(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023124200
(43)【公開日】2023-09-06
(54)【発明の名称】情報処理システム及び情報処理方法
(51)【国際特許分類】
G06N 99/00 20190101AFI20230830BHJP
A61B 5/16 20060101ALI20230830BHJP
A61B 5/11 20060101ALI20230830BHJP
G06F 17/17 20060101ALI20230830BHJP
【FI】
G06N99/00 180
A61B5/16 120
A61B5/11 200
G06F17/17
【審査請求】未請求
【請求項の数】9
【出願形態】OL
(21)【出願番号】P 2022027826
(22)【出願日】2022-02-25
(71)【出願人】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110001678
【氏名又は名称】藤央弁理士法人
(72)【発明者】
【氏名】黎 子盛
(72)【発明者】
【氏名】荻野 昌宏
【テーマコード(参考)】
4C038
5B056
【Fターム(参考)】
4C038PP03
4C038PQ06
4C038PS01
4C038VA04
4C038VB01
4C038VC20
5B056BB91
(57)【要約】
【課題】補間後のデータを用いた因果推論の精度の低下を抑制する。
【解決手段】情報処理システムであって、プログラムを実行するプロセッサと、前記プログラムを記憶する記憶デバイスとを有し、前記記憶デバイスは、センサによって計測されたユーザの生態情報であるセンサデータと、前記センサデータに付随して収集されるユーザデータを記憶し、前記プロセッサは、前記センサデータを取得し、前記取得したセンサデータと前記ユーザデータとの因果関係を用いて、前記センサデータを補間する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
情報処理システムであって、
プログラムを実行する演算装置と、前記プログラムを記憶する記憶デバイスとを有し、
前記記憶デバイスは、センサデバイスによって計測されたユーザの生体情報であるセンサデータと、前記センサデータに付随して収集されるデータとを含むユーザデータを記憶し、
前記演算装置は、
前記センサデータを取得し、
前記ユーザデータの項目間の因果関係を用いて、前記取得したセンサデータを補間することを特徴とする情報処理システム。
【請求項2】
請求項1に記載の情報処理システムであって、
前記ユーザデータは、ユーザの行動、感情、生態情報、及び介入施策の少なくとも一つを含むことを特徴とする情報処理システム。
【請求項3】
請求項1に記載の情報処理システムであって、
前記ユーザデータは、前記ユーザデータの項目間の因果関係を表すグラフ構造で表すことができ、
前記演算装置は、前記グラフ構造の特徴量を用いて、前記センサデータを補間することを特徴とする情報処理システム。
【請求項4】
請求項1に記載の情報処理システムであって、
前記センサデータは数値で表されることを特徴とする情報処理システム。
【請求項5】
請求項1に記載の情報処理システムであって、
前記ユーザの行動及び感情のデータは、前記ユーザによって入力されることを特徴とする情報処理システム。
【請求項6】
請求項1に記載の情報処理システムであって、
前記演算装置は、前記センサデータから前記ユーザの行動及び感情のデータを識別することを特徴とする情報処理システム。
【請求項7】
請求項1に記載の情報処理システムであって、
前記演算装置は、前記センサデータの補間におけるデータ補間損失量と、前記ユーザデータの項目間の関係を表す交絡因子を用いたデータ特徴量の調整における交絡因子損失量と、前記ユーザデータから介入効果の予測における予測損失量とから計算される学習誤差が最小となるように、モデルのパラメータを定めることを特徴とする情報処理システム。
【請求項8】
請求項7に記載の情報処理システムであって、
前記演算装置は、前記ユーザデータの項目間の関係を表す交絡因子の損失が最小となるように交絡因子を調整し、介入効果を予測することを特徴とする情報処理システム。
【請求項9】
情報処理システムが、センサデータを補間する情報処理方法であって、
前記情報処理システムは、所定の処理を実行する演算装置と、前記演算装置に接続された記憶デバイスとを有する計算機によって構成され、
前記記憶デバイスは、センサデバイスによって計測されたユーザの生体情報であるセンサデータと、前記センサデータに付随して収集されるデータとを含むユーザデータを記憶しており、
前記情報処理方法は、
前記演算装置が、前記センサデータを取得する手順と、
前記演算装置が、前記ユーザデータの項目間の因果関係を用いて、前記取得したセンサデータを補間する手順とを含むことを特徴とする情報処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理システムに関し、特に、ユーザを測定した生体データの欠損を補間して、適切な介入施策を提案する技術に関する。
【背景技術】
【0002】
ユーザを測定した生体データの欠損を補間する場合、欠損値前後の測定データを用いるフィルタリングや機械学習モデルが用いられる。
【0003】
本技術分野の背景技術として、以下の先行技術がある。特許文献1(特開2015-200968号公報)には、歩行情報データベースと位置情報データベースとを検索して、歩行情報と位置情報との両方が存在する時刻を検索し、移動情報およびその時刻を基に移動速度、移動距離、移動時間を算出し、算出した移動速度が略一定である期間について、移動速度、移動距離、および歩数から、歩行速度、歩幅および歩行率を算出し、算出した歩行速度、歩幅、および歩行率の関係式を算出する処理部と、を備え、処理部は、利用者が歩行により移動し、かつ、歩行情報がないと判定した期間について、利用者の位置情報に基づいて移動速度と移動時間とを算出し、算出した移動速度を、歩行速度と歩行率との関係式に代入して歩行率を算出し、算出した歩行率と移動時間とを乗じて歩数を算出する歩行情報管理システムが記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
前述した先行技術では、測定データの補間には、介入施策や他の影響因子による変化が考慮されていないため、補間後のデータを用いた因果推論の精度が低下する場合がある。
【0006】
本発明は、補間後のデータを用いた因果推論の精度の低下を抑制できる測定データの補間方法を提案する。
【課題を解決するための手段】
【0007】
本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、情報処理システムであって、 プログラムを実行する演算装置と、前記プログラムを記憶する記憶デバイスとを有し、前記記憶デバイスは、センサデバイスによって計測されたユーザの生体情報であるセンサデータと、前記センサデータに付随して収集されるデータとを含むユーザデータを記憶し、前記演算装置は、前記センサデータを取得し、前記ユーザデータの項目間の因果関係を用いて、前記取得したセンサデータを補間することを特徴とする。
【発明の効果】
【0008】
本発明の一態様によれば、欠損データを正確に予測できる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。
【図面の簡単な説明】
【0009】
【
図1】本発明の実施例の計算機システムの物理的な構成を示すブロック図である。
【
図2】本発明の実施例の計算機システムの論理的な構成を示すブロック図である。
【
図3】本発明の実施例のユーザデータの構成例を示す図である。
【
図5】実施例1のデータ補間部の学習時の構成を示す図である。
【
図6】本発明の実施例のグラフの構成例を示す図である。
【
図7A】グラフを構成するノードとノード特徴量の例を示す図である。
【
図7B】グラフを構成するエッジとエッジ特徴量の例を示す図である。
【
図9】実施例1のデータ補間部の予測推論時の構成を示す図である。
【
図10A】情報端末に表示される入力画面の例を示す図である。
【
図10B】情報端末に表示される出力画面の例を示す図である。
【
図11】情報端末に表示される介入施策決定結果画面の例を示す図である。
【
図13】実施例2のデータ補間部の学習時の構成を示す図である。
【
図15】実施例2のデータ補間部の予測推論時の構成を示す図である。
【発明を実施するための形態】
【0010】
<実施例1>
図1は、本実施例の計算機システム100の物理的な構成を示すブロック図である。
【0011】
本発明の情報処理システムの一実施例である本実施例の計算機システム100は、プロセッサ(CPU)101、主記憶装置102、補助記憶装置103、ネットワークアダプタ104、入力装置105及び出力装置106を有する計算機で構成される。
【0012】
プロセッサ101は、主記憶装置102に格納されたプログラム(例えば、学習部200や予測部201を実現するプログラム)を実行する。主記憶装置102は、不揮発性の記憶素子であるROM及び揮発性の記憶素子であるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶素子であり、プロセッサ101が実行するプログラム及びプログラムの実行時に使用されるデータ(例えば、学習済モデル、特徴量)を一時的に格納する。
【0013】
補助記憶装置103は、例えば、磁気記憶装置(HDD)、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置であり、プロセッサ101が実行するプログラム及びプログラムの実行時に使用されるデータを格納する。すなわち、プログラムは、補助記憶装置103から読み出されて、主記憶装置102にロードされて、プロセッサ101によって実行される。
【0014】
ネットワークアダプタ104は、所定のプロトコルに従って、ネットワーク109を介して他の装置(情報端末110、外部記憶装置111など)との通信を制御する通信インターフェース装置である。
【0015】
入力装置105は、キーボード、マウス、タッチパネルなどの、ユーザからのデータ入力(例えば、メタ情報)を受けるインターフェース装置である。出力装置106は、ディスプレイ装置やプリンタなどの、プログラムの実行結果(例えば、センサデータ補間結果、介入効果予測)をオペレータが視認可能な形式で出力するインターフェース装置である。なお、計算機システム100にネットワーク109を介して接続されたユーザ端末(例えば、情報端末110)が入力装置105及び出力装置106を提供してもよい。この場合、計算機システム100がウェブサーバの機能を有し、ユーザ端末が計算機システム100に所定のプロトコル(例えばhttp)でアクセスしてもよい。
【0016】
プロセッサ101が実行するプログラムは、リムーバブルメディア(CD-ROM、フラッシュメモリなど)又はネットワークを介して計算機システム100に提供され、非一時的記憶媒体である不揮発性の補助記憶装置103に格納される。このため、計算機システム100は、リムーバブルメディアからデータを読み込むインターフェースを有するとよい。
【0017】
計算機システム100は、物理的に一つの計算機上で、又は、論理的又は物理的に構成された複数の計算機上で構成される計算機システムであり、同一の計算機上で別個のスレッドで動作してもよく、複数の物理的計算機資源上に構築された仮想計算機上で動作してもよい。計算機システム100の各機能部は異なる計算機上で実現されてもよい。
【0018】
情報端末110は、ネットワーク109を介して計算機システム100に接続される計算機であり、ユーザからのデータ入力(例えば、メタ情報)を受け、プログラムの実行結果(例えば、センサデータ補間結果、介入効果予測)を表示する。情報端末110は、ユーザが装着するセンサデバイスと通信し、当該センサデバイスが計測したセンサデータを収集する。センサデバイスは、心拍センサ、皮膚電気活動センサ、皮膚温度センサなどを実装したスマートウォッチ、活動量計などのウェアラブルデバイスであり、ユーザの生体情報を計測する。また、センサデバイスは、加速度センサ、測位ユニットを実装しており、ユーザの動作を計測する。
【0019】
外部記憶装置111は、例えば、磁気記憶装置(HDD)、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置で構成され、プロセッサ101が実行するプログラム及びプログラムの実行時に使用されるデータを格納する。
【0020】
図2は、本実施例の計算機システム100の論理的な構成を示すブロック図である。
【0021】
本実施例の計算機システム100は、学習部200及び予測部201を有する。学習部200は、学習用データベース210に格納された学習データを使用して、学習済みモデルを生成し、生成したモデルをモデルデータベース211に格納する。予測部201は、モデルデータベース211に格納された学習済みモデルを用いて、ユーザデータ220を補間してデータ補間結果231を生成し、ユーザデータ220から予測介入結果221を導出する。
【0022】
図3は、本実施例のユーザデータ220の構成例を示す図である。
【0023】
ユーザデータ220は、ユーザを一意に識別する識別情報(ID)、ユーザの性別、ユーザの年齢、ユーザの行動、ユーザの感情、ユーザから取得したセンサデータ、介入日時、介入内容、及び介入効果のデータが関連付けられて格納される。このうち、ユーザの行動、及びユーザの感情が、テキストデータで表されるメタデータである。
【0024】
センサデータは、ユーザが装着したセンサデバイスが計測したデータで、心拍、皮膚電気活動、皮膚温度、加速度、活動量(歩数、METSなど)、位置情報などの数値が含まれる。
【0025】
感情は、ユーザが介入日時において感じている事項であり、快、不快、リラックス、緊張、活動的、静止的など予め定められたカテゴリーに分類されたデータである。感情は、ユーザが情報端末110から入力する、又は、情報端末110がセンサデータから推定した感情データでもよい。例えば、センサデバイスが計測した皮膚電気活動データからストレス度を計算でき、緊張度を推定できる。
【0026】
行動は、ユーザが介入日時において行っている動作であり、食事、運動、睡眠、対人交流など予め定められたカテゴリーに分類されたデータである。行動は、ユーザが情報端末110から入力する、又は、情報端末110がセンサデータから推定した行動データを収集したものでもよい。例えば、センサデバイスが計測した加速度データから、歩行中、軽作業中、睡眠中などの行動を推定できる。
【0027】
図4は、実施例1の学習部200の構成を示す図である。
【0028】
学習部200は、データ補間部2001、交絡因子調整部2005、介入効果予測器2008、学習誤差演算部2010、及びパラメータ更新部2011を有し、センサデータを用いてモデルを学習する。
【0029】
データ補間部2001は、入力された欠損を含むユーザデータ220の欠損部分を推論し補間するためのデータ補間モデルを、データ補間損失量2002が最小になるように生成し、生成したデータ補間モデルを用いて補間後データ特徴量2004を生成し、生成した補間後データ特徴量2004に基づいて補間後データ2003を生成する。データ補間部2001の処理は
図5で後述する。データ補間損失量は、補間後(予測)データと欠損がない(実際)センサデータの間の誤差を表す損失関数の値であり、損失関数として、例えば、mean squared errorや、mean absolute errorや、cross entropy errorを使用できる。
【0030】
交絡因子調整部2005は、データ項目間の交絡因子に基づいて補間後データ特徴量2004から調整後データ特徴量2007を生成するための交絡因子調整モデルを、交絡因子調整損失量2006が最小になるように生成し、生成した交絡因子調整モデルを用いて補間後データ特徴量2004から調整後データ特徴量2007を生成する。介入と集団の分布に偏りが存在する場合でも、交絡因子調整部2005によって、全ての介入を均等に選択できるように集団の分布の差異を小さくして、分布のバランスが取れた特徴量を生成できるようになる。
【0031】
介入効果予測器2008は、調整後データ特徴量2007から介入効果を予測し、その予測誤差を表す損失関数の値である予測損失量2009を生成する。ユーザデータ220(予測効果の正解データ)は正解データとして用いて予測誤差を計算し、予測損失量が最小になるように介入効果予測モデルを生成する。ユーザデータ220から予測損失量2009を生成する。
【0032】
学習誤差演算部2010は、データ補間損失量2002、交絡因子調整損失量2006及び予測損失量2009から学習部200全体の学習誤差を計算する。学習誤差は、例えば、データ補間損失量2002、交絡因子調整損失量2006及び予測損失量2009を重み付け加算し、その加重平均の値によって計算できる。
【0033】
パラメータ更新部2011は、計算された学習誤差が最小となるように更新後パラメータ2012を生成する。生成された更新後パラメータ2012で推論モデル(データ補間モデル、交絡因子調整モデル、介入効果予測モデル)を更新することで、損失量が少ない、すなわち、正解データに近い推論が可能なモデルを生成できる。
【0034】
図5は、実施例1のデータ補間部2001の学習時の構成を示す図である。
【0035】
データ補間部2001は、特徴量抽出部2020、グラフ生成部2024、グラフ特徴量抽出部2029、特徴量融合部2031、及び欠損データ予測部2033を有する。
【0036】
特徴量抽出部2020は、センサデータ2021からセンサデータ特徴量2023を生成し、センサデータ2021の一部を欠損させたマスクデータ2022からセンサデータ特徴量2023を生成する。すなわち、センサデータ特徴量2023は、センサデータ2021の特徴量と、マスクデータ2022の特徴量とを含む。マスクデータ2022は、センサデータ2021にランダムのマスクをかけて、部分的に欠損した学習用のデータである。センサデータ2021は、マスクによって欠損したデータの正解データとして学習に用いられる。
【0037】
グラフ生成部2024は、センサデータ2021と、マスクデータ2022と、行動・感情データ2025と、ユーザ属性データ2026と、介入方法・介入効果の履歴データ2027とから、グラフ2028を生成する。生成されるグラフ2028は、
図6に示すように、グラフ生成部2024に入力されるデータ項目に対応するノードと、ノード同士を連結するエッジにより構成される。各ノード及び各エッジの特徴量が計算されている。ノード特徴量はデータ項目(例えば、
図7Aに示す感情、行動、加速度データ、心拍データ、介入方法・介入効果、ユーザ属性など)の特性を表し、エッジ特徴量はデータ項目間の相関関係を表す。
【0038】
図5に戻って説明を続ける。グラフ特徴量抽出部2029は、生成されたグラフ2028からグラフ特徴量2030を抽出する。グラフ特徴量2030は、ノード自体の性質を表すノード特徴量と、エッジによるノード同士の隣接関係を示すエッジ特徴量を含む。
【0039】
図7Aはグラフ2028を構成するノードとノード特徴量の例を示す図であり、
図7Bはグラフ2028を構成するエッジとエッジ特徴量の例を示す図である。ノードは項目毎に定められた、感情、行動、加速度データ、心拍データ、介入方法・介入効果、ユーザ属性などの項目であり、ノード特徴量はノードに対応する項目毎のデータの特徴量である。また、エッジは二つのノードに対応する項目のデータの関係であり、例えば、感情と心拍データの関係、行動と心拍データの関係、感情と加速度データの関係、行動と加速度データの関係、行動と介入方法・介入効果の関係、介入方法・介入効果と心拍データの関係などである。エッジ特徴量はノード間の相関関係を示す特徴量で表される。
【0040】
図5に戻って説明を続ける。特徴量融合部2031は、生成されたセンサデータ特徴量2023と抽出されたグラフ特徴量2030とを融合して融合特徴量2032を計算する。計算された融合特徴量2032は、補間後データ特徴量2004として出力される。
【0041】
欠損データ予測部2033は、データ補間モデルを用いて、融合特徴量2032から補間後データ2003を生成する。データ補間部2001は、正解データとしてセンサデータ2021及びマスクデータ2022を、さらに補間後データ2003を用いて、データ補間損失量2002が最小になるように学習して、データ補間モデルのパラメータを生成(更新)する。
【0042】
図8は、実施例1の予測部201の構成を示す図である。
【0043】
予測部201は、データ補間部2001、交絡因子調整部2005、及び介入効果予測器2008を有し、ユーザデータ220から介入効果を予測する。データ補間部2001、交絡因子調整部2005、及び介入効果予測器2008は、学習部200が有する構成と同じである。
【0044】
データ補間部2001は、学習済みデータ補間モデルを用いて、欠損を含むユーザデータ220の欠損部分を補間し、補間後データ2003を生成し、生成した補間後データ2003から補間後データ特徴量2004を計算する。データ補間部2001の処理は
図9で後述する。
【0045】
交絡因子調整部2005は、学習済み交絡因子調整モデルを用いて補間後データ特徴量2004から調整後データ特徴量2007を生成する。
【0046】
介入効果予測器2008は、調整後データ特徴量2007から予測介入結果2040を生成する。
【0047】
図9は、実施例1のデータ補間部2001の予測推論時の構成を示す図である。
【0048】
特徴量抽出部2020は、センサデータ2021からセンサデータ特徴量2023を生成する。
【0049】
グラフ生成部2024は、センサデータ2021と、行動・感情データ2025と、ユーザ属性データ2026と、介入方法・介入効果の履歴データ2027とから、グラフ2028を生成する。生成されるグラフ2028は、
図6に示すように、グラフ生成部2024に入力されるデータ項目に対応するノードと、ノード同士を連結するエッジにより構成される。
【0050】
グラフ特徴量抽出部2029は、生成されたグラフ2028からグラフ特徴量2030を抽出する。グラフ特徴量2030は、ノード自体の性質を表すノード特徴量と、エッジによるノード同士の隣接関係を示すエッジ特徴量を含む。
【0051】
特徴量融合部2031は、生成されたセンサデータ特徴量2023と抽出されたグラフ特徴量2030とを融合して融合特徴量2032を計算する。計算された融合特徴量2032は、補間後データ特徴量2004として出力される。センサデータ特徴量2023と、ユーザデータ220の相関関係を表わすグラフ特徴量2030の融合によって、データ間の相関関係を考慮したデータ補間が可能となり、介入効果予測における交絡因子調整や因果推論の精度を向上できる。
【0052】
欠損データ予測部2033は、学習済みデータ補間モデルを用いて融合特徴量2032から補間後データ2003を推論し生成する。
【0053】
図10Aは、情報端末110に表示される入力画面の例を示す図である。
【0054】
入力画面は、行動入力領域1101、情動入力領域1102及び介入入力領域1103を含む。行動入力領域1101は、例えば、対人交流、睡眠、食事、作業、運動などの選択ボタンを含み、ユーザが現在の行動に対応するボタンを操作して行動を入力する。情動入力領域1102には、複数の情動に関するスライドバーが設けられ、ユーザがスライダーを操作して、不快・快や、リラックス・活動的の度合いを選択する。介入入力領域1103は、目的毎の介入方法の選択欄を含み、ユーザが行っている介入方法w選択する。
【0055】
図10Bは、情報端末110に表示される出力画面の例を示す図である。
【0056】
出力画面は、補間対象表示領域1105及び補間後フィードバック表示領域1106を含む。補間対象表示領域1105は、日付けと時間を二つの軸としたグラフ領域にセンサデータ及びセンサデータが欠落している領域を表示する。補間後フィードバック表示領域1106は、補間されたセンサデータを表示する。
【0057】
図11は、情報端末110に表示される介入施策決定結果画面1300の例を示す図である。
【0058】
介入施策決定結果画面1300は、その上部に、最も効果が高い最適な介入施策が示される。介入施策決定結果画面1300の下部には、介入候補による介入効果(パーセント単位で表した活動生産性増加率)の違いが示される。具体的には、介入開始後4週間後で、(1)歩行30分では8%、(2)ランニング30分では38%、(3)筋トレ10分では12%改善することが分かる。
【0059】
以上に説明したように、本発明の実施例1では、センサデータ2021と、マスクデータ2022と、行動・感情データ2025と、ユーザ属性データ2026と、介入方法・介入効果の履歴データ2027とから生成されたグラフ2028のグラフ特徴量2030を用いて、欠損データを予測するので、データ損失が少なく正確な欠損データを予測できる。
【0060】
また、データ補間損失量2002、交絡因子調整損失量2006及び予測損失量2009から計算された学習誤差が最小となるように更新後パラメータ2012を生成するので、複数の損失関数の調整によって、モデルによる補間の精度を向上できる。
【0061】
<実施例2>
次に、本発明の実施例2を説明する。前述した実施例1では、行動、感情等のメタデータをユーザが入力したが、実施例2では行動・感情識別器2013がユーザデータ220(特にセンサデータ)からユーザの行動や感情を識別する。なお、実施例2において、前述した実施例1と同じ構成及び処理には同じ符号を付し、それらの説明は省略する。
【0062】
図12は、実施例2の学習部200の構成を示す図である。
【0063】
学習部200は、データ補間部2001、行動・感情識別器2013、交絡因子調整部2005、介入効果予測器2008、学習誤差演算部2010、及びパラメータ更新部2011を有し、欠損がないセンサデータを用いてモデルを学習する。
【0064】
データ補間部2001は、入力された欠損を含むユーザデータ220の欠損部分を推論し補間するためのデータ補間モデルを、データ補間損失量2002が最小になるように生成し、生成したデータ補間モデルを用いて補間後データ特徴量2004を生成し、生成した補間後データ特徴量2004に基づいて補間後データ特徴量2003を生成する。データ補間部2001の処理は
図13で後述する。
【0065】
行動・感情識別器2013は、ユーザデータ220のセンサデータの特徴量から行動及び感情のデータを生成するための行動・感情識別モデルを、行動・感情識別損失量2014が最小になるように生成し、生成した行動・感情識別モデルを用いて行動及び感情のデータを生成し、生成した行動及び感情のデータから行動及び感情のデータの特徴量を計算し、計算した特徴量を補間後データ特徴量2004に加える。すなわち、データ補間部2001がデータを補間しながら、行動・感情識別器2013が行動・感情を識別する。
【0066】
交絡因子調整部2005は、データ項目間の交絡因子に基づいて補間後データ特徴量2004から調整後データ特徴量2007を生成するための交絡因子調整モデルを、交絡因子調整損失量2006が最小になるように生成し、生成した交絡因子調整モデルを用いて補間後データ特徴量2004から調整後データ特徴量2007を生成する。
【0067】
介入効果予測器2008は、ユーザデータ220から予測損失量2009を生成する。
【0068】
学習誤差演算部2010は、データ補間損失量2002、交絡因子調整損失量2006、及び行動・感情識別損失量2014から学習誤差を計算する。
【0069】
パラメータ更新部2011は、計算された学習誤差が最小となるように更新後パラメータ2012を生成する。生成された更新後パラメータ2012で推論モデル(データ補間モデル、交絡因子調整モデル)を更新することで、損失量が少ない、すなわち正解データに近い推論が可能なモデルを生成できる。
【0070】
図13は、実施例2のデータ補間部2001の学習時の構成を示す図である。
【0071】
データ補間部2001は、特徴量抽出部2020、グラフ生成部2024、グラフ特徴量抽出部2029、特徴量融合部2031、及び欠損データ予測部2033を有する。
【0072】
特徴量抽出部2020は、センサデータ2021からセンサデータ特徴量2023を生成し、センサデータ2021の一部を欠損させたマスクデータ2022からセンサデータ特徴量2023を生成する。すなわち、センサデータ特徴量2023は、センサデータ2021の特徴量と、マスクデータ2022の特徴量とを含む。マスクデータ2022は、センサデータ2021にランダムのマスクをかけて、部分的に欠損した学習用のデータである。センサデータ2021は、マスクによって欠損したデータの正解データとして学習に用いる。
【0073】
行動・感情識別器2013は、センサデータ特徴量2023と行動・感情データ2025を用いて、行動・感情識別損失量2014が最小になるように学習して、行動・感情識別モデルを生成する。そして、生成した行動・感情識別モデルを用いて、センサデータ特徴量2023から行動・感情識別結果2038及び行動・感情識別損失量2014を生成する。
【0074】
グラフ生成部2024は、センサデータ2021と、マスクデータ2022と、行動・感情データ2025と、ユーザ属性データ2026と、介入方法・介入効果の履歴データ2027とから、グラフ2028を生成する。生成されるグラフ2028は、
図6にて前述したとおりである。
【0075】
グラフ特徴量抽出部2029は、生成されたグラフ2028からグラフ特徴量2030を抽出する。グラフ特徴量2030は、ノード自体の性質を表すノード特徴量と、エッジによるノード同士の隣接関係を示すエッジ特徴量を含む。
【0076】
特徴量融合部2031は、生成されたセンサデータ特徴量2023と抽出されたグラフ特徴量2030とを融合して融合特徴量2032を計算する。計算された融合特徴量2032は、補間後データ特徴量2004として出力される。
【0077】
欠損データ予測部2033は、センサデータ2021、マスクデータ2022、融合特徴量2032、及び補間後データ2003を用いて、データ補間損失量2002が最小になるように学習して、データ補間モデルを生成する。そして、生成したデータ補間モデルを用いて、センサデータ2021、マスクデータ2022、及び融合特徴量2032から補間後データ2003を生成する。
【0078】
図14は、実施例2の予測部201の構成を示す図である。
【0079】
予測部201は、データ補間部2001、行動・感情識別器2013、交絡因子調整部2005、及び介入効果予測器2008を有し、ユーザデータ220から介入効果を予測する。データ補間部2001、行動・感情識別器2013、交絡因子調整部2005、及び介入効果予測器2008は、学習部200が有する構成と同じである。
【0080】
データ補間部2001は、学習済みデータ補間モデルを用いて、入力された欠損を含むユーザデータ220の欠損部分を補間し、補間後データ2003を生成し、生成した補間後データ2003から補間後データ特徴量2004を計算する。データ補間部2001の処理は
図15で後述する。
【0081】
行動・感情識別器2013は、学習済み行動・感情識別モデルを用いて、ユーザデータ220のセンサデータの特徴量から行動及び感情を識別し、行動・感情識別結果2038を生成する。
【0082】
交絡因子調整部2005は、学習済み交絡因子調整モデルを用いて補間後データ特徴量2004から調整後データ特徴量2007を生成する。
【0083】
介入効果予測器2008は、ユーザデータ220から予測介入結果2040を生成する。
【0084】
図15は、実施例2のデータ補間部2001の予測推論時の構成を示す図である。
【0085】
特徴量抽出部2020は、センサデータ2021からセンサデータ特徴量2023を生成する。
【0086】
行動・感情識別器2013は、学習済み行動・感情識別モデルを用いて、センサデータ特徴量2023から行動・感情識別結果2038を生成する。
【0087】
グラフ生成部2024は、センサデータ2021と、行動・感情識別結果2038と、ユーザ属性データ2026と、介入方法・介入効果の履歴データ2027とから、グラフ2028を生成する。グラフ2028は、グラフ生成部2024に入力されるデータ項目に対応するノードと、ノード同士を連結するエッジにより構成される。
【0088】
グラフ特徴量抽出部2029は、生成されたグラフ2028からグラフ特徴量2030を抽出する。グラフ特徴量2030は、ノード自体の性質を表すノード特徴量と、エッジによるノード同士の隣接関係を示すエッジ特徴量を含んでいる。
【0089】
特徴量融合部2031は、生成されたセンサデータ特徴量2023と抽出されたグラフ特徴量2030とを融合して融合特徴量2032を計算する。例えば、n次元のセンサデータ特徴量2023とm次元のグラフ特徴量2030を連結して、n+m次元の特徴量を生成する。連結後特徴量に対し、公知のニューラルネットワークの一次元畳み込み演算を行い、p次元の融合特徴量2032を生成する。畳み込み演算のパラメータはデータ補間モデルのパラメータの一部である。計算された融合特徴量2032は、補間後データ特徴量2004として出力される。センサデータ特徴量2023と、ユーザデータ220の相関関係を表わすグラフ特徴量2030の融合によって、データ間の相関関係を考慮したデータ補間が可能となり、介入効果予測における交絡因子調整や因果推論の精度を向上できる。
【0090】
欠損データ予測部2033は、融合特徴量2032から欠損データ予測結果2034を生成する。
【0091】
以上に説明したように、本発明の実施例2では、センサデータ特徴量2023から行動及び感情のデータを識別するので、ユーザが行動や感情のデータを入力する手間を省略できる。
【0092】
なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。
【0093】
また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。
【0094】
各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。
【0095】
また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。
【符号の説明】
【0096】
100 計算機システム
101 プロセッサ
102 主記憶装置
103 補助記憶装置
104 ネットワークアダプタ
105 入力装置
106 出力装置
109 ネットワーク
110 情報端末
111 外部記憶装置
200 学習部
201 予測部
210 学習用データベース
211 モデルデータベース
220 ユーザデータ
221 予測介入結果
231 データ補間結果
1101 行動入力領域
1102 情動入力領域
1103 介入入力領域
1105 補間対象表示領域
1106 補間後フィードバック表示領域
1300 介入施策決定結果画面
2001 データ補間部
2002 データ補間損失量
2003 補間後データ
2004 補間後データ特徴量
2005 交絡因子調整部
2006 交絡因子調整損失量
2007 調整後データ特徴量
2008 介入効果予測器
2009 予測損失量
2010 学習誤差演算部
2011 パラメータ更新部
2012 更新後パラメータ
2013 感情識別器
2014 感情識別損失量
2020 特徴量抽出部
2021 センサデータ
2022 マスクデータ
2023 センサデータ特徴量
2024 グラフ生成部
2025 感情データ
2026 ユーザ属性データ
2027 履歴データ
2028 グラフ
2029 グラフ特徴量抽出部
2030 グラフ特徴量
2031 特徴量融合部
2032 融合特徴量
2033 欠損データ予測部
2034 欠損データ予測結果
2035 変換後特徴量
2038 感情識別結果
2040 予測介入結果