IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本国土開発株式会社の特許一覧

<>
  • 特開-コンクリートの打設方法及び型枠 図1
  • 特開-コンクリートの打設方法及び型枠 図2
  • 特開-コンクリートの打設方法及び型枠 図3
  • 特開-コンクリートの打設方法及び型枠 図4
  • 特開-コンクリートの打設方法及び型枠 図5
  • 特開-コンクリートの打設方法及び型枠 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023123831
(43)【公開日】2023-09-05
(54)【発明の名称】コンクリートの打設方法及び型枠
(51)【国際特許分類】
   E04G 21/06 20060101AFI20230829BHJP
   E04G 9/10 20060101ALI20230829BHJP
【FI】
E04G21/06
E04G9/10 101C
【審査請求】有
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2023111313
(22)【出願日】2023-07-06
(62)【分割の表示】P 2019174492の分割
【原出願日】2019-09-25
(71)【出願人】
【識別番号】000231198
【氏名又は名称】日本国土開発株式会社
(74)【代理人】
【識別番号】100087480
【弁理士】
【氏名又は名称】片山 修平
(74)【代理人】
【識別番号】100136261
【弁理士】
【氏名又は名称】大竹 俊成
(72)【発明者】
【氏名】佐原 晴也
(57)【要約】
【課題】コンクリートの締固め状況を精度よく検出する。
【解決手段】型枠内にコンクリートを打設するコンクリートの打設方法であって、前記コンクリート内に挿入された振動機により前記型枠内のコンクリートに振動を与えるステップと、前記型枠とは異なる材質を介して前記コンクリートとは接触するとともに前記型枠から振動的に分離して、前記型枠に取付け可能な加速度センサにより、前記振動機による振動を検出するステップと、検出した前記振動から算出される前記コンクリートの運動エネルギに基づいて、前記型枠近傍のコンクリートの締固め状況を検出するステップと、を含む。
【選択図】図1
【特許請求の範囲】
【請求項1】
型枠内にコンクリートを打設するコンクリートの打設方法であって、
前記コンクリート内に挿入された振動機により前記型枠内のコンクリートに振動を与えるステップと、
前記型枠とは異なる材質を介して前記コンクリートとは接触するとともに前記型枠から振動的に分離して、前記型枠に取付け可能な加速度センサにより、前記振動機による振動を検出するステップと、
検出した前記振動から算出される前記コンクリートの運動エネルギに基づいて、前記型枠近傍のコンクリートの締固め状況を検出するステップと、を含むコンクリートの打設方法。
【請求項2】
前記型枠とは異なる材質は、防振材である請求項1記載のコンクリートの打設方法。
【請求項3】
コンクリートの打設に用いられる型枠において、
前記型枠近傍のコンクリートの物理量を検出するセンサの少なくとも一部を前記型枠とは異なる材質を介して前記コンクリートとは接触するとともに前記型枠から振動的に分離して前記型枠に取付ける取付部を備えている型枠。
【請求項4】
前記型枠には凹部が形成されており、前記取付部は前記凹部に設けられている請求項3記載の型枠。
【請求項5】
前記型枠には貫通孔が形成されており、前記取付部は前記貫通孔に設けられている請求項3記載の型枠。
【請求項6】
前記センサは加速度センサである請求項3記載の型枠。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンクリートの打設方法及び型枠に関する。
【背景技術】
【0002】
コンクリート構造物では、硬化後のコンクリートの品質を確保するために、打設コンクリートに内部振動機(バイブレータ等)を挿入して振動を加えることで、打設コンクリートを締固めるのが一般的である。
【0003】
打設コンクリートの締固め不足がコンクリート構造物の不具合の原因となる場合があるが、打設コンクリートの締固め状況は、目視での確認が難しい。そのため、型枠内の打設コンクリートの締固め状況を確認する方法が開発されつつある(例えば、特許文献1等参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2014-231691号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記特許文献1に記載の技術では、型枠の外面に加速度センサを設け、型枠内のコンクリートに挿入された内部振動機によって型枠に接する被りコンクリートに付与された振動を加速度センサで計測する。そして、計測した被りコンクリートに付与された振動を用いて、コンクリートの締固め状況を確認する。この技術によれば、加速度センサがコンクリート内に異物として残存するのを防止することができるとともに、加速度センサの再利用が可能となる。
【0006】
しかしながら、上記特許文献1のように型枠の外面に設けた加速度センサを用いて、型枠内部のコンクリートに付与された振動を計測するのでは、コンクリートに付与された振動を精度よく計測することはできない。このため、上記特許文献1の技術では、コンクリートの締固め状況を精度よく検出することができない可能性が高い。
【0007】
1つの側面では、本発明は、コンクリートの締固め状況を精度よく検出することが可能なコンクリートの打設方法及び型枠を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、上記特許文献1の技術について検討した結果、型枠の材質を異ならせたときに、コンクリートの締固め状況を精度よく検出できないことを確認した。本発明は、このような新規知見に基づくものである。
【0009】
一つの態様では、型枠内にコンクリートを打設するコンクリートの打設方法であって、前記コンクリート内に挿入された振動機により前記型枠内のコンクリートに振動を与えるステップと、前記型枠とは異なる材質を介して前記コンクリートとは接触するとともに前記型枠から振動的に分離して、前記型枠に取付け可能な加速度センサにより、前記振動機による振動を検出するステップと、検出した前記振動から算出される前記コンクリートの運動エネルギに基づいて、前記型枠近傍のコンクリートの締固め状況を検出するステップと、を含んでいる。
【発明の効果】
【0010】
コンクリートの締固め状況を精度よく検出することができる。
【図面の簡単な説明】
【0011】
図1】第1の実施形態に係るコンクリート締固め方法を示すフローチャートである。
図2】第1の実施形態における型枠及び加速度センサの配置例を示す図である。
図3図3(a)、図3(b)は、加速度センサの配置について説明するための図である。
図4図4(a)~図4(c)は、第1の実施形態における、加速度センサの型枠への固設方法について説明するための図である。
図5】第1の実施形態において加速度センサが検出する振動加速度について説明するための図である。
図6図6(a)、図6(b)は、第2の実施形態における、加速度センサの型枠への固設方法について説明するための図である。
【発明を実施するための形態】
【0012】
《第1の実施形態》
以下、第1の実施形態について説明する。
【0013】
図1は、本第1の実施形態に係るコンクリート締固め方法、すなわちコンクリートの打設方法を示すフローチャートである。本第1の実施形態においては、図1に示すように、エネルギ測定工程(S1)と、打設工程(S2)と、計測工程(S3)と、算出工程(S4)と、比較工程(S5)とを実施する。
【0014】
(エネルギ測定工程(S1))
エネルギ測定工程S1は、打設工程(S2)で使用する型枠と同一の材質の型枠、及び打設工程(S2)で打設するコンクリートと同じ配合のコンクリート試料もしくは同様の品質のコンクリート試料を用いて、締固め完了エネルギを予め測定しておく工程である。ここで、締固め完了エネルギとは、コンクリートを理論密度まで締固める(コンクリートから空隙を排除する)のに必要な運動エネルギである。測定された締固め完了エネルギは、不図示のコンピュータに記憶させる。または、これに代えて、模型実験等を行って運動エネルギと、コンクリート品質との関係を把握して、この関係から締固め完了エネルギを設定するようにしてもよく、他の方法を用いてもよい。
【0015】
エネルギ測定工程S1においては、打設工程(S2)で使用する型枠と同一の材質の型枠に加速度センサを設置する。このとき、加速度センサは、打設工程(S2)において型枠に設置する位置とほぼ同一の位置に設置する。例えば、図2に示すような型枠10を用いることとする。図2の型枠10は、側板12A、12B、14等を組み合わせることにより形成されているものとする。この場合、図2において黒丸で示すように、型枠10の側板12Aの外面(-Y側の面)には、長手方向(X軸方向)に沿って所定間隔(例えば500mm間隔)で加速度センサ20を設置するとともに、高さ方向(Z軸方向)に所定間隔(例えば500mm間隔)で加速度センサ20を設置する。すなわち、本実施形態では、加速度センサ20を所定間隔(500mm間隔)で設定された格子点に設置する。また、側板12Bの外面(+Y側の面)にも、図2において破線円にて示すように、側板12Aと同様に加速度センサ20を設置する。加速度センサ20は、図示しないコンピュータに接続されており、加速度センサ20により計測された振動加速度の計測データは、不図示のコンピュータに送信される。
【0016】
ここで、上記のような加速度センサ20の配置を採用している理由について説明する。図3(a)、図3(b)は、コンクリート構造物の施工の様子を模式的に示す図である。図3(a)、図3(b)に示すように、コンクリート構造物の施工においては、一層あたりのコンクリート充填高さは500mm程度であり、その都度、棒状のバイブレータ(振動機)40を用いて振動締固めを行う。バイブレータ40の振動部分の長さは、一般に、400~500mmであり、これを層高さ500mm程度のコンクリート中に挿入して締固めを行う。この場合、バイブレータ40の振動は、水平方向に伝達する。このため、バイブレータ40から伝達される振動を加速度センサ20で精度よく計測するには、加速度センサ20の高さ位置を、バイブレータ40とコンクリートが接している高さ範囲の中央位置とほぼ一致させることが好ましい。したがって、高さ方向に並ぶ加速度センサ20間の間隔は、500mm程度とすることが好ましい。
【0017】
また、バイブレータ40の振動有効範囲は棒径の10倍程度である。したがって、水平方向(図2の型枠の場合、X軸方向)に500mm程度のピッチでバイブレータ40を移動させながら締固めを行うのが一般的である。このようなバイブレータ40の使用手順を考慮すると、型枠10に設置する加速度センサ20の水平方向(X軸方向)の設置間隔は500mm程度にするのが好ましい。
【0018】
したがって、以上の理由から、本実施形態では、図2に示すように加速度センサ20を500mm間隔の格子点に設置することとしている。このようにすることで、型枠10内に打設されるコンクリート構造物全体における締固め状況を加速度センサ20で適切に評価することが可能になる。
【0019】
なお、500mm程度の間隔で加速度センサ20を設置すると、規模が大きいコンクリート構造物の施工では、多数の加速度センサが必要になり、機材費用が膨大になる可能性がある。したがって、費用対効果を考慮して、評価したい重要な部分に集中して加速度センサを配置するなどしてもよい。
【0020】
ここで、加速度センサ20は、図4(a)に示すように、側板12A(及び12B)の外面に対して、接着剤22を用いて固設することとしてもよい。また、図4(b)に示すように、側板12A(12B)と、固定具26とで、加速度センサ20を挟み、ネジ24を用いて固定具26を側板12A(12B)に固設することで、加速度センサ20を側板12A(12B)の外面に密着させることとしてもよい。このようにすることで、加速度センサ20を側板12A(12B)に対して強固に固設することができるとともに、加速度センサ20の着脱が容易となる。また、図4(c)に示すように、側板12A(12B)に貫通孔30を設け、貫通孔30に加速度センサ20を配置し、加速度センサ20に固定した固定具28を側板12A(12B)に対してネジ24を用いて固設することとしてもよい。この場合、側板12A(12B)の貫通孔30が、加速度センサ20の取付部となる。
【0021】
本第1の実施形態において、加速度センサ20で計測される振動加速度は、加速度センサ20近傍のコンクリート振動を起振力とした型枠振動(図5の符号v1参照)と、型枠10を伝搬して到達した振動(図5の符号v2参照)の合力による型枠振動そのものである。
【0022】
エネルギ測定工程S1においては、図2の型枠10内にコンクリート試料を投入し、打設工程S2と同様にバイブレータ40でコンクリートに加振し、投入されたコンクリート試料が所定の状態(理論密度)になった段階における型枠10の振動加速度α(加速度センサ20の計測値)を取得する。
【0023】
その後、締固め時間t、締固め時間経過時の型枠の振動加速度α、バイブレータ40の振動数fおよび型枠の単位容積質量ρを次式(1)に代入して締固め完了エネルギEtを算出する。
Et=ρ・α2・t/4・π2・f …(1)
ここで、
Et:締固め完了エネルギ(t秒間の締固めで型枠に与えられるエネルギ)(J/L)
α:締固め時間経過時の型枠の振動加速度(m/s2
t:振動時間(s)
f:振動数(s-1
ρ:型枠の単位容積質量(kg/L)
【0024】
なお、本第1の実施形態では、打設工程S2において、バイブレータ40を所定位置に位置決めした状態でコンクリートを打設し、その後、次の位置にバイブレータ40を位置決めしてコンクリートを打設する、という作業を繰り返す。したがって、エネルギ測定工程S1においても、バイブレータ40を位置決めした状態で、例えばバイブレータ40から最も近い位置に存在する加速度センサ20の計測値を用いて締固め完了エネルギを算出し、次の位置にバイブレータ40を位置決めして同様に締固め完了エネルギを算出し、という処理を繰り返す。この場合、コンピュータには、バイブレータ40の位置に対応付けて、締固め完了エネルギ算出に用いた加速度センサ20と、締固め完了エネルギの値と、が記憶されることになる。
【0025】
(打設工程(S2))
打設工程S2は、エネルギ測定工程S1において使用したコンクリート試料と同じ配合のコンクリートを、エネルギ測定工程S1において使用した型枠と同一の型枠10内に打設する工程である。この打設工程S2においても、バイブレータ40を所定位置に位置決めしてバイブレータ40近傍にコンクリートを打設し、バイブレータ40によりコンクリートに振動を加えて締固めを行い、その後、次の位置にバイブレータ40を位置決めしてバイブレータ40近傍にコンクリートを打設し、バイブレータ40によりコンクリートに振動を加えて締固めを行い、…という作業を繰り返す。
【0026】
(計測工程(S3))
計測工程S3は、バイブレータ40の位置に応じて、計測に用いる加速度センサ20を特定し、特定した加速度センサ20を用いて振動加速度を計測する。
【0027】
(算出工程(S4))
算出工程S4は、型枠10の振動加速度αおよび振動の継続時間tに基づいて、t秒間の締固めで型枠10に与えられたエネルギ(運動エネルギ)を算出する工程である。型枠に与えられたエネルギの算出は、コンピュータにより行う。
【0028】
振動加速度αおよび振動の継続時間tに基づくエネルギEtは、上式(1)により算出する。
【0029】
ここで、コンクリート工事で使用する型枠の材質としては、木製(ベニヤ合板)、プラスチック(樹脂)製、鋼製(ほとんどは鉄製)などがある。例えば、木製の型枠の単位体積重量ρwは0.5(kg/L)、プラスチック製の型枠の単位体積重量ρpは1.0(kg/L)、鋼製の型枠の単位体積重量ρsは7.8(kg/L)程度であるとする。
【0030】
上式(1)において、加速度が作用した時間tが20(s)、振動数f(一般的な高周波バイブレータの振動数)が250(s-1)であるとすると、t秒間の締固めで型枠に与えられるエネルギEは、
E≒0.002×ρ×α2 …(2)
と表される。
【0031】
この場合において、木製の型枠の振動加速度αw、プラスチック製の型枠の振動加速度αp、鋼製の型枠の振動加速度αsは、型枠の剛性の影響を受けるため、以下の関係になることが容易に推察できる。
αw>αp>αs
【0032】
一例として、重力加速度をG(=9.8m/s2)とし、αw=3G=29.4(m/s2)、αp=2G=19.6(m/s2)、αs=1G=9.8(m/s2)とすると、上式(2)より、t秒間に型枠に与えられるエネルギEw、Ep、Esは以下のようになる。
Ew=0.002×ρw×αw2=0.002×0.5×(29.4)2
≒0.86(J/L) …(3)
Ep=0.002×ρp×αp2=0.002×1.0×(19.6)2
≒0.77(J/L) …(4)
Es=0.002×ρs×αs2=0.002×7.8×(9.8)2
≒1.50(J/L) …(5)
【0033】
なお、ρとしてコンクリートの単位容積重量を代入した場合、以下のようになる。
Ew=0.002×ρ×αw2=0.002×2.35×(29.4)2
≒4.09(J/L) …(6)
Ep=0.002×ρ×αp2=0.002×2.35×(19.6)2
≒1.81(J/L) …(7)
Es=0.002×ρ×αs2=0.002×2.35×(9.8)2
≒0.45(J/L) …(8)
【0034】
上式(6)~(8)のようにρとしてコンクリートの単位容積重量を代入する場合、上式(3)~(5)のようにρとして型枠の単位体積重量を代入する場合と比べて計算結果が大きく異なる。本第1の実施形態の加速度センサ20が実際に計測している振動加速度が型枠の振動加速度であること(図5参照)に鑑みると、上式(6)~(8)のようにエネルギを計算した場合には、コンクリートの締固め完了を精度よく判定できない可能性が高い。
【0035】
(比較工程(S5))
比較工程S5は、算出工程S4において算出されたエネルギとコンピュータに記憶された締固め完了エネルギとを比較する工程である。この場合、バイブレータ40の位置に最も近い加速度センサ20の計測結果から算出されたエネルギと、当該加速度センサ20に対応付けて記憶されている締固め完了エネルギとを比較する。
【0036】
そして、算出されたエネルギが、締固め完了エネルギを上回った場合には、コンクリートの締固めが完了したと判定し、算出されたエネルギが締固め完了エネルギを下回っている場合は、締固めが不十分と判定する。
【0037】
以上詳細に説明したように、本第1の実施形態によると、コンクリート内に挿入されたバイブレータ40により型枠10内のコンクリートに振動を与え(S2)、型枠10の外側から着脱可能に設けられた加速度センサ20により、バイブレータ40による振動加速度を検出し(S3)、検出した振動加速度から算出される型枠10の運動エネルギに基づいて、型枠10近傍のコンクリートの締固め状況を検出する(S4)。これにより、バイブレータ40からコンクリートを介して型枠10に伝わった振動加速度を用いて、型枠10の運動エネルギを適切に算出することができるため、当該算出結果を利用することで、型枠10内に打設されるコンクリートの締固め状況を精度よく確認することができる。したがって、視認することができない型枠10内のコンクリートの締固め状況を精度よく確認することができ、ひいては、締固め不足などの不具合の発生を抑制し、高品質のコンクリート構造物を構築することができる。また、加速度センサ20は型枠10の外面に設置するため、コンクリート構造物内に加速度センサ20が異物として残存することがない。また、加速度センサ20は繰り返し使用することができるため、経済的である。また、加速度センサ20の設置は容易なため、作業性に優れている。また、本実施形態では、コンクリートの締固め完了を即時に判定することができるため、締固め作業を確実に行うことができる。
【0038】
また、本第1の実施形態では、型枠10近傍のコンクリートの締固め状況は、型枠10の材質に応じて検出される。すなわち、型枠10の単位体積重量を用いて型枠の運動エネルギを算出し、算出した運動エネルギに基づいて締固め完了を判定する。これにより、型枠10の外側に設けられた加速度センサ20を用いて検出された振動加速度と、コンクリートの単位容積重量とを用いて運動エネルギを算出する場合(上記特許文献1)よりも、精度よくコンクリートの締固め完了を判定することができる。
【0039】
なお、上記第1の実施形態では、型枠10の側板12A、12Bの両方に加速度センサ20を設ける場合について説明したが、いずれか一方の側板にのみ加速度センサを設けることとしてもよい。また、側板14に加速度センサ20を設けることとしてもよい。
【0040】
《第2の実施形態》
以下、第2の実施形態について説明する。
【0041】
本第2の実施形態においては、上式(1)のρとして、コンクリートの単位容積重量を用いることとし、これに対応して、型枠10の側板12A,12Bに対する加速度センサ20の固設方法を第1の実施形態から変更している。
【0042】
図6(a)には、第2の実施形態における加速度センサ20の固設方法の一例が示されている。図6(a)に示すように、本第2の実施形態では、側板12A(12B)に貫通孔30を形成するとともに、防振材50を間に介在させた状態で、加速度センサ20を貫通孔30に挿入する。すなわち、図6(a)においては、貫通孔30が加速度センサ20の取付部となる。ここで、防振材50としては、例えばゴムや樹脂、バネなどを用いることができる。この場合、加速度センサ20は、型枠10内に打設されるコンクリートに接触するため、コンクリートの振動加速度を検出する。その一方、加速度センサ20は、防振材50の作用により、型枠10と振動的に分離されているため、型枠10の振動加速度は検出しないようになっている。
【0043】
なお、加速度センサ20の側板12A、12Bへの固設方法は、図6(a)以外にも、例えば図6(b)に示すような固設方法を採用することもできる。図6(b)のように、加速度センサ20を加速度センサ収納ケース52に収納し、加速度センサ20が貫通孔30に挿入された状態で、加速度センサ収納ケース52を側板12A(12B)の外面に固定された防振材54に対してネジ24で固設してもよい。このようにしても、図6(a)と同様、加速度センサ20を型枠10から振動的に分離することができる。
【0044】
本第2の実施形態では、第1の実施形態と同様、図1の処理を行うものとする。以下、図1の各工程のうち、第1の実施形態と異なる点について説明する。
【0045】
(エネルギ測定工程(S1))
本第2の実施形態においても、第1の実施形態と同様、打設工程S2で使用する型枠と同一の型枠を用いて、打設工程S2で用いるコンクリートと同一のコンクリート試料を打設する。そして、そのときに得られる加速度センサ20の計測結果から、コンクリートの締固め完了エネルギEtを算出する。この場合、締固め時間t、締固め時間経過時のコンクリートの振動加速度α、振動数fおよびコンクリートの単位容積質量ρを次式(9)に代入して締固め完了エネルギEtを算出する。
Et=ρ・α2・t/4・π2・f …(9)
ここで、
Et:締固め完了エネルギ(t秒間の締固めでコンクリートが受けるエネルギ)(J/L)
α:締固め時間経過時のコンクリートの振動加速度(m/s2
t:振動時間(s)
f:振動数(s-1
ρ:コンクリートの単位容積質量(kg/L)
【0046】
なお、本第2の実施形態では、コンクリートの振動加速度αを計測し、コンクリートの締固め完了エネルギEtを算出するため、全ての加速度センサ20を用いてエネルギ測定工程S1を行わなくてもよい。例えば、1又は複数の加速度センサ20を用いてコンクリートの締固め完了エネルギEtを算出し、算出した締固め完了エネルギEtから比較工程で用いる締固め完了エネルギの値を設定することとしてもよい。
【0047】
なお、本第2の実施形態では、締固め完了エネルギの測定を、締固めエネルギ測定装置を用いて行うこともできる。締固めエネルギ測定装置は、容器内に投入されたコンクリート試料が所定の寸法(理論密度)になるまで加振する装置である。
【0048】
締固めエネルギ測定装置は、例えば、加速度センサを備えた振動台、制御盤、コンクリート試料容器、コンクリート試料上面の沈下に追随する円盤、円盤の位置を計測する変位計、および、コンピュータを備える。コンクリート試料容器は、鉛直振動のみが生じる振動台上に固定されている。制御盤は、振動台に動力を付与するモータの回転開始と同時にコンピュータの計測プログラムをスタートさせるスイッチを備えている。
【0049】
この場合、締固めエネルギ測定装置は、コンクリートを理論密度まで締め固めて、締固め時間t、振動台の最大加速度αおよび振動数fを次式(10)に代入することにより、締固め完了エネルギを算出する。
Et=ρ・α2・t/4・π2・f …(10)
ここで、
Et:締固め完了エネルギ(t秒間の締固めでコンクリートが受けるエネルギ)(J/L)
α:最大加速度(m/s2
t:振動時間(s)
f:振動数(s-1
ρ:試料(コンクリート)の単位容積質量(kg/L)
【0050】
(算出工程(S4))
算出工程S4は、型枠10の振動加速度αおよび振動の継続時間tに基づいて、t秒間の締固めでコンクリートが受けたエネルギを算出する工程である。コンクリートが受けたエネルギの算出は、コンピュータにより行う。
【0051】
振動加速度αおよび振動の継続時間tに基づくエネルギEtは、上式(9)により算出する。
【0052】
本第2の実施形態においては、防振材50(又は54)により型枠10から振動的に分離された加速度センサ20を用いてコンクリートの振動加速度を検出し、コンクリートの単位容積質量ρを用いて、コンクリートの締固め完了エネルギを算出するので、コンクリートの締固め完了を精度よく判定することができる。
【0053】
なお、上記第2の実施形態では、防振材50、54を介して加速度センサ20を型枠10に固設する場合について説明したが、これに限らず、その他の型枠10とは異なる材質を介して加速度センサ20を型枠10に固設することとしてもよい。
【0054】
なお、上記第2の実施形態では、型枠10の側板12A,12Bに貫通孔30を形成し、当該貫通孔30に加速度センサ20を設けることとしたが、これに限られるものではない。例えば、貫通孔30の代わりに側板12A,12Bに凹部を形成し、当該凹部に加速度センサ20を設けることとしてもよい。この場合、凹部は、側板12A,12Bの外側に開口していてもよいし、側板12A,12Bの内側に開口していてもよい。凹部が側板12A,12Bの外側に開口している場合には、加速度センサ20がコンクリートの振動を精度よく計測できる程度まで掘り下げられていることが好ましい。
【0055】
上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
【符号の説明】
【0056】
10 型枠
20 加速度センサ
30 貫通孔(取付部)
40 バイブレータ(振動機)
50 防振材
54 防振材
図1
図2
図3
図4
図5
図6