 4/86 20060101ALI20230118BHJP
H01M 8/10 20160101ALI20230118BHJP
C25B 11/03 20210101ALI20230118BHJP
C25B 11/04 20210101ALI20230118BHJP
【FI】
H01M4/96 M
H01M4/86 B
H01M8/10 101
C25B11/03
C25B11/08 A
C25B11/12
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2020181825
(22)【出願日】2020-10-29
(31)【優先権主張番号】P 2019239228
(32)【優先日】2019-12-27
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】110000556
【氏名又は名称】弁理士法人有古特許事務所
(72)【発明者】
【氏名】幸田 吏央
(72)【発明者】
【氏名】新谷 晴彦
【テーマコード(参考)】
4K011
5H018
5H126
【Fターム(参考)】
4K011AA16
4K011AA31
4K011AA32
4K011BA07
4K011DA01
5H018AA06
5H018EE02
5H018EE03
5H018EE05
5H018EE08
5H018EE12
5H018EE17
5H018EE18
5H018HH00
5H018HH01
5H126BB06
5H126EE24
(57)【要約】
【課題】高いデバイス耐久性を有することができる電気化学デバイスの電極触媒を提供する。
【解決手段】電気化学デバイスの電極触媒1は、002面の平均結晶子径が1.6nm以上であるメソポーラスカーボン粒子2と、前記メソポーラスカーボン粒子2に担持された触媒金属粒子3と、を含む。
【選択図】
図1
【特許請求の範囲】
【請求項1】
002面の平均結晶子径が1.6nm以上であるメソポーラスカーボン粒子と、
前記メソポーラスカーボン粒子に担持された触媒金属粒子と、を含む、電気化学デバイスの電極触媒。
【請求項2】
前記メソポーラスカーボン粒子は、平均粒径が500nm以上である、請求項1に記載の電気化学デバイスの電極触媒。
【請求項3】
前記メソポーラスカーボン粒子は、前記触媒金属粒子を担持する前において、モード半径が1nm以上且つ25nm以下であり、細孔容積が1.0cm3/g以上且つ3.0cm3/g以下であるメソ孔を有する、請求項1又は2記載の電気化学デバイスの電極触媒。
【請求項4】
請求項1~3のいずれか一項に記載の電極触媒と、
プロトン伝導性樹脂と、を含む、電気化学デバイスの電極触媒層。
【請求項5】
プロトン伝導性電解質膜と、
前記プロトン伝導性電解質膜の一方の主面に設けられたアノードと、
前記プロトン伝導性電解質膜の他方の主面に設けられたカソードと、を備え、
前記アノード及び前記カソードの少なくとも一方が、請求項4項に記載の電極触媒層を含む、膜/電極接合体。
【請求項6】
少なくとも前記カソードが、前記電極触媒層を含む、請求項5に記載の膜/電極接合体。
【請求項7】
請求項5又は6に記載の膜/電極接合体を備える、電気化学デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電気化学デバイスの電極触媒及び電極触媒層、膜/電極接合体、並びに、電気化学デバイスに関する。
【背景技術】
【0002】
従来の電極触媒として、特許文献1及び2に示す電極触媒が知られている。この電極触媒では、メソポーラスカーボンの内部に触媒金属が担持されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2018-181838号公報
【特許文献2】特許第6063039号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記特許文献1及び2に記載された従来技術に対して、電気化学デバイスの電気化学反応で必要な耐久性(以下、デバイス耐久性)について未だ改善の余地がある。
【0005】
本開示は前記従来技術の課題を解決するもので、高いデバイス耐久性を有することができる電気化学デバイスの電極触媒及び電極触媒層、膜/電極接合体、並びに、電気化学デバイスを提供することを目的としている。
【課題を解決するための手段】
【0006】
本開示に係る電気化学デバイスの電極触媒の一態様は、002面の平均結晶子径が1.6nm以上であるメソポーラスカーボン粒子と、前記メソポーラスカーボン粒子に担持された触媒金属粒子と、を含む。
【0007】
本開示に係る電気化学デバイスの電極触媒層の一態様は、002面の平均結晶子径が1.6nm以上であるメソポーラスカーボン粒子と、前記メソポーラスカーボン粒子に担持された触媒金属粒子と、を含む電極触媒と、プロトン伝導性樹脂と、を含む。
【0008】
本開示に係る膜/電極接合体の一態様は、プロトン伝導性電解質膜と、前記プロトン伝導性電解質膜の一方の主面に設けられたアノードと、前記プロトン伝導性電解質膜の他方の主面に設けられたカソードと、を備え、前記アノード及び前記カソードの少なくとも一方が、002面の平均結晶子径が1.6nm以上であるメソポーラスカーボン粒子と、前記メソポーラスカーボン粒子に担持された触媒金属粒子と、を含む電極触媒と、プロトン伝導性樹脂と、を含む電極触媒層を含む。
【0009】
本開示に係る電気化学デバイスの一態様は、プロトン伝導性電解質膜と、前記プロトン伝導性電解質膜の一方の主面に設けられたアノードと、前記プロトン伝導性電解質膜の他方の主面に設けられたカソードと、を備え、前記アノード及び前記カソードの少なくとも一方が、002面の平均結晶子径が1.6nm以上であるメソポーラスカーボン粒子と、前記メソポーラスカーボン粒子に担持された触媒金属粒子と、を含む電極触媒と、プロトン伝導性樹脂と、を含む電極触媒層を含む膜/電極接合体を備える。
【発明の効果】
【0010】
本開示は、電気化学デバイスの電極触媒及び電極触媒層、膜/電極接合体、並びに、電気化学デバイスにおいて高いデバイス耐久性を有することが可能であるという効果を奏する。
【0011】
本開示の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
【図面の簡単な説明】
【0012】
【
図1】
図1は、第1実施形態に係る電気化学デバイスの電極触媒の一例を概略的に示す図である。
【
図2】
図2Aは、第2実施形態に係る電気化学デバイスの電極触媒層の一例を概略的に示す図である。
図2Bは、
図2Aの一部の拡大図である。
【
図3】
図3は、第3実施形態に係る膜/電極接合体の一例を概略的に示す断面図である。
【
図4】
図4は、第4実施形態に係る電気化学デバイスの一例を概略的に示す断面図である。
【
図5】
図5は、メソポーラスカーボン粒子の002面の平均結晶子径と、燃料電池の電位サイクル試験による低下電圧との関係を示すグラフである。
【
図6】
図6は、002面の平均結晶子径が0.8nmのメソポーラスカーボン粒子について、DTAピークの温度と粒径との関係を示すグラフである。
【
図7】
図7は、002面の平均結晶子径が2.2nmのメソポーラスカーボン粒子について、DTAピークの温度と粒径との関係を示すグラフである。
【
図8】
図8Aは、電位サイクル試験前における002面の平均結晶子径が0.8nmのメソポーラスカーボン粒子の断面画像である。
図8Bは、電位サイクル試験後における002面の平均結晶子径が0.8nmのメソポーラスカーボン粒子の断面画像である。
図8Cは、電位サイクル試験後における002面の平均結晶子径が2.2nmのメソポーラスカーボン粒子の断面画像である。
【発明を実施するための形態】
【0013】
(本開示の基礎となる知見)
本開示者等は、電気化学デバイスの電極触媒のデバイス耐久性について鋭意検討を重ねた。この結果、電気化学デバイスのデバイス耐久性には、その電気化学デバイスの電極触媒に担体として用いられているメソポーラスカーボンにおける002面の平均結晶子径が影響することが分かった。
【0014】
具体的には、上記特許文献2に記載のように、002面の結晶子径が大きいと、熱処理の温度によっては、メソポーラスカーボンのメソ孔が潰れてしまい、適当でないと考えられてきた。
【0015】
しかしながら、燃料電池システムの起動停止に対する電気化学デバイスのデバイス耐久性については、002面の平均結晶子径が大きい方が適当であることを見出した。具体的には、メソポーラスカーボン粒子を担体とする電極触媒を用いた場合のデバイス耐久性を、カーボンブラックを担体とする電極触媒を用いた場合のデバイス耐久性と同等以上にするためには、002面の平均結晶子径は、1.6nm以上が適当であることを見出した。
本開示はこの知見に基づいてなされたものである。そこで、本開示では具体的には以下に示す態様を提供する。
【0016】
本開示の第1の態様に係る電気化学デバイスの電極触媒は、002面の平均結晶子径が1.6nm以上であるメソポーラスカーボン粒子と、前記メソポーラスカーボン粒子に担持された触媒金属粒子と、を含む。この構成によると、電極触媒は、高い電気化学的耐久性を有することにより、高いデバイス耐久性を有することができる。
【0017】
本開示の第2の態様に係る電気化学デバイスの電極触媒は、第1の態様において、前記メソポーラスカーボン粒子は、平均粒径が500nm以上である。この構成によると、メソポーラスカーボン粒子が高い酸化耐久性を有することにより、電極触媒は高いデバイス耐久性を有することができる。
【0018】
本開示の第3の態様に係る電気化学デバイスの電極触媒は、第1又は2の態様において、前記メソポーラスカーボン粒子は、前記触媒金属粒子を担持する前において、モード半径が1nm以上且つ25nm以下であり、細孔容積が1.0cm3/g以上且つ3.0cm3/g以下であるメソ孔を有する。この構成によると、電極触媒は、高い触媒活性及び耐久性を有することができる。
【0019】
本開示の第4の態様に係る電気化学デバイスの電極触媒層は、第1~3のいずれかの1つの態様の電極触媒と、プロトン伝導性樹脂と、を含む。この構成によると、電極触媒層は、上記電極触媒を含むことにより高いデバイス耐久性を有することができる。
【0020】
本開示の第5の態様に係る膜/電極接合体は、プロトン伝導性電解質膜と、前記プロトン伝導性電解質膜の一方の主面に設けられたアノードと、前記プロトン伝導性電解質膜の他方の主面に設けられたカソードと、を備え、前記アノード及び前記カソードの少なくとも一方が、第4の態様の電極触媒層を含む。この構成によると、膜/電極接合体は、上記電極触媒層を含むことにより高いデバイス耐久性を有することができる。
【0021】
本開示の第6の態様に係る膜/電極接合体は、第5の態様において、少なくとも前記カソードが、前記電極触媒層を含む。この構成によると、膜/電極接合体は、上記電極触媒層を含むことにより高いデバイス耐久性を有することができる。
【0022】
本開示の第7の態様に係る電気化学デバイスは、第5又は6の態様の膜/電極接合体を備える。この構成によると、電気化学デバイスは、上記膜/電極接合体を備えることにより高いデバイス耐久性を有することができる。
【0023】
以下、本開示の実施形態について、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は対応する構成部材には同一の参照符号を付してその説明については省略する場合がある。
【0024】
(第1実施形態)
本開示の第1実施形態に係る電気化学デバイスの電極触媒1は、
図1に示すように、メソポーラスカーボン粒子2及び触媒金属粒子3を含んでいる。以下、電気化学デバイスとして燃料電池を例に挙げて説明する。但し、電気化学デバイスは、電気化学反応するものであれば、燃料電池に限定されるものではなく、例えば、水素と酸素とを製造するために水を電気分解する水電解装置であってもよい。
【0025】
メソポーラスカーボン粒子2は、多数のメソ孔4を有する多孔質材料であって、触媒金属粒子3が担持される担体である。メソポーラスカーボン粒子2は、例えば、メソポーラスカーボンを熱処理して製造される。メソポーラスカーボンの細孔構造は、例えば、鋳型、炭素源、及び、合成時の反応温度等の製造条件を変更することにより自在に制御される。
【0026】
メソポーラスカーボン粒子2の1次粒子の平均粒径は、例えば、500nm以上である。平均粒径は、メソポーラスカーボン粒子2の粒子径分布のメジアン径(d50)である。このように、平均粒径が500nm以上であれば、電極触媒1の酸化耐久性を、カーボンブラックを担体に用いた一般的な電極触媒以上に高めることができ、電極触媒1のデバイス耐久性の向上が図られる。また、仮にメソポーラスカーボン粒子2がプロトン伝導性樹脂に接触するような場合であっても、プロトン伝導性樹脂により被覆される触媒金属粒子3の割合が少なく、電極触媒1の触媒活性の低下を低減することができる。
【0027】
メソポーラスカーボン粒子2の平均粒径は、粉砕処理によって調整されてもよい。この粉砕処理には、例えば、ローラーミル、ボールミル、ビーズミル等の方法が用いられる。このうち、メソポーラスカーボン粒子2の微細化には、ローラーミルが用いられ、ボールミルがより好適に用いられ、ビーズミルが更に好適に用いられる。
【0028】
なお、例えば、ビーズミルでは、攪拌機構の回転速度(周速)及び時間、並びに、ビーズの径によって、メソポーラスカーボン粒子2の粒径が制御される。周速は、6m/s以上且つ18m/s以下である。この周速を、8m/s以上且つ16m/s以下としてもよく、更に10m/s以上且つ14m/sとすると好適である。攪拌機構の回転時間は、10分以上且つ30分以下でもよく、更に14分以上且つ26分以下であってもよく、更に18分以上且つ22分以下であってもよい。
【0029】
メソポーラスカーボン粒子2の平均粒径は、メソポーラスカーボン粒子2を溶媒に分散した状態で、レーザー回折式粒度分布測定装置等の測定装置、並びに、走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(TEM)等の観察装置を用いて測定される。
【0030】
メソ孔4は、メソポーラスカーボン粒子2に設けられた細孔であって、メソポーラスカーボン粒子2の外表面に開口し、この開口からメソポーラスカーボン粒子2内において長く延びている。メソ孔4は、連結孔であって、他のメソ孔4と連結している。これにより、複数のメソ孔4が互いに連通している。
【0031】
メソ孔4は、メソポーラスカーボン粒子2に触媒金属粒子3が担持する前において、そのモード半径が1nm以上且つ25nm以下である。モード半径とは、メソポーラスカーボン粒子2のメソ孔4の径分布における最頻度径(極大値となる半径)である。メソ孔4の半径は、その延びる方向に直交する方向の寸法の半分である。
【0032】
なお、メソ孔4のモード半径を、3nm以上かつ6nm以下としてもよく、さらに3nm以上かつ4nm以下とすることが好適である。メソ孔4のモード半径が3nm以上であれば、メソ孔4をガスが流通し易くなる。モード半径が6nm以下であれば、例えプロトン伝導性樹脂が電極触媒1に接触してもプロトン伝導性樹脂がメソ孔4に浸入し難くなる。
【0033】
メソ孔4は、触媒金属粒子3を担持する前において、その細孔容積が1.0cm3/g以上かつ3.0cm3/g以下であってもよい。メソ孔4の細孔容積が1.0cm3/g以上であれば、メソポーラスカーボン粒子2の内部(つまり、メソ孔4)に多くの触媒金属粒子3を担持し、電極触媒1は高い触媒活性を有することができる。細孔容積が3.0cm3/g以下であれば、メソポーラスカーボン粒子2が構造体としての高い強度を有することができる。
【0034】
なお、メソ孔4の細孔容積及びモード半径は、窒素吸着脱離等温線の測定データを、Barrett-Joyner-Halenda(BJH)法、密度汎関数(DFT)法、急冷固定密度汎関数(QSDFT)法等の方法によって解析することにより求められる。
【0035】
メソポーラスカーボン粒子2は、その002面の平均結晶子径が1.6nm以上である。これにより、電極触媒1の電気化学的耐久性を、カーボンブラックを担体に用いた一般的な電極触媒以上に高めることができる。このため、メソポーラスカーボン粒子2を担体とする電極触媒1を用いた場合のデバイス耐久性を、カーボンブラックを担体とする電極触媒を用いた場合のデバイス耐久性と同等以上にし、電極触媒1は高いデバイス耐久性を有することができる。
【0036】
002面の平均結晶子径は、例えば、メソポーラスカーボンの熱処理温度によりコントロールされる。メソポーラスカーボンの熱処理温度は、1000℃以上且つ2000℃未満である。この熱処理温度を、1400℃以上且つ1700℃未満としてもよく、更に1600℃以上且つ1680℃未満とすると好適である。
【0037】
メソポーラスカーボン粒子2の比表面積が1000m2/g以上である。この比表面積は、メソポーラスカーボン粒子2の単位重量当たりの表面積である。このメソポーラスカーボン粒子2の表面積は、メソ孔4を規定するメソポーラスカーボン粒子2の表面(内表面)、及び、メソポーラスカーボン粒子2の外部に現れている表面(外表面)を含んでいる。
【0038】
比表面積は、例えば、メソポーラスカーボン粒子2についてBrunauer―Emmett―Teller(BET)法で評価することにより得られる。このBET法では、例えば、窒素吸着脱離等温線における相対圧0.05以上且つ0.35以下の領域に対してBET式を適用することにより、メソポーラスカーボン粒子2の表面積が求められる。
【0039】
比表面積が1000m2/g以上であるメソポーラスカーボン粒子2は、比表面積が1000m2/g未満のメソポーラスカーボン粒子2よりも、メソポーラスカーボン粒子2に担持されている触媒金属粒子3の凝集が低減される。このため、凝集による触媒金属粒子3の比表面積が減少することを低減し、電極触媒1の触媒活性が低下することを低減することができる。
【0040】
触媒金属粒子3は、メソポーラスカーボン粒子2に担持されている。触媒金属粒子3は、メソポーラスカーボン粒子2の少なくとも内部に担持されている。つまり、触媒金属粒子3は、メソ孔4を規定するメソポーラスカーボン粒子2の内表面に担持されている。触媒金属粒子3は、メソポーラスカーボン粒子2の外表面に担持されていても担持されていなくてもよい。
【0041】
触媒金属粒子3は、例えば、白金(Pt)、ルテニウム(Ru)、パラジウム(Pd)、イリジウム(Ir)、銀(Ag)及び金(Au)等により形成されている。白金及びその合金は、酸化還元反応に対する触媒活性が高く、かつ燃料電池の発電環境下における耐久性が良好であり、燃料電池用の電極触媒1として適当である。また、触媒金属粒子3は、粒子形状が好適である。
【0042】
触媒金属粒子3の平均粒径は、例えば1nm以上かつ20nm以下である。この平均粒径を、2nm以上かつ10nm以下としてもよい。触媒金属粒子3の平均粒径が10nm以下である場合、触媒金属粒子3の単位重量当たりの表面積(比表面積)が大きく、触媒金属粒子3の触媒活性が高い。また、触媒金属粒子3の平均粒径が1nm以上である場合、触媒金属粒子3が化学的に安定し、例えば、触媒金属粒子3は燃料電池の発電環境下であっても溶解しにくい。
【0043】
(第2実施形態)
本開示の第2実施形態に係る電気化学デバイスの電極触媒層5は、
図2A及び
図2Bに示すように、第1実施の形態の複数の電極触媒1と、プロトン伝導性樹脂6と、を含んでいる。電極触媒層5は、例えば、薄膜であって、厚みが薄い平板形状を有していてもよい。
【0044】
プロトン伝導性樹脂6は、電極触媒1の外表面を被覆し、プロトン伝導性を有する高分子電解質であって、例えば、イオン交換性樹脂により形成され、アイオノマーが例示される。イオン交換性樹脂のうち、パーフルオロスルホン酸樹脂は、プロトン伝導性が高く、電気化学デバイスの電気化学反応下でも安定して存在するため、電極触媒層5のプロトン伝導性樹脂6として好適に用いられる。また、プロトン伝導性樹脂6のプロトン伝導性によって、電気化学デバイスの運転効率の向上が図られる。
【0045】
イオン交換樹脂のイオン交換容量は、0.9以上かつ2.0以下ミリ当量/g乾燥樹脂であってもよい。イオン交換容量が0.9ミリ当量/g乾燥樹脂以上である場合、プロトン伝導性樹脂6は高いプロトン伝導性を得やすい。イオン交換容量が2.0ミリ当量/g乾燥樹脂以下である場合、含水による樹脂の膨潤が抑制され、電極触媒層5内のガス拡散性が阻害されにくい。
【0046】
電極触媒層5において、メソポーラスカーボン粒子2を含むカーボンの総重量に対する、プロトン伝導性樹脂6の重量の比は、0.3以上且つ2.0以下であってもよい。更に、この重量の比を、0.6以上且つ1.5以下としてもよく、0.8以上且つ1.2以下とすると好適である。
【0047】
なお、電極触媒層5は、カーボンブラック及びカーボンナノチューブのうち、少なくとも1つのカーボン材をさらに含んでいてもよい。カーボン材は、その平均粒径が、メソポーラスカーボン粒子2の平均粒径よりも小さく、例えば、10nm以上かつ100nm以下である。このようなカーボン材は、互いに隣接するメソポーラスカーボン粒子2の間に配置され、間隙を充填する。
【0048】
よって、カーボンブラック及び/又はカーボンナノチューブのカーボン材は、毛細管現象を発生させるため、メソポーラスカーボン粒子2の間隙に水が滞留することを防ぎ、電極触媒層5における排水性が向上し、電気化学デバイスの電気化学反応の効率を高めることができる。また、カーボン材は、導電性を有するため、メソポーラスカーボン粒子2間の導電性を補助して、電極触媒層5の抵抗を低減し、電気化学デバイスの電気化学反応の効率を高めることができる。
【0049】
また、電極触媒層5は、メソポーラスカーボン粒子2及び触媒金属以外の材料(例えば、金属酸化物等)を含んでいてもよい。これにより、電極触媒層5における電子伝導性、プロトン伝導性及び酸素拡散性等を向上させることができる。
【0050】
上記の通り、電極触媒層5は、002面の平均結晶子径が1.6nm以上であるメソポーラスカーボン粒子2と、メソポーラスカーボン粒子2に担持された触媒金属粒子3と含む電極触媒1を有する。これにより、電極触媒層5は高いデバイス耐久性を有することができる。
【0051】
(第3実施形態)
本開示の第3実施形態に係る膜/電極接合体7(MEA: Membrane Electrode Assembly)は、
図3に示すように、プロトン伝導性電解質膜8、アノード9及びカソード10を備えている。このアノード9及びカソード10の少なくとも一方が、第2実施形態の電気化学デバイスの電極触媒層5を含んでいる。ここで、少なくともカソード10が、電極触媒層5を含んでいてもよい。
【0052】
プロトン伝導性電解質膜8は、プロトン伝導性及びガスバリア性を併せ持ち、例えば、固体高分子電解質膜であって、イオン交換性フッ素系樹脂膜及びイオン交換性炭化水素系樹脂膜等により構成される。このうち、パーフルオロスルホン酸樹脂膜は、プロトン伝導性が高く、例えば、燃料電池の発電環境下でも安定に存在することができる。
【0053】
プロトン伝導性電解質膜8は、アノード9とカソード10との間に挟持され、これら間のイオン(プロトン)伝導を行う。プロトン伝導性電解質膜8は、そのイオン交換容量が0.9以上かつ2.0以下ミリ当量/g乾燥樹脂である。イオン交換容量が0.9ミリ当量/g乾燥樹脂以上である場合、プロトン伝導性電解質膜8は高いプロトン伝導性を得やすい。イオン交換容量が2.0ミリ当量/g乾燥樹脂以下である場合、プロトン伝導性電解質膜8は含水による樹脂の膨潤が抑制され、その寸法変化が抑えられる。
【0054】
プロトン伝導性電解質膜8は、一対の面(主面)を有し、その間の寸法(膜厚)は、例えば、5μm以上かつ50μm以下である。膜厚が5μm以上である場合、プロトン伝導性電解質膜8は高いガスバリア性が得られる。膜厚が50μm以下である場合、プロトン伝導性電解質膜8は高いプロトン伝導性が得られる。
【0055】
アノード9及びカソード10は、膜/電極接合体7の電極であって、互いの間にプロトン伝導性電解質膜8を挟持している。アノード9は、プロトン伝導性電解質膜8の一対の主面のうちの一方主面上に配置され、カソード10は他方主面上に配置されている。
【0056】
アノード9は、電極触媒層(第1電極触媒層9a)及びガス拡散層(第1ガス拡散層9b)を含んでいる。第1電極触媒層9aは、その一方面がプロトン伝導性電解質膜8の一方主面上に配置され、第1ガス拡散層9bは、その一方面が第1電極触媒層9aの他方面上に配置されている。
【0057】
カソード10は、電極触媒層(第2電極触媒層10a)及びガス拡散層(第2ガス拡散層10b)を含んでいる。第2電極触媒層10aは、その一方面がプロトン伝導性電解質膜8の他方主面上に配置され、第2ガス拡散層10bは、その一方面が第2電極触媒層10aの他方面上に配置されている。
【0058】
各ガス拡散層9b、10bは、集電作用及びガス透過性を併せ持つ層である。各ガス拡散層9b、10bは、例えば、導電性、ならびに気体及び液体の透過性に優れた材料であり、例えば、カーボンペーパー、炭素繊維クロス及び炭素繊維フェルト等の多孔質性材料が例示される。
【0059】
なお、第1ガス拡散層9bと第1電極触媒層9aとの間、及び、第2ガス拡散層10bと第2電極触媒層10aとの間に、撥水層を設けてもよい。撥水層は、液体の透過性(排水性)を向上するための層である。撥水層は、例えば、カーボンブラック等の導電性材料、及び、ポリテトラフルオロエチレン(PTFE)等の撥水性樹脂を主成分として形成される。
【0060】
各電極触媒層9a、10aは、電極の発電反応の速度を促進させる層である。第1電極触媒層9a及び第2電極触媒層10aのうちの少なくとも一方の触媒層は、電極触媒層5を含んでいる。このように、膜/電極接合体7は、アノード9及び/又はカソード10が電極触媒層5を含んでいるため、高いデバイス耐久性を有することができる。
【0061】
例えば、少なくとも第2電極触媒層10aが電極触媒層5を含んでいてもよい。この場合、第1電極触媒層9aは、電極触媒層5により構成されていてもよいし、燃料電池の膜/電極接合体7において一般的に用いられている従来の電極触媒層と同様の構成であってもよい。また、第2電極触媒層10aは電極触媒層5により構成されている。
【0062】
膜/電極接合体7は、例えば、以下のように作製される。導電性材料、触媒金属粒子3及びプロトン伝導性樹脂6を、水やアルコール等の溶媒に分散した触媒ペーストを作製する。この触媒ペーストを、プロトン伝導性電解質膜8又は、その他の基材の両面に塗布して乾燥させることにより、プロトン伝導性電解質膜8又は基材上にアノード9及びカソード10が形成される。このアノード9及びカソード10によりプロトン伝導性電解質膜8を挟持し、膜/電極接合体7が作製される。
【0063】
ここで、一方の触媒ペーストの導電性材料に、002面の平均結晶子径が1.6nm以上であるメソポーラスカーボン粒子2を用いることにより、電極触媒層5で構成されるカソード10が形成される。他方の触媒ペーストの導電性材料にはメソポーラスカーボン粒子2又はカーボンブラック等が用いられ、アノード9が形成される。
【0064】
(第4実施形態)
第4実施形態に係る電気化学デバイス11は、
図4に示すように、第3実施形態に係る膜/電極接合体7を備えている。
図4では、電気化学デバイス11は、1つのセルを有する単セルにより構成されているが、複数のセルが積層されたスタックにより構成されていてもよい。
【0065】
膜/電極接合体7は、一対のセパレータ12、13の間に挟持されている。一対のセパレータ12、13のうちの一方のセパレータ12は、アノード9上に配置され、第1ガス拡散層9bの他方面(第1電極触媒層9a側と反対側の面)に対向する面を有し、この面には、水素等の燃料ガスをアノード9に供給するための供給路が設けられている。他方のセパレータ13は、カソード10上に配置され、第2ガス拡散層10bの他方面(第2電極触媒層10a側と反対側の面)に対向する面を有し、この面には、空気等の酸化剤ガスをカソード10に供給するための供給路が設けられている。
【0066】
このように、電気化学デバイス11に供給された燃料ガスと酸化剤ガスとが膜/電極接合体7において電気化学反応する。この電気化学デバイス11は、膜/電極接合体7を含むことにより、高いデバイス耐久性を有することができる。
【0067】
(実施例1)
<電極触媒及び燃料電池の作製>
実施例1の燃料電池の作製では、まず、比表面積が1600m2/g、設計細孔径が10nmである市販のメソポーラスカーボン(東洋炭素株式会社製、CNovel)に、熱処理を施した。なお、002面における平均結晶子径を1.6nm以上のメソポーラスカーボンを作製できれば、メソポーラスカーボンの作製方法は熱処理に限定されない。
【0068】
この熱処理では、メソポーラスカーボンを1gずつアルミナ性のるつぼへ小分けにし、タンマン管式雰囲気炉を用いて、室温から2時間かけて昇温し、1650℃で2時間焼成した後、一晩かけて室温まで降温した。これにより、002面における平均結晶子径が2.2nmのメソポーラスカーボンを作製した。なお、002面における平均結晶子径を1.6nm以上のメソポーラスカーボンを作製できれば、熱処理は上記の方法に限定されない。
【0069】
なお、平均結晶子径を変化させる最適な方法は、メソポーラスカーボンの種類によって異なる。例えば、先行技術である特許文献2では、メソポーラスカーボンでは、熱処理の前後で平均結晶子径は変化しないと記載されている。
【0070】
それから、熱処理を施したメソポーラスカーボンを、水とエタノールとを同量含む混合溶媒に投入し、固形分濃度1wt.%のスラリーを調整した。このスラリーに直径0.5mmのジルコニアビーズを投入し、媒体撹拌型湿式ビーズミル(アシザワ・ファインテック製、ラボスターミニ)を用いて、周速12m/sの条件で20分間粉砕処理を行った。これにより、平均粒径800nmのメソポーラスカーボン粒子を作製した。
【0071】
粉砕処理後のスラリーからジルコニアビーズを取り出し、溶媒を蒸発させた後、得られた凝集体を乳鉢ですり潰して、分散させたメソポーラスカーボン粒子を作製した。なお、上記メソポーラスカーボン粒子の作製方法は、一例であり、メソポーラスカーボン粒子の002面における平均結晶子径及び粒径を制御できる方法であれば、これに限定されない。
【0072】
得られたメソポーラスカーボン粒子1gを、水:エタノール=1:1(重量比)の混合溶媒400mLに投入し、15分間超音波分散を行なった。この分散物を窒素雰囲気下で攪拌しながら、14wt%のジニトロジアミン白金硝酸溶液を、メソポーラスカーボン粒子に対して白金が50wt%になるように滴下し、80℃で6時間過熱攪拌した。
【0073】
この攪拌物を放冷した後、ろ過洗浄し、ろ物を80℃で15時間乾燥させ、凝集体を得た。この凝集体を乳鉢ですり潰し、窒素:水素=85:15のガス雰囲気下、220℃で2時間熱処理を行なった。これにより、メソポーラスカーボン粒子に触媒金属粒子を担持させた電極触媒を作製した。なお、上記電極触媒の作製方法は、一例であり、メソポーラスカーボン粒子のメソ孔内部に触媒金属粒子が担持されていれば、この方法に限定されない。
【0074】
作製した電極触媒と、この電極触媒に含まれるメソポーラスカーボン粒子の重量の1/2の重量のケッチェンブラック(ライオン・スペシャリティ・ケミカルズ株式会社製、EC300J)とを、水とエタノールを同量含む混合溶媒に投入して撹拌した。得られたスラリーに、アイオノマー(デュポン社製、Nafion)を、全カーボン(メソポーラスカーボン粒子+ケッチェンブラック)に対する重量比が0.8となるように投入し、超音波分散処理を行った。このようにして得られた触媒インクを、スプレー法によって、固体高分子電解質膜(日本ゴア株式会社製、ゴア・セレクトIII)の一方主面上に塗布し、電極触媒を含む第2電極触媒層を作製した。
【0075】
また、市販の白金担持カーボンブラック触媒(田中貴金属工業株式会社製、TEC10E50E)を、水とエタノールを同量含む混合溶媒に投入・撹拌した。得られたスラリーに、アイオノマー(デュポン社製、Nafion)を、カーボンに対する重量比が0.8となるように投入し、超音波分散処理を行い、触媒インクを得た。この触媒インクをスプレー法によって、固体高分子電解質膜の他方主面(第2電極触媒層側と反対側の面)上に塗布し、第1電極触媒層を作製した。
【0076】
そして、第1電極触媒層上に第1ガス拡散層(SGLカーボンジャパン社製、GDL25BC)を配置し、第2電極触媒層上に第2ガス拡散層(SGLカーボンジャパン社製、GDL25BC)を配置した。これを140℃の高温下において7kgf/cm2の圧力を5分間、加えることにより、膜/電極接合体を作製した。
【0077】
そして、得られた膜/電極接合体を、サーペンタイン形状の流路が設けられている一対のセパレータで挟持する。そして、この挟持物を所定の治具に組み込み、単セルの燃料電池を作製した。
【0078】
(実施例2)
実施例2では、実施例1と同様のメソポーラスカーボンを1gずつアルミナ性のるつぼへ小分けにし、タンマン管式雰囲気炉を用いて、室温から2時間かけて昇温し、1800℃で2時間焼成した後、一晩かけて室温まで降温した。これにより、002面における平均結晶子径が3.4nmのメソポーラスカーボンを作製した。実施例2において、その他の電極触媒及び燃料電池の作製方法は、実施例1と同様である。
【0079】
(比較例1)
比較例1では、実施例1と同様のメソポーラスカーボンを1gずつアルミナ性のるつぼへ小分けにし、タンマン管式雰囲気炉を用いて、室温から2時間かけて昇温し、1500℃で2時間焼成した後、一晩かけて室温まで降温した。これにより、002面における平均結晶子径を0.8nmのメソポーラスカーボンを作製した。比較例1において、その他の電極触媒及び燃料電池の作製方法は、実施例1と同様である。
【0080】
(比較例2)
比較例2では実施例1と同様のメソポーラスカーボンを1gずつアルミナ性のるつぼへ小分けにし、タンマン管式雰囲気炉を用いて、室温から2時間かけて昇温し、1000℃で2時間焼成した後、一晩かけて室温まで降温した。これにより、002面における平均結晶子径を0.8nmのメソポーラスカーボンを作製した。比較例2において、その他の電極触媒及び燃料電池の作製方法は、実施例1と同様である。
【0081】
<電極触媒及び燃料電池の評価>
このように、電極触媒のメソポーラスカーボン粒子及び燃料電池を作製した。このメソポーラスカーボン粒子の002面における平均結晶子径、平均粒径及び酸化耐久性の各測定を以下の通り実施した。また、燃料電池の起動停止の電位状態を模擬した試験として、燃料電池の電位サイクル試験を以下の通り実施した。これらの結果を
図5~
図7に示している。
【0082】
メソポーラスカーボン粒子における002面の平均結晶子径は、X線回折法で測定した。X線回折装置(RINT-RAPID、株式会社リガク製)を用い、試料台はガラス製を使用した。管電圧は40kVに、管電流は30mAに、照射角度は10°(ω軸)に、照射時間は15分に、コリメータは300μmΦに、回転速度は5°/分に、それぞれ設定した。平均結晶子径は、メソポーラスカーボン粒子の測定結果における(002)のピークより算出した。
【0083】
メソポーラスカーボン粒子の平均粒径は、レーザー回折式粒度分布測定装置(マイクロトラックHRA、マイクロトラック・ベル社製)で測定した。アイオノマーとカーボンとの重量比が2:1になるように、メソポーラスカーボン粒子にアイオノマーの分散液を加え、超音波バスで60分間の超音波処理を行い、メソポーラスカーボン粒子が単分散したスラリーを得た。このスラリーの粒度分布をレーザー回折法により測定し、得られたメジアン径をメソポーラスカーボン粒子の平均粒径とした。
【0084】
メソポーラスカーボン粒子の酸化耐久性は、酸素雰囲気下で試料を加熱しながら試料の重量変化を連続的に測定する熱重量-示差熱分析(ThermoGravimeter-Differential Thermal Analyzer: TG-DTA)で測定した。熱重量示差熱分析装置(STA7200RV、日立ハイテクサイエンス社製)を用い、測定容器は白金製を使用した。加熱条件は室温から始まり900℃までに、昇温速度は5℃/minに、ガス雰囲気は空気に、ガス流量は100mL/minに、それぞれ設定した。このTG-DTA法による測定結果からDTAピークを検出した。このDTAピークの温度は、酸素雰囲気下におけるメソポーラスカーボン粒子の分解温度(酸化温度)を表しているため、電極触媒の酸化耐久性の評価値として用いた。
【0085】
燃料電池の電位サイクル試験では、燃料電池をポテンショ・ガルバノスタット(HAL30001、北斗電工株式会社製)に繋いだ。そして、燃料電池の温度を80℃に保ち、アノードに80℃の露点を持つ水素を供給し、カソードに80℃の露点を持つ窒素を供給した。ポテンショ・ガルバノスタットは、走査する電位の範囲を1Vから1.3Vに、電位走査速度を0.5V/sに、サイクル数を5000に、それぞれ設定した。この電位サイクル試験前後において所定の電流で発電させた際の燃料電池の電圧を測定し、電位サイクル試験後の電圧から電位サイクル試験前の電圧を引いた差(低下電圧)を電極触媒の電気化学的耐久性として求めた。
【0086】
図5のグラフでは、横軸が電位サイクル試験による燃料電池の低下電圧を示し、縦軸がメソポーラスカーボン粒子における002面の平均結晶子径を示している。
図5において黒丸で示すように、平均結晶子径に対する低下電圧をプロットした。このプロットに基づいて、実線103に示すように平均結晶子径と電圧低下との関係を求めた。なお、
図5に示す各プロットは、右側から順に、比較例2、比較例1、実施例1及び実施例2の燃料電池に対する電位サイクル試験の結果に対応する。
【0087】
実線103で示すように、平均結晶子径が小さいほど、低下電圧が大きくなる。これにより、小さい平均結晶子径の電極触媒は、電気化学的耐久性が低下する。これは、次の理由によると推測される。
【0088】
図8Aは、電位サイクル試験前における002面の平均結晶子径が0.8nmの比較例2のメソポーラスカーボン粒子の断面画像である。
図8Bは、電位サイクル試験後における002面の平均結晶子径が0.8nmの比較例2のメソポーラスカーボン粒子の断面画像である。
図8Cは、電位サイクル試験後における002面の平均結晶子径が2.2nmの実施例1のメソポーラスカーボン粒子の断面画像である。なお、メソポーラスカーボン粒子の断面画像は、次の手順で撮影される。本開示の実施形態に係る電極触媒層をブロードイオンビーム(BIB)または集束イオンビーム(FIB)等で断面加工した後、走査型電子顕微鏡(SEM)を用いて撮像する。
【0089】
図8Bに示すように、平均結晶子径が小さいメソポーラスカーボン粒子では電位サイクルの繰り返しによってメソ孔の多くがつぶれているため、メソ孔内の触媒金属粒子が有効に機能しない。一方、
図8Cに示すように、平均結晶子径が大きいメソポーラスカーボン粒子では、平均結晶子径が小さいメソポーラスカーボン粒子よりも、メソ孔のつぶれが少ないため、メソ孔内の触媒金属粒子が有効に機能する。このため、平均結晶子径が小さいほど、電位サイクル試験による低下電圧が大きくなる。
【0090】
更に、
図5の破線101は、一般的に燃料電池の電極に担体として使用されているカーボンブラックを用いた固体高分子形燃料電池(一般的な燃料電池)の低下電圧を示している。この破線101と実線103を比較すると、星印102で示すように、002面の平均結晶子径が1.6nm以上で、一般的な燃料電池の電気化学的耐久性と同等又はそれよりも高い電気化学的耐久性を有する。これにより、電極触媒は、高いデバイス耐久性を有することができる。
【0091】
図6及び
図7のグラフでは、横軸にメソポーラスカーボン粒子の平均粒径を示し、縦軸にメソポーラスカーボン粒子のDTAピークの温度を示している。ここで、黒丸は、上記TG-DTA法による測定から求めたDTAピークにおいて傾きが0であるトップ温度を示している。
【0092】
図6には、002面の平均結晶子径が0.8nmのメソポーラスカーボン粒子について、黒丸で示すように、平均粒径に対するDTAピークの温度をプロットした。この値から点線201に示すように、平均粒径とDTAピークの温度との関係式を求めた。更に、この関係式の傾きから平均粒径に対するDTAピークの温度の比(DTAピークの温度/平均粒径)を算出した。
【0093】
また、
図7には、002面の平均結晶子径が2.2nmのメソポーラスカーボン粒子について、
図7において黒丸で示すように、平均粒径に対するDTAピークの温度をプロットした。ここで、黒丸から上下方向に延びるエラーバーは、DTAピークの半値幅の温度を示している。
【0094】
図6の点線201の傾き(平均粒径に対するDTAピークの温度の比)は、平均結晶子径に依存しない。このため、この傾きを
図7のDTAピークの温度に適用すると、点線301に示すように、002面の平均結晶子径が2.2nmのメソポーラスカーボン粒子の平均粒径とDTAピークの温度との関係式が求められる。
【0095】
この点線301に示すように、メソポーラスカーボン粒子の平均粒径が小さいほど、DTAピークの温度が低下している。これにより、メソポーラスカーボン粒子が小さくなるに従い、電極触媒の酸化耐久性が低下している。
【0096】
更に、
図7の破線302は、一般的に燃料電池の電極に担体として使用されているカーボンブラック(一般的な担体)のDTAピークの温度を示している。この破線302と点線301を比較すると、星印303で示すように、平均粒径が500nm以上で、DTAピークの温度が一般的な担体の温度以上である。このように、平均粒径が500nm以上のメソポーラスカーボン粒子を有する電極触媒では、一般的な担体を含む電極触媒の酸化耐久性と同等又はそれよりも高い酸化耐久性を有する。これにより、電極触媒は、高いデバイス耐久性を有することができる。
【0097】
なお、上記説明から、当業者にとっては、本開示の多くの改良および他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更することができる。
【産業上の利用可能性】
【0098】
本開示に係る電気化学デバイスの電極触媒及び電極触媒層、膜/電極接合体、並びに、電気化学デバイスは、高いデバイス耐久性を有することができる電気化学デバイスの電極触媒及び電極触媒層、膜/電極接合体、並びに、電気化学デバイスとして有用である。
【符号の説明】
【0099】
1 :電極触媒
2 :メソポーラスカーボン粒子
3 :触媒金属粒子
4 :メソ孔
5 :電極触媒層
6 :プロトン伝導性樹脂
7 :電極接合体
8 :プロトン伝導性電解質膜
9 :アノード
10 :カソード