IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ソニーセミコンダクタソリューションズ株式会社の特許一覧

<>
  • 特開-クロック制御回路、および撮像素子 図1
  • 特開-クロック制御回路、および撮像素子 図2
  • 特開-クロック制御回路、および撮像素子 図3
  • 特開-クロック制御回路、および撮像素子 図4
  • 特開-クロック制御回路、および撮像素子 図5
  • 特開-クロック制御回路、および撮像素子 図6
  • 特開-クロック制御回路、および撮像素子 図7
  • 特開-クロック制御回路、および撮像素子 図8
  • 特開-クロック制御回路、および撮像素子 図9
  • 特開-クロック制御回路、および撮像素子 図10
  • 特開-クロック制御回路、および撮像素子 図11
  • 特開-クロック制御回路、および撮像素子 図12
  • 特開-クロック制御回路、および撮像素子 図13
  • 特開-クロック制御回路、および撮像素子 図14
  • 特開-クロック制御回路、および撮像素子 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023120774
(43)【公開日】2023-08-30
(54)【発明の名称】クロック制御回路、および撮像素子
(51)【国際特許分類】
   H04N 25/70 20230101AFI20230823BHJP
【FI】
H04N5/369
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2022023816
(22)【出願日】2022-02-18
(71)【出願人】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】110001357
【氏名又は名称】弁理士法人つばさ国際特許事務所
(72)【発明者】
【氏名】落合 保博
(72)【発明者】
【氏名】河津 直樹
(72)【発明者】
【氏名】佐々木 慶太
【テーマコード(参考)】
5C024
【Fターム(参考)】
5C024CX03
5C024GX02
5C024HX15
(57)【要約】
【課題】低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することを可能にする。
【解決手段】本開示のクロック制御回路は、複数の画素を有する撮像素子内の少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、複数の画素に対する水平走査期間を認識し、スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、水平走査期間に対して所望の周期となるように拡散周期を制御する設定信号を出力する制御回路とを備える。
【選択図】図8
【特許請求の範囲】
【請求項1】
複数の画素を有する撮像素子内の少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、
前記複数の画素に対する水平走査期間を認識し、前記スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、前記水平走査期間に対して所望の周期となるように前記拡散周期を制御する設定信号を出力する制御回路と
を備える
クロック制御回路。
【請求項2】
前記所望の周期は、前記水平走査期間と前記拡散周期とが同一となる周期、または前記水平走査期間が前記拡散周期に対して整数倍となる周期である
請求項1に記載のクロック制御回路。
【請求項3】
前記制御回路は、前記水平走査期間の動的な変化を認識し、前記拡散周期が前記水平走査期間の動的な変化に追従して前記所望の周期となるように前記設定信号を出力する
請求項1に記載のクロック制御回路。
【請求項4】
前記制御回路は、前記水平走査期間のブランキング期間において、前記水平走査期間の動的な変化を認識し、前記水平走査期間の動的な変化に追従して前記設定信号を出力する
請求項3に記載のクロック制御回路。
【請求項5】
前記制御回路は、前記撮像素子における少なくとも前記複数の画素の走査に関連する回路に用いられるクロック設定信号に基づいて、前記水平走査期間を認識する
請求項1に記載のクロック制御回路。
【請求項6】
前記制御回路は、外部入力クロック信号に対する前記スペクトラム拡散回路への入力クロック信号の分周数を示す分周設定信号と、前記撮像素子における少なくとも前記複数の画素の走査に関連する回路に用いられるクロック設定信号とに基づいて、前記水平走査期間を認識する
請求項1に記載のクロック制御回路。
【請求項7】
複数の画素と、
少なくとも1つの所定の回路と、
前記少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、
前記複数の画素に対する水平走査期間を認識し、前記スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、前記水平走査期間に対して所望の周期となるように前記拡散周期を制御する設定信号を出力する制御回路と
を備える
撮像素子。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、クロック制御回路、および撮像素子に関する。
【背景技術】
【0002】
電子機器におけるEMI(Electromagnetic Interference)を低減する方法として、スペクトラム拡散クロック(SSC:Spread Spectrum Clocking)を用いることが有効である。一方、撮像素子にSSCを適用した場合、画素出力に画ノイズが発生する場合があり、この画ノイズを低減する技術が提案されている(特許文献1,2参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】国際公開第2013/47404号
【特許文献2】特開2001-268355号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1,2に記載の技術では画ノイズの抑制が不十分であり、また、消費電力が増加する。
【0005】
低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することが可能なクロック制御回路、および撮像素子を提供することが望ましい。
【課題を解決するための手段】
【0006】
本開示の一実施の形態に係るクロック制御回路は、複数の画素を有する撮像素子内の少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、複数の画素に対する水平走査期間を認識し、スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、水平走査期間に対して所望の周期となるように拡散周期を制御する設定信号を出力する制御回路とを備える。
【0007】
本開示の一実施の形態に係る撮像素子は、複数の画素と、少なくとも1つの所定の回路と、少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、複数の画素に対する水平走査期間を認識し、スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、水平走査期間に対して所望の周期となるように拡散周期を制御する設定信号を出力する制御回路とを備える。
【0008】
本開示の一実施の形態に係るクロック制御回路、または撮像素子では、複数の画素に対する水平走査期間を認識し、スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、水平走査期間に対して所望の周期となるように拡散周期を制御する。
【図面の簡単な説明】
【0009】
図1】EMI規格と妨害波との関係の一例を示す説明図である。
図2】SSCのクロック周波数の一例を示す説明図である。
図3】SSCを適用した場合の妨害波の一例を示す説明図である。
図4】撮像素子にSSCを適用した場合の画素出力結果の一例を模式的に示す説明図である。
図5】1H期間とSSC拡散周期との関係の一例を模式的に示す説明図である。
図6】撮像素子の一部の動作パラメータと動作範囲の仕様例を示す説明図である。
図7】本開示の一実施の形態に係る撮像素子の概要を示すブロック図である。
図8】一実施の形態に係る撮像素子の要部構成例を概略的に示すブロック図である。
図9】1H同定処理回路の一構成例および1H同定処理回路の動作の概要を概略的に示すブロック図である。
図10】1H同定処理回路の入力設定信号と出力信号との関係の一例を示す説明図である。
図11】1H期間とSSC拡散周期との関係の変形例を模式的に示す説明図である。
図12】同一の撮像素子において1H期間を変動させた場合の1H期間とSSC拡散周期との関係の一例を模式的に示す。
図13】一実施の形態に係る技術の実機における性能評価の一例を示す説明図である。
図14】1V期間および1H期間とSSC拡散周期との関係の一例を模式的に示す説明図である。
図15】1フレーム期間内において1H期間が変動する場合のSSC拡散周期の一例を模式的に示す説明図である。
【発明を実施するための形態】
【0010】
以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
0.比較例(図1図6
1.一実施の形態(図7図15
1.1 構成および動作
1.2 変形例
1.3 効果
2.その他の実施の形態
【0011】
<0.比較例>
LSI(Large Scale Integration)の多機能化による消費電力の増大や、動作速度の向上により、製品、あるいは製品に搭載されるデバイスのEMIの規格を満たさないケースが多くなってきている。図1には、妨害波規格としてのEMI規格とEUT(Equipment Under Test)からの妨害波との関係の一例を示す。図1において横軸は周波数、縦軸は妨害波のレベルを示す。
【0012】
EMIを緩和する有効な手段としては、例えばスペクトラム拡散クロック(SSC:Spread Spectrum Clocking)が良く使用される。
【0013】
図2に、SSCのCLK(クロック)周波数の一例を示す。図2の(A)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図2の(B)には、SSCの周波数変動(周波数トレンド)の一例を示す。図2の(A),(B)において横軸は時間を示す。図2の(B)において縦軸は周波数を示す。
【0014】
図2の(B)においてfcはSSCの中心周波数を示す。SSCでは、拡散周波数(SSC拡散周期の逆数)に応じて、動的にクロック周波数が変動する。δは拡散率を示しており、図2の(B)の例では、中心周波数fcに対して±δ%の周波数変動を生じさせている。
【0015】
図3に、SSCを適用した場合の妨害波の一例を示す。図3において横軸は周波数、縦軸は妨害波のレベルを示す。
【0016】
SSCを適用すると、図3に示したように拡散率に応じて妨害波の周波数帯域は広がるが、妨害波のピークレベルは低減する。
【0017】
図4は、撮像素子にSSCを適用した場合の画素出力結果の一例を模式的に示している。
【0018】
前述したSSCを、例えばIC(Integrated Circuit)チップで構成されるイメージセンサなどの撮像素子に適用した場合、画素出力に対して、横筋の画ノイズが発生する場合がある。撮像素子において、横方向の1行単位の画素では同一の時刻帯で光電素子の出力をA/D(アナログ/デジタル)変換するため、横方向の出力に差分は発生しない。しかしながら、行ごとに画素をみると、SSCによるクロック周期の時間的揺らぎの影響により、画素出力は一定であっても行ごとにA/D変換結果が異なってしまい、結果的に横筋が発生する場合がある。
【0019】
それゆえ、行ごとにSSCの周波数が変わらないようにするという技術が提案されている。例えば特許文献1(国際公開第2013/47404号)では、SSCのクロックをカウントし、そのカウント値を1H期間に利用し、1H期間を行ごとに変動させる。そして、1H期間の平均値の変動量を0とすることで、ノイズを抑制する技術が提案されている。また、特許文献2(特開2001-268355号公報)では、水平走査のタイミングごとにSSCをリセットする技術が提案されている。これにより、水平走査ごとに位相(周波数)の揃った拡散クロックで動作させる。リセットには光電変換素子の電荷蓄積時間を決定する移送ゲートクロック信号を用いる。
【0020】
図5に、水平走査期間(1H期間)とSSC拡散周期との関係の一例を模式的に示す。図5の(A)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図5の(B)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図5の(C)には、SSCの周波数変動(周波数トレンド)の一例を示す。図5の(A),(B),(C)において横軸は時間を示す。図5の(C)において縦軸は周波数を示す。
【0021】
図5には、1H期間とSSC拡散周期とを同一にした例を示す。これにより、水平走査する際は、行ごとに1H期間とSSC拡散周期とが同じとなっているのが分かる。なお、1H期間をSSC拡散周期に対して整数倍にした場合にも同じ効果が得られる。
【0022】
図6に、撮像素子の一部の動作パラメータと動作範囲の仕様例を表形式で示す。
【0023】
図5に示したように1H期間とSSC拡散周期とを行ごとに同一にする場合、1H期間を固定化することが考えられる。1H期間が固定化されていれば、あらかじめ1H期間とSSC拡散周期とを行ごとに同一となるように設計できるため、その容易性は高い。しかしながら、1H期間を行ごとに固定化することが難しい場合がある。例えば図6に示したように、撮像素子への入力クロック信号や、撮像素子自体が保有している画角特性、フレームレートなどが、仕様上可変できるようになっている。なお、図6の表において、AAA、BBB、GGG、HHH、XXX、YYYは小数点以下を含んだ数値を意味している。このように、撮像素子では動作パラメータが可変となっている場合がある。そして、撮像素子を使用するユーザが、動作範囲内で任意に動作パラメータを設定することができる場合が多分にある。それゆえ、これらのパラメータ次第では、前述した1H期間が容易に変動してしまう。1H期間が変動してしまうと、SSC拡散周期あるいはSSC拡散周期の整数倍と乖離が生じてしまうため、画素に横筋ノイズが発生してしまう。
【0024】
一方、上述した特許文献2で提案されているように、水平走査のタイミングごとにSSCをリセットすることで、1H期間が変動しても、1H期間とSSC拡散周期とを同一にすることが可能となる。しかしながら、この手法だとSSCのリセット時、および起動の際に消費する動作電流が増大する。また、SSC回路をPLL(Phase Locked Loop)で構成した際、PLLが安定動作するまでの起動時間がかかりすぎると、ブランキング期間を短くすることも難しくなる。
【0025】
そこで、低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することが可能なクロック制御回路、および撮像素子を提供することが望ましい。
【0026】
<1.一実施の形態>
[1.1 構成および動作]
図7は、本開示の一実施の形態に係る撮像素子1の概要を示している。
【0027】
一実施の形態に係る撮像素子1は、例えばCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。一実施の形態に係る撮像素子1は、携帯端末機器やカメラ機器などイメージセンサを使用する機器全般に適用可能である。
【0028】
撮像素子1は、画素アレイ10と、画素駆動部11と、画素読み出し部12と、画素信号処理部13と、制御部14とを備えている。撮像素子1は例えばICチップで構成される。
【0029】
画素アレイ10は、マトリックス状に配置された複数の画素Pを有している。画素駆動部11は、制御部14からの指示に基づいて、画素アレイ11における複数の画素Pを行ごとに順次駆動する。
【0030】
画素読み出し部12は、制御部14からの指示に基づいて、複数の画素Pからの画像信号を読み出して出力する。画素信号処理部13は、画素読み出し部12から出力された画像信号に対して所定の信号処理部を行う。
【0031】
制御部14は、撮像素子1内の各回路の制御を行う。制御部14は、クロック制御回路15を有している。クロック制御回路15は、撮像素子1内の各回路に用いられるクロック信号の生成に関する制御を行う。
【0032】
図8は、一実施の形態に係る撮像素子1の要部構成例を概略的に示している。図8には、クロック信号の生成に関連する部分の回路構成例を示す。図8には、1H期間とSSC拡散周期とを同一にするための回路構成例を示す。
【0033】
一実施の形態に係る撮像素子1は、CLK系統構成回路2と、SSC回路3と、1H同定処理回路4と、モードレジスタ5とを備えている。制御部14は、これらの構成ブロックを有していてもよい。クロック制御回路15は、少なくとも、SSC回路3と、1H同定処理回路4とを有する。
【0034】
SSC回路3は、撮像素子1内の少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路である。SSC回路3には、PLLと、PLLのクロックを動的に制御する変調回路とが含まれる。SSC回路3の出力クロック信号は1つでもよいし、複数の出力クロック信号が存在してもよい。SSC回路3の変調回路には、SSCの拡散周波数、およびSSCの拡散率などに関する1H同定処理回路4からの設定信号(SSC拡散周期設定信号)が入力される。SSC回路3は、1H同定処理回路4からの設定信号に基づいて、1H期間の逆数(周波数)に合致した周波数となるようにSSC拡散周波数の周波数調整を行う。
【0035】
CLK系統構成回路2は、撮像素子1内の各回路の動作周波数に対応したクロック信号を各回路に供給する。CLK系統構成回路2は、モードレジスタ5からの設定信号に応じたクロックの分周およびクロックの分配などを行う。CLK系統構成回路2は、SSC非適用クロック信号を生成するSSC非適用CLK用回路21と、SSC適用クロック信号を生成するSSC適用CLK用回路22とを有する。CLK系統構成回路2には、入力クロック信号として、外部入力クロック信号INCKと、SSC回路3からの出力クロック信号とが入力される。SSC非適用CLK用回路21には、外部入力クロック信号INCKが入力クロック信号として入力される。SSC適用CLK用回路22には、SSC回路3からの出力クロック信号が入力クロック信号として入力される。SSC非適用クロック信号の一部は、SSC回路3への入力クロック信号として入力される(後述する図9参照)。
【0036】
モードレジスタ5は、撮像素子1の各種動作モードを決める設定信号を生成する。モードレジスタ5で生成した設定信号は、撮像素子1内の各回路へ供給される。撮像素子1内の各回路は、モードレジスタ5で決定された設定に準拠して動作を行う。モードレジスタ5は、設定信号としてクロック周波数設定信号(分周設定信号)をCLK系統構成回路2と1H同定処理回路4とに出力する。
【0037】
図9に、1H同定処理回路4の一構成例および1H同定処理回路4の動作の概要を概略的に示す。
【0038】
1H同定処理回路4は、SSC拡散周期設定用メモリ41と、制御回路42とを有する。制御回路42は、複数の画素Pに対する1H期間を認識し、SSC回路3によるスペクトラム拡散の拡散周期(SSC拡散周期)が、1H期間に対して所望の周期となるようにSSC拡散周期を制御する設定信号(SSC拡散周期設定信号)をSSC回路3に出力する。ここで、所望の周期は、例えば、1H期間とSSC拡散周期とが同一となる周期である。
【0039】
制御回路42は、後述する図12図15に示すように1H期間が変動する場合であっても、1H期間の動的な変化を認識し、SSC拡散周期が1H期間の動的な変化に追従して所望の周期となるようにSSC拡散周期設定信号を出力可能となっている。この場合、制御回路42は、1H期間のブランキング期間において、1H期間の動的な変化を認識し、1H期間の動的な変化に追従して設定信号を出力するようにしてもよい。
【0040】
制御回路42は、撮像素子1における少なくとも複数の画素Pの走査に関連する各回路に用いられるクロック設定信号に基づいて、1H期間を認識する。クロック設定信号には、例えばクロックの分周設定を示す信号が含まれる。例えば、制御回路42は、外部入力クロック信号INCKに対するSSC回路3への入力クロック信号の分周数を示す分周設定信号と、撮像素子1における少なくとも複数の画素Pの走査に関連する各回路に用いられるクロック設定信号とに基づいて、1H期間を認識するようにしてもよい。
【0041】
制御回路42は、例えばデコーダ、組み合わせ論理回路、およびFlipFlopなどを使用した回路を含む。制御回路42は、SSC拡散周期設定用メモリ41に格納された情報を参照し、入力設定信号に基づいて、1H期間を認識する。SSC拡散周期設定用メモリ41は、例えば図10に示したようなテーブル情報を格納している。制御回路42は、入力設定信号で示される設定値とテーブル情報とのマッチングを行い、出力信号としてSSC拡散周期設定信号を出力する。
【0042】
図10に、1H同定処理回路4の入力設定信号と出力信号との関係の一例を表形式で示す。
【0043】
図10には、入力設定信号の一例として、画素走査に関連する各回路に用いるクロック設定信号と、SSC入力クロックの外部入力クロック信号INCKに対する分周数とを示す。また、出力信号(SSC拡散周期設定信号)の一例として、1H期間に対応するSSC入力クロックの分周数を示す。
【0044】
図10では、画素走査に関連する各回路に用いるクロック設定信号として、信号A,B,C,D,E,Fが存在する例を示しているが、クロック設定信号の信号数は、撮像素子1の回路仕様に応じて変わってもよい。また、信号A,B,C,D,E,Fの各信号は1bitでもよいし、複数bitで構成されてもよい。
【0045】
図10では、入力設定信号としてSSC入力クロックの外部入力クロック信号INCKに対する分周数を示す分周設定信号を含んでいるが、画素走査に関連する各回路に用いるクロック設定信号だけで1H期間を認識可能であれば、入力設定信号は画素走査に関連する各回路に用いるクロック設定信号のみであってもよい。
【0046】
また、図10のテーブル情報において、SSC入力クロックの外部入力クロック信号INCKに対する分周数の値は、モードレジスタ5によって後から任意に設定できるようにしてもよい。例えば、現在の値に対して、全体的にマイナス1、あるいはプラス1、2倍、0.5倍などの値に設定できるようにしてもよい。同様に、1H期間に対応するSSC入力クロックの分周数も、モードレジスタ5によって後から任意に設定できるようにしてもよい。例えば、現在の値に対して、全体的にマイナス1、あるいはプラス1、2倍、0.5倍などの値に設定できるようにしてもよい。
【0047】
[1.2 変形例]
図11に、1H期間とSSC拡散周期との関係の変形例を模式的に示す。図11の(A)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図11の(B)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図11の(C)には、SSCの周波数変動(周波数トレンド)の一例を示す。図11の(A),(B),(C)において横軸は時間を示す。図11の(C)において縦軸は周波数を示す。
【0048】
1H同定処理回路4の制御回路42が制御する所望の周期は、1H期間とSSC拡散周期とが同一となる周期に限らず、1H期間がSSC拡散周期に対して整数倍となる周期であってもよい。例えば、図5には、1H期間とSSC拡散周期とを同一にする例を示したが、モードレジスタ5の設定信号によって、図11に示した例のように1H期間をSSC拡散周期に対して2倍にすることができるように構成してもよい。また、モードレジスタ5の設定信号によって、2倍に限らず、1H期間をSSC拡散周期に対して任意の整数倍にすることができるように構成してもよい。1H期間がSSC拡散周期に対して整数倍となることが望ましいが、画素Pの横筋ノイズが強調されない範囲内においては、整数倍から多少の誤差は生じてもよい。例えば整数倍から概ね数%の誤差があってもよい。なお、この整数倍にするための制御信号は、1H同定処理回路4に入力してもよいし、SSC回路3に入力してもよい。
【0049】
[1.3 効果]
以上説明したように、一実施の形態に係る撮像素子1によれば、1H期間を認識し、SSC回路3によるスペクトラム拡散の拡散周期(SSC拡散周期)が、1H期間に対して所望の周期となるようにSSC拡散周期を制御する。これにより、低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することが可能となる。
【0050】
1H期間が撮像素子1の動作時に固定されるのであれば、1H期間はジッタなどの周期的な時間揺れは起こらないが、一実施の形態に係る撮像素子1によれば、1H期間がどのように変わったとしても、撮像素子1内部で1H期間の変動に追従し、SSC拡散周期を所望の周期にすることができる。1H期間はSSC拡散周期に対して整数倍となることが望ましいが、画素Pの横筋ノイズが強調されない範囲内においては、この時間に差分(1H期間とSSC拡散周期との差分)は生じてもよい。例えば概ね数%の誤差が生じてもよい。
【0051】
図12に、同一の撮像素子1において1H期間を変動させた場合の1H期間とSSC拡散周期との関係の一例を模式的に示す。図12の(A1),(A2)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図12の(B1),(B2)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図12の(C1),(C2)には、SSCの周波数変動(周波数トレンド)の一例を示す。図12の(A1),(B1),(C1),(A2),(B2),(C2)において横軸は時間を示す。図12の(C1),(C2)において縦軸は周波数を示す。
【0052】
図12には1H期間とSSC拡散周期とを同一にした場合を示す。図12の(A1),(B1),(C1)では1H期間はA(s)となっている。図12の(A2),(B2),(C2)では1H期間はB(s)となっている。数値の大小関係は、A>Bとなっている。上述したように、1H同定処理回路4の制御回路42は、少なくとも画素走査に関連する各回路に用いられるクロック設定信号に基づいて、1H期間の変動を認識することが可能であり、SSC拡散周期が1H期間の動的な変化に追従して所望の周期となるようにSSC拡散周期設定信号を出力可能である。
【0053】
(評価)
図13に、一実施の形態に係る技術の実機における性能評価の一例を示す。図13の(A)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図13の(B)には、SSCが適用された回路の電源電圧の揺れの波形の一例を示す。電源電圧の揺れは、撮像素子1の外の電源電圧をモニタすることにより得られる。図13の(C)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図13の(D)には、SSCの周波数変動(周波数トレンド)の一例を示す。図13の(A),(B),(C),(D)において横軸は時間を示す。図13の(D)において縦軸は周波数を示す。
【0054】
1H期間を表す水平走査制御信号(図13の(A))は、撮像素子1の外部に出力され、撮像素子1を制御するホスト側へ同期を取るために送付される。一方、SSCが適用された回路の電源線における伝導ノイズの評価を撮像素子1を構成するチップの外から行うことにより、撮像素子1の外から電源ノイズのピーク周期の間隔をモニタできる(図13の(B))。これにより、撮像素子1の外部において、SSCのスペクトラム拡散クロック周波数のトレンドを知ることができる(SSC拡散周期を知ることができる)(図13の(D))。このように、撮像素子1の外部において、1H期間とSSC拡散周期とを容易に把握することができる。このため、一実施の形態に係る技術の実機における性能評価を撮像素子1の外部において容易に行うことが可能となる。
【0055】
図14に、垂直走査期間(1V期間)および1H期間とSSC拡散周期との関係の一例を模式的に示す。図14の(A)には、垂直走査制御信号(垂直同期信号)の波形の一例を示す。図14の(B)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図14の(C)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図14の(D)には、SSCの周波数変動(周波数トレンド)の一例を示す。図14の(A),(B),(C),(D)において横軸は時間を示す。図14の(D)において縦軸は周波数を示す。
【0056】
仮に水平走査信号(図14の(B))が撮像素子1の外部へ出力されず、垂直走査信号(垂直同期信号)(図14の(A))が出力される場合は、垂直走査期間に基づいて、上記図13に示した場合と同様の評価が可能となる。また、垂直走査期間が撮像素子1の1フレーム期間であっても、上記図13に示した場合と同様の評価が可能となる。この場合、垂直走査期間は、1H期間に対して、撮像素子1の画素Pの行数を乗算すれば得られる。なお、行数については撮像素子1の仕様に準ずるものとなる。
【0057】
図15に、1フレーム期間内において1H期間が変動する場合のSSC拡散周期の一例を模式的に示す。図15の(A)には、垂直走査制御信号(垂直同期信号)の波形の一例を示す。図15の(B)には、水平走査制御信号(水平同期信号)の波形の一例を示す。図15の(C)には、SSCによるスペクトラム拡散後のクロック信号の波形の一例を示す。図15の(D)には、SSCの周波数変動(周波数トレンド)の一例を示す。図15の(A),(B),(C),(D)において横軸は時間を示す。図15の(D)において縦軸は周波数を示す。
【0058】
1フレーム期間内において1H期間が変動する場合、一実施の形態に係る技術では、1H期間の変動に追従してSSC拡散周期も変動する。例えば、撮像素子1の入力クロック信号(外部入力クロック信号INCK)の周波数を変更させた場合、あるいは、1フレーム期間を外部から制御し、変更させた場合等には、1H期間が変更される。そのような場合において、前述した電源ノイズのピークの変動の周期(SSC拡散周期と等価)が、1H期間と等しくなっているか否かの実証が可能である。撮像素子1を使用するユーザによっては、図15に示したように、1H期間を1フレーム期間内で任意に変更する可能性がある。一実施の形態に係る技術では、図15に示したように1フレーム期間内で1H期間がダイナミックに変動したとしてもブランキング期間内での逐次処理により、随時、SSC拡散周期と1H期間とを同じとすることが可能となる。例えば、ブランキング期間に1H期間の変更が外部から制御された場合、撮像素子1内では、1H同定処理回路4の処理、およびSSC回路3の分周設定変更のみを行うようにしてもよい。これにより、例えば数クロック内にSSCの設定を完結させることができる。なお、図15の(D)において、SSC拡散周期は、A>Bとなる。
【0059】
なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。以降の他の実施の形態の効果についても同様である。
【0060】
<2.その他の実施の形態>
本開示による技術は、上記一実施の形態の説明に限定されず種々の変形実施が可能である。
【0061】
例えば、本技術は以下のような構成を取ることもできる。
以下の構成の本技術によれば、複数の画素に対する水平走査期間を認識し、スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、水平走査期間に対して所望の周期となるように拡散周期を制御する。これにより、低消費電力で画ノイズを抑制しつつ、SSCを良好に適用することが可能となる。
【0062】
(1)
複数の画素を有する撮像素子内の少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、
前記複数の画素に対する水平走査期間を認識し、前記スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、前記水平走査期間に対して所望の周期となるように前記拡散周期を制御する設定信号を出力する制御回路と
を備える
クロック制御回路。
(2)
前記所望の周期は、前記水平走査期間と前記拡散周期とが同一となる周期、または前記水平走査期間が前記拡散周期に対して整数倍となる周期である
上記(1)に記載のクロック制御回路。
(3)
前記制御回路は、前記水平走査期間の動的な変化を認識し、前記拡散周期が前記水平走査期間の動的な変化に追従して前記所望の周期となるように前記設定信号を出力する
上記(1)または(2)に記載のクロック制御回路。
(4)
前記制御回路は、前記水平走査期間のブランキング期間において、前記水平走査期間の動的な変化を認識し、前記水平走査期間の動的な変化に追従して前記設定信号を出力する
上記(3)に記載のクロック制御回路。
(5)
前記制御回路は、前記撮像素子における少なくとも前記複数の画素の走査に関連する回路に用いられるクロック設定信号に基づいて、前記水平走査期間を認識する
上記(1)ないし(4)のいずれか1つに記載のクロック制御回路。
(6)
前記制御回路は、外部入力クロック信号に対する前記スペクトラム拡散回路への入力クロック信号の分周数を示す分周設定信号と、前記撮像素子における少なくとも前記複数の画素の走査に関連する回路に用いられるクロック設定信号とに基づいて、前記水平走査期間を認識する
上記(1)ないし(5)のいずれか1つに記載のクロック制御回路。
(7)
複数の画素と、
少なくとも1つの所定の回路と、
前記少なくとも1つの所定の回路に用いられるクロック信号に対してスペクトラム拡散を行うスペクトラム拡散回路と、
前記複数の画素に対する水平走査期間を認識し、前記スペクトラム拡散回路によるスペクトラム拡散の拡散周期が、前記水平走査期間に対して所望の周期となるように前記拡散周期を制御する設定信号を出力する制御回路と
を備える
撮像素子。
【符号の説明】
【0063】
1…撮像素子、2…CLK系統構成回路、3…SSC(Spread Spectrum Clocking)回路(スペクトラム拡散回路)、4…1H同定処理回路、5…モードレジスタ、10…画素アレイ、11…画素駆動部、12…画素読み出し部、13…画素信号処理部、14…制御部、15…クロック制御回路、21…SSC非適用CLK用回路、22…SSC適用CLK用回路、41…SSC拡散周期設定用メモリ、42…制御回路、INCK…外部入力クロック(CLK)信号、P…画素。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15