(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023120206
(43)【公開日】2023-08-29
(54)【発明の名称】化合物、樹脂、ポリカーボネート樹脂、および光学成形体
(51)【国際特許分類】
C07C 33/36 20060101AFI20230822BHJP
C08G 64/02 20060101ALI20230822BHJP
G02B 1/04 20060101ALI20230822BHJP
C07D 307/91 20060101ALI20230822BHJP
C07D 333/76 20060101ALI20230822BHJP
【FI】
C07C33/36 CSP
C08G64/02
G02B1/04
C07D307/91
C07D333/76
【審査請求】有
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2023085672
(22)【出願日】2023-05-24
(62)【分割の表示】P 2022074118の分割
【原出願日】2021-07-27
(31)【優先権主張番号】P 2020127221
(32)【優先日】2020-07-28
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000005887
【氏名又は名称】三井化学株式会社
(74)【代理人】
【識別番号】100110928
【弁理士】
【氏名又は名称】速水 進治
(72)【発明者】
【氏名】前川 真太朗
(72)【発明者】
【氏名】戸谷 由之
(72)【発明者】
【氏名】真野 昂裕
(57)【要約】 (修正有)
【課題】高屈折率を有する光学成形体を実現できるポリカーボネート樹脂を提供する。
【解決手段】一般式(1)で表される化合物であり、具体的には、例えば9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレンが示される。
【選択図】なし
【特許請求の範囲】
【請求項1】
一般式(1)で表される化合物。
【化1】
(一般式(1)中、Ar
1およびAr
2は、独立して、
【化2】
から選ばれる基を表し、R
1~R
6は、水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、A
1~A
5およびB
1~B
5は、水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、A
1~A
5の少なくとも一つは-Y
1-Ar
3基であり、B
1~B
5の少なくとも一つは-Y
2-Ar
4基であり、Y
1およびY
2は単結合または連結基を表し、Ar
3およびAr
4は芳香族基を表し、X
1~X
4は-O-、-S-、-NR’-または-C(Me)
2-であり、Z
1~Z
4は水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、R’は水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、oおよびpは1~4の整数を表す)。
【請求項2】
前記一般式(1)中のoおよびpは、2である、請求項1に記載の化合物。
【請求項3】
前記一般式(1)中のAr
1およびAr
2は、独立して、
【化3】
から選ばれる基を表し、R
1~R
6は、水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、oおよびpは1~4の整数を表す、
請求項1または2に記載の化合物。
【請求項4】
請求項1~3のいずれか一項に記載の一般式(1)で表される化合物を重合してなる樹脂。
【請求項5】
請求項1~3のいずれか一項に記載の一般式(1)で表される化合物から誘導されるポリカーボネート樹脂。
【請求項6】
請求項4または5に記載の樹脂を含む光学成形体。
【請求項7】
光学レンズである請求項6に記載の光学成形体。
【請求項8】
光学フィルムである請求項6に記載の光学成形体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、化合物、当該化合物から得られる樹脂およびポリカーボネート樹脂、ならびに当該樹脂およびポリカーボネート樹脂を含む光学成形体に関する。
【背景技術】
【0002】
カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学レンズの材料として、光学ガラスあるいは光学用樹脂が使用されている。光学ガラスは、耐熱性、透明性、寸法安定性、耐薬品性等に優れ、様々な屈折率やアッベ数を有する多種類の材料が存在している。しかし、材料コストが高く、成形加工性が悪く、生産性が低いという問題点を有している。
【0003】
一方、光学用樹脂からなる光学レンズは、射出成形により大量生産が可能であるという利点を有している。例えば、カメラ用レンズにおいて、ポリカーボネート樹脂等が使用されている。しかしながら、近年、製品の軽薄短小化により、高い屈折率の樹脂の開発が求められている。一般に光学材料の屈折率が高いと、同一の屈折率を有するレンズエレメントを、より曲率の小さい面で実現できるため、この面で発生する収差量を小さくできる。その結果、レンズの枚数を減らしたり、レンズの偏心感度を低減したり、レンズ厚みを薄くして軽量化することが可能になる。
【0004】
光学用樹脂に関する技術としては、例えば、特許文献1および2に記載のものが挙げられる。
【0005】
特許文献1(特開2005-241962号公報)にはフルオレン構造を有するポリカーボネート樹脂からなる光学レンズが記載されている。
【0006】
特許文献2(特開2005-187661号公報)には、フルオレン含有ポリエステルに硫黄含有化合物をブレンド(混合、添加)することで簡便に屈折率を向上させる手法が記載されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2005-241962号公報
【特許文献2】特開2005-187661号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、特許文献1に記載されているようなポリカーボネート樹脂は屈折率が低く、十分に満足するものではなかった。
また、特許文献2に記載のように、フルオレン含有ポリエステルに硫黄含有化合物をブレンドすると屈折率が向上するが、低分子量成分を添加するために熱安定性が低下し、ブレンドする二成分の相溶性が悪い場合、透明性が低下してしまう。
【0009】
本発明は上記事情に鑑みてなされたものであり、高屈折率で、かつ、透明性に優れた光学成形体を実現できる樹脂およびポリカーボネート樹脂を提供するものである。
【課題を解決するための手段】
【0010】
本発明者らは、高屈折率で、かつ、透明性に優れた光学成形体を実現できるポリカーボネート樹脂を提供するために鋭意検討した。その結果、下記式(1)で表される化合物を重合して得られる樹脂が、高屈折率で、かつ、透明性に優れた光学成形体を実現できることを見出し、本発明に到達した。
【0011】
本発明によれば、以下の一般式(1)で表される化合物、当該化合物より得られる樹脂、当該化合物より誘導されるポリカーボネート樹脂、および光学成形体が提供される。
【0012】
[1]一般式(1)で表される化合物。
【化1】
(一般式(1)中、Ar
1およびAr
2は、独立して、
【化2】
から選ばれる基を表し、R
1~R
6は、水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、A
1~A
5およびB
1~B
5は、水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、A
1~A
5の少なくとも一つは-Y
1-Ar
3基であり、B
1~B
5の少なくとも一つは-Y
2-Ar
4基であり、Y
1およびY
2は単結合または連結基を表し、Ar
3およびAr
4は芳香族基を表し、X
1~X
4は-O-、-S-、-NR’-、または-C(Me)
2-であり、Z
1~Z
4は水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、R’は水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、oおよびpは1~4の整数を表す)。
[2]上記一般式(1)中のoおよびpは、2である、上記[1]に記載の化合物
[3]上記一般式(1)中のAr
1およびAr
2は、独立して、
【化3】
から選ばれる基を表し、R
1~R
6は、水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、oおよびpは1~4の整数を表す、上記[1]または[2]に記載の化合物。
[4]上記[1]~[3]のいずれかに記載の一般式(1)で表される化合物を重合してなる樹脂。
[5]上記[1]~[3]のいずれかに記載の一般式(1)で表される化合物から誘導されるポリカーボネート樹脂。
[6]上記[4]または[5]に記載の樹脂を含む光学成形体。
[7]光学レンズである上記[6]に記載の光学成形体。
[8]光学フィルムである上記[6]に記載の光学成形体。
【発明の効果】
【0013】
本発明によれば、高屈折率で、かつ、透明性に優れた光学成形体を実現できる樹脂およびポリカーボネート樹脂を提供することができる。
【発明を実施するための形態】
【0014】
以下に、本発明の実施形態について説明する。なお、文中の数字の間にある「~」は特に断りがなければ、以上から以下を表す。
【0015】
[化合物]
本実施形態に係る化合物について説明する。本実施形態に係る化合物は、一般式(1)で表される化合物である。
【化4】
一般式(1)中、Ar
1およびAr
2は、独立して、
【0016】
【化5】
から選ばれる基を表し、
R
1~R
6は、水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、
A
1~A
5およびB
1~B
5は、水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、A
1~A
5の少なくとも一つは-Y
1-Ar
3基であり、
B
1~B
5の少なくとも一つは-Y
2-Ar
4基であり、
Y
1およびY
2は単結合または連結基を表し、Ar
3およびAr
4は芳香族基を表し、X
1~X
4は-O-、-S-、-NR’-、または-C(Me)
2-であり、
Z
1~Z
4は水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、
R’は水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、
oおよびpは1~4の整数を表す。
【0017】
一般式(1)において、R1~R6はそれぞれ独立に水素原子および炭素数1~3のアルキル基または炭素数6~20のアリール基から選ばれることが好ましく、R1~R6はそれぞれ独立に水素原子、メチル基、フェニル基、ビフェニル基、ナフチル基から選ばれることがより好ましく、R1~R6は水素原子であることがさらに好ましい。
【0018】
一般式(1)において、oおよびpは1~4の整数であり、好ましくは1または2であり、より好ましくは、2である。oおよびpが上記範囲であることにより、一般式(1)の化合物から得られるポリカーボネート樹脂は、優れた耐熱性を有する。
【0019】
一実施形態において、前記一般式(1)中のAr
1およびAr
2は、独立して、
【化6】
から選ばれる基を表し、R
1~R
6は、水素原子、炭化水素基またはヘテロ原子含有炭化水素基を表し、oおよびpは1~4の整数を表す。
【0020】
一般式(1)におけるAr1およびAr2の好ましい態様としては、以下が挙げられる。
【0021】
【0022】
【0023】
【0024】
上記一般式(1)で表される化合物としては、例えば、9,9-ビス(1’-ヒドロキシメチル)-2,7-ジナフタレン-2”-イル-9H-フルオレン、9,9-ビス(1’―ヒドロキシメチル)-2,7-ジナフタレン-1”-イル-9H-フルオレン、9,9-ビス(1’―ヒドロキシメチル)-3,6-ジナフタレン-2”-イル-9H-フルオレン、9,9-ビス(1’-ヒドロキシメチル)-3,6-ジナフタレン-1”-イル-9H-フルオレン、9,9-ビス(1’-ヒドロキシメチル)-2,7-ジ-p-ビフェニルー9H-フルオレン、9,9-ビス(1’-ヒドロキシメチル)-2,7-ジ-m-ビフェニル-9H-フルオレン、9,9-ビス(1’-ヒドロキシメチル)-2,7-ビス(3”,5”-ジフェニルフェニル)-9H-フルオレン、9,9-ビス(1’-ヒドロキシメチル)-2,7-ビス〔ジベンゾ[b,d]フラン-4”-イル〕-9H-フルオレン、9,9-ビス(1’-ヒドロキシメチル)-2,7-ビス〔ジベンゾ[b、d]チオフェン-4”-イル〕-9H-フルオレン、9,9-ビス(1’-ヒドロキシメチル)-2,7-ビス(4”-フェノキシフェニル)-9H-フルオレン、9,9-ビス(1’-ヒドロキシメチル)-2,7-ビス(4”-フェニルナフタレン-1”-イル)-9H-フルオレン、9,9-ビス(1’-ヒドロキシメチル)-2,7-ビス〔4-(ナフタレン-2-イル)フェニル〕-9H-フルオレン、9,9-ビス(1’-ヒドロキシメチル)-2,7-ビス〔3-ナフタレン-2-イル〕フェニル〕-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレン、9,9-ビス(2’―ヒドロキシエチル)-2,7-ジナフタレン-1”-イル-9H-フルオレン、9,9-ビス(2’―ヒドロキシエチル)-3,6-ジナフタレン-2”-イル-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-3,6-ジナフタレン-1”-イル-9H-ナフタレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ジ-p-ビフェニル-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ジ-m-ビフェニル-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ジ-o-ビフェニル-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス(3”,5”-ジフェニルフェニル)-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔ジベンゾ[b,d]フラン-4”-イル〕-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔ジベンゾ[b、d]チオフェン-4”-イル〕-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス(4”-フェノキシフェニル)-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス(3”,5”-ジフェノキシフェニル)-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス(4”-フェニルナフタレン-1”-イル)-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔4-(ナフタレン-2-イル)フェニル〕-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔3-(ナフタレン-2-イル)フェニル〕-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔3-(ナフタレン-1-イル)フェニル〕-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔4-(ナフタレン-1-イル)フェニル〕-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ジフェナントリル-9”-イル-9H-フルオレン、9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔9”,9”-ジメチル-9”-フルオレン-2”-イル〕-9H-フルオレン、9,9-ビス(3’-ヒドロキシプロピル)-2,7-ジナフタレン-2”-イル-9H-フルオレン、9,9-ビス(3’―ヒドロキシプロピル)-2,7-ジナフタレン-1”-イル-9H-フルオレン、9,9-ビス(3’―ヒドロキシプロピル)-3,6-ジナフタレン-2”-イル-9H-フルオレン、9,9-ビス(3’-ヒドロキシプロピル)-3,6-ジナフタレン-1”-イル-9H-ナフタレン、9,9-ビス(4’-ヒドロキシブチル)-2,7-ジナフタレン-2”-イル-9H-フルオレン、9,9-ビス(4’―ヒドロキシブチル)-2,7-ジナフタレン-1”-イル-9H-フルオレン、9,9-ビス(4’―ヒドロキシブチル)-3,6-ジナフタレン-2”-イル-9H-フルオレン、9,9-ビス(4’-ヒドロキシブチル)-3,6-ジナフタレン-1”-イル-9H-ナフタレン、9,9-ビス(4’-ヒドロキシブチル)-3,6-ビス〔4-(ナフタレン-2-イル)フェニル〕-9H-フルオレン等が挙げられる。
【0025】
これらの中でも、好ましくは、9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレン、9,9-ビス(2’―ヒドロキシエチル)-2,7-ジナフタレン-1”-イル-9H-フルオレンを挙げることができる。これらは単独で使用してもよく、または二種以上組み合わせて用いてもよい。
【0026】
[一般式(1)で表される化合物の製造方法]
本実施形態の一般式(1)で表される化合物は、以下の工程(i)および工程(ii)により合成することができる。
工程(i):2,7-ジブロモ-9H-フルオレンまたは3,6-ジブロモ-9H-フルオレン等のジハロゲノ-9H-フルオレンを、溶媒(例えば、テトラヒドロフラン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン)中、塩基(例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、水素化ナトリウム、水素化カリウム、メトキシナトリウム、エトキシナトリウム、t-ブトキシナトリウム、t-ブトキシカリウム、n-ブチルリチウム)で処理することにより、ジハロゲノ-9H-フルオレンの9位の水素を引き抜き、その後、脱離基を有するヒドロキシアルキル(ここで脱離基としては、塩素、臭素、ヨウ素等のハロゲン、p-トルエンスルホニルオキシ基、メチルスルホニルオキシ基、トリフルオロメチルスルホニルオキシ基等を挙げることができる)を作用させ、9,9-ビス(ヒドロキシアルキル)-2,7-ジブロモ-9H-フルオレンまたは9,9-ビス(ヒドロキシアルキル-3,6-9H-フルオレン等の9,9-ビス(ヒドロキシアルキル)-ジハロゲノ-9H-フルオレンを製造する。
【0027】
工程(ii):工程(i)で得られた、9,9-ビス(ヒドロキシアルキル)-2,7-ジブロモ-9H-フルオレンまたは9,9-ビス(ヒドロキシアルキル-3,6-9H-フルオレン等の9,9-ビス(ヒドロキシアルキル)-ジハロゲノ-9H-フルオレンに、溶媒(例えば、トルエンおよび水、テトラヒドロフランおよび水、ジメチルスルホキシドおよび水)中、塩基(例えば、炭酸ナトリウム、炭酸カリウム、酢酸ナトリウム、酢酸カリウム、リン酸ナトリウム、リン酸カリウム)およびテトラキス(トリフェニルホスフィン)パラジウム等のパラジウム系触媒の存在下で、ナフチルホウ酸を作用させ、所謂、鈴木-宮浦カップリングの条件により、目的の一般式(1)の化合物を製造する。
【0028】
ここで、工程(i)の反応は-78℃から溶媒の沸点の間の任意の温度により実施することができる。また、反応条件は、一般的なアルキル化反応の条件を適用することができる。所望により脱離基を有するヒドロキシアルキルのヒドロキシ基を、任意の保護基(例えば、アセチル基等のエステル基、テトラヒドロピラニル基等のエーテル基、t-ブトキシカルボニル基等の炭酸エステル基で保護しておいて、最後に脱保護してもよい。
【0029】
工程(ii)の反応は室温から溶媒の沸点までの任意の温度により実施することができる。反応条件は、所謂、鈴木-宮浦カップリングで一般的に使用される反応条件を適用することができる。
【0030】
[樹脂]
本発明の一つの態様は、一般式(1)で表される化合物を重合してなる樹脂である。
ここで、一般式(1)で表される化合物を重合して得られる樹脂としては、ポリエステル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテル樹脂などが挙げられる。
【0031】
ポリエステル樹脂は、一般式(1)で表される化合物と、芳香族ジカルボン酸(例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸)、または脂肪族ジカルボン酸(例えば、シュウ酸、マロン酸、コハク酸)とを反応させることにより得られる。
【0032】
ポリウレタン樹脂は、一般式(1)で表される化合物と、芳香族ジイソシアネート(例えば、トルイレンジイソシアネート、キシリレンジイソシアネート)、または脂肪族ジイソシアネート(例えば、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジメチレンジイソシアネート)とを反応させることにより得られる。
【0033】
ポリカーボネート樹脂は、後述するとおり、一般式(1)で表される化合物と、炭酸ジエステル等のカーボネート前駆物質とを反応させることにより得られる。
【0034】
ポリエーテル樹脂は、一般式(1)で表される化合物と、脂肪族ジハロゲン化合物(例えば、ジブロモエタン、ジブロモプロパン)とを、塩基の存在下で反応させることにより得られる。
【0035】
これらの樹脂において、本願の一般式(1)で表される化合物以外の反応物は単独で用いてもよく、複数併用してもよい。また、本願の一般式(1)で表される化合物以外のジヒドロキシ化合物を併用して樹脂を重合することも可能である。
【0036】
本願の一般式(1)で表される化合物以外のジヒドロキシ化合物を併用する場合、本願の一般式(1)で表される化合物と一般式(1)で表される化合物以外のジヒドロキシ化合物の合計に対して、一般式(1)で表される化合物の割合は5モル%以上99モル以下が好ましく、10モル%以上99モル%以下がより好ましく、15モル%以上99モル%以下がさらに好ましい。
【0037】
ここで、一般式(1)で表される化合物以外のジヒドロキシ化合物としては、例えば、9,9-ビス〔4-(2―ヒドキシエトキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-ヒドロキシエトキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-ヒドロキシエトキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(2-ヒドロキシエトキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(2-ヒドロキシエトキシ)-3-イソプロピルフェニル〕フルオレン、9,9-ビス〔4-(2-ヒドロキシエトキシ)-3-n-ブチルフェニル〕フルオレン、9,9-ビス〔4-(2-ヒドロキシエトキシ)-3-sec-ブチルフェニル〕フルオレン、9,9-ビス〔4-(2-ヒドロキシエトキシ)-3-tert-ブチルフェニル〕フルオレン、9,9-ビス〔4-(2-ヒドロキシエトキシ)-3-シクロヘキシルフェニル〕フルオレン、9,9-ビス〔4-(2―ヒドロキシエトキシ)-2-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-ヒドロキシエトキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-ヒドロキシエトキシ)-3-(3-メチルフェニル)フェニル〕フルオレン、ビス〔4-(2’-ヒドロキシエトキシ)フェニル〕スルフィド、ビス〔4-(2’-ヒドロキシエトキシ)-3-メチルフェニル〕スルフィド、ビス〔4-(2’-ヒドロキシエトキシ)フェニル〕スルホン、ビス〔4-(2’-ヒドロキシエトキシ)-3-メチルフェニル〕スルホン、ビス〔4-(2’-ヒドロキシエトキシ)フェニル〕スルホキシド、ビス〔4-(2’-ヒドロキシエトキシ)フェニル〕スルホキシド、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)フェニルエタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、4,4-ジヒドロキシフェニル-1,1-m-ジイソプロピルベンゼン等のビス(4-ヒドロキシアリール)アルカン類;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2,2,2-テトラヒドロ-3,3,3,3-テトラメチル-1,1-スピロビス〔1Hインデン〕-6,6-ジオール等のビス(ヒドロキシアリール)シクロアルカン類;ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシ-3,5-ジクロロフェニル)エーテル等のジヒドロキシアリールエーテル類;9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-イソプロピルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-フェニルフェニル)フルオレン;エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、2,2-ジメチル-1,3-プロパンジオール、1,10-デカンジオール、ジエチレングリコール、テトラエチレングリコール、ノルボルナンジメタノール、デカヒドロナフタレンジメタノール、トリシクロ[5.2.1.02.6]デカンジメタノール、ペンタシクロペンタデカンジメタノール、シクロペンタン-1,3-ジメタノール、スピログリコール等を挙げることができる。
【0038】
[ポリカーボネート樹脂]
本実施形態に係るポリカーボネート樹脂は、本実施形態の一般式(1)で表される化合物を用いて製造される。本実施形態のポリカーボネート樹脂は、式(1p)で表される、一般式(1)で表される化合物由来の構造単位を有する。このようなポリカーボネート樹脂は、高屈折率であり、かつ、透明性に優れた光学成形体を実現できる。その結果、光学レンズの材料として好適に使用することができる。
【0039】
【0040】
式(1p)において、Ar1およびAr2、R1およびR2、ならびにoおよびpは、式(1)におけるものと同義である。好ましい態様についても同様である。
【0041】
本実施形態に係るポリカーボネート樹脂のポリスチレン換算の重量平均分子量(Mw)は、好ましくは1.5×103以上2.0×105以下であり、より好ましくは2.0×103以上1.2×105以下である。
【0042】
Mwが上記下限値以上であると、得られる成形体が脆くなることをより抑制できるため好ましい。Mwが上記上限値以下であると、溶融粘度がより適度となるため製造後の樹脂の取り出しがより容易になり、さらに流動性がより良好になり溶融状態で射出成形しやすくなるため好ましい。
【0043】
本実施形態に係るポリカーボネート樹脂の23℃、波長633nmにおける屈折率(nD)は、好ましくは1.70以上1.85以下、より好ましくは1.70以上1.82以下、さらに好ましくは1.71以上1.81以下、特に好ましくは1.72以上1.81以下である。
【0044】
本実施形態に係るポリカーボネート樹脂に他の樹脂をブレンドして、成形体の製造に供することができる。他の樹脂としては、例えば、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が挙げられる。
【0045】
さらに本実施形態に係るポリカーボネート樹脂には、酸化防止剤、離型剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤、抗菌剤等を添加することができる。
【0046】
成形方法としては、射出成形の他、圧縮成形、注型、ロール加工、押出成形、延伸等が例示されるがこれらに限らない。
【0047】
本実施形態に係るポリカーボネート樹脂を射出成形に使用する場合、好ましいガラス転移温度(Tg)は80℃以上190℃以下であり、より好ましくは85℃以上180℃以下であり、さらに好ましくは90℃以上170℃以下である。Tgが上記下限値以上であると、使用温度範囲がより広くなるため好ましい。またTgが上記上限値以下であると、樹脂の溶融温度がより低くなり、樹脂の分解や着色がより発生し難くなるため好ましい。またTgが上記上限値以下であると、汎用の金型温調機でも、金型温度と樹脂ガラス転移温度の差を小さくすることができる。そのため、製品に厳密な面精度が求められる用途において使用し易く好ましい。
【0048】
本実施形態に係るポリカーボネート樹脂を用いて得られる光学成形体は、JIS K-7361-1(1997)に準拠して測定される全光線透過率が、好ましくは82%以上、より好ましくは85%以上であり、ビスフェノールA型ポリカーボネート樹脂等と比べても遜色がない。
【0049】
[ポリカーボネート樹脂の製造方法]
実施形態に係るポリカーボネート樹脂は、上記一般式(1)で表される化合物を原料として使用して製造することができる。具体的には、一般式(1)で表される化合物および炭酸ジエステル等のカーボネート前駆物質を、塩基性化合物触媒もしくはエステル交換触媒もしくはその双方からなる混合触媒の存在下、または無触媒下において、溶融重縮合法により反応させて製造することができる。
【0050】
本実施形態に係るポリカーボネート樹脂の製造に用いられる炭酸ジエステルとしては、ジフェニルカーボネート、ジ-p-トリルカーボネート、ジ-m-トリルカーボネート、ジ-o-トリルカーボネート、ビス(p-クロロフェニル)カーボネート、ビス(m-クロロフェニル)カーボネート、ビス(o-クロロフェニル)カーボネート、m-クレジルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ-n-ブチルカーボネート、ジシクロヘキシルカーボネート等が挙げられる。これらの中でも、ジフェニルカーボネートが好ましい。ジフェニルカーボネートは、一般式(1)で表される化合物1モルに対して0.97~1.20モルの比率で用いられることが好ましく、より好ましくは0.98~1.10モルの比率である。
【0051】
本実施形態に係るポリカーボネート樹脂の製造に用いられる塩基性化合物触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、および含窒素化合物等が挙げられる。このような化合物としては、アルカリ金属およびアルカリ土類金属化合物等の有機酸塩、無機塩、酸化物、水酸化物、水素化物あるいはアルコキシド、または4級アンモニウムヒドロキシドおよびそれらの塩、アミン類等が好ましく用いられ、これらの化合物は単独もしくは組み合わせて用いることができる。
【0052】
アルカリ金属化合物としては、例えば、アルカリ金属の有機酸塩、無機塩、酸化物、水酸化物、水素化物またはアルコキシド等が挙げられる。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、フェニル化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、フェニルリン酸2ナトリウム、ビスフェノールAの2ナトリウム塩、2カリウム塩、2セシウム塩もしくは2リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩もしくはリチウム塩等が用いられる。
【0053】
アルカリ土類金属化合物としては、例えば、アルカリ土類金属化合物の有機酸塩、無機塩、酸化物、水酸化物、水素化物又はアルコキシド等が挙げられる。具体的には、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素ストロンチウム、炭酸水素バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、安息香酸カルシウム、フェニルリン酸マグネシウム等が用いられる。
【0054】
含窒素化合物としては、例えば、4級アンモニウムヒドロキシドおよびそれらの塩、アミン類等が挙げられる。具体的には、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラn-プロピルアンモニウムヒドロキシド、テトラn-ブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル基、アリール基等を有する4級アンモニウムヒドロキシド類;トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン等の3級アミン類;ジエチルアミン、ジブチルアミン等の2級アミン類;n-プロピルアミン、n-ブチルアミン等の1級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール等のイミダゾール類;あるいは、アンモニア、テトラメチルアンモニウムボロハイドライド、テトラn-ブチルアンモニウムボロハイドライド、テトラn-ブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等の塩基もしくは塩基性塩等が用いられる。
【0055】
エステル交換触媒としては、亜鉛、スズ、ジルコニウム、鉛等の塩が好ましく用いられ、これらは単独もしくは組み合わせて用いることができる。エステル交換触媒としては、具体的には、酢酸亜鉛、安息香酸亜鉛、2-エチルヘキサン酸亜鉛、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド、ジルコニウムアセチルアセトナート、オキシ酢酸ジルコニウム、ジルコニウムテトラブトキシド、酢酸鉛(II)、酢酸鉛(IV)等が用いられる。
これらの触媒は、一般式(1)で表される化合物の合計1モルに対して、10-9~10-3モルの比率で、好ましくは10-7~10-4モルの比率で用いられる。
【0056】
溶融重縮合法は、上記の原料および触媒を用いて、加熱下に、常圧または減圧下で、エステル交換反応により副生成物を除去しながら溶融重縮合を行うものである。
本実施形態に係る溶融重縮合法は、上記一般式(1)で表される化合物、および炭酸ジエステルを反応容器中で溶融後、副生するモノヒドロキシ化合物を滞留させた状態で、反応を行うことが望ましい。
【0057】
滞留させるために、反応装置を閉塞したり、減圧したり加圧したりする等して圧力を制御することができる。この工程の反応時間は、好ましくは20分以上240分以下であり、より好ましくは40分以上180分以下、特に好ましくは60分以上150分以下である。この際、副生するモノヒドロキシ化合物を生成後すぐに留去すると、最終的に得られるポリカーボネート樹脂は高分子量体の含有量が少ない。しかし、副生したモノヒドロキシ化合物を反応容器中に一定時間滞留させると、最終的に得られるポリカーボネート樹脂は高分子量体の含有量が多いものが得られる。
【0058】
一般的には溶融重縮合反応は二段以上の多段工程で実施される。具体的には、第一段目の反応を好ましくは120~260℃、より好ましくは180~240℃の温度で、常圧もしくは加圧下に好ましくは0.1~5時間、より好ましくは0.5~3時間反応させる。次いで反応系の減圧度を上げながら反応温度を高めて一般式(1)で表される化合物と炭酸ジエステルとの反応を行い、最終的には133Pa(1mmHg)以下の減圧度、200~350℃の温度で0.05~2時間重縮合反応を行うことが好ましい。
【0059】
溶融重縮合反応は、連続式で行ってもよいし、バッチ式で行ってもよい。
反応を行うに際して用いられる反応装置は、錨型攪拌翼、マックスブレンド攪拌翼、ヘリカルリボン型攪拌翼等を装備した縦型であっても、パドル翼、格子翼、メガネ翼等を装備した横型であっても、スクリューを装備した押出機型であってもよい。また、重合物の粘度を勘案してこれらの反応装置を適宜組み合わせた反応装置を使用することが好適に実施される。
【0060】
本実施形態に係るポリカーボネート樹脂は、重縮合反応終了後、熱安定性および加水分解安定性を保持するために、触媒を除去もしくは失活させてもよい。一般的には公知の酸性物質の添加による触媒の失活を行う方法を好適に実施できる。酸性物質としては、具体的には、安息香酸ブチル等のエステル類;p-トルエンスルホン酸等の芳香族スルホン酸類;p-トルエンスルホン酸ブチル、p-トルエンスルホン酸ヘキシル等の芳香族スルホン酸エステル類;亜リン酸、リン酸、ホスホン酸等のリン酸類;亜リン酸トリフェニル、亜リン酸モノフェニル、亜リン酸ジフェニル、亜リン酸ジエチル、亜リン酸ジn-プロピル、亜リン酸ジn-ブチル、亜リン酸ジn-ヘキシル、亜リン酸ジn-オクチル、亜リン酸モノn-オクチル等の亜リン酸エステル類;リン酸トリフェニル、リン酸ジフェニル、リン酸モノフェニル、リン酸ジn-ブチル、リン酸ジn-オクチル、リン酸モノn-オクチル等のリン酸エステル類;ジフェニルホスホン酸、ジn-オクチルホスホン酸、ジn-ブチルホスホン酸等のホスホン酸類;フェニルホスホン酸ジエチル等のホスホン酸エステル類;トリフェニルホスフィン、ビス(ジフェニルホスフィノ)エタン等のホスフィン類;ホウ酸、フェニルホウ酸等のホウ酸類;n-ドデシルベンゼンスルホン酸テトラn-ブチルホスホニウム塩等の芳香族スルホン酸塩類;ステアリン酸クロライド、塩化ベンゾイル、p-トルエンスルホン酸クロライド等の有機ハロゲン化物;ジメチル硫酸等のアルキル硫酸;塩化ベンジル等の有機ハロゲン化物等が好適に用いられる。これらの失活剤は、触媒量に対して好ましくは0.01~50倍モル、より好ましくは0.3~20倍モル使用される。触媒量に対して0.01倍モルより少ないと、失活効果が不充分となり好ましくない。また、触媒量に対して50倍モルより多いと、樹脂の耐熱性が低下し、成形体が着色しやすくなるため好ましくない。
【0061】
触媒失活後、ポリマー中の低沸点化合物を、13~133Pa(0.1~1mmHg)の圧力、200~350℃の温度で脱揮除去する工程を設けてもよい。この工程には、パドル翼、格子翼、メガネ翼等、表面更新能の優れた攪拌翼を備えた横型装置、あるいは薄膜蒸発器が好適に用いられる。
【0062】
本実施形態に係るポリカーボネート樹脂は、異物含有量が極力少ないことが望まれ、溶融原料の濾過、触媒液の濾過等が好適に実施される。フィルターのメッシュは、5μm以下であることが好ましく、より好ましくは1μm以下である。さらに、生成する樹脂のポリマーフィルターによる濾過が好適に実施される。ポリマーフィルターのメッシュは、100μm以下であることが好ましく、より好ましくは30μm以下である。また、樹脂ペレットを採取する工程は、当然低ダスト環境であることが好ましく、クラス1000以下のクリーン度であることがより好ましい。
【0063】
[光学成形体]
本実施形態に係る光学成形体は本実施形態に係るポリカーボネート樹脂を含むものであり、本実施形態に係るポリカーボネート樹脂を用いて光学成形体を製造できる。
例えば、射出成形法、圧縮成形法、射出圧縮成形法、押出成形法、溶液キャスティング法等任意の方法により成形される。
本実施形態に係るポリカーボネート樹脂は、成形性および耐熱性に優れているので、射出成形が必要となる光学レンズにおいて特に有利に使用することができる。成形の際には、本実施形態に係るポリカーボネート樹脂を他のポリカーボネート樹脂やポリエステル樹脂等の他の樹脂と混合して使用することができる。
【0064】
また、本実施形態の目的を損なわない範囲で各種特性を付与するために、各種添加剤を使用することができる。添加剤としては、酸化防止剤、加工安定剤、離型剤、紫外線吸収剤、ブルーイング剤、重合金属不活性化剤、難燃剤、滑剤、帯電防止剤、熱線遮蔽剤、蛍光染料(蛍光増白剤含む)、顔料、光散乱剤、強化充填剤、界面活性剤、抗菌剤、可塑剤、相溶化剤、他の樹脂やエラストマー等を挙げることができる。
【0065】
酸化防止剤としては、例えば、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレートおよび3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン等が挙げられる。
ポリカーボネート樹脂中の酸化防止剤の含有量は、ポリカーボネート樹脂100質量部に対して0.001~0.3質量部であることが好ましい。
【0066】
加工安定剤としては、例えば、リン系加工熱安定剤、硫黄系加工熱安定剤等が挙げられる。
【0067】
リン系加工熱安定剤としては、例えば、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル等が挙げられる。具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリn-デシルホスファイト、トリn-オクチルホスファイト、トリn-オクタデシルホスファイト、ジn-デシルモノフェニルホスファイト、ジn-オクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノn-ブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノn-オクチルジフェニルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(n-ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリn-ブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジn-ブチルホスフェート、ジn-オクチルホスフェート、ジイソプロピルホスフェート、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-t-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイトおよびビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等が挙げられる。
ポリカーボネート樹脂中のリン系加工熱安定剤の含有量は、ポリカーボネート樹脂100質量部に対して0.001~0.2質量部が好ましい。
【0068】
硫黄系加工熱安定剤としては、例えば、ペンタエリスリトール-テトラキス(3-ラウリルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ミリスチルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ステアリルチオプロピオネート)、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
ポリカーボネート樹脂中の硫黄系加工熱安定剤の含有量は、ポリカーボネート樹脂100質量部に対して0.001~0.2質量部が好ましい。
【0069】
離型剤としては、その90質量%以上がアルコールと脂肪酸とのエステルからなるものが好ましい。アルコールと脂肪酸とのエステルとしては、具体的には一価アルコールと脂肪酸とのエステルや、多価アルコールと脂肪酸との部分エステルあるいは全エステルが挙げられる。上記一価アルコールと脂肪酸とのエステルとしては、炭素原子数1~20の一価アルコールと炭素原子数10~30の飽和脂肪酸とのエステルが好ましい。また、上記多価アルコールと脂肪酸との部分エステルあるいは全エステルとしては、炭素原子数1~25の多価アルコールと炭素原子数10~30の飽和脂肪酸との部分エステルまたは全エステルが好ましい。
【0070】
一価アルコールと飽和脂肪酸とのエステルとしては、例えば、ステアリルステアレート、パルミチルパルミテート、n-ブチルステアレート、メチルラウレート、イソプロピルパルミテート等が挙げられる。多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとしては、例えば、ステアリン酸モノグリセリド、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、カプリン酸モノグリセリド、ラウリン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ビフェニルビフェネ-ト、ソルビタンモノステアレート、2-エチルヘキシルステアレート、ジペンタエリスリトールヘキサステアレート等のジペンタエリスルトールの全エステルまたは部分エステル等が挙げられる。
【0071】
これら離型剤の含有量は、ポリカーボネート樹脂100質量部に対して0.005~2.0質量部の範囲が好ましく、0.01~0.6質量部の範囲がより好ましく、0.02~0.5質量部の範囲がさらに好ましい。
【0072】
紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、環状イミノエステル系紫外線吸収剤およびシアノアクリレート系紫外線吸収剤からなる群より選ばれる少なくとも1種の紫外線吸収剤が好ましい。以下に挙げる紫外線吸収剤は、いずれかを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0073】
ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2N-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-4-n-オクチルオキシフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾ-ル等が挙げられる。
【0074】
ベンゾフェノン系紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシトリハイドライドレイトベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン等が挙げられる。
【0075】
トリアジン系紫外線吸収剤としては、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(n-ヘキシル)オキシ]-フェノール、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-[(n-オクチル)オキシ]-フェノール等が挙げられる。
【0076】
環状イミノエステル系紫外線吸収剤としては、例えば、2,2’-ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2,6-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(1,5-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-メチル-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-ニトロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)および2,2’-(2-クロロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)等が挙げられる。
【0077】
シアノアクリレート系紫外線吸収剤としては、例えば、1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼン等が挙げられる。
【0078】
紫外線吸収剤の含有量は、ポリカーボネート樹脂100質量部に対して、好ましくは0.01~3.0質量部であり、より好ましくは0.02~1.0質量部であり、さらに好ましくは0.05~0.8質量部である。かかる配合量の範囲であれば、用途に応じ、ポリカーボネート樹脂に十分な耐候性を付与することが可能である。
【0079】
ブルーイング剤としては、例えば、バイエル社のマクロレックスバイオレットBおよびマクロレックスブルーRR並びにクラリアント社のポリシンスレンブルーRLS等が挙げられる。
【0080】
ブルーイング剤は、ポリカーボネート樹脂の黄色味を消すために有効である。特に耐候性を付与したポリカーボネート樹脂の場合は一定量の紫外線吸収剤が配合されるため、「紫外線吸収剤の作用や色」によってポリカーボネート樹脂成型品が黄色味を帯びやすい傾向があり、特にシートやレンズに自然な透明感を付与するためにはブルーイング剤の配合は有効である。
ブルーイング剤の配合量は、例えば、ポリカーボネート樹脂に対して、好ましくは0.05~1.5ppmであり、より好ましくは0.1~1.2ppmである。
【0081】
本実施形態に係るポリカーボネート樹脂は、高屈折率と優れた耐熱性を示し、しかも成形に適した流動性を有する。さらに、低複屈折で光学歪みが起こりづらいため、光学レンズの他に、液晶ディスプレイ、有機ELディスプレイ、太陽電池等に使用される透明導電性基板、光学ディスク、液晶パネル、光カード、シート、フィルム、光ファイバー、コネクター、蒸着プラスチック反射鏡、ディスプレイ等の光学部品の構造材料または機能材料用途に適した光学用成形体として有利に使用することができる。
【0082】
光学成形体の表面には、必要に応じ、反射防止層あるいはハードコート層といったコート層が設けられていてもよい。反射防止層は、単層であっても多層であっても良く、有機物であっても無機物であっても構わないが、無機物であることが好ましい。具体的には、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化セリウム、酸化マグネシウム、フッ化マグネシウム等の酸化物あるいはフッ化物が例示される。
【0083】
(光学レンズ)
本実施形態に係るポリカーボネート樹脂を用いて製造される光学レンズは、高屈折率であり、耐熱性に優れるため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。必要に応じて、非球面レンズの形で用いることが好ましい。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせによって球面収差を取り除く必要がなく、軽量化および生産コストの低減化が可能になる。したがって、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
本実施形態に係る光学レンズは、例えば、射出成形法、圧縮成形法、射出圧縮成形法等任意の方法により成形される。本実施形態により、ガラスレンズでは技術的に加工の困難な高屈折率低複屈折非球面レンズをより簡便に得ることができる。
【0084】
(光学フィルム)
本実施形態に係るポリカーボネート樹脂を用いて製造される光学フィルムは、透明性および耐熱性に優れるため、液晶基板用フィルム、光メモリーカード等に好適に使用される。
【0085】
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
【実施例0086】
以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。
【0087】
1.測定・評価方法
以下の実施例・比較例において、各物性の測定および評価は、以下の方法により行った。
【0088】
1)ポリスチレン換算の重量平均分子量(Mw):ゲル浸透クロマトグラフ(GPC:Waters社製 1515、2414および2489)を用い、クロロホルムを溶出液として、既知の分子量(分子量分布=1)の標準ポリスチレンを用いて検量線を作成した。この検量線に基づいて、GPCのリテンションタイムからMwを算出した。
【0089】
2)屈折率(n633):シリコンウエハー上に8.5wt%濃度の樹脂のクロロホルム溶液をスピンコーターを用いて200rpm20秒、1000rpm5秒でコートし、120℃で5分、200℃で2分ベークしてサンプルを調整し、分光エリプソメーターGES5E(セミラボ[SEMILAB]社製)を用いて波長200-1000nmにおける光学測定データに、次に示す光学モデルをフィッティングすることで、フィルムの屈折率および膜厚の算出を行った。
(光学モデル)
積層構造:フィルム/SiO2(2nm厚)/Si基板(500μm厚)
フィルムの分散式:コーシー + ローレンツ振動子モデル
【0090】
3)ガラス転移温度(Tg):示差熱走査熱量分析計(DSC:島津製作所製DSC-60)により測定した。
【0091】
1.式(1)で表される化合物の調製
(実施例1)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレンの合成
工程(i):9,9-ビス(2’-ヒドロキシエチル)-2,7-ジブロモ-9H-フルオレンの合成
500mlのフラスコに2,7-ジブロモ-9H-フルオレン66.5g(0.2mol)、水酸化カリウム(粉末状)56g(0.998mol)、ヨウ化カリウム3.4g(0.02mol)、ジメチルスルホキシド150mlを装入し、氷水で10℃に冷却した。その後、2-ブロモエタノール58.4g(0.467mol)を45分かけて滴下し、その後、室温で一晩攪拌した。その後、反応液を50℃に加熱して40時間加熱攪拌した。反応混合物を蒸留水2リットルに排出し、濃塩酸でpHを6に合わせた。得られた固体を濾別して水3リットルで洗浄した。得られた固体を酢酸エチル1リットルに溶解し、蒸留水500mlで洗浄後、エバポレーターで濃縮し、クロロホルムを添加することで、9,9-ビス(2’-ヒドロキシエチル)-2,7-ジブロモ-9H-フルオレンを34.8gの無色の結晶として得た。
【0092】
工程(ii):9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレンの調製
1リットルのフラスコに9,9-ビス(2’-ヒドロキシエチル)-2,7-ジブロモ-9H-フルオレン20.75g(50mmol)、ナフタレン-2-ボロン酸19.17g(0.11mol)、炭酸カリウム15.3g(0.11mol)、蒸留水250gおよびジメチルスルホキシド400gを装入した。この反応混合物にテトラキス(トリフェニルホスフィン)パラジウム3.0gを添加して、100℃に加熱して5時間加熱攪拌した。冷却後、生成した固体を濾別して、水500gで洗浄し、50℃で真空乾燥した。乾燥後、固体をクロロホルムで懸濁洗浄し、9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレン20.87gを無色の結晶として得た。DSCで測定した融点は236℃であった。
【0093】
(実施例2)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレンの合成
工程(i):2-(2’-ブロモエトキシ)テトラヒドロピランの合成
撹拌機、温度計および滴下ロートを備えた2リットルの丸底フラスコに、2-ブロモエタノール150g(1.20mol)およびジクロロメタン800mlを装入し、氷水により冷却した。その後、内温が5℃になった時点で、3,4-ジヒドロ-2H-ピラン130g(1.56mol)を10℃以下で滴下した。滴下終了後、ピリジニウムp-トルエンスルホネート30g(0.12mol)を添加し、室温で一晩攪拌した。その後、炭酸水素ナトリウム飽和水を添加し、ジクロロメタン層を水洗した。得られたジクロロメタン層をエバポレーターにより濃縮して、淡黄色の油状物として、2-(2’-ブロモエトキシ)テトラヒドロピラン255gを得た。
【0094】
工程(ii):9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジブロモ-9H-フルオレンの合成
撹拌機、温度計および還流管を備えた2リットル丸底フラスコに2-(2’-ブロモエトキシ)テトラヒドロピラン255g、トルエン270mlおよび2,7-ジブロモ-9H-フルオレン164g(0.506mol)を仕込み、ここに50%水酸化ナトリウム水溶液270mlを添加した。その後、テトラブチルアンモニウムブロマイド8.5g(26.2mmol)を添加し、100℃に加熱して、11.5時間加熱攪拌した。その後、反応混合物を室温まで冷却し、水層を分液した後、酢酸エチル700mlおよび蒸留水700mlを添加し、水洗を行った。さらに水洗を繰り返した後、酢酸エチルおよびトルエンからなる層を分離し、エバポレーターにて濃縮した。濃縮後得られた粘調な液体に、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジブロモ-9H-フルオレンの種結晶を少量添加し、メタノールを添加した結晶化を行った。得られた結晶をろ過し、少量のメタノールで洗浄した後、メタノール500mlから加熱再結晶を行い、目的とする9,9-ビス〔2-(2’-テトラヒドロピラニル)エトキシ〕-2,7-ジブロモ-9H-フルオレン246gを淡黄色結晶として得た。
m.p.98.5℃
1H-NMR(CDCl3) δ1.30-1.53(m,12H)、2.34-2.38(t,4H)、2.70-3.5(m、8H)、4.1(t、2H)、7.43-7.55(m、6H)
【0095】
工程(iii):9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル-9H-フルオレンの合成
撹拌機、温度計および還流管を備えた1リット丸底フラスコに9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジブロモ-9H-フルオレン72.55g(125mmol)、トルエン475ml、炭酸カリウム61g(442mmol)、2-ナフタレンボロン酸47.29g(275mmol)および蒸留水211mlを仕込み攪拌しながら、この反応混合物にテトラキス(トリフェニルホスフィン)パラジウム1.4gを添加して、80℃まで昇温した。80℃で12時間加熱攪拌を行い、その後、室温まで冷却した。水層を分液した後、蒸留水でトルエン層を洗浄し、その後、トルエン層をエバポレーターにより濃縮した。濃縮残渣にメタノール730mlを添加し、生じた固体を濾別し、メタノールで洗浄した。その後、シリカゲルカラムクロマトグラフィー(溶出液トルエン~トルエン/酢酸エチル=9/1)にて精製し、その後、メチルセロソルブから再結晶して目的物を121.01g得た。収率72%、HPLC純度99.3%、m.p.148℃、
1H-NMR(CDCl3) δ1.20-1.70(m、12H)、2,55(t、4H)、2.8-3.5(m、8H)、4.16(m,2H)、7.40-7.65(m、4H)、7.70-8.05(m、14H)、8.1(s、2H)
【0096】
工程(iv):9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレンの合成
撹拌機、温度計および還流管を備えた1リットル丸底フラスコに、9,9‐ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル‐9H-フルオレン60.00g(88.9mmol)、メチルセロソルブ600ml、蒸留水25mlおよび濃塩酸7mlを仕込み、攪拌しながら115℃に昇温し、同温度で4時間加熱攪拌した。その後、室温まで冷却し、水180mlを添加して、生じた結晶を濾別した。得られた結晶を蒸留水で洗浄した後、50℃で減圧乾燥し、その後、熱メチルセロソルブで懸濁洗浄を行い、目的物38.73gを得た。収率85%、m.p.249.5℃、
1H-NMR(DMSO-d6) δ2.43(t、4H)、2.80(t、4H)、4.16(t、2H)、7.50-7.60(m,4H)、7.8-8.1(m,12H)、8.35(s,2H)
【0097】
(実施例3)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔ジベンゾ[b,d]フラン-4”-イル〕-9H-フルオレンの合成
実施例2の工程(iii)において、2-ナフタレンボロン酸47.29g(275mmol)を使用する代わりに、ジベンゾ[b,d]フラン-4-イルボロン酸58.85g(275mmol)を使用した以外は実施例2の工程(iii)に記載の操作に従い、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔ジベンゾ[b,d]フラン-4”-イル〕-9H-フルオレン66.05gを得た。収率70%、HPLC純度97.5%、m.p.176.7℃、
1H-NMR(CDCl3) δ1.29-1.45 (10H, m), 1.58 (2H, m), 2.58 (4H, t), 2.98 (2H, q), 3.24 (2H, dt), 3.40 (2H, q), 3.55 (2H, dt), 4.23 (2H, s), 7.39 (2H, t), 7.48 (4H, q), 7.64 (2H, d), 7.68-7.71 (2H, m), 7.90-8.03 (10H, m)
【0098】
実施例2の工程(iv)において、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル-9H-フルオレン60.00g(88.9mmol)、メチルセロソルブ600ml、蒸留水25mlおよび濃塩酸7mlを使用する代わりに、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔ジベンゾ[b,d]フラン-4”-イル〕-9H-フルオレン60.00g(79.4mmol)、メチルセロソルブ540ml、蒸留水22mlおよび濃塩酸6.2mlを使用した以外は実施例2の工程(iv)に記載の操作に従い、目的物41.03gを得た。収率88%、HPLC純度99.4%、m.p.247.4℃、
1H-NMR(DMSO-d6) δ2.40 (4H, t), 2.98 (4H, m), 4.24 (2H, t), 7.46 (2H, t), 7.58 (4H, dt), 7.82 (4H, dd), 8.03-8.10 (6H, m), 8.22 (4H, dd)
【0099】
(実施例4)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔4-(ナフタレン-2-イル-)フェニル〕-9H-フルオレンの合成
実施例2の工程(iii)において、2-ナフタレンボロン酸47.29g(275mmol)を使用する代わりに、4-(ナフタレン-2-イル)フェニルボロン酸68.22g(275mmol)を使用した以外は実施例2の工程(iii)に記載の操作に従い、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔4-(ナフタレン-2-イル-)フェニル〕-9H-フルオレン68.23gを得た。収率66%、HPLC純度99.2%、m.p.209.4℃、
1H-NMR(CDCl3) δ1.26-1.61 (12H, m), 2.55 (4H, t), 2.86 (2H, q), 3.22-3.32 (4H, m), 3.51-3.56 (2H, m), 4.17 (2H, t), 7.49-7.55 (4H, m), 7.67 (2H, d), 7.75 (2H, d), 7.78-7.82 (6H, m), 7.84-7.90 (8H, m), 7.95 (4H, t), 8.13 (2H, s)
【0100】
実施例2の工程(iv)において、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル-9H-フルオレン60.00g(88.9mmol)、メチルセロソルブ600ml、蒸留水25mlおよび濃塩酸7mlを使用する代わりに、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔4-(ナフタレン-2-イル-)フェニル〕-9H-フルオレン60.00g、メチルセロソルブ500ml、蒸留水20mlおよび濃塩酸6mlを使用した以外は実施例2の工程(iv)に記載の操作に従い、目的物41.10gを得た。収率86%、HPLC純度99.6%、m.p.341.3℃、
1H-NMR(DMSO-d6) δ2.41 (4H, t), 2.83 (4H, q), 4.20 (2H, t), 7.53-7.60 (4H, m), 7.83 (2H, d), 7.94-8.00 (16H, m), 8.06 (4H, d), 8.33 (2H, s)
【0101】
(実施例5)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔3-(ナフタレン-2-イル-)フェニル〕-9H-フルオレンの合成
実施例2の工程(iii)において、2-ナフタレンボロン酸47.29g(275mmol)を使用する代わりに、3-(ナフタレン-2-イル)フェニルボロン酸68.22g(275mmol)を使用した以外は実施例2の工程(iii)に記載の操作に従い、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔3-(ナフタレン-2-イル-)フェニル〕-9H-フルオレン70.30gを得た。収率68%、HPLC純度98.9%、m.p.171.6℃、
1H-NMR(CDCl3) δ1.26-1.58 (12H, m), 2.54 (4H, t), 2.86 (2H, q), 3.22-3.30 (4H, m), 3.49-3.54 (2H, m), 4.16 (2H, t), 7.51-7.61 (6H, m), 7.66-7.74 (8H, m), 7.81 (2H, d), 7.84 (2H, dd), 7.90 (2H, d), 7.94-7.99 (6H, m), 8.14 (2H, s)
【0102】
実施例2の工程(iv)において、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル-9H-フルオレン60.00g(88.9mmol)、メチルセロソルブ600ml、蒸留水25mlおよび濃塩酸7mlを使用する代わりに、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔3-(ナフタレン-2-イル-)フェニル〕-9H-フルオレン60.00g(72.5mmol)、メチルセロソルブ500ml、蒸留水20mlおよび濃塩酸5.7gを使用した以外は実施例2の工程(iv)に記載の操作に従い、目的物41.58gを得た。収率87%。なお最終品の精製は、カラムクロマトグラフィー(溶出液:酢酸エチル/クロロホルム=1/8⇒1/4)により実施した。HPLC純度99.7%、m.p.143.1℃、
1H-NMR(DMSO-d6) δ: 2.52 (4H, t), 3.17 (4H, q), 7.51-7.54 (4H, m), 7.60 (2H, t), 7.67-7.69 (2H, m), 7.74 (2H, dd), 7.76 (2H, s), 7.82-7.91 (6H, m), 7.94-7.99 (6H, m), 8.14 (2H, s)
【0103】
(実施例6)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ジフェナントレン-9”-イル-9H-フルオレンの合成
実施例2の工程(iii)において、2-ナフタレンボロン酸47.29g(275mmol)を使用する代わりに、フェナントレン-9-イルボロン酸61.06g(275mmol)を使用した以外は実施例2の工程(iii)に記載の操作に従い、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジフェナントレン9”-イル-9H-フルオレン73.62gを得た。収率76%、HPLC純度95.9%、粘調固体、
1H-NMR(CDCl3) δ1.36-1.64 (12H, m), 2.50 (4H, t), 2.99 (2H, q), 3.30-3.43 (4H, m), 3.58 (2H, dt), 4.29 (2H, s), 7.57 (4H, d), 7.63-7.72 (8H, m), 7.77 (2H, s), 7.90 (2H, d), 7.93-7.95 (2H, m), 8.03 (2H, d), 8.79 (4H, dd)
【0104】
実施例2の工程(iv)において、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル-9H-フルオレン60.00g(88.9mmol)、メチルセロソルブ600ml、蒸留水25mlおよび濃塩酸7mlを使用する代わりに、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジフェナントレン-9”-イル-9H-フルオレン70.00g(90.3mmol)、メチルセロソルブ610ml、蒸留水25mlおよび濃塩酸7mlを使用した以外は、実施例2の工程(iv)に記載の操作に従い、目的物48.22gを得た。収率88%。なお最終品の精製は、カラムクロマトグラフィー(溶出液:酢酸エチル/クロロホルム=1/6⇒1/4)により実施した。HPLC純度99.3%、m.p.226.9℃、
1H-NMR(DMSO-d6) δ2.48 (4H, t), 3.31 (4H, q), 7.57-7.73 (12H, m), 7.77 (2H, s), 7.95 (6H, dd), 8.79 (4H, dd)
【0105】
(実施例7)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔ジベンゾ[b,d]チオフェン-4”-イル〕-9H-フルオレンの合成
実施例2の工程(iii)において、2-ナフタレンボロン酸47.29g(275mmol)を使用する代わりに、ジベンゾ[b,d]チオフェン-4-イルボロン酸62.72g(275mmol)を使用した以外は実施例2の工程(iii)に記載の操作に従い、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔ジベンゾ[b,d]チオフェン-4”-イル〕-9H-フルオレン68.87gを得た。収率70%、HPLC純度99.1%、粘調固体、
1H-NMR(CDCl3) δ1.28-1.43 (10H, m), 1.55 (2H, m), 2.56 (4H, t), 2.95 (2H, q), 3.22 (2H, dt), 3.37 (2H, q), 3.52 (2H, dt), 4.20 (2H, s), 7.51 (2H, t), 7.68 (4H, q), 7.85 (2H, d), 7.82-7.89 (2H, m), 8.11-8.24 (10H, m)
【0106】
実施例2の工程(iv)において、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル-9H-フルオレン60.00g(88.9mmol)、メチルセロソルブ600ml、蒸留水25mlおよび濃塩酸7mlを使用する代わりに、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔ジベンゾ[b,d]チオフェン-4”-イル〕-9H-フルオレン60.00g(76.4mmol)、メチルセロソルブ500ml、蒸留水20mlおよび濃塩酸6.0mlを使用した以外は実施例2の工程(iv)に記載の操作に従い、目的物40.10gを得た。収率85%、HPLC純度98.9%、m.p.223.6℃、
1H-NMR(DMSO-d6) δ2.38 (4H, t), 2.93 (4H, dt), 4.26 (2H, t), 7.57 (4H, dd), 7.69-7.71 (4H, m), 7.79 (2H, d), 7.97 (2H, s), 8.04 (2H, dd), 8.10 (2H, d), 8.43-8.47 (4H, dd)
【0107】
(実施例8)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔4”-フェノキシフェニル〕-9H-フルオレンの合成
実施例2の工程(iii)において、2-ナフタレンボロン酸47.29g(275mmol)を使用する代わりに、4-フェノキシフェニルボロン酸58.86g(275mmol)を使用した以外は実施例2の工程(iii)に記載の操作に従い、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔4-フェノキシフェニル〕-9H-フルオレン68.31gを得た。収率72%、HPLC純度98.8%、粘調固体、
1H-NMR(CDCl3) δ1.24-1.59 (12H, m), 2.48 (4H, t), 2.81 (2H, q), 3.20-3.27 (4H, m), 3.48-3.54 (2H, m), 4.14 (2H, t), 7.07-7.15 (10H, m), 7.37 (4H, dt), 7.55 (2H, d), 7.60-7.63 (6H, m), 7.74 (2H, d)
【0108】
実施例2の工程(iv)において、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル-9H-フルオレン60.00g(88.9mmol)、メチルセロソルブ600ml、蒸留水25mlおよび濃塩酸7mlを使用する代わりに、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔4”-フェノキシフェニル〕-9H-フルオレン60.00g(79.1mmol)、メチルセロソルブ530ml、蒸留水22mlおよび濃塩酸6.2mlを使用した以外は実施例2の工程(iv)に記載の操作に従い、目的物38.29gを得た。収率82%、HPLC純度99.7%、m.p.134.1℃、
1H-NMR(DMSO-d6) δ2.34 (4H, t), 2.76 (4H, q), 4.14 (2H, t), 7.07-7.20 (10H, m), 7.43 (4H, t), 7.67 (2H, dd), 7.81 (6H, t), 7.90 (2H, d)
【0109】
(実施例9)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔4”-フェニルナフタレン-1”-イル〕-9H-フルオレンの合成
実施例2の工程(iii)において、2-ナフタレンボロン酸47.29g(275mmol)を使用する代わりに、4-フェニルナフタレン-1-イルボロン酸68.22g(275mmol)を使用した以外は実施例2の工程(iii)に記載の操作に従い、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔4”-フェニルナフタレン-1”-イル〕-9H-フルオレン73.4gを得た。収率71%、HPLC純度99.8%、m.p.230.3℃、
1H-NMR(CDCl3) δ1.36-1.61 (12H, m), 2.50 (4H, t), 2.97 (2H, q), 3.30 (2H, dt), 3.38 (2H, q), 3.57 (2H, dt), 4.27 (2H, s), 7.45-7.58 (20H, m), 7.66 (2H, s), 7.89 (2H, d), 7.98-8.00 (2H, m), 8.05-8.10 (2H, m)
【0110】
実施例2の工程(iv)において、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル-9H-フルオレン60.00g(88.9mmol)、メチルセロソルブ600ml、蒸留水25mlおよび濃塩酸7mlを使用する代わりに、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔4”-フェニルナフタレン-1”-イル〕-9H-フルオレン70.00g(84.6mmol)、メチルセロソルブ570ml、蒸留水24mlおよび濃塩酸7.0mlを使用した以外は実施例2の工程(iv)に記載の操作に従い、目的物47.95gを得た。収率86%、HPLC純度99.0%、m.p.271.4℃、
1H-NMR(DMSO-d6) δ2.34 (4H, t), 2.95 (4H, dt), 4.24 (2H, t), 7.51-7.63 (20H, m), 7.72 (2H, s), 7.90-7.93 (2H, m), 7.99-8.01 (2H, m), 8.08 (2H, d)
【0111】
(実施例10)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔9”,9”-ジメチル-9”H-フルオレン-2”-イル〕-9H-フルオレンの合成
実施例2の工程(iii)において、2-ナフタレンボロン酸47.29g(275mmol)を使用する代わりに、9,9-ジメチル-9H-フルオレン-2-イルボロン酸65.47g(275mmol)を使用した以外は実施例2の工程(iii)に記載の操作に従い、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔9”,9”-ジメチル-9”H-フルオレン-2”-イル〕-9H-フルオレン76.67gを得た。収率76%、HPLC純度91.0%、粘調固体、
1H-NMR(CDCl3) δ1.25-1.50 (12H, m), 1.58 (12H, s), 2.56 (4H, t), 2.87 (2H, q), 3.23-3.32 (4H, m), 3.51-3.57 (2H, m), 4.16 (2H, t), 7.32-7.39 (4H, m), 7.47 (2H, dd), 7.62-7.67 (4H, m), 7.69-7.72 (4H, m), 7.76-7.82 (6H, m)
【0112】
実施例2の工程(iv)において、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル-9H-フルオレン60.00g(88.9mmol)、メチルセロソルブ600ml、蒸留水25mlおよび濃塩酸7mlを使用する代わりに、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ビス〔9”,9”-ジメチル-9”H-フルオレン-2”-イル〕-9H-フルオレン70.00g(89.7mmol)、メチルセロソルブ590ml、蒸留水24mlおよび濃塩酸6.8mlを使用した以外は実施例2の工程(iv)に記載の操作に従い、目的物48.21gを得た。収率87%、HPLC純度96.9%、m.p.272.3℃、
1H-NMR(DMSO-d6) δ1.55 (12H, s), 2.42 (4H, t), 2.79 (4H, m), 4.18 (2H, t), 7.33-7.40 (4H, m), 7.59 (2H, dd), 7.76-7.79 (4H, m), 7.88 (2H, d), 7.95 (8H, dd)
【0113】
(実施例11)
9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-1”イル-9H-フルオレンの合成
実施例2の工程(iii)において、2-ナフタレンボロン酸47.29g(275mmol)を使用する代わりに、1-ナフタレンルボロン酸47.29g(275mmol)を使用した以外は実施例2の工程(iii)に記載の操作に従い、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフチル-1”-イル-9H-フルオレン65.80gを得た。収率78%、HPLC純度91.0%、粘調固体、
1H-NMR(CDCl3) δ1.14-1.46(m、12H)、2.47(t、4H)、2.9-3.6(m、8H)、4.2(s、2H)、7.5-8.1(m、20H)
【0114】
実施例2の工程(iv)において、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-2”-イル-9H-フルオレン60.00g(88.9mmol)を使用する代わりに、9,9-ビス〔2-(2’-テトラヒドロピラニルオキシ)エチル〕-2,7-ジナフタレン-1”イル-9H-フルオレン60.00g(88.9mmol)を使用した以外は実施例2の工程(iv)に記載の操作に従い、目的物35.13gを得た。収率78%、HPLC純度95.4%、粘調固体、
1H-NMR(DMSO-d6) δ2.3 (t、4H), 2.9 (t、4H), 4.2 (2,2H), 7.5-8.2(m、20H)
【0115】
(比較合成例1)
実施例1において、ナフタレン-2-ボロン酸を19.17g(0.11mol)使用する代わりに、フェニルボロン酸13.41g(0.11mol)を使用した以外は実施例1に記載の操作に従い、9,9-ビス(2’-ヒドロキシエチル)-2,7-ジジフェニル-9H-フルオレン19.9gを無色の結晶として得た。
【0116】
2.ポリカーボネート樹脂の製造
(実施例12)
実施例1で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレン20.26g(40mmol)、ジフェニルカーボネート(以下、”DPC”と略記することがある)8.56g(40mmol)および0.02M-炭酸水素ナトリウム水溶液15μL(3×10-6モル)を留出装置付きの反応器に装入して、240℃、100kPaで1時間反応させた。その後、減圧度を19kPaに調整し20分間反応させた後、同温度同圧力で70分間反応させた。次に減圧度を16kPaに調整し、20分間反応させ、さらに減圧度を13kPaに調整し20分間反応させた後、40分かけて減圧度を130Paとし、同圧力で30分間反応させて所定のトルクになったところで窒素ガスにより真空を放圧して、ポリカーボネート樹脂を抜き出した。
得られたポリカーボネート樹脂の重量平均分子量(Mw)は32300であり、Tgは135℃であった。
このポリカーボネート樹脂の屈折率(n633)は1.7608であった。
【0117】
(比較例2)
実施例12において、実施例1で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレン20.26g(40mmol)を使用する代わりに、9,9-ビス(2’-ヒドロキシエチル)-2,7-ジフェニル-9H-フルオレン16.26g(40mmol)を使用した以外は実施例12に記載の操作にしたが、ポリカーボネート樹脂を得た。
得られたポリカーボネート樹脂の重量平均分子量(Mw)は28300であり、Tgは112℃であった。
このポリカーボネート樹脂の屈折率(n633)は1.6959であった。
【0118】
(実施例13)
実施例2で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”-イル-9H-フルオレン20.26g(40mmol)、ジフェニルカーボネート8.56g(40mmol)および0.02M-炭酸水素ナトリウム水溶液15μL(3×10-6モル)を留出装置付きの反応器に装入して、260℃、100kPaで20分間、270℃、100kPaで30分間反応させた。その後、減圧度を22kPaに調整し20分間反応させた後、同温度同圧力で60分間反応させた。次に減圧度を16kPaに調整し、20分間反応させ、さらに減圧度を13kPaに調整し20分間反応させた後、40分かけて減圧度を130Paとし、同圧力で30分間反応させて所定のトルクになったところで窒素ガスにより真空を放圧して、ポリカーボネート樹脂を抜き出した。
得られたポリカーボネート樹脂の重量平均分子量(Mw)は4250であり、Tgは115℃、Tmが172℃(熱量:1.87J/g)の結晶性のポリマーであった。
このポリカーボネート樹脂の屈折率(n633)は1.7708であった。
【0119】
(実施例14)
実施例3で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔ジベンゾ[b,d]フラン-4”-イル〕-9H-フルオレン23.46g(40mmol),DPC8.56g(40mmol)および0.02M-炭酸水素ナトリウム水溶液15μL(3×10-6モル)を留出装置付きの反応器に装入して、240℃、100kPaで1時間反応させた。その後、減圧度を22kPaに調製し、20分間反応させ、さらに減圧度を13kPaに調製し20分間反応させた後、40分間かけて減圧度を130Paとし、同圧力で30分間反応させて所定のトルクになったところで窒素ガスにより真空を放圧して、ポリカーボネート樹脂を抜き出した。
得られたポリカーボネート樹脂の重量平均分子量(Mw)は8430であり、Tgは118℃であった。
このポリカーボネート樹脂の屈折率(n633)は1.730であった。
【0120】
(実施例15)
実施例14において、実施例3で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔ジベンゾ[b,d]フラン-4”-イル〕-9H-フルオレン23.46g(40mmol)を使用する代わりに、実施例5で得られた9,9-ビス(2’-ジドロキシエチル)-2,7-ビス〔3-(ナフタレン-2-イル-)フェニル〕-9H-フルオレン26.35g(40mmol)を使用した以外は、実施例14に記載の操作に従いポリカーボネート樹脂を製造した。
得られたポリカーボネート樹脂の重量平均分子量(Mw)は5240であり、Tgは105℃であった。
このポリカーボネート樹脂の屈折率(n633)は1.735であった。
【0121】
(実施例16)
実施例14において、実施例3で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔ジベンゾ[b,d]フラン-4”-イル〕-9H-フルオレン23.46g(40mmol)を使用する代わりに、実施例6で得られた9,9-ビス(2’-ジドロキシエチル)-2,7-ジフェナントレン-9”-イル-9H-フルオレン24.27g(40mmol)を使用した以外は、実施例14に記載の操作に従いポリカーボネート樹脂を製造した。
得られたポリカーボネート樹脂の重量平均分子量(Mw)は5550であり、Tgは126℃であった。
このポリカーボネート樹脂の屈折率(n633)は1.718であった。
【0122】
(実施例17)
実施例14において、実施例3で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔ジベンゾ[b,d]フラン-4”-イル〕-9H-フルオレン23.46g(40mmol)を使用する代わりに、実施例8で得られた9,9-ビス(2’-ジドロキシエチル)-2,7-ビス(4”-フェノキシフェニル)-9H-フルオレン23.63g(40mmol)を使用した以外は、実施例14に記載の操作に従いポリカーボネート樹脂を製造した。
得られたポリカーボネート樹脂の重量平均分子量(Mw)は4870であり、Tgは67℃であった。
このポリカーボネート樹脂の屈折率(n633)は1.715であった。
【0123】
(実施例18)
実施例14において、実施例3で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔ジベンゾ[b,d]フラン-4”-イル〕-9H-フルオレン23.46g(40mmol)を使用する代わりに、実施例9で得られた9,9-ビス(2’-ジドロキシエチル)-2,7-ビス(4”―フェニルナフタレン-1”-イル)-9H-フルオレン26.35g(40mmol)を使用した以外は、実施例14に記載の操作に従いポリカーボネート樹脂を製造した。
得られたポリカーボネート樹脂の重量平均分子量(Mw)は6170であり、Tgは122℃であり、Tmが273℃(熱量:8.82J/g)の結晶性のポリマーであった。
このポリカーボネート樹脂の屈折率(n633)は1.796であった。
【0124】
(実施例19)
実施例2で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”イル-9H-フルオレン4.04g(8mmol)、9,9-ビス〔4’-(2”-ヒドロキシエトキシ)フェニル〕-9H-フルオレン10.52g(24mmol)、ビスフェノールA1.32g(8mmol)、DPC8.57g(40mmol)および0.02M-炭酸水素ナトリウム水溶液15μL(3×10-6モル)を留出装置付きの反応器に装入して、240℃、100kPaで1時間反応させた。その後、減圧度を22kPaに調製し、20分間反応させ、さらに減圧度を13kPaに調製し20分間反応させた後、40分間かけて減圧度を130Paとし、同圧力で30分間反応させて所定のトルクになったところで窒素ガスにより真空を放圧して、ポリカーボネート樹脂を抜き出した。
得られたポリカーボネート樹脂の重量平均分子量(Mw)は32500であり、Tgは139℃であった。
このポリカーボネート樹脂の屈折率(n633)は1.713であった。
また、250℃で熱プレスしたポリカーボネート樹脂の500μm厚のシートの全光線透過率は82%であった。
【0125】
(実施例20)
実施例4で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ビス〔4-(ナフタレン-2-イル-)フェニル〕-9H-フルオレン4.00g(6mmol)、9,9ビス〔4’-(2”-ヒドロキシエトキシ)フェニル〕-9H-フルオレン7.98g(18mmol)、ビスフェノールA1.39g(6mmol)、DPC6.55g(30mmol)および0.02M-炭酸水素ナトリウム水溶液10μL(2×10-6mol)を留出装置付きの反応器に装入して、270℃、100kPaで1時間反応させた。その後、減圧度を22kPaに調製し、20分間反応させ、さらに減圧度を13kPaに調製し20分間反応させた後40分間かけて減圧度を130Paとし、同圧力で70分間反応させて所定のトルクになったところで窒素ガスにより真空を放圧して、ポリカーボネート樹脂を抜き出した。
得られたポリカーボネート樹脂の重量平均分子量(Mw)は27800であり、Tgは157℃であった。ポリカーボネート樹脂の外観は無色透明であった。
【0126】
(実施例21)
実施例2で得られた9,9-ビス(2’-ヒドロキシエチル)-2,7-ジナフタレン-2”イル-9H-フルオレン3.0375g(6mmol)、9,9-ビス〔4’-(2”-ヒドロキシエトキシ)フェニル〕-9H-フルオレン6.1380g(14mmol)、2,6-ナフタレンジカルボン酸ジメチルエステル4.8850g(8mmol)およびチタンテトライソプロポキシド3.7μl(Tiとして50ppm)からなる混合物を留出装置付きの反応器に装入して、280℃、100kPaで1時間反応させた。その後、減圧度を20kPaに調製し、20分間反応させ、さらに減圧度を13kPaに調製し、20分間反応させた後、30分間かけて減圧度を130Paとし、同圧力で30分間反応させて、所定のトルクになったところで窒素ガスにより真空を放圧して、ポリエステル樹脂を抜き出した。
得られたポリエステル樹脂の重量平均分子量(Mw)は6300であり、Tgは118℃であった。
【0127】
以上より、本実施形態に係る一般式(1)で表される化合物より得られるポリカーボネート樹脂は、高屈折率を有することが理解できる。
【0128】
この出願は、2020年7月28日に出願された日本出願特願2020-127221号を基礎とする優先権を主張し、その開示の全てをここに取り込む。