(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023121024
(43)【公開日】2023-08-30
(54)【発明の名称】情報処理装置、情報処理方法、および情報処理プログラム
(51)【国際特許分類】
G06F 16/9035 20190101AFI20230823BHJP
G06Q 50/10 20120101ALI20230823BHJP
【FI】
G06F16/9035
G06Q50/10
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022024217
(22)【出願日】2022-02-18
(71)【出願人】
【識別番号】319013263
【氏名又は名称】ヤフー株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】森 琢郎
(72)【発明者】
【氏名】小川 知紘
【テーマコード(参考)】
5B175
5L049
【Fターム(参考)】
5B175HA01
5B175HB03
5L049CC11
(57)【要約】
【課題】複数のユーザが共通に興味関心を有する可能性がある対象の情報を適切に提供すること。
【解決手段】本願に係る情報処理装置は、推定部と、提供部とを備える。推定部は、複数のユーザの興味関心に対する関連性に応じて複数の対象の各々がベクトルで示され且つベクトルが所定期間毎に更新される興味関心空間において2以上のユーザの興味関心と特定の対象とが類似していた過去の時点の2以上のユーザ間の差に基づいて、2以上のユーザ間の特定の対象に対する認識違いを推定する。提供部は、推定部によって推定された認識違いに応じた情報を2以上のユーザのうちの少なくとも一のユーザに提供する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
複数のユーザの興味関心に対する関連性に応じて複数の対象の各々がベクトルで示され且つ前記ベクトルが所定期間毎に更新される興味関心空間において2以上のユーザの興味関心と特定の対象とが類似していた過去の時点の前記2以上のユーザ間の差に基づいて、前記2以上のユーザ間の前記特定の対象に対する認識違いを推定する推定部と、
前記推定部によって推定された前記認識違いに応じた情報を前記2以上のユーザのうちの少なくとも一のユーザに提供する提供部と、を備える
ことを特徴とする情報処理装置。
【請求項2】
前記推定部は、
前記差が予め定められた閾値以上である場合に、前記2以上のユーザ間の前記特定の対象に対する認識違いを推定する
ことを特徴とする請求項1に記載の情報処理装置。
【請求項3】
前記提供部は、
前記2以上のユーザのうち前記特定の対象と類似していた過去の時点のうち最も時点が新しいユーザに前記認識違いに基づく情報を提供する
ことを特徴とする請求項1または2に記載の情報処理装置。
【請求項4】
前記提供部は、
前記2以上のユーザのうち前記特定の対象と類似していた過去の時点のうち最も時点が新しいユーザ以外のユーザに対して前記特定の対象に関する情報を提供する
ことを特徴とする請求項1~3のいずれか1つに記載の情報処理装置。
【請求項5】
前記複数のユーザのうち予め定められた関係を有する複数のユーザを前記2以上のユーザとして特定する第1特定部を備える
ことを特徴とする請求項1~4のいずれか1つに記載の情報処理装置。
【請求項6】
前記第1特定部は、
互いの間でコミュニケーションを行う複数のユーザを前記予め定められた関係を有する複数のユーザとして特定する
ことを特徴とする請求項5に記載の情報処理装置。
【請求項7】
予め定められた条件を満たす2以上の検索語を類似する特徴を有するものとして前記複数のユーザが用いた複数の検索語の各々が有する特徴を学習した学習済みモデルに前記ユーザが用いた前記検索語を入力して得られる前記検索語のベクトルに基づいて、前記ユーザの前記興味関心を特定する第2特定部を備える
ことを特徴とする請求項1~6のいずれか1つに記載の情報処理装置。
【請求項8】
前記複数のユーザが用いた前記複数の検索語を用いて前記学習済みモデルを生成する学習部を備える
ことを特徴とする請求項7に記載の情報処理装置。
【請求項9】
コンピュータが実行する情報処理方法であって、
複数のユーザの興味関心に対する関連性に応じて複数の対象の各々がベクトルで示され且つ前記ベクトルが所定期間毎に更新される興味関心空間において2以上のユーザの興味関心と特定の対象とが類似していた過去の時点の前記2以上のユーザ間の差に基づいて、前記2以上のユーザ間の前記特定の対象に対する認識違いを推定する推定工程と、
前記推定工程によって推定された前記認識違いに応じた情報を前記2以上のユーザのうちの少なくとも一のユーザに提供する提供工程と、を含む
ことを特徴とする情報処理方法。
【請求項10】
複数のユーザの興味関心に対する関連性に応じて複数の対象の各々がベクトルで示され且つ前記ベクトルが所定期間毎に更新される興味関心空間において2以上のユーザの興味関心と特定の対象とが類似していた過去の時点の前記2以上のユーザ間の差に基づいて、前記2以上のユーザ間の前記特定の対象に対する認識違いを推定する推定手順と、
前記推定手順によって推定された前記認識違いに応じた情報を前記2以上のユーザのうちの少なくとも一のユーザに提供する提供手順と、をコンピュータに実行させる
ことを特徴とする情報処理プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理装置、情報処理方法、および情報処理プログラムに関する。
【背景技術】
【0002】
従来、ユーザに情報提供を行うための種々の技術が提供されている。例えば、特許文献1には、ユーザが興味関心を持っているカテゴリを、商取引に関連する要素に基づいて分類した複数の象限のうち、ユーザが興味関心を持っているカテゴリが属する象限に基づいて、象限に応じた広告を配信する技術が提案されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記の従来技術には、改善の余地がある。上記の従来技術では、象限に依存した情報提供を行っており、情報提供を柔軟に行うという点では改善の余地があり、複数のユーザが共通に興味関心を有する可能性がある対象の情報を適切に提供することが望まれている。
【0005】
本願は、上記に鑑みてなされたものであって、複数のユーザが共通に興味関心を有する可能性がある対象の情報を適切に提供することができる情報処理装置、情報処理方法、および情報処理プログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
本願に係る情報処理装置は、推定部と、提供部とを備える。推定部は、複数のユーザの興味関心に対する関連性に応じて複数の対象の各々がベクトルで示され且つベクトルが所定期間毎に更新される興味関心空間において2以上のユーザの興味関心と特定の対象とが類似していた過去の時点の2以上のユーザ間の差に基づいて、2以上のユーザ間の特定の対象に対する認識違いを推定する。提供部は、推定部によって推定された認識違いに応じた情報を2以上のユーザのうちの少なくとも一のユーザに提供する。
【発明の効果】
【0007】
実施形態の一態様によれば、複数のユーザが共通に興味関心を有する可能性がある対象の情報を適切に提供することができるという効果を奏する。
【図面の簡単な説明】
【0008】
【
図1】
図1は、実施形態に係る情報処理の一例を示す図である。
【
図2】
図2は、実施形態に係る情報処理装置を含む情報処理システムの構成の一例を示す図である。
【
図3】
図3は、実施形態に係る情報処理装置のユーザ情報記憶部に記憶されるユーザ情報テーブルの一例を示す図である。
【
図4】
図4は、実施形態に係る情報処理装置のコンテンツ記憶部に記憶されるコンテンツテーブルの一例を示す図である。
【
図5】
図5は、実施形態に係る情報処理装置の興味関心空間情報記憶部に記憶される興味関心空間情報の一例を示す図である。
【
図6】
図6は、実施形態に係る情報処理装置の第2特定部によって特定される興味関心と特定の対象とが類似していた過去の時点の一例を示す図である。
【
図7】
図7は、実施形態に係る情報処理装置の推定部による2以上の特定対象ユーザ間の特定の対象に対する認識違いの推定処理の一例を示す図である。
【
図8】
図8は、実施形態に係る情報処理装置の処理部による処理手順を示すフローチャートである。
【
図9】
図9は、実施形態に係る情報処理装置の処理部による情報提供手順を示すフローチャートである。
【
図10】
図10は、実施形態に係る情報処理装置の機能を実現するコンピュータの一例を示すハードウェア構成図である。
【発明を実施するための形態】
【0009】
以下に、本願に係る情報処理装置、情報処理方法、および情報処理プログラムを実施するための形態(以下、「実施形態」と呼ぶ)について図面を参照しつつ詳細に説明する。なお、この実施形態により本願に係る情報処理装置、情報処理方法、および情報処理プログラムが限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。
【0010】
〔1.情報処理の一例〕
まず、
図1を用いて、実施形態に係る情報処理の一例について説明する。
図1は、実施形態に係る情報処理の一例を示す図である。実施形態に係る情報処理は、情報処理装置1によって実行される処理であり、検索処理、モデル生成処理、および情報提供処理を含む。
【0011】
まず、検索処理およびモデル生成処理について説明する。
図1に示す情報処理装置1は、ユーザU
1~U
nに検索サービスを提供する。例えば、情報処理装置1は、検索対象がインデックスされて格納されたデータベースである検索対象データベースなどを有しており、かかる検索対象データベースなどの情報を対象として検索処理を実行する。例えば、検索対象データベースの情報は記憶部11(
図2参照)に格納される。
【0012】
図1に示すように、ユーザU
1~U
nは、端末装置2
1~2
nを操作することで、端末装置2
1~2
nから検索クエリを情報処理装置1に送信する処理を端末装置2
1~2
nに実行させる(ステップS1
1~S1
n)。nは、2以上の整数である。
【0013】
例えば、ステップS11において、ユーザU1は、端末装置21を操作することで、端末装置21から検索クエリを情報処理装置1に送信する処理を端末装置21に実行させる。また、ステップS1nにおいて、ユーザUnは、端末装置2nを操作することで、端末装置2nから検索クエリを情報処理装置1に送信する処理を端末装置2nに実行させる。以下において、ユーザU1~Unの各々を個別に区別せずに示す場合、ユーザUと記載し、端末装置21~2nの各々を個別に区別せずに示す場合、端末装置2と記載する場合がある。
【0014】
検索クエリは、ユーザUによって端末装置2に入力された1以上の検索語(検索キーワード)を含む。例えば、ユーザUによって端末装置2に1以上の検索語として「スニーカ」が入力された場合、検索クエリには、「スニーカ」が含まれる。また、ユーザUによって端末装置2に1以上の検索語として「スニーカ レディース」が入力された場合、検索クエリには、「スニーカ レディース」が含まれる。「スニーカ レディース」には、「スニーカ」と「レディース」の2つの検索語がスペース区切りで含まれている。
【0015】
情報処理装置1は、端末装置21~2nから各々送信される検索クエリを受け付ける(ステップS21~S2n)。例えば、情報処理装置1は、ステップS21で、端末装置21から検索クエリを受け付け、ステップS2nで、端末装置2nから検索クエリを受け付ける。
【0016】
次に、情報処理装置1は、ステップS21~S2nで受け付けた検索クエリに基づいて検索処理を実行する(ステップS31~S3n)。例えば、情報処理装置1は、ステップS31において、端末装置21から送信されステップS21で受け付けた検索クエリに含まれる1以上の検索語に対応する対象を検索対象データベースから検索する検索処理を実行する。また、情報処理装置1は、ステップS3nにおいて、端末装置2nから送信されステップS2nで受け付けた検索クエリに含まれる1以上の検索語に対応する対象を検索対象データベースから検索する検索処理を実行する。
【0017】
次に、情報処理装置1は、ステップS31~S3nによる検索処理の結果である検索結果を端末装置21~2nに送信する(ステップS41~S4n)。例えば、情報処理装置1は、ステップS41において、ステップS31の検索処理の結果である検索結果を端末装置21に送信する。また、情報処理装置1は、ステップS4nにおいて、ステップS3nの検索処理の結果である検索結果を端末装置2nに送信する。
【0018】
次に、情報処理装置1は、ステップS21~S2nで受け付けた検索クエリに基づいて、興味関心モデルを生成する(ステップS5)。ステップS5で生成される興味関心モデルは、複数の対象の各々を示す情報を入力とし、M次元のベクトルを出力とするモデルである。Mは、例えば、500~2000の範囲の整数であるが、かかる例に限定されない。また、M次元のベクトルは、例えば、分散表現で示されてもよく、分散表現以外で示されてもよい。以下、M次元のベクトルを単にベクトルと記載する。
【0019】
ステップS5において、情報処理装置1は、予め定められた条件を満たす2以上の検索語を類似する特徴を有するものとして複数の検索語の各々が有する特徴を学習することによって学習済みモデルである興味関心モデルを生成する。予め定められた条件を満たす2以上の検索語は、同一検索クエリに含まれる複数の検索語、または同一のユーザUによって予め定められた時間内に端末装置2から送信される複数の検索クエリに含まれる検索語である。
【0020】
情報処理装置1は、予め定められた条件を満たす2以上の検索語を学習データとして、2以上の検索語のベクトルが互いに類似するように学習を行う。情報処理装置1は、同一のユーザUによって端末装置2から送信される検索クエリに含まれる検索語を、検索クエリの送信時期にかかわらず、予め定められた条件を満たす2以上の検索語として扱うこともできる。
【0021】
なお、検索語は、1つの検索キーワードで構成されるが、2以上の検索キーワードから構成されてもよい。情報処理装置1は、例えば、検索クエリに文字列「スニーカ レディース」が含まれる場合、「スニーカ」と「レディース」とを異なる検索語として扱うが、「スニーカ」と「レディース」との組を1つの検索語として扱うこともできる。
【0022】
情報処理装置1は、例えば、再帰的ニューラルネットワークとも呼ばれるRNN(Recurrent Neural Network)の一種であるLSTM(Long Short-Term Memory)をベクトル生成(例えば、分散表現生成)に用いたDSSM(Deep Structured Semantic Model)の技術を用いて、検索語などの対象を示す情報からベクトル(例えば、分散表現)を出力する興味関心モデルを生成する。なお、対象を示す情報からベクトルを出力する興味関心モデルの生成方法は、上述した例に限定されない。
【0023】
情報処理装置1は、予め定められた期間TA毎に興味関心モデルの生成を行う。例えば、予め定められた期間TAが1ヶ月である場合、情報処理装置1は、2022年1月、2月、3月、・・・の各々の月単位で興味関心モデルの生成を行う。
【0024】
次に、情報提供処理について説明する。情報処理装置1は、期間TA毎に更新される興味関心空間において2以上のユーザUの興味関心と特定の対象とが類似していた過去の時点を判定する(ステップS6)。
【0025】
ステップS6において、情報処理装置1は、まず、期間TA毎に更新される興味関心空間での2以上のユーザUの各々の興味関心範囲を特定する。興味関心空間では、複数のユーザUの興味関心に対する関連性に応じて複数の対象の各々がベクトルで示される。興味関心空間において、ベクトルで示される対象は、検索語で示される対象に限定されず、検索語で示される対象以外の対象であってもよい。
【0026】
情報処理装置1は、ステップS5で生成された興味関心モデルに対象を示す情報を入力し、興味関心モデルから出力される対象のベクトルを取得する処理を対象毎に行うことによって、各対象のベクトルを含む興味関心空間を生成する。情報処理装置1は、例えば、期間TA毎の興味関心モデルを用いて期間TA毎に興味関心空間を生成する。
【0027】
そして、情報処理装置1は、同一のユーザUによって端末装置2から送信される複数の検索クエリに含まれる検索語をステップS5で生成された興味関心モデルに入力し、興味関心モデルから出力される検索語のベクトルを取得する処理を検索語毎に行う。
【0028】
情報処理装置1は、同一のユーザUによって端末装置2から送信される複数の検索クエリに含まれる検索語のベクトルを平均化して平均ベクトルを算出し、算出した平均ベクトルをユーザ興味関心ベクトルとして判定する。そして、情報処理装置1は、ユーザ興味関心ベクトルと類似する範囲を各ユーザUの興味関心範囲として特定する。なお、情報処理装置1は、例えば、受信した日時が新しい検索クエリの検索語ほど検索語のベクトルの重みを大きくして平均ベクトルを算出することもできる。
【0029】
情報処理装置1は、期間TA毎の興味関心モデルを用いて期間TA毎に各ユーザUの興味関心範囲を特定する。情報処理装置1は、例えば、期間TA内に同一のユーザUによって端末装置2から送信された複数の検索クエリに基づいてその期間TAにおける興味関心範囲をユーザU毎に特定する。
【0030】
また、情報処理装置1は、予め定められた関係を有する複数のユーザUを上述した2以上のユーザUとして特定する。2以上のユーザUは、予め定められた関係を有する複数のユーザUである。
【0031】
予め定められた関係は、例えば、互いの間でコミュニケーションを行う関係である。コミュニケーションは、文字または音声などによるユーザU間の会話であり、例えば、音声通話、チャット、メール、またはテレビ会議などによって行われる。情報処理装置1は、音声通話サービス、チャットサービス、メールサービス、またはテレビ会議サービスなどを提供し、これらのサービスで得られる情報に基づいて、互いの間でコミュニケーションを行う2以上のユーザUを特定することができる。
【0032】
また、情報処理装置1は、夫婦または親子などの家族として情報処理装置1に設定されている2以上のユーザUを予め定められた関係を有する複数のユーザUとして特定することもできる。また、情報処理装置1は、複数の端末装置2で各々検出され且つ複数の端末装置2の各々から送信される位置情報に基づいて、過去に行動を共にしたと推定される2以上のユーザUを判定し、判定した2以上のユーザUを予め定められた関係を有する複数のユーザUとして特定することもできる。
【0033】
また、情報処理装置1は、期間TA毎に更新される興味関心範囲において予め定められた関係を有する2以上のユーザUの興味関心と共通に類似していたことがある対象を特定の対象として決定する。そして、情報処理装置1は、予め定められた関係を有する2以上のユーザUの興味関心と特定の対象とが類似していた過去の時点を判定する。なお、特定の対象は、情報処理装置1のユーザなどによって予め定められた情報であってもよい。
【0034】
次に、情報処理装置1は、2以上のユーザUの各々の興味関心と特定の対象とが類似していた過去の時点の2以上のユーザU間の差であるユーザ間時点差を判定する(ステップS7)。情報処理装置1は、ステップS7において、ユーザUの興味関心範囲に特定の対象が過去に含まれていた場合に、ユーザUの興味関心に対する特定の対象と過去に類似していたと判定する。
【0035】
また、情報処理装置1は、ステップS7において、ユーザUの興味関心と特定の対象とが類似していた過去の時点のうち最新の時点を判定する。そして、情報処理装置1は、2以上のユーザU間の最新の時点の差をユーザ間時点差として判定することができる。
【0036】
次に、情報処理装置1は、ステップS7で判定したユーザ間時点差に基づいて、2以上のユーザU間の特定の対象に対する認識の違いを推定する(ステップS8)。そして、情報処理装置1は、ステップS8で推定した認識の違いに応じた情報を2以上のユーザUのうちの少なくとも一のユーザUに提供する(ステップS9)。
【0037】
例えば、予め定められた関係を有する2以上のユーザUがユーザU1,Unであり、ユーザU1とユーザUnとの興味関心が共に月刊誌Aの連載小説Bに過去に類似していたとする。この場合、情報処理装置1は、月刊誌Aの連載小説Bを特定の対象として判定する。
【0038】
また、ユーザU1が月刊誌Aの連載小説Bに過去に類似していた興味関心空間のうち最新の興味関心空間が3期間TA3(=TA×3)前の興味関心空間であり、ユーザUnが月刊誌Aの連載小説Bに過去に類似していた興味関心空間のうち1期間TA1(=TA×1)前の興味関心空間が最新の興味関心空間であるとする。この場合、情報処理装置1は、ユーザ間時点差が2期間TA2(=TA3-TA1)であると判定する。
【0039】
そして、情報処理装置1は、3期間TA3前までの月刊誌Aの連載小説Bの内容をユーザU1が認識していると推定し、1期間TA1前までの月刊誌Aの連載小説Bの内容をユーザUnが認識していると推定する。このように、情報処理装置1は、ユーザ間時点差に基づいて、ユーザU1,Un間の特定の対象に対する認識の違いを推定する。
【0040】
そして、情報処理装置1は、ユーザU1,Un間の特定の対象に対する認識の違いに応じた情報をユーザU1,Unのうちの少なくとも一方に提供する。例えば、情報処理装置1は、3期間TA3前までの月刊誌Aの連載小説Bの内容までしかユーザU1が認識していない可能性がある旨の情報をユーザUnに提供する。また、情報処理装置1は、1期間TA1前までの月刊誌Aの連載小説Bの内容をユーザUnが認識している可能性がある旨の情報をユーザU1に提供することもできる。
【0041】
このように、情報処理装置1は、2以上のユーザUの各々の興味関心と特定の対象とが類似していた過去の時点の2以上のユーザU間の差に基づいて、2以上のユーザU間の特定の対象に対する認識の違いを推定する。そして、情報処理装置1は、推定した認識の違いを示す情報を2以上のユーザUのうちの少なくとも一のユーザUに提供する。これにより、情報処理装置1は、複数のユーザUが共通に興味関心を有する可能性がある対象の情報を適切に提供することができる。
【0042】
〔2.情報処理システムの構成〕
図2は、実施形態に係る情報処理装置1を含む情報処理システムの構成の一例を示す図である。
図2に示すように、情報処理システム100は、情報処理装置1と、複数の端末装置2
1~2
nとを含む。情報処理装置1および複数の端末装置2
1~2
nは、ネットワークNを介して、有線または無線により通信可能に接続される。
【0043】
情報処理装置1は、インターネットなどの所定のネットワークNを介して、各種の装置と通信可能な情報処理装置であり、例えば、サーバ装置またはクラウドシステムなどにより実現される。例えば、情報処理装置1は、ネットワークNを介して、他の各種装置と通信可能に接続される。
【0044】
また、情報処理装置1は、各ユーザUの端末装置2に対して、ウェブサービスなどのオンラインサービスを提供する。例えば、情報処理装置1は、オンラインサービスとして、上述した検索サービスおよび情報提供サービスの他、例えば、SNS(Social Networking Service)、電子商取引(EC:Electronic Commerce)サイト、投稿サイト、電子決済、オンラインゲーム、オンラインバンキング、オンライントレーディング、宿泊・チケット予約、動画・音楽配信、ニュース、地図、ルート検索、経路案内、路線情報、運行情報、天気予報などのサービスを提供する。なお、情報処理装置1は、上述したオンラインサービスを提供する各種サーバと連携し、オンラインサービスを仲介することもできる。
【0045】
端末装置2は、ブラウザに表示されるウェブページやアプリケーション用のコンテンツなどのコンテンツにアクセスするユーザUによって利用される情報処理装置である。例えば、端末装置2は、デスクトップ型PC(Personal Computer)、ノート型PC、タブレット端末、携帯電話機、PDA(Personal Digital Assistant)などである。なお、端末装置2は、上述した例に限定されなくともよく、例えば、スマートウォッチまたはウェアラブルデバイス(Wearable Device)などであってもよい。
【0046】
〔3.情報処理装置1の構成〕
以下、上述した情報処理装置1が有する機能構成の一例について説明する。
図2に示すように、情報処理装置1は、通信部10と、記憶部11と、処理部12とを有する。
【0047】
〔3.1.通信部10〕
通信部10は、例えば、NIC(Network Interface Card)などによって実現される。そして、通信部10は、ネットワークNと有線または無線で接続され、他の各種装置との間で情報の送受信を行う。例えば、通信部10は、端末装置21~2nとの間でネットワークNを介して情報の送受信を行う。
【0048】
〔3.2.記憶部11〕
記憶部11は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)などの半導体メモリ素子、または、ハードディスク、光ディスクなどの記憶装置によって実現される。また、記憶部11は、検索情報記憶部20と、ユーザ情報記憶部21と、コンテンツ記憶部22と、興味関心空間情報記憶部23とを有する。
【0049】
〔3.2.1.検索情報記憶部20〕
検索情報記憶部20は、検索サービスで情報処理装置1が提供する複数の検索対象の情報を記憶する。例えば、検索情報記憶部20は、複数の検索対象の各々がインデックスされて格納されたデータベースである検索対象データベースを格納する。
【0050】
検索対象の情報は、例えば、クローラなどによって収集されるウェブページなどの種々のコンテンツの情報である。検索情報記憶部20に記憶される検索対象の情報は、コンテンツのURL(Uniform Resource Locator)および概要などであるが、かかる例に限定されない。
【0051】
〔3.2.2.ユーザ情報記憶部21〕
ユーザ情報記憶部21は、ユーザU
1~U
nの情報を含むユーザ情報を記憶する。
図3は、実施形態に係る情報処理装置1のユーザ情報記憶部21に記憶されるユーザ情報テーブルの一例を示す図である。
【0052】
図3に示すように、ユーザ情報記憶部21に記憶されるユーザ情報テーブルは、「ユーザID(Identifier)」、「ユーザ名」、「属性」、「購入履歴」、「検索履歴」、および「その他の履歴」などの情報をユーザU毎に含む。「ユーザID」は、各ユーザUに固有の識別情報である。「ユーザ名」は、ユーザUの名称を示す情報である。
【0053】
「属性」は、ユーザUの属性を示す情報である。ユーザUの属性は、ユーザUのデモグラフィック属性またはサイコグラフィック属性などである。デモグラフィック属性は、人口統計学的なユーザUの属性である。サイコグラフィック属性は、ユーザUの価値観、ライフスタイル、性格、興味関心などを示す属性である。
【0054】
図3に示す例では、ユーザUのデモグラフィック属性として、「性別」および「年齢」などの情報を含む。「性別」は、ユーザUの性別を示す情報であり、「年齢」は、ユーザUの年齢を示す情報である。なお、ユーザUのデモグラフィック属性は、例えば、ユーザUの役職、担当業務、年収、住所、通勤経路、研修履歴、家族構成などがさらに含まれる。ユーザUの嗜好は、例えば、服、旅行、車、バイク、コンピュータ、ランチなどの各対象に対するユーザUの興味関心度合いなどを含む。
【0055】
「購入履歴」は、情報処理装置1が提供する電子商取引サイトでのサービスでユーザUが購入した取引対象(商品やサービス)の情報であるサイト購入履歴や実店舗でユーザUが購入した取引対象の情報である実店舗購入履歴などを含む。サイト購入履歴や実店舗購入履歴には、例えば、ユーザUが購入した取引対象の情報およびその購入日時などの情報、ユーザUによって購入された取引対象に対するユーザUの評価(書き込みや評価点数などを含む)などの情報が含まれる。
【0056】
「検索履歴」は、情報処理装置1が提供するオンラインサービスまたは情報処理装置1がユーザUによって仲介されるオンラインサービスでの検索履歴の情報である。かかる「検索履歴」には、例えば、情報処理装置1による検索クエリの受信日時を示す情報、および検索クエリに含まれる1以上の検索語(検索キーワード)の情報などが検索クエリ毎に含まれる。
【0057】
「その他の履歴」は、例えば、購入履歴および検索履歴以外の履歴であり、ユーザUがオンラインサービスを利用した種々の履歴(利用内容および利用日時などの情報)が含まれる。例えば、「その他の履歴」には、ユーザUによる端末装置2を用いたSNSまたは投稿サイトなどへの書き込みの履歴、およびユーザUが閲覧したウェブページの履歴などが含まれる。
【0058】
〔3.2.3.コンテンツ記憶部22〕
コンテンツ記憶部22は、検索サービス以外のオンラインサービスで情報処理装置1が提供するコンテンツを記憶する。
図4は、実施形態に係る情報処理装置1のコンテンツ記憶部22に記憶されるコンテンツテーブルの一例を示す図である。
図4に示した例では、コンテンツ記憶部22は、「コンテンツID」、および「コンテンツ」などをコンテンツ毎に含む。
【0059】
「コンテンツID」は、コンテンツ毎に固有の識別情報である。「コンテンツ」は、「コンテンツID」に対応付けられたコンテンツに関する情報である。具体的には、コンテンツは、コンテンツの内容に関する情報を示してもよい。例えば、コンテンツは、オンラインサービスで提供されるコンテンツである。例えば、コンテンツは、ポータルサイト、ニュースサイト、オークションサイト、天気予報サイト、ショッピングサイト、またはファイナンス(株価)サイトなどに関するコンテンツである。また、コンテンツは、路線検索サイト、地図提供サイト、旅行サイト、飲食店紹介サイト、ウェブブログサイト、投稿サイト、音楽配信サイト、動画配信サイト、またはSNSサイトなどに関するコンテンツであってもよい。
【0060】
例えば、
図4では、コンテンツID「C1」のコンテンツは、「CO1」である。なお、
図4に示した例では、コンテンツを、「CO1」などの抽象的な符号で表現したが、コンテンツは、具体的な数値、具体的な文字列、および各種情報などを含むファイル形式などであってもよい。なお、コンテンツ記憶部22は、上述した例に限定されず、目的に応じて種々の情報を記憶してもよい。
【0061】
〔3.2.4.興味関心空間情報記憶部23〕
興味関心空間情報記憶部23は、予め定められた期間TA毎の興味関心空間情報を記憶する。興味関心空間情報には、興味関心空間に配置される複数の対象のベクトルなどの情報が含まれる。興味関心空間は、M次元の空間である。期間TAは、例えば、1ヶ月であるが、かかる例に限定されず、例えば、1週間、2週間、または3ヶ月などであってもよい。また、期間TAは、情報処理装置1によって新たに受け付けられた検索クエリの数または新たな検索語の数が予め設定された閾値以上になる期間であってもよい。
【0062】
図5は、実施形態に係る情報処理装置1の興味関心空間情報記憶部23に記憶される興味関心空間情報の一例を示す図である。
図5に示した例では、興味関心空間情報記憶部23に記憶される興味関心空間情報は、「対象ID」、「対象」、および「ベクトル」などを対象毎に含む。
【0063】
「対象ID」は、対象毎に固有の識別情報である。「対象」は、興味関心空間に配置されるユーザUの興味関心となりうる対象であり、例えば、ショッピング、旅行、ニュース、スポーツ、エンターテイメント、ファイナンス、ゲーム、映画、または音楽などの種々のカテゴリに属する対象である。
【0064】
例えば、
図5では、対象ID「Q1」の対象は、「O1」であり、ベクトルは、「V1」である。なお、
図5に示した例では、対象を、「O1」などの抽象的な符号で表現したが、対象は、具体的な文字列で示されるが、画像などで示されてもよい。また、
図5に示した例では、ベクトルを、「V1」などの抽象的な符号で表現したが、ベクトルは、M次元のベクトルであり、例えば、各次元のベクトル成分の値で示される。
【0065】
〔3.3.処理部12〕
処理部12は、コントローラ(Controller)であり、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)などのプロセッサによって、情報処理装置1内部の記憶装置に記憶されている各種プログラム(情報処理プログラムの一例)がRAMを作業領域として実行されることにより実現される。また、処理部12は、コントローラであり、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの集積回路により実現される。
【0066】
図2に示すように、処理部12は、受付部30と、検索部31と、学習部32と、特定部33と、推定部34と、提供部35とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、処理部12の内部構成は、
図2に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。
【0067】
〔3.3.1.受付部30〕
受付部30は、各種要求を受け付ける。受付部30は、外部の情報処理装置から各種要求を受け付ける。例えば、受付部30は、各端末装置2からの要求を受け付ける。
【0068】
受付部30は、ユーザUが入力した1以上の検索語(検索キーワード)を含む検索クエリを端末装置2からネットワークNおよび通信部10を介して受け付ける。また、受付部30は、ユーザUのコンテンツ送信要求をネットワークNおよび通信部10を介して端末装置2から受け付ける。コンテンツ送信要求は、コンテンツを特定した要求である。
【0069】
〔3.3.2.検索部31〕
検索部31は、受付部30によって受け付けられた検索クエリに含まれる1以上の検索語に応じた検索対象の情報を検索情報記憶部20に記憶されている複数の検索対象の情報の中から検索する。検索部31は、検索した検索対象の情報を検索結果としてネットワークNおよび通信部10を介して検索クエリを送信した端末装置2に送信する。
【0070】
また、検索部31は、受付部30によって受け付けられた検索クエリに含まれる1以上の検索語に応じた検索対象の情報をコンテンツ記憶部22に記憶されている複数のコンテンツの中から検索することもできる。検索部31は、検索したコンテンツを検索結果としてネットワークNおよび通信部10を介して検索クエリを送信した端末装置2に送信する。
【0071】
〔3.3.3.学習部32〕
学習部32は、予め定められた条件を満たす2以上の検索語を類似する特徴を有するものとして複数の検索語の各々が有する特徴を学習した学習済みモデルである興味関心モデルを期間TA毎に生成する。
【0072】
予め定められた条件を満たす2以上の検索語は、同一検索クエリに含まれる複数の検索語、または同一のユーザUによって予め定められた時間内に端末装置2から送信される複数の検索クエリに含まれる検索語である。なお、学習部32は、同一のユーザUによって端末装置2から送信される検索クエリに含まれる検索語を、検索クエリの送信時期にかかわらず、予め定められた条件を満たす2以上の検索語として扱うこともできる。
【0073】
学習部32は、期間TA内を検索時点とする検索クエリに含まれる検索語を用いて学習用データを生成する。例えば、学習部32は、期間TA毎に予め定められた条件を満たす2以上の検索語をユーザ情報記憶部21から取得し、取得した2以上の検索語を学習用データとして用いて興味関心モデルを生成する。例えば、学習部32は、予め定められた条件を満たす2以上の検索語を学習データとして、2以上の検索語のベクトルが互いに類似するように学習を行う。
【0074】
学習部32は、例えば、再帰的ニューラルネットワークとも呼ばれるRNNの一種であるLSTMをベクトル生成に用いたDSSMの技術を用いて、検索語などの対象を示す情報からベクトルを出力する興味関心モデルを生成する。なお、検索語などの対象を示す情報からベクトルを出力する興味関心モデルの生成方法は、上述した例に限定されず、類似する複数の対象を示すベクトルが互いに類似するように学習を行うことができればよく、種々の公知技術を用いることができる。
【0075】
学習部32は、生成した期間TA毎の興味関心モデルを用いて複数の対象の各々のベクトルを取得し、取得した複数の対象のベクトルの情報を含む情報を興味関心空間情報として期間TA毎に記憶部11における興味関心空間情報記憶部23に記憶させる。
【0076】
〔3.3.4.特定部33〕
特定部33は、複数のユーザUの興味関心に対する関連性に応じて複数の対象の各々がベクトルで示され且つベクトルが期間TA毎に更新される興味関心空間において2以上のユーザUの興味関心と特定の対象とが類似していた過去の時点を特定する。かかる特定部33は、第1特定部40と、第2特定部41とを備える。
【0077】
〔3.3.4.1.第1特定部40〕
第1特定部40は、複数のユーザUのうち予め定められた関係を有する2以上のユーザUの各々を特定対象ユーザとして特定する。予め定められた関係は、例えば、互いの間でコミュニケーションを行う関係である。
【0078】
コミュニケーションは、文字または音声などによるユーザU間の会話であり、例えば、音声通話、チャット、メール、またはテレビ会議などによって行われる。第1特定部40は、音声通話サービス、チャットサービス、メールサービス、またはテレビ会議サービスでのユーザUの利用履歴など基づいて、互いの間でコミュニケーションを行う2以上のユーザUを特定することができる。
【0079】
また、第1特定部40は、記憶部11に記憶されているユーザ情報に基づいて、夫婦または親子などの家族として設定されている2以上のユーザUを予め定められた関係を有する複数のユーザUとして特定することもできる。
【0080】
また、第1特定部40は、複数の端末装置2で各々検出され且つ複数の端末装置2の各々から送信される位置情報に基づいて、過去に行動を共にしたと推定される2以上のユーザUを判定し、判定した2以上のユーザUを予め定められた関係を有する複数のユーザUとして特定することもできる。
【0081】
〔3.3.4.2.第2特定部41〕
第2特定部41は、期間TA毎に更新される興味関心空間において第1特定部40によって特定対象ユーザとして特定された2以上のユーザUの興味関心と特定の対象とが類似していた過去の時点を特定する。
【0082】
第2特定部41は、ある期間の興味関心空間において特定対象ユーザの興味関心範囲に特定の対象が含まれる場合に、ある期間の興味関心空間において特定対象ユーザの興味関心と特定の対象とが類似すると判定する。
【0083】
例えば、2021年10月~2022年2月までの各月の興味関心空間がある場合、最新の興味関心空間は、2022年2月の興味関心空間である。2021年10月~2022年2月までの各月の興味関心空間は、2021年10月~2022年2月までの各月の興味関心モデルによって得られる。
【0084】
例えば、2021年10月の興味関心空間は、2021年10月の興味関心モデルに複数の対象の各々を示す情報を入力することによって得られ、2022年2月の興味関心空間は、2022年2月の興味関心モデルに複数の対象の各々を示す情報を入力することによって得られる。また、興味関心空間は、2021年10月の興味関心空間の状態、2021年11月の興味関心空間の状態、2021年12月の興味関心空間の状態、2022年1月の興味関心空間の状態、2022年2月の興味関心空間の状態に順次更新される。
【0085】
第2特定部41は、興味関心空間において特定対象ユーザの興味関心範囲に含まれる対象を特定対象ユーザの興味関心対象として特定する。第2特定部41は、例えば、期間TA毎の興味関心モデルを用いて期間TA毎に各特定対象ユーザの興味関心範囲を特定する。
【0086】
第2特定部41は、例えば、各期間TA内において同一の特定対象ユーザによって端末装置2から送信されたすべての検索クエリの各々に含まれる検索語をユーザ情報記憶部21から特定対象ユーザ毎に取得する。そして、第2特定部41は、取得した複数の検索語のベクトルを平均化して平均ベクトルを算出し、算出した平均ベクトルをユーザ興味関心ベクトルとして特定対象ユーザ毎に判定する処理を期間TA毎に行う。なお、第2特定部41は、例えば、受信した日時が新しい検索クエリの検索語ほど検索語のベクトルの重みを大きくして平均ベクトルを算出することもできる。
【0087】
第2特定部41は、特定対象ユーザのユーザ興味関心ベクトルと類似する範囲をユーザUの興味関心範囲として特定対象ユーザ毎に特定する。ユーザ興味関心ベクトルとの類似範囲は、例えば、コサイン類似度が予め定められた範囲であるが、かかる例に限定されない。なお、第2特定部41は、例えば、同一の特定対象ユーザの新たな検索クエリの数または新たな検索語の数が予め設定された閾値以上になる毎にその特定対象ユーザの興味関心範囲を特定することもできる。
【0088】
特定の対象は、予め設定された対象であってもよく、第2特定部41によって特定された対象であってもよい。第2特定部41は、期間TA毎に更新される興味関心範囲において予め定められた関係を有する2以上のユーザUの興味関心と共通に類似していたことがある対象を特定の対象として決定することができる。
【0089】
第2特定部41は、興味関心空間において特定対象ユーザの興味関心範囲内に特定の対象が入っていた各時点を特定対象ユーザ毎に特定する。例えば、第2特定部41は、予め定められた期間TC前から最新の興味関心空間において特定対象ユーザの興味関心範囲内に特定の対象が入っていた時点を特定する。
【0090】
図6は、実施形態に係る情報処理装置1の第2特定部41によって特定される興味関心と特定の対象とが類似していた過去の時点の一例を示す図である。
図6では、M次元の興味関心空間を低次元化して可視化した興味関心空間の一部が示されている。
図6においては、2期間前の興味関心空間における対象O1の位置P
1(t
-2)と、1期間前の興味関心空間における対象O1の位置P
1(t
-1)と、最新の興味関心空間におけるO1の位置P
1(t
0)とが示されている。
【0091】
また、
図6においては、2期間前のユーザU
1の興味関心範囲R
1(t
-2)と、1期間前のユーザU
1の興味関心範囲R
1(t
-1)と、最新のユーザU
1の興味関心範囲R
1(t
0)と、2期間前のユーザU
2の興味関心範囲R
2(t
-2)と、1期間前のユーザU
2の興味関心範囲R
2(t
-1)と、最新のユーザU
2の興味関心範囲R
2(t
0)とが示されている。
図6に示す例では、ユーザU
1,U
2は、特定対象ユーザである。
【0092】
図6に示すように、対象O1は、2期間前の興味関心空間から最新の興味関心空間にかけて、ユーザU
1の興味関心範囲内であるが、ユーザU
2の興味関心範囲内であるのは2期間前の興味関心空間だけである。この場合、第2特定部41は、ユーザU
1の興味関心が特定の対象と類似していた時点が2期間前の期間TAから最新の期間TAにかけてであると判定し、ユーザU
2の興味関心範囲内に特定の対象が入っていた時点が2期間前の期間TAであると判定する。最新の興味関心空間が2022年2月の興味関心空間である場合、1期間前の興味関心空間は、例えば、2022年1月の興味関心空間であり、2期間前の興味関心空間は、例えば、2021年12月の興味関心空間である。
【0093】
〔3.3.5.推定部34〕
推定部34は、特定部33によって特定された2以上の特定対象ユーザの興味関心と特定の対象とが類似していた過去の時点の2以上の特定対象ユーザ間の差に基づいて、2以上の特定対象ユーザ間の特定の対象に対する認識違いを推定する。
【0094】
例えば、推定部34は、特定対象ユーザの興味関心と特定の対象とが類似していた過去の時点のうち最新の時点の2以上の特定対象ユーザ間の差に基づいて、2以上の特定対象ユーザ間の特定の対象に対する認識違いを推定する。
【0095】
図7は、実施形態に係る情報処理装置1の推定部34による2以上の特定対象ユーザ間の特定の対象に対する認識違いの推定処理の一例を示す図である。
図7では、
図6と同様に、M次元の興味関心空間を低次元化して可視化した興味関心空間の一部が示されており、2期間前の興味関心空間から最新の興味関心空間までにおけるユーザU
1,U
nと対象O
1との類似の有無が示されている。
【0096】
図7に示す例では、2期間TA2前の興味関心空間では、ユーザU
nと対象O
1とは類似しているが、1期間TA1前の興味関心空間および最新の興味関心空間の各々ではユーザU
nと対象O
1とは類似していない。一方、ユーザU
1は、2期間TA2前の興味関心空間から最新の興味関心空間までにかけて対象O
1と類似している。
【0097】
そのため、推定部34は、2期間TA2前の対象O1の内容をユーザUnが認識していると推定し、最新の期間TAの対象O1の内容をユーザU1が認識していると推定する。そして、推定部34は、ユーザUnが対象O1の内容を認識している時点が2期間TA2前の期間TAの時点であるがユーザU1が対象O1の内容を認識している時点が最新の期間TAの時点であることをユーザU1,Un間の対象O1に対する認識の違いとして推定する。
【0098】
また、推定部34は、特定対象ユーザの興味関心と特定の対象とが類似していた過去の時点のうち最新の時点の2以上の特定対象ユーザ間の差が予め定められた閾値以上である場合に、2以上の特定対象ユーザ間の特定の対象に対する認識違いを推定することができる。これにより、推定部34は、2以上の特定対象ユーザ間の特定の対象に対する認識の相違が少ない場合には、認識違いを推定しないため、処理負荷を軽減することができる。なお、予め定められた期間は、対象のカテゴリ毎に定められるが、一律に定められてもよい。
【0099】
また、推定部34は、2期間TA2前までの対象O1の内容をユーザUnが認識していると推定し、2期間TA2前から最新の期間TAまでの対象O1の内容をユーザU1が認識していると推定することもできる。この場合、推定部34は、ユーザU1,Un間の対象O1に対する認識の違いとして、2期間TA2前の対象O1の内容をユーザUnが認識していると推定し、2期間TA2前の期間TAから最新の期間TAまでの対象O1の内容をユーザU1が認識していると推定する。
【0100】
〔3.3.6.提供部35〕
提供部35は、推定部34によって推定された特定された2以上の特定対象ユーザ間の特定の対象に対する認識違いを示す情報である認識違い情報を2以上の特定対象ユーザのうちの少なくとも一の特定対象ユーザに提供する。
【0101】
認識違い情報のユーザUへの提供は、提供部35から通信部10およびネットワークNを介して端末装置2に送信することによって行われる。これにより、提供部35は、複数のユーザUが共通に興味関心を有する可能性がある特定の対象の情報を適切に提供することができる。
【0102】
ここで、2期間TA2前の興味関心空間から最新の興味関心空間までにおけるユーザU
1,U
nと対象O
1との類似の有無が
図7に示す状態であるとする。この場合、提供部35は、ユーザU
1は最新の時点まで対象O
1の内容や状態を認識できている可能性があるがユーザU
nは2期間TA2前の時点までしか対象O
1の内容や状態を認識できていない可能であることを示す情報を識違い情報として2以上の特定対象ユーザのうちの少なくとも一の特定対象ユーザに提供する。
【0103】
また、提供部35は、ユーザU1は2期間TA2前の時点から最新の時点まで対象O1の内容や状態を認識できている可能性があるがユーザUnは2期間TA2前の時点しか対象O1の内容や状態を認識できていない可能であることを示す情報を識違い情報として2以上の特定対象ユーザのうちの少なくとも一の特定対象ユーザに提供することもできる。
【0104】
提供部35は、例えば、2以上の特定対象ユーザのうち特定の対象と類似していた過去の時点のうち最も時点が新しい特定対象ユーザである第1認識ユーザに識違い情報を提供する。この場合、提供部35は、例えば、ユーザUnは2期間TA2前の時点の対象O1の内容や状態を認識できていない可能であることを示す情報を識違い情報として第1認識ユーザに提供することができる。また、提供部35は、ユーザUnは2期間TA2前の時点しか対象O1の内容や状態を認識できていない可能であることを示す情報を識違い情報として第1認識ユーザに提供することもできる。
【0105】
また、提供部35は、例えば、2以上の特定対象ユーザのうち第1認識ユーザ以外の特定対象ユーザである第2認識ユーザに対して特定の対象に関する情報を提供することもできる。この場合、提供部35は、ユーザU1は最新の時点の対象O1の内容や状態を認識できている可能性があることを示す情報を識違い情報として第2認識ユーザに提供することができる。また、提供部35は、ユーザU1は2期間TA2前の期間TAから最新の期間TAまで対象O1の内容や状態を認識できている可能性があることを示す情報を識違い情報として第2認識ユーザに提供することもできる。
【0106】
なお、提供部35は、例えば、特定対象ユーザの興味関心が特定の対象との類似度のランキングを示す情報を認識違い情報として各特定対象ユーザに提供することもできる。例えば、提供部35は、予め定められた期間前の期間TAから最新の期間TAまでの間に特定対象ユーザの興味関心が特定の対象と類似する度合いを期間TA毎の重み付け加算することで特定対象ユーザの特定の対象に対するスコアを特定対象ユーザ毎に算出ずる。重みは例えば、新しい期間ほど大きい値に設定される。提供部35は、特定の対象に対するスコアが高い順に2以上の特定対象ユーザを並べたランキング情報を各特定対象ユーザに提供することもできる。
【0107】
なお、提供部35は、認識違い情報をプッシュ型でユーザUに提供したりプル型でユーザUに提供したりすることができる。例えば、提供部35は、認識違い情報を端末装置2にインストールされたアプリケーションにより端末装置2にポップアップ表示させたり、電子メールでユーザUのメールアドレスへ送信したりすることができる。また、提供部35は、ユーザUが端末装置2を用いて情報処理装置1にアクセスした際に、認識違い情報を端末装置2に送信することで、認識違い情報をユーザUに提供することもできる。なお、ユーザUへの認識違い情報の提供方法は、これらの方法に限定されない。
【0108】
〔4.処理手順〕
次に、
図8を用いて、実施形態に係る情報処理装置1による処理の手順について説明する。
図8は、実施形態に係る情報処理装置1の処理部12による処理手順を示すフローチャートである。
【0109】
図8に示すように、情報処理装置1の処理部12は、興味関心モデルの学習処理タイミングになったか否かを判定する(ステップS10)。興味関心モデルの学習処理タイミングは、例えば、期間TA毎に発生するタイミングであるが、かかる例に限定されない。
【0110】
処理部12は、興味関心モデルの学習処理タイミングになったと判定した場合(ステップS10:Yes)、興味関心モデルの生成を行う(ステップS11)。そして、処理部12は、ステップS11で生成した興味関心モデルを用いて興味関心空間情報を生成し、生成した興味関心空間情報を記憶部11に記憶させる(ステップS12)。
【0111】
処理部12は、ステップS12の処理が終了した場合、または興味関心モデルの学習処理タイミングになっていないと判定した場合(ステップS10:No)、ユーザ興味関心判定タイミングになったか否かを判定する(ステップS13)。ユーザ興味関心判定タイミングは、例えば、期間TA毎に発生するタイミングであるが、かかる例に限定されない。
【0112】
処理部12は、ユーザ興味関心判定タイミングになったと判定した場合(ステップS13:Yes)、ユーザUの検索クエリに基づいて、ユーザUの興味関心位置を特定する(ステップS14)。
【0113】
処理部12は、ステップS14の処理が終了した場合、またはユーザ興味関心判定タイミングになっていないと判定した場合(ステップS13:No)、情報提供対象判定タイミングになったか否かを判定する(ステップS15)。情報提供対象判定タイミングは、ステップS14でユーザUの興味関心位置が特定された後のタイミングである。例えば、情報提供対象判定タイミングは、ステップS14でユーザUの興味関心位置が特定された直後のタイミングまたはユーザUが端末装置2を用いて情報処理装置1にアクセスしたタイミングである。
【0114】
処理部12は、情報提供対象判定タイミングになったと判定した場合(ステップS15:Yes)、情報提供処理を行う(ステップS16)。ステップS16の処理は、
図9に示すステップS20~S24の処理であり、後で詳述する。
【0115】
処理部12は、ステップS16の処理が終了した場合、または情報提供対象判定タイミングになったと判定した場合(ステップS15:No)、動作終了タイミングになったか否かを判定する(ステップS17)。処理部12は、例えば、情報処理装置1の電源がオフにされた場合などに動作終了タイミングになったと判定する。
【0116】
処理部12は、動作終了タイミングになっていないと判定した場合(ステップS17:No)、処理をステップS10へ移行し、動作終了タイミングになったと判定した場合(ステップS17:Yes)、
図8に示す処理を終了する。
【0117】
図9は、実施形態に係る情報処理装置1の処理部12による情報提供手順を示すフローチャートである。
図9に示すように、処理部12は、予め定められた関係を有する2以上のユーザUを特定する(ステップS20)。
【0118】
次に、処理部12は、ステップS20において特定した2以上のユーザUの興味関心範囲を特定する(ステップS21)。そして、処理部12は、特定した過去の時点の2以上のユーザU間の差に基づいて、2以上のユーザU間の特定の対象に対する認識違いを推定する(ステップS22)。
【0119】
次に、処理部12は、ステップS22において推定した認識違いに応じた情報をユーザUに提供し(ステップS23)、
図9に示す処理を終了する。
【0120】
〔5.変形例〕
上述した情報処理装置1は、上述した実施形態以外にも種々の異なる形態にて実施されてもよい。そこで、以下では、情報処理装置1の他の実施形態について説明する。
【0121】
情報処理装置1の処理部12は、興味関心モデルを複数種類生成することができる。例えば、処理部12は、地域毎の興味関心モデルを生成し、地域毎の興味関心モデルに基づいて、地域毎の興味関心空間を形成することができる。例えば、処理部12は、対象地域内の複数のユーザUが用いた複数の検索語のうち予め定められた条件を満たす2以上の検索語を類似する特徴を有するものとして複数の検索語の各々が有する特徴を学習した興味関心モデルを地域毎に生成することもできる。
【0122】
また、処理部12は、ユーザUの属性毎の興味関心モデルに基づいて、ユーザUの属性毎の興味関心空間を形成することができる。例えば、処理部12は、特定属性を有する複数のユーザUが用いた複数の検索語のうち予め定められた条件を満たす2以上の検索語を類似する特徴を有するものとして複数の検索語の各々が有する特徴を学習した興味関心モデルを特定属性毎に生成することもできる。
【0123】
また、処理部12は、期間TA内に複数のユーザUによって複数の端末装置2から送信された複数の検索クエリに基づいてその期間TAにおける興味関心モデルを生成するが、かかる例に限定されない。例えば、処理部12は、P期間前の期間TAと最新の期間TAとを含む期間において期間TA内に複数のユーザUによって複数の端末装置2から送信された複数の検索クエリに基づいて最新の期間TAにおける興味関心モデルを生成することもできる。Pは、1以上の整数である。
【0124】
また、処理部12は、期間TB毎に、期間TB内において同一のユーザUによって端末装置2から送信された複数の検索クエリに基づいて、ユーザUの興味関心範囲をユーザU毎に特定することもできる。期間TBは、例えば、期間TAよりも長いまたは短い期間である。なお、期間TBは、情報処理装置1によって同一のユーザUから新たに受け付けられた検索クエリの数または新たな検索語の数が予め設定された閾値以上になる期間であってもよい。
【0125】
〔6.ハードウェア構成〕
上述してきた実施形態に係る情報処理装置1は、例えば
図10に示すような構成のコンピュータ80によって実現される。
図10は、実施形態に係る情報処理装置1の機能を実現するコンピュータ80の一例を示すハードウェア構成図である。コンピュータ80は、CPU81、RAM82、ROM(Read Only Memory)83、HDD(Hard Disk Drive)84、通信インターフェイス(I/F)85、入出力インターフェイス(I/F)86、およびメディアインターフェイス(I/F)87を有する。
【0126】
CPU81は、ROM83またはHDD84に記憶されたプログラムに基づいて動作し、各部の制御を行う。ROM83は、コンピュータ80の起動時にCPU81によって実行されるブートプログラムや、コンピュータ80のハードウェアに依存するプログラムなどを記憶する。
【0127】
HDD84は、CPU81によって実行されるプログラム、および、かかるプログラムによって使用されるデータなどを記憶する。通信インターフェイス85は、ネットワークN(
図2参照)を介して他の機器からデータを受信してCPU81へ送り、CPU81が生成したデータを、ネットワークNを介して他の機器に送信する。
【0128】
CPU81は、入出力インターフェイス86を介して、ディスプレイやプリンタなどの出力装置、および、キーボードまたはマウスなどの入力装置を制御する。CPU81は、入出力インターフェイス86を介して、入力装置からデータを取得する。また、CPU81は、入出力インターフェイス86を介して生成したデータを出力装置へ出力する。
【0129】
メディアインターフェイス87は、記録媒体88に記憶されたプログラムまたはデータを読み取り、RAM82を介してCPU81に提供する。CPU81は、かかるプログラムを、メディアインターフェイス87を介して記録媒体88からRAM82上にロードし、ロードしたプログラムを実行する。記録媒体88は、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)などの光学記録媒体、MO(Magneto-Optical disk)などの光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリなどである。
【0130】
コンピュータ80のCPU81は、RAM82上にロードされたプログラムを実行することにより、処理部12の機能を実現する。また、HDD84には、記憶部11内のデータが記憶される。コンピュータ80のCPU81は、これらのプログラムを記録媒体88から読み取って実行するが、他の例として、他の装置からネットワークNを介してこれらのプログラムを取得してもよい。
【0131】
〔7.その他〕
また、上述した実施形態および変形例において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上述した文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
【0132】
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
【0133】
また、上述してきた実施形態および変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
【0134】
〔8.効果〕
上述してきたように、実施形態に係る情報処理装置1は、推定部34と、提供部35とを備える。推定部34は、複数のユーザUの興味関心に対する関連性に応じて複数の対象の各々がベクトルで示され且つベクトルが所定期間毎に更新される興味関心空間において2以上のユーザUの興味関心と特定の対象とが類似していた過去の時点の2以上のユーザU間の差に基づいて、2以上のユーザU間の特定の対象に対する認識違いを推定する。提供部35は、推定部34によって推定された認識違いに応じた情報を2以上のユーザUのうちの少なくとも一のユーザUに提供する。これにより、情報処理装置1は、複数のユーザUが共通に興味関心を有する可能性がある対象の情報を適切に提供することができる。
【0135】
また、推定部34は、2以上のユーザUの興味関心と特定の対象とが類似していた過去の時点の2以上のユーザU間の差が予め定められた閾値以上である場合に、2以上のユーザU間の特定の対象に対する認識違いを推定する。これにより、情報処理装置1は、2以上の特定対象ユーザ間の特定の対象に対する認識の相違が少ない場合には、認識違いを推定しないため、処理負荷を軽減することができる。
【0136】
また、提供部35は、2以上のユーザUのうち特定の対象と類似していた過去の時点のうち最も時点が新しいユーザUである第1ユーザに認識違いに基づく情報である認識違い情報を提供する。これにより、情報処理装置1は、第1ユーザ以外のユーザUである第2ユーザが特定の対象の内容として認識している内容を第1ユーザに通知することができる。そのため、情報処理装置1は、例えば、第1ユーザが認識しているが第2ユーザが認識していない内容を第1ユーザが第2ユーザにネタバレする会話してしまうことを抑制することができる。
【0137】
また、提供部35は、2以上のユーザUのうち特定の対象と類似していた過去の時点のうち最も時点が新しいユーザU以外のユーザUである第2ユーザに対して特定の対象に関する情報を提供する。これにより、情報処理装置1は、第1ユーザが特定の対象の内容として認識している内容を第2ユーザに通知することができる。そのため、情報処理装置1は、例えば、第2ユーザが認識していないが第1ユーザが認識している内容を第2ユーザが第1ユーザに聞くことで、特定の対象の内容であって第2ユーザが知らなかった内容を第2ユーザが把握することができる。
【0138】
また、情報処理装置1は、複数のユーザUのうち予め定められた関係を有する複数のユーザUを2以上のユーザUとして特定する第1特定部40を備える。これにより、情報処理装置1は、例えば、ユーザUが設定操作などをすることなく、2以上のユーザUを特定することができる。
【0139】
また、第1特定部40は、互いの間でコミュニケーションを行う複数のユーザUを予め定められた関係を有する複数のユーザUとして特定する。これにより、情報処理装置1は、ユーザU間で特定の対象に対する認識違いの影響が大きい複数のユーザUを特定することができる。
【0140】
また、情報処理装置1は、第2特定部41を備える。第2特定部41は、予め定められた条件を満たす2以上の検索語を類似する特徴を有するものとして複数のユーザUが用いた複数の検索語の各々が有する特徴を学習した学習済みモデルにユーザUが用いた検索語を入力して得られる検索語のベクトルに基づいて、ユーザUの興味関心を特定する。これにより、情報処理装置1は、ユーザUの興味関心を有する可能性がある対象の情報をより適切に提供することができる。
【0141】
また、情報処理装置1は、複数のユーザUが用いた複数の検索語を用いて学習済みモデルを生成する学習部32を備える。これにより、情報処理装置1は、ユーザUの興味関心を有する可能性がある対象の情報をより適切に提供することができる。
【0142】
以上、本願の実施形態を図面に基づいて詳細に説明したが、これは例示であり、発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。
【0143】
また、上述してきた「部(section、module、unit)」は、「手段」や「回路」などに読み替えることができる。例えば、取得部は、取得手段や取得回路に読み替えることができる。
【符号の説明】
【0144】
1 情報処理装置
2,21~2n 端末装置
10 通信部
11 記憶部
12 処理部
20 検索情報記憶部
21 ユーザ情報記憶部
22 コンテンツ記憶部
23 興味関心空間情報記憶部
30 受付部
31 検索部
32 学習部
33 特定部
34 推定部
35 提供部
40 第1特定部
41 第2特定部
100 情報処理システム
N ネットワーク