IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧

特開2023-124309広告審査システム、広告審査方法、及び広告審査プログラム
<>
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図1
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図2
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図3
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図4
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図5
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図6
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図7
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図8
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図9
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図10
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図11
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図12
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図13
  • 特開-広告審査システム、広告審査方法、及び広告審査プログラム 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023124309
(43)【公開日】2023-09-06
(54)【発明の名称】広告審査システム、広告審査方法、及び広告審査プログラム
(51)【国際特許分類】
   G06Q 30/0242 20230101AFI20230830BHJP
【FI】
G06Q30/02 382
【審査請求】有
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022027995
(22)【出願日】2022-02-25
(11)【特許番号】
(45)【特許公報発行日】2022-08-22
(71)【出願人】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】110001379
【氏名又は名称】弁理士法人大島特許事務所
(72)【発明者】
【氏名】河崎 敏之
【テーマコード(参考)】
5L049
【Fターム(参考)】
5L049BB08
(57)【要約】      (修正有)
【課題】学習モデルに基づく映像の審査結果の少なくとも一部を、ユーザに速やかに知らせることにより、広告用の映像の審査を効率化する広告審査システム、広告審査方法及び広告審査プログラムを提供する。
【解決手段】広告審査システムにおいて、予備審査部43の第1の映像審査部53は、複数のルールそれぞれに対応する複数の学習モデルのうち少なくとも1つに基づき、映像に関する予備審査結果を生成する。予備審査部43の第1の審査結果通知部57は、映像の制作に関わるユーザに対して予備審査結果を通知する。本審査部45の第2の映像審査部63は、それらの学習モデルの全てに基づき、予備審査済み映像に関する本審査結果を生成する。本審査部45の第2の審査結果出力部65は、予備審査済み映像の広告審査に関わる審査者に対して本審査結果を出力する。
【選択図】図5
【特許請求の範囲】
【請求項1】
広告用に制作された映像を審査する広告審査システムであって、
前記映像を取得する映像取得部と、
映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、
映像の広告としての適否を予備的に審査する予備審査部と、
前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、
を備え、
前記複数の学習モデルは、複数のルールそれぞれに対応し、
前記予備審査部は、
前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、
前記映像の制作に関わるユーザに対して前記予備審査結果を通知する第1の審査結果通知部と、
を備え、
前記本審査部は、
前記複数の学習モデルの全てに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、
前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する第2の審査結果出力部と、
を備える、広告審査システム。
【請求項2】
前記複数の学習モデルは、
前記映像の広告対象が属する業界に対応する業界ルールに基づき生成された業界学習モデル、
前記映像を配信する媒体社について定められた媒体社ルールに基づき生成された媒体社学習モデル、及び
業界および媒体社に関わらず定められた共通ルールに基づき生成された共通学習モデル、のうちの2以上を含み、
前記第1の映像審査部は、前記業界学習モデル、前記媒体社学習モデル、及び前記共通学習モデルのうちの少なくとも1つの学習モデルに基づき、前記予備審査結果を生成する、請求項1に記載の広告審査システム。
【請求項3】
前記予備審査部は、前記映像に含まれる複数の映像構成要素を抽出する審査前処理部を更に備え、
前記複数の映像構成要素には、静止画像、文字、及び音声のうちの少なくとも1つが含まれ、
前記第1の映像審査部は、前記審査前処理部によって抽出された前記複数の映像構成要素の各々について広告としての適否を判定することにより、前記予備審査結果を生成する、請求項1または請求項2に記載の広告審査システム。
【請求項4】
前記第1の映像審査部は、前記複数の学習モデルに基づく審査を所定の順序で実行することにより、前記学習モデル毎の前記予備審査結果を生成し、
前記第1の審査結果通知部は、前記学習モデル毎の前記予備審査結果の1つに前記映像構成要素が広告として不適切であることを示す情報が含まれる場合には、他の前記学習モデルに基づく前記予備審査結果の生成が完了しているか否かに拘わらず、前記広告として不適切であることを示す情報が含まれる前記予備審査結果を、前記ユーザに対して通知する、請求項3に記載の広告審査システム。
【請求項5】
前記第1の映像審査部は、少なくとも1つの前記映像構成要素を広告として不適切であると判定すると、全ての前記映像構成要素の判定が終了する前に前記予備審査結果を生成し、
前記予備審査部は、前記ユーザに対して前記映像構成要素毎の前記予備審査結果を出力する第1の審査結果出力部を更に備える、請求項3に記載の広告審査システム。
【請求項6】
広告用に制作された映像を審査する広告審査システムであって、
前記映像を取得する映像取得部と、
映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、
映像の広告としての適否を予備的に審査する予備審査部と、
前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、
を備え、
前記複数の学習モデルは、複数のルールそれぞれに対応し、
前記予備審査部は、
前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、
前記映像の制作に関わるユーザに対して前記予備審査結果を通知する第1の審査結果通知部と、
を備え、
前記本審査部は、
前記複数の学習モデルのうち前記予備審査において使用されていない少なくとも1つの学習モデルを含む1つ以上の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、
前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を通知する第2の審査結果通知部と、
を備える、広告審査システム。
【請求項7】
前記本審査部は、前記審査者に対して前記本審査結果を通知する第2の審査結果通知部を更に備える、請求項1から請求項6のいずれか1項に記載の広告審査システム。
【請求項8】
前記第1の審査結果通知部は、前記ユーザの電子メールアドレスへの電子メールの送信によって前記予備審査結果を通知する、請求項1から請求項7のいずれか1項に記載の広告審査システム。
【請求項9】
広告用に制作された映像を審査する広告審査システムによる広告審査方法であって、
映像の広告としての適否を予備的に審査する予備審査ステップと、
前記予備審査ステップによって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査ステップと、
を含み、
前記予備審査ステップでは、
前記映像を取得し、
前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、
前記映像の制作に関わるユーザに対して前記予備審査結果を通知し、
前記本審査ステップでは、
前記予備審査済み映像を取得し、
前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、
前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する、広告審査方法。
【請求項10】
広告用に制作された映像を審査する広告審査プログラムであって、
映像の広告としての適否を予備的に審査する予備審査処理と、
前記予備審査処理によって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査処理と、
をコンピュータに実行させ、
前記コンピュータは、
前記予備審査処理では、
前記映像を取得し、
前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、
前記映像の制作に関わるユーザに対して前記予備審査結果を通知し、
前記本審査処理では、
前記予備審査済み映像を取得し、
前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、
前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する、広告審査プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、広告用に制作された映像の広告としての適否を審査する広告審査システム、広告審査方法、及び広告審査プログラムに関する。
【背景技術】
【0002】
公共施設や商業施設における交通機関、建物、及び野外スペース等では、液晶ディスプレイなどのデジタルサイネージに広告用に制作された映像が放映される。そのような広告用の映像は、広告媒体を所有する媒体社(メディアオーナー)によって、事前に広告としての適否を審査される。
【0003】
広告用の映像の審査は、人(審査者)によって行なわれることが一般的である。例えば、審査者は、映像の全体を実際に視聴し、予め設定された広告用のルールに違反している内容が含まれているか否かを判断する必要がある。そのような映像の審査は、長時間に及ぶため、審査者にとって作業負荷が高いことが知られている。
【0004】
そこで、従来、機械学習によって生成された学習モデルを利用して広告用の映像の審査を行う技術が開発されている。例えば、広告用の映像の審査時間を短縮するために、広告用の映像に含まれる画像、文字又は音声の少なくとも1つが所定の審査条件に合格するか否かの合否情報を取得し、それら映像及び合否情報を教師データとして学習モデルを学習させる技術が知られている(特許文献1参照)。
【0005】
また、コンテンツ(広告)の審査結果を有効に活用するために、モデルを用いたコンテンツの審査の後に、当該コンテンツの目視による審査の結果に関する情報を学習データとして取得し、その取得した学習データに基づいてモデルの学習を行う技術が知られている(特許文献2参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2020-4248号公報
【特許文献2】特開2020-101940号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、上記特許文献1、2に記載されたような学習モデルを用いた審査では、審査対象の映像に広告として不適切な内容が含まれると判断された場合、広告の制作者は、その映像の不具合を全て修正する必要が生じる。そこで、映像に含まれる多数の映像構成要素が修正対象となった場合には、映像の制作に関わるユーザ(例えば、広告の制作者)による修正作業には長い時間が必要となる。
【0008】
これに関し、本願発明者らが鋭意検討した結果、そのような映像の審査結果の少なくとも一部を、映像の制作に関わるユーザに速やかに知らせることができれば、ユーザは映像の不具合を速やかに修正できるため、媒体社による広告用の映像の審査を効率化できることを見出した。
【0009】
そこで、本開示は、学習モデルに基づく映像の審査結果の少なくとも一部を、ユーザに速やかに知らせることにより、広告用の映像の審査を効率化することができる広告審査システム、広告審査方法、及び広告審査プログラムを提供することを主な目的とする。
【課題を解決するための手段】
【0010】
本開示の広告審査システムは、広告用に制作された映像を審査する広告審査システムであって、前記映像を取得する映像取得部と、映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、映像の広告としての適否を予備的に審査する予備審査部と、前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、を備え、前記複数の学習モデルは、複数のルールそれぞれに対応し、前記予備審査部は、前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、前記映像の制作に関わるユーザに対して前記予備審査結果を通知する第1の審査結果通知部と、を備え、前記本審査部は、前記複数の学習モデルの全てに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する第2の審査結果出力部と、を備える構成とする。
【0011】
本開示の広告審査方法は、広告用に制作された映像を審査する広告審査システムによる広告審査方法であって、映像の広告としての適否を予備的に審査する予備審査ステップと、前記予備審査ステップによって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査ステップと、を含み、前記予備審査ステップでは、前記映像を取得し、前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、前記映像の制作に関わるユーザに対して前記予備審査結果を通知し、前記本審査ステップでは、前記予備審査済み映像を取得し、前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する構成とする。
【0012】
本開示の広告審査プログラムは、広告用に制作された映像を審査する広告審査プログラムであって、映像の広告としての適否を予備的に審査する予備審査処理と、前記予備審査処理によって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査処理と、をコンピュータに実行させ、前記コンピュータは、前記予備審査処理では、前記映像を取得し、前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、前記映像の制作に関わるユーザに対して前記予備審査結果を通知し、前記本審査処理では、前記予備審査済み映像を取得し、前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する構成とする。
【発明の効果】
【0013】
本開示によれば、学習モデルに基づく映像の審査結果の少なくとも一部を、ユーザに速やかに知らせることにより、広告用の映像の審査を効率化できる。
【図面の簡単な説明】
【0014】
図1】本実施形態に係る広告審査システムの全体構成図
図2図1に示した広告審査システムにおける映像の予備審査の概要を示す説明図
図3図2に示した予備審査の変形例を示す説明図
図4図1に示した広告審査システムにおける映像の本審査の概要を示す説明図
図5図1に示した広告審査用サーバの機能ブロック図
図6図5に示した広告審査用サーバによる予備審査処理の流れを示すフロー図
図7図6に示した広告審査用サーバによる予備審査処理の変形例を示すフロー図
図8図5に示した広告審査用サーバによる本審査処理の流れを示すフロー図
図9】ユーザが利用する入稿画面の一例を示す説明図
図10】ユーザが利用する審査結果表示画面の一例を示す説明図
図11】審査者が利用する本審査画面を示す説明図
図12】審査者が利用する審査結果表示画面の一例を示す説明図
図13】審査者が審査履歴を参照する際に利用する審査履歴表示画面の一例を示す説明図
図14図1に示した広告審査システムの変形例を示す全体構成図
【発明を実施するための形態】
【0015】
前記課題を解決するためになされた第1の発明は、広告用に制作された映像を審査する広告審査システムであって、前記映像を取得する映像取得部と、映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、映像の広告としての適否を予備的に審査する予備審査部と、前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、を備え、前記複数の学習モデルは、複数のルールそれぞれに対応し、前記予備審査部は、前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、前記映像の制作に関わるユーザに対して前記予備審査結果を通知する第1の審査結果通知部と、を備え、前記本審査部は、前記複数の学習モデルの全てに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する第2の審査結果出力部と、を備える構成とする。
【0016】
これによると、学習モデルに基づく映像の審査結果の少なくとも一部を、ユーザに速やかに知らせることにより、広告用の映像の審査を効率化することができる。
【0017】
また、第2の発明は、前記複数の学習モデルは、前記映像の広告対象が属する業界に対応する業界ルールに基づき生成された業界学習モデル、前記映像を配信する媒体社について定められた媒体社ルールに基づき生成された媒体社学習モデル、及び業界および媒体社に関わらず定められた共通ルールに基づき生成された共通学習モデル、のうちの2以上を含み、前記第1の映像審査部は、前記業界学習モデル、前記媒体社学習モデル、及び前記共通学習モデルのうちの少なくとも1つの学習モデルに基づき、前記予備審査結果を生成する構成とする。
【0018】
これによると、広告用の映像の審査に適した複数の学習モデルに基づき、広告用の映像の審査を適切に実行することができる。
【0019】
また、第3の発明は、前記予備審査部は、前記映像に含まれる複数の映像構成要素を抽出する審査前処理部を更に備え、前記複数の映像構成要素には、静止画像、文字、及び音声のうちの少なくとも1つが含まれ、前記第1の映像審査部は、前記審査前処理部によって抽出された前記複数の映像構成要素の各々について広告としての適否を判定することにより、前記予備審査結果を生成する構成とする。
【0020】
これによると、映像に含まれる複数の映像構成要素に基づき、広告用の映像の審査を適切に実行することができる。
【0021】
また、第4の発明は、前記第1の映像審査部は、前記複数の学習モデルに基づく審査を所定の順序で実行することにより、前記学習モデル毎の前記予備審査結果を生成し、前記第1の審査結果通知部は、前記学習モデル毎の前記予備審査結果の1つに前記映像構成要素が広告として不適切であることを示す情報が含まれる場合には、他の前記学習モデルに基づく前記予備審査結果の生成が完了しているか否かに拘わらず、前記広告として不適切であることを示す情報が含まれる前記予備審査結果を、前記ユーザに対して通知する、構成とする。
【0022】
これによると、ユーザは、予備審査結果を学習モデル毎に迅速に取得することができるため、広告として不適切であると判定された映像(映像構成要素)の修正や、本審査への移行が速やかに行われる。
【0023】
また、第5の発明は、前記第1の映像審査部は、少なくとも1つの前記映像構成要素を広告として不適切であると判定すると、全ての前記映像構成要素の判定が終了する前に前記予備審査結果を生成し、前記予備審査部は、前記ユーザに対して前記映像構成要素毎の前記予備審査結果を出力する第1の審査結果出力部を更に備える構成とする。
【0024】
これによると、ユーザは、予備審査結果を映像構成要素毎に迅速に取得することができるため、広告として不適切であると判定された映像(映像構成要素)の修正や、本審査への移行が速やかに行われる。
【0025】
また、第6の発明は、広告用に制作された映像を審査する広告審査システムであって、前記映像を取得する映像取得部と、映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、映像の広告としての適否を予備的に審査する予備審査部と、前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、を備え、前記複数の学習モデルは、複数のルールそれぞれに対応し、前記予備審査部は、前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、前記映像の制作に関わるユーザに対して前記予備審査結果を通知する第1の審査結果通知部と、を備え、前記本審査部は、前記複数の学習モデルのうち前記予備審査において使用されていない少なくとも1つの学習モデルを含む1つ以上の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を通知する第2の審査結果通知部と、を備える構成とする。
【0026】
これによると、学習モデルに基づく映像の審査結果の少なくとも一部を、ユーザに速やかに知らせることにより、広告用の映像の審査を効率化することができる。
【0027】
また、第7の発明は、前記本審査部は、前記審査者に対して前記学習モデルに基づく前記本審査結果を通知する第2の審査結果通知部を更に備える構成とする。
【0028】
これによると、学習モデルに基づく映像の審査結果を、審査者に速やかに知らせることにより、広告用の映像の審査を効率化することができる。
【0029】
また、第8の発明は、前記第1の審査結果通知部は、前記ユーザの電子メールアドレスへの電子メールの送信によって前記予備審査結果を通知する構成とする。
【0030】
これによると、ユーザに対して簡易に予備審査結果を通知することができる。
【0031】
また、第9の発明は、広告用に制作された映像を審査する広告審査システムによる広告審査方法であって、映像の広告としての適否を予備的に審査する予備審査ステップと、前記予備審査ステップによって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査ステップと、を含み、前記予備審査ステップでは、前記映像を取得し、前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、前記映像の制作に関わるユーザに対して前記予備審査結果を通知し、前記本審査ステップでは、前記予備審査済み映像を取得し、前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、前記予備審査済み映像の広告審査に関わる審査者に対して前記学習モデルに基づく前記本審査結果を出力する構成とする。
【0032】
これによると、学習モデルに基づく映像の審査結果の少なくとも一部を、ユーザに速やかに知らせることにより、広告用の映像の審査を効率化することができる。
【0033】
また、第10の発明は、広告用に制作された映像を審査する広告審査プログラムであって、映像の広告としての適否を予備的に審査する予備審査処理と、前記予備審査処理によって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査処理と、をコンピュータに実行させ、前記コンピュータは、前記予備審査処理では、前記映像を取得し、前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、前記映像の制作に関わるユーザに対して前記予備審査結果を通知し、前記本審査処理では、前記予備審査済み映像を取得し、前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、前記予備審査済み映像の広告審査に関わる審査者に対して前記学習モデルに基づく前記本審査結果を出力する構成とする。
【0034】
これによると、学習モデルに基づく映像の審査結果の少なくとも一部を、ユーザに速やかに知らせることにより、広告用の映像の審査を効率化することができる。
【0035】
以下、本開示の実施の形態を、図面を参照しながら説明する。
【0036】
図1は、本実施形態に係る広告審査システム1の全体構成図である。
【0037】
広告審査システム1は、広告審査用サーバ3、ユーザ端末5、及び審査者端末7を含む。広告審査用サーバ3、ユーザ端末5、及び審査者端末7は、インターネット等の公知の通信ネットワーク9にそれぞれ接続されている。
【0038】
広告審査用サーバ3は、広告用に制作された映像の広告としての適否を判定するための処理を実行する情報処理装置である。広告審査用サーバ3は、プロセッサ(CPU、MPU等)、メモリ、ディスプレイ、入力機器、ネットワークインタフェース、及びストレージ等の公知のハードウェアを適宜備える。なお、広告審査システム1で扱われる広告用の映像には、動画のみならず、複数の静止画(例えば、静止画をアニメーション化したもの)が含まれる。広告用の映像は、広告主からの依頼にしたがって広告会社によって製作される。その制作された映像は、広告審査用サーバ3による審査対象となる。
【0039】
ユーザ端末5は、広告会社(広告代理店)における広告用の映像の制作者等(以下、ユーザという。)によって使用される。ユーザ端末5としては、デスクトップPC(Personal Computer)、ノートPC、タブレット端末、及びスマートフォンなどの通信機能を有する公知のコンピュータが用いられる。なお、ユーザ端末5は、広告主によって利用されてもよい。
【0040】
審査者端末7は、媒体社(メディアオーナー)における審査者(広告審査の担当者)によって使用される。媒体社は、広告サービスを提供する(すなわち、広告用の映像を放映する)ための広告媒体を所有する。また、媒体社では、放映対象の映像について広告としての適否が審査される。審査者端末7としては、デスクトップPC、ノートPC、タブレット端末、及びスマートフォンなどの公知のコンピュータが用いられる。なお、審査者端末7は、広告審査システム1の管理者によって使用されてもよい。なお、ここでは、広告用の映像を審査するということから「放映」という用語を使用しているが、用語「放映」は、不特定多数の視聴者に向けたコンテンツを配信することも含み、本願における権利解釈を限定するものではない。
【0041】
広告審査システム1において、広告審査用サーバ3、ユーザ端末5、及び審査者端末7の数や配置は、適宜変更可能である。また、広告審査用サーバ3は、必ずしも1つの装置で構成される必要はない。つまり、広告審査用サーバ3は、その複数の機能(例えば、後述する予備審査および本審査に関する処理)をそれぞれ実現可能な複数の装置(コンピュータ等)によって構成されてもよい。
【0042】
以下に説明するように、広告審査用サーバ3は、ユーザに事前に審査結果の少なくとも一部を知らせるために、映像の広告としての適否を予備的に審査する予備審査を実行することができる。また、広告審査用サーバ3は、予備審査によって審査済みの映像(以下、予備審査済み映像という。)について、審査者による判断を加えて広告としての適否を審査する本審査を実行することができる。通常、予備審査済み映像では、上述の予備審査で不適切であると判定された映像構成要素(審査対象の映像を構成する要素)の少なくとも一部はユーザによって修正済みである。映像構成要素には、静止画像、文字、及び音声のうちの少なくとも1つが含まれる。
【0043】
広告審査用サーバ3における予備審査の処理は、予め準備された複数の学習モデル(またはそれらから選択された少なくとも1つの学習モデル)に基づいて実行される。学習モデルは、機械学習によって生成することができる。機械学習には、ニューラルネットワーク、サポートベクターマシン、ロジスティック回帰、ランダムフォレスト、及び線形回帰などの公知のアルゴリズムが用いられ得る。また、広告審査用サーバ3における本審査の処理(審査者による審査を除く)は、予備審査の処理と同様に、複数の学習モデルに基づいて実行される。
【0044】
図2は、図1に示した広告審査システム1における映像の予備審査の概要を示す説明図である。
【0045】
広告審査システム1の予備審査では、ユーザから入稿された(例えば、ユーザ端末5から広告審査用サーバ3に送信された)審査対象の映像に対して、共通ルール審査(ST1001)が実施される。共通ルール審査は、共通学習モデルを用いて実行される。
【0046】
共通学習モデルは、共通ルールに関するデータセットを教師データとした学習によって生成される。共通ルールは、広告主(または広告対象の商品・サービス)が属する業界や、媒体社(または広告媒体)に関わらず一般的に守るべきルールを含む。例えば、共通ルールは、法令違反であること、公の秩序または善良の風俗に反すること、特定の政治、思想、又は宗教に関すること、虚偽または誇大な表現により誤認を与えること、侮辱的または差別的な表現であること、及びプライバシーの侵害にあたることなどを回避する(すなわち、広告として不適切であると判断する)ために設定される。
【0047】
次に、共通ルール審査の結果が判定される(ST1002)。そこで、共通ルール審査の結果、審査対象の映像が広告として適切であると判定された場合には、続いて業界ルール審査(ST1003)が実施される。業界ルール審査は、映像の広告対象が属する業界に対応する業界学習モデルを用いて実行される。つまり、業界学習モデルは、業界毎に準備された複数の学習モデルのうち、映像の広告対象が属する業界に対応する業界ルールに基づき生成された業界学習モデルである。業界ルール審査では、例えば、A業界に関する広告については、A業界用の学習モデルに基づくA業界ルール審査が実施され、また、B業界に関する広告については、B業界用の学習モデルに基づくB業界ルール審査が実施される。
【0048】
業界学習モデルは、業界について定められた業界ルールに関するデータセットを教師データとした学習によって生成される。そのような業界には、例えば、医薬品業界、医療機器業界、化粧品業界、不動産業界、教育業界、金融業界、通信販売業界、及び旅行業界などが含まれる。
【0049】
例えば、化粧品に関する広告用の映像は、化粧品業界の業界ルールに関するデータセットを教師データとして生成された学習モデルに基づき審査される。化粧品業界の業界ルールには、承認や許可を受けていない販売名を使用すること、一般的名称以外の名称を使用すること、効能効果等に関する表現について未承認であることなどを回避するために設定されたルールが含まれる。他の業界の学習モデルについても、各業界特有のルールの違いがあることを除けば化粧品業界の場合と同様である。
【0050】
次に、業界ルール審査の結果が判定される(ST1004)。そこで、業界ルール審査の結果、審査対象の映像が広告として適切であると判定された場合には、続いて媒体社ルール審査(ST1005)が実施される。媒体社ルール審査は、媒体社学習モデルを用いて実行される。
【0051】
媒体社学習モデルは、広告を放映する媒体社によって定められた媒体社ルールに関するデータセットを教師データとした学習によって生成される。例えば、媒体社ルールには、各広告媒体が設置された場所に応じて、特定の業界の広告の放映を禁止するためのルールや、特定の商品・サービスに関する広告の放映を禁止するためのルールなどが含まれる。なお、媒体社学習モデルは、広告を放映する媒体社毎に準備される。広告審査用サーバ3では、複数の媒体社にそれぞれ対応する媒体社学習モデルが予め格納されてもよい。
【0052】
次に、媒体社ルール審査の結果が判定される(ST1006)。その後、審査結果処理(ST1007)が実施される。審査結果処理では、共通ルール審査、業界ルール審査、及び、媒体社ルール審査の結果がアーカイブされる(ST1008)。また、それらの審査結果は、映像を入稿したユーザに通知される(ST1009)。さらに、共通ルール審査、業界ルール審査、及び媒体社ルール審査のいずれかにおいて、映像構成要素の少なくとも一部が広告として適切であると判定された場合には、審査結果の通知と共に、ユーザに映像の修正を促すための再入稿指示(ST1010)がなされる。
【0053】
なお、共通ルール審査または業界ルール審査において、映像構成要素の少なくとも一部が広告として適切であると判定された場合には、次の審査に進むことなく審査結果処理(ST1007)が行われてもよい(図2中の破線の矢印を参照)。これにより、ユーザは、全ての審査結果を待つことなく、広告用の映像の修正に着手することが可能となる。
【0054】
図2では、共通ルール審査、業界ルール審査、及び媒体社ルール審査の順に実施される例を示したが、これに限らず、それらの審査の順序は適宜変更することができる。
【0055】
本開示では広告用の映像の審査に適した学習モデルとして共通ルールに関する共通学習モデル、業界ルールに関する業界学習モデル、及び媒体社ルールに関する媒体社学習モデルを適例として挙げているが、広告用の映像の審査が可能な所定のルールに基づく学習モデルであれば、これらに限定されない。
【0056】
図3は、図2に示した予備審査の変形例を示す説明図である。図3では、図2に示したものと同様の構成要素については、同一の符号が付されている。また、変形例に関し、以下で特に言及しない事項については、上述と同様であるため、詳細な説明を省略する。
【0057】
図3に示すように、ユーザは、審査対象の映像を入稿する際に、共通ルール審査、業界ルール審査、及び媒体社ルール審査のうちの1つを選択して予備審査を実行することができる。
【0058】
例えば、ユーザが、共通ルールおよび広告が属する業界の業界ルールを十分に把握している場合、製作された映像は、共通ルール審査および業界ルール審査において不適切であると判定される映像構成要素を含む可能性は低い。そのような場合、ユーザは、媒体社ルール審査を選択し、その審査結果のみを取得することができる。仮に、製作された映像が、共通ルール審査および業界ルール審査に関して不適切な映像構成要素を含む場合であっても、それらの不適切な映像構成要素は、後の本審査において抽出され得る。
【0059】
このように、変形例では、ユーザが選択した1つの学習モデルに基づき審査が実行されることにより、予備審査がより効率化される。
【0060】
図4は、図1に示した広告審査システムにおける映像の本審査の概要を示す説明図である。
【0061】
広告審査システム1の本審査では、ユーザから入稿された予備審査済み映像に対して、審査スルー判定(ST2001)が実施される。審査スルー判定では、過去に広告として放映実績のある映像が、審査対象から除外される(すなわち、広告として適切であると判定される)。審査スルー判定は、必要に応じて審査者が実行してもよい。
【0062】
過去に広告として放映実績のない映像については、続いて掲出規制判定(ST2002)が実施される。掲出規制判定では、広告としての品位や倫理観に基づき、広告として不適切な映像が放映対象から除外される。掲出規制判定は、必要に応じて審査者が実行してもよい。
【0063】
掲出規制判定において適切であると判定された映像については、予備審査における共通ルール審査(ST1001)及び共通ルール結果判定(ST1002)とそれぞれ同様に、共通ルール審査(ST2003)が実行され、その共通ルール審査の結果が判定される(ST2004)。更に、予備審査における業界ルール審査(ST1003)及び業界ルール結果判定(ST1004)、並びに媒体社ルール審査(ST1005)及び媒体社ルール結果判定(ST1006)とそれぞれ同様に、業界ルール審査(ST2005)及び業界ルール結果判定(ST2006)、並びに媒体社ルール審査(ST2007)及び媒体社ルール結果判定(ST2008)が実行される。
【0064】
その後、共通ルール結果判定、業界ルール結果判定、及び媒体社ルール結果判定の結果をまとめる総合判定(ST2009)が実行される。その後、その総合判定の結果(すなわち、各学習モデルに基づく審査によって不適切であると判定された映像構成要素の有無)を参照しながら、審査者による審査(映像の視聴)が実施される(ST2010)。
【0065】
審査者による審査で映像が承認される(すなわち、広告として適切であると判断される)と、総量規制判定(ST2011)が実行される。総量規制判定では、審査対象となる映像が、同時期に放映される他の広告用の映像を含めて、広告の放映時間や放映量(数)に関する総量判定基準の上限を超えているか否かが判定される。ここで、審査対象の映像が総量判定基準を満たさない場合、広告として適切な映像であっても、放映対象からは除外される。総量規制判定は、必要に応じて審査者が実行してもよい。
【0066】
その後、予備審査における審査結果処理(ST1007)と同様に、審査結果処理(ST2012)が実施される。審査結果処理では、予備審査と同様の審査結果のアーカイブ(ST2013)、審査結果通知(ST2014)、及び再入稿指示(ST2015)が実行される。加えて、本審査における審査結果処理では、学習データ生成(ST2016)が実行される。なお、審査者による審査において、広告として不適切な映像構成要素(以下、不適切要素という。)が抽出された場合、総量規制判定が実行されることなく、審査結果処理がなされてもよい(図4中の破線の矢印を参照)。
【0067】
学習データ生成では、アーカイブされた審査結果(例えば、本審査において広告として不適切と判定された映像構成要素)のデータに基づき、各学習モデルに対する教師データが生成される。学習データ生成では、共通ルール審査、業界ルール審査、及び媒体社ルール審査の結果が、それぞれ共通学習モデル、業界学習モデル、媒体社学習モデルのための教師モデルの生成に利用される。そのような教師データを利用して各学習モデルが適宜再学習されることにより、予備審査および本審査をより精度よく実行することが可能となる。
【0068】
図4では、予備審査で使用した全ての学習モデルを用いて本審査が実行される例が示されている。ただし、本審査はそのような態様には限定されない。
【0069】
本審査では、予め準備された複数の学習モデルのうち予備審査で使用されていない全ての学習モデルが用いられてもよい。例えば、媒体社学習モデルのみを使用して予備審査が実施された場合(すなわち、予備審査において媒体社ルール審査のみが実施された場合)、本審査では、予備審査において使用されていない学習モデルである共通学習モデル及び業界学習モデルを全て使用する(すなわち、共通ルール審査および業界ルール審査を実施する)ことができる。或いは、本審査では、予備審査において使用されていない学習モデルの一部が用いられてもよい(例えば、予備審査で実施されていない共通ルール審査および業界ルール審査の一方が実施されてもよい)。また、予備審査において使用されていない少なくとも1つの学習モデルと共に予備審査において使用された学習モデルとを合わせて用いてもよい。(例えば、媒体社学習モデルのみを使用して予備審査が実施された場合、本審査では、予備審査で使用された媒体社学習モデルと予備審査において使用されていない学習モデルである共通学習モデルまたは業界学習モデルとを合わせて使用することができる)。
【0070】
図5は、図1に示した広告審査用サーバ3の機能ブロック図である。
【0071】
広告審査用サーバ3は、通信部11、記憶部13、及び制御部15を有する。
【0072】
通信部11は、通信ネットワーク9を介して他の装置(ここでは、ユーザ端末5および審査者端末7)と通信を行うためのネットワークインタフェースを備える。広告審査用サーバ3は、ユーザ端末5や審査者端末7と通信することにより、審査対象となる映像データの送受信や、審査結果の送受信等を行うことができる。
【0073】
記憶部13は、HDD(Hard Disk Drive)やSSD(Solid State Drive)などの記憶装置を含む。記憶部13には、学習モデル21、審査対象映像23、予備審査結果25、及び本審査結果27等の情報やデータが格納される。学習モデル21には、共通学習モデル31、業界学習モデル33、及び媒体社学習モデル35等の複数の学習モデルが含まれる。
【0074】
制御部15は、映像取得部41、予備審査部43、本審査部45、及び学習データ生成部47を備える。
【0075】
映像取得部41は、ユーザ端末5から送信される広告用の映像(予備審査済み映像を含む)を取得し、審査対象映像23として記憶部13に記憶する。
【0076】
予備審査部43は、第1の審査前処理部51、第1の映像審査部53、第1の審査結果出力部55、及び第1の審査結果通知部57を備える。
【0077】
第1の審査前処理部51は、審査対象の映像を構成する各フレーム(静止画像)に含まれる画像および文字や、映像中の音声を抽出する処理を実行する。映像から画像、文字、及び音声を抽出する処理には、公知の手法を用いることができる。それらのフレーム、それに含まれる画像および文字、ならびに音声は、審査対象の映像の映像構成要素である。更に、第1の審査前処理部51は、抽出した音声をテキスト情報に変換する処理を行い、その変換したテキスト情報を映像構成要素として取得することができる。そのような映像構成要素は、それぞれ画像、文字、及び音声等に関する特徴量の情報として取得されてもよい。
【0078】
第1の映像審査部53は、学習モデル21に基づく映像の審査(以下、AI審査という。)を実行する。そのような映像の審査には、上述の共通ルール審査、業界ルール審査、及び媒体社ルール審査が含まれる。第1の映像審査部53は、第1の審査前処理部51によって取得された各映像構成要素について、広告としての適否を判定することにより、その判定結果(AI審査の結果またはAI審査結果とも言う。以下同じ)を含む審査結果(予備審査結果25)を生成する。ここで用いられる学習モデルは、実行される審査の種類(ここでは、共通ルール審査、業界ルール審査、媒体社ルール審査のいずれか)に応じて適宜変更される。例えば、共通ルール審査(図2参照)では、共通学習モデル31を用いて各映像構成要素の広告としての適否が判定される。
【0079】
第1の審査結果出力部55は、第1の映像審査部53によって広告として不適切であると判定された映像構成要素に関する情報を、ユーザに確認可能な態様で審査結果として出力する。例えば、第1の審査結果出力部55は、第1の審査前処理部51による判定結果を含む審査結果画面を生成し、予備審査結果25の一部として記憶部13に記憶する。ユーザは、広告審査用サーバ3にアクセスすることにより、その審査結果画面をユーザ端末5に表示させることができる。
【0080】
第1の審査結果通知部57は、第1の審査前処理部51による審査結果に関する情報を含む審査結果通知を生成する。第1の審査結果通知部57は、電子メール等の公知のコミュニケーションツールを利用して、その審査結果通知をユーザ端末5に対して送信する(すなわち、ユーザに通知する)ことができる。第1の審査結果通知部57は、電子メールを利用する場合、予め設定されたアドレスに対して審査結果通知を送信することができる。また、例えばSNS(Social Networking Service)のメッセージやチャットアプリ等の電子的な手段を利用する場合、予め設定された宛先(アカウント)に対して審査結果通知を送ることができる。
【0081】
なお、第1の映像審査部53は、複数の学習モデル(ここでは、共通学習モデル31、業界学習モデル33、及び媒体社学習モデル35)に基づく審査を予め設定された所定の順序で実行することにより、それら学習モデル毎の予備審査結果を生成してもよい。このとき、第1の審査結果出力部55は、ユーザに対して学習モデル毎の予備審査結果を順次出力することができる。例えば、第1の審査結果出力部55は、学習モデル毎の予備審査結果の1つに映像構成要素が広告として不適切であることを示す情報(判定結果)が含まれる場合には、当該予備審査結果(不適切な映像構成要素に関する情報を含む)を、直ちに(すなわち、他の学習モデルに基づく予備審査結果の生成が完了しているか否かに拘わらず)ユーザに対して出力することができる。また、このとき、第1の審査結果通知部57は、学習モデル毎の予備審査結果に関する情報を含む審査結果通知を生成し、それをユーザに対して順次送信することができる。例えば、第1の審査結果通知部57は、学習モデル毎の予備審査結果の1つに映像構成要素が広告として不適切であることを示す情報が含まれる場合には、当該予備審査結果に関する情報を含む審査結果通知を直ちに(すなわち、他の学習モデルに基づく予備審査結果の生成が完了しているか否かに拘わらず)生成し、それをユーザに対して直ちに送信することができる。
【0082】
また、第1の映像審査部53は、審査対象の映像において少なくとも1つの映像構成要素を広告として不適切であると判定した場合、審査対象の映像における全ての映像構成要素の判定が終了する前に予備審査結果を生成してもよい。このとき、第1の審査結果出力部55は、ユーザに対して映像構成要素毎の予備審査結果を順次出力することができる。例えば、第1の審査結果出力部55は、予備審査結果に映像構成要素が広告として不適切であることを示す情報(判定結果)が含まれる場合には、当該予備審査結果(不適切な映像構成要素に関する情報を含む)を、直ちにユーザに対して出力することができる。また、このとき、第1の審査結果通知部57は、映像構成要素毎に予備審査結果に関する情報を含む審査結果通知を生成し、それをユーザに対して順次送信することができる。例えば、第1の審査結果通知部57は、予備審査結果に映像構成要素が広告として不適切であることを示す情報が含まれる場合には、直ちに当該予備審査結果に関する情報を含む審査結果通知を生成し、それをユーザに対して直ちに送信することができる。
【0083】
本審査部45は、第2の審査前処理部61、第2の映像審査部63、第2の審査結果出力部65、及び第2の審査結果通知部67を備える。これら第2の審査前処理部61、第2の映像審査部63、第2の審査結果出力部65、及び第2の審査結果通知部67は、以下で言及する事項を除けば、予備審査部43における第1の審査前処理部51、第1の映像審査部53、第1の審査結果出力部55、及び第1の審査結果通知部57とそれぞれ同様の機能を有する。
【0084】
本審査部45では、予備審査済み映像が審査対象となる。予備審査済み映像は、ユーザ端末5から送信され、映像取得部41によって取得される。ただし、予備審査において、指摘事項がない場合(すなわち、審査対象の映像が不適切要素を含まないと判定された場合)には、ユーザからの予備審査済み映像の送信が省略され、予備審査後の映像がそのまま審査対象とされてもよい。また、入稿において過去に予備審査済みの映像が少なくとも一部含まれる場合、入稿ユーザの判断で予備審査を行わないで本審査から開始してもよい。
【0085】
第2の映像審査部63は、第1の映像審査部53と同様に、予備審査済み映像についてAI審査を実行する。また、第2の映像審査部63は、AI審査に加え、予備審査結果の情報を含む本審査画面(図11参照)を利用して審査者に映像の審査を実行させることができる。また、第2の映像審査部63は、審査スルー判定、掲出規制判定、及び総量規制判定(図4参照)を適宜実行することができる。
【0086】
第2の審査結果出力部65は、第2の映像審査部63によって広告として不適切であると判定された映像構成要素に関する情報を、審査者に確認可能な態様で審査結果として出力する。例えば、第2の審査結果出力部65は、第2の映像審査部63によるAI審査の結果を含む本審査画面(図11参照)を生成し、審査者からの要求に応じてそれを出力(例えば、審査者端末7に表示)することができる。第2の審査結果出力部65は、AI審査および審査者による審査の結果を含む審査結果画面を生成し、本審査結果27として記憶部13に記憶する。
【0087】
第2の審査結果通知部67は、第2の映像審査部63によるAI審査の結果に関する情報を含む審査結果通知を生成する。第2の審査結果通知部67は、電子メール等の公知のコミュニケーションツールを利用して、その審査結果通知を審査者端末7に対して送信する(すなわち、審査者に通知する)ことができる。第2の審査結果通知部67は、例えばSNS(Social Networking Service)のメッセージやチャットアプリ等の電子的な手段をコミュニケーションツールとして用いることができる。
【0088】
学習データ生成部47は、本審査結果27に基づき、各学習モデルに対する教師データを生成する。生成された教師データは、学習モデル21と共に記憶部13に格納される。学習データ生成部47は、本審査結果27における共通ルール審査、業界ルール審査、及び媒体社ルール審査の結果を、それぞれ対応する共通学習モデル31、業界学習モデル33、及び媒体社学習モデル35のための教師モデルの生成に使用する。なお、学習データ生成部47は、生成した教師モデルのデータを用いて共通学習モデル31、業界学習モデル33、及び媒体社学習モデル35を更新(すなわち、再学習)する処理をおこなう再学習部として機能してもよい。
【0089】
制御部15は、ハードウェアとしての1以上のプロセッサ(CPU、MPU、GPUなど)を含む。上述の制御部15における各部の機能は、所定の制御プログラムをプロセッサが実行することで実現される。また、制御部15の機能の少なくとも一部は、プロセッサ以外の他のハードウェアと協働して実現され得る。
【0090】
図6は、図5に示した広告審査用サーバ3による予備審査処理の流れを示すフロー図である。
【0091】
広告審査用サーバ3は、審査対象の映像を取得すると(ST101)、共通学習モデル31に基づく審査(共通ルール審査)を実行する(ST102)。
【0092】
ステップST102の審査において指摘事項がない(すなわち、広告として不適切であると判定された映像構成要素がない)場合(ST103でNo)、続いて、広告審査用サーバ3は、業界学習モデル33に基づく審査(業界ルール審査)を実行する(ST104)。
【0093】
ステップST104の審査において指摘事項がない場合(ST105でNo)、続いて、広告審査用サーバ3は、媒体社学習モデル35に基づく審査(媒体社ルール審査)を実行する(ST106)。
【0094】
ステップST106の審査において指摘事項がない場合(ST107でNo)、続いて、広告審査用サーバ3は、それらの審査結果をアーカイブする(ST108)。このとき、ステップST102、ST104、及びST106の審査で得られた結果が、予備審査結果25として記憶部13に格納される。その後、広告審査用サーバ3は、審査対象の映像を入稿したユーザ(例えば、ユーザ端末5)に対して審査結果を通知する(ST109)。この場合、審査結果の通知には、審査対象の映像が広告として適切であることを示す情報(例えば、メッセージ)が含まれる。
【0095】
なお、ステップST103、ST105、及びST107において指摘事項がある場合(Yes)においても、ステップST108と同様に、それらの審査結果(指摘事項を含む)がアーカイブされる構成としてもよい。
【0096】
一方、ステップST102の審査において指摘事項がある場合(ST103でYes)、広告審査用サーバ3は、残りの審査(ここでは、ステップST104、ST105)を実行することなく、審査対象の映像を入稿したユーザに対して審査結果を通知する(ST109)。この場合、審査対象の映像には、広告として不適切であると判定された映像構成要素が含まれている。したがって、審査結果の通知には、ユーザに映像の再入稿を指示する(すなわち、映像を修正して再審査する必要があることを知らせる)情報(例えば、メッセージ)が含まれる。
【0097】
なお、ステップST102、ST104、及びST106の審査の順序は適宜変更され得る。
【0098】
図7は、図6に示した予備審査処理の変形例を示す説明図である。
【0099】
広告審査用サーバ3は、審査対象の映像を取得すると(ST201)、ユーザの選択に基づき審査で利用する1つの学習モデルを選択する(ST202)。本実施形態では、審査で利用する学習モデルとして、共通学習モデル31、業界学習モデル33、及び媒体社学習モデル35のいずれかが選択される。
【0100】
次に、広告審査用サーバ3は、選択した学習モデルに基づく審査を実行する(ST203)。ここでは、ステップST203の審査における指摘事項の有無に拘わらず、その審査結果がアーカイブされる(ST204)。このとき、審査結果は、予備審査結果25として記憶部13に格納される。その後、広告審査用サーバ3は、図6のステップST109と同様に、審査対象の映像を入稿したユーザに対して審査結果を通知する(ST205)。
【0101】
図7に示す変形例では、ユーザは、選択した学習モデルに基づく審査結果を迅速に取得することができるため、広告として不適切であると判定された映像(映像構成要素)の修正や、本審査への移行を速やかに行うことができる。
【0102】
図8は、図5に示した本審査部45による本審査処理の流れを示すフロー図である。
【0103】
広告審査用サーバ3は、審査対象の映像を取得すると(ST301)、共通学習モデル31に基づく審査、業界学習モデル33に基づく審査、及び媒体社学習モデル35に基づく審査を順次実行する(ST302-ST304)。
【0104】
それらの審査において指摘事項(すなわち、広告として不適切であると判定された映像構成要素)がない場合(ST305でNo)、広告審査用サーバ3は、審査者による映像の視聴確認を実行する(ST306)。このとき、広告審査用サーバ3は、審査者からの要求に基づき審査を行うための本審査画面(図11参照)を審査者端末7に表示することができる。審査者は、その本審査画面を利用して映像の少なくとも一部(特に、学習モデルによる判定が難しいと考えられる部分)を視聴することにより、不適切要素が含まれていないかを簡単に確認する。
【0105】
その後、審査対象の映像が審査者によって承認されると(ST307でYes)、広告審査用サーバ3は、総量規制判定を実行する(ST308)。
【0106】
その後、広告審査用サーバ3は、ステップST302-ST304における審査結果をアーカイブし(ST309)、審査対象の映像を入稿したユーザに対して審査結果を通知する(ST310)。
【0107】
一方、ステップST302-ST304の審査のいずれかにおいて指摘事項がある場合(ST305でYes)、広告審査用サーバ3は、審査者による映像の視聴判定を実行する(ST311)。このとき、広告審査用サーバ3は、上述の視聴確認と同様に、審査者からの要求に基づき本審査画面を審査者端末7に表示することができる。審査者は、その本審査画面利用して映像の少なくとも一部(特に、学習モデルによる判定が難しいと考えられる部分に加え、学習モデルによって不適切であると判定された映像構成要素)を視聴することにより、AI審査の結果が適切であるか否かを詳細に確認する。
【0108】
その後、審査対象の映像が審査者によって承認されると(ST312でYes)、広告審査用サーバ3は、上述の場合と同様に、総量規制判定(ST308)、審査結果のアーカイブ(ST309)、及び審査結果通知(ST310)を順次実行する。
【0109】
なお、ステップST310では、審査結果は、審査者(例えば、審査端末等)やその管理者に対して通知されてもよい。その場合、広告審査用サーバ3は、公知のコミュニケーションツールを利用し、予め設定された媒体社のアカウント(電子メールアドレス等)に対して審査結果を通知することができる。
【0110】
そのような審査結果の通知タイミングとしては、本審査処理(例えば、ステップST309またはステップST310)の完了直後または完了と同時、本審査処理の完了から所定時間または所定日数が経過した後、及び放映日(または広告用の映像の完成期限日)から所定時間前または所定日数前のうちの少なくとも1つのタイミングであるとよい。さらに、本審査処理の完了から所定時間または所定日数が経過した後の審査結果の通知は、異なるタイミングで複数回行われてもよい。例えば、本審査処理の完了から1日後に審査結果の通知がなされ、さらに、本審査処理の完了から2日後に審査結果の通知がなされ得る。同様に、放映日(または広告用の映像の完成期限日)から所定時間前または所定日数前の審査結果の通知は、異なるタイミングで複数回行われてもよい。
【0111】
図9は、ユーザが審査対象の映像の入稿に利用する入稿画面の一例を示す説明図である。
【0112】
広告審査システム1では、ユーザは、ユーザ端末5から広告審査用サーバ3にアクセスすることにより、広告審査に関するユーザ用の操作画面を表示させることができる。ユーザ端末5では、その操作画面の表示を、汎用のブラウザや専用のアプリケーションを利用して行うことが可能である。図9に示すように、操作画面において入稿タブ71が選択されると、ユーザが審査対象の映像(予備審査済み映像を含む)を入稿するための入稿画面が表示される。
【0113】
入稿画面では、ユーザは、ファイル選択ボタン73を押下することにより、ユーザ端末5に保存された審査対象の映像を広告審査用サーバ3にアップロードする操作を行うことができる。
【0114】
ユーザは、入稿画面の映像情報入力エリア75において、入稿目的(予備審査または本審査)、広告タイトル、広告対象の商品またはサービスが属する業界名称、広告主名称、審査対象の映像の他媒体での放映予定、審査対象の映像の放映実績(過去に広告として放映されたことがあるか否か)、媒体社名称、広告対象の商品名(またはサービス名)、放映期間、及び補足コメントなどを入力(または選択)することが可能である。
【0115】
ユーザは、映像のアップロードおよび必要な情報入力を完了した後に、入稿ボタン77を押下することにより、映像の入稿処理が完了する。これにより、広告審査用サーバ3は、ユーザ端末5から入稿された映像について、予備審査処理または本審査処理を開始する。
【0116】
図10は、ユーザが審査結果を参照する際に利用する審査結果表示画面の一例を示す説明図である。
【0117】
図9と同様の操作画面において審査結果タブ81が選択されると、図10に示すように、ユーザが映像の審査結果(または審査状況)を確認するための審査結果表示画面が表示される。
【0118】
ユーザは、審査結果表示画面の検索情報入力エリア83において、ユーザID、広告タイトル、業界名称、広告主名称、審査対象の映像の他媒体での放映予定、審査対象の映像の放映実績、媒体社名称、フリーキーワード、及びステータスなどを含む検索条件の少なくとも一部を、入力(または選択)することができる。これにより、その検索条件に対応した映像の審査状況が審査状況表示エリア85に表示される。
【0119】
ユーザは、審査状況表示エリア85に表示された各映像に対応するチェックボックス86を選択することにより、選択した映像についてより詳細な審査結果を表示させることができる。そのような審査結果には、例えば、広告に不適切であると判定された複数の映像構成要素に関する情報と、それらに対応する判定理由の情報の一覧が含まれる。
【0120】
図11は、審査者が利用する本審査画面を示す説明図である。
【0121】
広告審査システム1では、審査者は、審査者端末7から広告審査用サーバ3にアクセスすることにより、広告審査に関する審査者用の操作画面を表示させることができる。審査者端末7では、操作画面の表示を、汎用のブラウザや専用のアプリケーションを利用して行うことが可能である。図11に示すように、操作画面において本審査タブ91が選択されると、審査者が審査を行うべき予備審査済み映像に関する本審査画面が表示される。審査者は、本審査画面を利用して、予備審査済み映像の本審査を実施することができる。
【0122】
本審査画面には、画像表示エリア92、AI審査結果表示エリア93(第1の審査結果表示エリア)、及び担当者審査結果表示エリア94(第2の審査結果表示エリア)が含まれる。
【0123】
画像表示エリア92では、審査対象の映像の一部が静止画像として表示される。この静止画像は、審査対象の映像における所定タイミング(すなわち、映像開始からの所定経過時間)のフレームに対応する。また、その静止画像において、不適切要素(ここでは、画像の一部や文字)の各々を識別するための記号200A-203A(第1の記号)が重畳して表示されている。映像構成要素が、静止画像の一部のエリアに対応する画像領域である場合、その画像領域を画定する所定形状の枠(ここでは、矩形の枠)が表示され、その枠に対して記号(ここでは、記号200A)が付される。
【0124】
また、画像表示エリア92には、音声表示エリア95が含まれる。音声表示エリア95には、静止画像のタイミングを含む所定の時間帯において出力される音声が変換されたテキスト情報(文字)が表示される。音声表示エリア95のテキスト情報が広告として不適切である場合には、上述の記号200A-203Aと同様に、それを識別するための記号が重畳して表示される。
【0125】
画像表示エリア92には、審査者が、表示される静止画像の映像における時間的位置を変更するための再生ボタン、巻戻しボタン、早送りボタン、及び早戻しボタン等を含む操作エリア96が付設されている。
【0126】
また、画像表示エリア92の下方には、審査対象の映像に関する情報(映像ID、業界、企業名、広告会社、広告対象商品・サービス、放映期間、入稿締切日、最終入稿日など)を示す映像情報表示エリア97が配置される。
【0127】
AI審査結果表示エリア93では、本審査におけるAI審査の結果が表示される。AI審査の結果には、各映像構成要素について広告として不適切であることの理由を示すコメントが含まれる。それらのコメントには、画像表示エリア92の記号200A-202Aにそれぞれ対応する記号200B-202B(第2の記号)が付される。これにより、審査者は、画像表示エリア92における不適切要素の各々がどのような理由で不適切であるのかを、対応づけられたコメントから理解することができる。
【0128】
審査者は、AI審査結果表示エリア93におけるコメントを参照し、それらが適切であると判断した場合には、その審査結果をそのまま採用する(すなわち、コメントの表示を維持する)ことができる。また、AI審査の結果コメントに対して、審査者のコメントをさらに付けることもできる。審査者のコメントがついた場合、それに対応する記号の色や形が変わる等により、AI審査の結果コメントに対応する記号と識別することができる。一方、審査者は、AI審査結果表示エリア93におけるコメントの少なくとも一部を不適切であると判断した場合には、当該コメント及びそれに対応する記号(画像表示エリア92の記号を含む)を削除することが可能である。また、上述のAI審査の結果コメントに対して、審査者のコメントを付けない場合は修正の対象にしないで視聴確認時の参考とする運用も可能である。
【0129】
また、審査者は、画像表示エリア92において広告として不適切であると自らが判断した映像構成要素に対して、記号(ここでは、記号203A)を付す操作を行うことができる。また、審査者は、担当者審査結果表示エリア94において、各映像構成要素について広告として不適切であることの理由を示すコメントを入力することができる。それらのコメントには、画像表示エリア92で付した記号に対応する記号(ここでは、記号203B)が付される。
【0130】
本審査画面には、審査対象の映像が広告として適切であるか否かについて、審査者による最終的な判断結果(映像を承認するか否か)を示すための否認/承認決定エリア98が含まれる。
【0131】
また、本審査画面には、審査者が補足的なコメントなどを入力するための補足コメントエリア99が含まれる。
【0132】
審査者は、最終的に映像の審査を終えると、審査結果送信ボタン100を押下することにより、審査結果が記憶部13に格納されると共に、ユーザ(例えば、ユーザ端末5)に対して送信される。
【0133】
図12は、審査者が審査結果を参照する際に利用する審査結果表示画面の一例を示す説明図である。
【0134】
図11と同様の操作画面において審査結果タブ101が選択されると、審査者が映像の審査結果(または審査状況)を確認するための審査結果表示画面が表示される。
【0135】
審査者は、図10と同様に、検索情報入力エリア102において、検索条件の少なくとも一部を入力(または選択)することができる。これにより、その検索条件に対応した映像の審査状況が審査状況表示エリア103に表示される。
【0136】
審査者は、審査状況表示エリア103における予備審査中タブ104または本審査中タブ105のいずれかを選択し、予備審査中または本審査中の映像の一覧を表示させることができる。また、審査者は、審査状況表示エリア103に表示された各映像に対応するチェックボックス106を選択することにより、より詳細な審査結果を表示させることができる。そのような審査結果には、例えば、広告に不適切であると判定された複数の映像構成要素に関する情報と、それらに対応する判定理由の情報の一覧が含まれる。
【0137】
図13は、審査者が審査履歴を参照する際に利用する審査履歴表示画面の一例を示す説明図である。
【0138】
図12と同様の操作画面において審査履歴タブ110が選択されると、図12に示した映像の審査履歴を確認するための審査履歴表示画面が表示される。
【0139】
審査履歴表示画面には、対象の映像の基本情報を表示する基本情報表示エリア111と、対象の映像の審査経過の情報を表示する審査経過表示エリア112と、が含まれる。
【0140】
基本情報表示エリア111には、図11に示した映像情報表示エリア97と同様の情報(映像ID、業界、企業名、広告会社、広告対象商品・サービス、放映期間、入稿締切日、最終入稿日など)が表示される。
【0141】
審査経過表示エリア112には、対象の映像に対して実施された各審査について、審査日、審査依頼日、審査目的(予備審査または本審査)、審査結果、指摘事項(広告として不適切であることの理由を示すコメント)等が含まれる。また、審査者は、所望の審査に関する結果ボタン113を押下することにより、より詳細な審査結果(例えば、図11の本審査画面に相当)を表示することができる。
【0142】
図14は、図1に示した広告審査システム1の変形例を示す全体構成図である。この変形例について、以下で特に言及しない事項については、上述の広告審査システム1と同様であるため、詳細な説明は省略する。
【0143】
広告審査システム1は、上述の広告審査用サーバ3に加え、API(Application Programming Interface)サーバ120および広告運用CMS(Contents Management System)121を更に含む。
【0144】
APIサーバ120は、広告審査用サーバ3による広告審査の機能やそれが管理する審査に関するデータなどを、広告運用CMS121から呼び出して利用できるようにするための機能を有する。APIサーバ120は、プロセッサ、メモリ、ディスプレイ、入力機器、ネットワークインタフェース、及びストレージ等の公知のハードウェアを適宜備える。なお、APIサーバ120は、広告審査用サーバ3の機能の一部として実現されてもよい。
【0145】
広告運用CMS121は、ユーザによって利用され、広告用の映像のデータを管理し、その映像の入稿、放映条件の設定などを行うシステムである。広告運用CMS121は、APIサーバ120を利用することにより、映像の審査状況の取得、審査の完了情報の取得、審査結果の取得、及び審査履歴の取得などを適宜実行することができる。これにより、ユーザは、広告審査用サーバ3の機能やデータを必要に応じて利用することが可能となる。
【0146】
以上のように、本出願において開示する技術の例示として、実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施形態にも適用できる。また、上記の実施形態で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。
【産業上の利用可能性】
【0147】
本開示に係る広告審査システム、広告審査方法、及び広告審査プログラムは、学習モデルに基づく映像の審査結果の少なくとも一部を、ユーザに速やかに知らせることにより、広告用の映像の審査を効率化することができるという効果を有し、広告用に制作された映像の広告としての適否を審査する広告審査システム、広告審査方法、及び広告審査プログラムなどとして有用である。
【符号の説明】
【0148】
1 :広告審査システム
3 :広告審査用サーバ
5 :ユーザ端末
7 :審査者端末
9 :通信ネットワーク
21 :学習モデル
23 :審査対象映像
31 :共通学習モデル
33 :業界学習モデル
35 :媒体社学習モデル
41 :映像取得部
43 :予備審査部
45 :本審査部
47 :学習データ生成部
51 :第1の審査前処理部
53 :第1の映像審査部
55 :第1の審査結果出力部
57 :第1の審査結果通知部
61 :第2の審査前処理部
63 :第2の映像審査部
65 :第2の審査結果出力部
67 :第2の審査結果通知部
92 :画像表示エリア
93 :AI審査結果表示エリア(第1の審査結果表示エリア)
94 :担当者審査結果表示エリア(第2の審査結果表示エリア)
120:APIサーバ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
【手続補正書】
【提出日】2022-06-10
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
広告用に制作された映像を審査する広告審査システムであって、
前記映像を取得する映像取得部と、
映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、
映像の広告としての適否を予備的に審査する予備審査部と、
前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、
を備え、
前記複数の学習モデルは、複数のルールそれぞれに対応し、
前記予備審査部は、
前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、
前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知する第1の審査結果通知部と、
を備え、
前記本審査部は、
前記複数の学習モデルの全てに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、
前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する第2の審査結果出力部と、
を備える、広告審査システム。
【請求項2】
前記複数の学習モデルは、
前記映像の広告対象が属する業界に対応する業界ルールに基づき生成された業界学習モデル、
前記映像を配信する媒体社について定められた媒体社ルールに基づき生成された媒体社学習モデル、及び
業界および媒体社に関わらず定められた共通ルールに基づき生成された共通学習モデル、のうちの2以上を含み、
前記第1の映像審査部は、前記業界学習モデル、前記媒体社学習モデル、及び前記共通学習モデルのうちの少なくとも1つの学習モデルに基づき、前記予備審査結果を生成する、請求項1に記載の広告審査システム。
【請求項3】
前記予備審査部は、前記映像に含まれる複数の映像構成要素を抽出する審査前処理部を更に備え、
前記複数の映像構成要素には、静止画像、文字、及び音声のうちの少なくとも1つが含まれ、
前記第1の映像審査部は、前記審査前処理部によって抽出された前記複数の映像構成要素の各々について広告としての適否を判定することにより、前記予備審査結果を生成する、請求項1または請求項2に記載の広告審査システム。
【請求項4】
前記第1の映像審査部は、前記複数の学習モデルに基づく審査を所定の順序で実行することにより、前記学習モデル毎の前記予備審査結果を生成し、
前記第1の審査結果通知部は、前記学習モデル毎の前記予備審査結果の1つに前記映像構成要素が広告として不適切であることを示す情報が含まれる場合には、他の前記学習モデルに基づく前記予備審査結果の生成が完了しているか否かに拘わらず、前記広告として不適切であることを示す情報が含まれる前記予備審査結果を、前記ユーザに対して通知する、請求項3に記載の広告審査システム。
【請求項5】
前記第1の映像審査部は、少なくとも1つの前記映像構成要素を広告として不適切であると判定すると、全ての前記映像構成要素の判定が終了する前に前記予備審査結果を生成し、
前記予備審査部は、前記ユーザに対して前記映像構成要素毎の前記予備審査結果を出力する第1の審査結果出力部を更に備える、請求項3に記載の広告審査システム。
【請求項6】
広告用に制作された映像を審査する広告審査システムであって、
前記映像を取得する映像取得部と、
映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、
映像の広告としての適否を予備的に審査する予備審査部と、
前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、
を備え、
前記複数の学習モデルは、複数のルールそれぞれに対応し、
前記予備審査部は、
前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、
前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知する第1の審査結果通知部と、
を備え、
前記本審査部は、
前記複数の学習モデルのうち前記予備審査において使用されていない少なくとも1つの学習モデルを含む1つ以上の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、
前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を通知する第2の審査結果通知部と、
を備える、広告審査システム。
【請求項7】
広告用に制作された映像を審査する広告審査システムであって、
前記映像を取得する映像取得部と、
映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、
映像の広告としての適否を予備的に審査する予備審査部と、
前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、
を備え、
前記複数の学習モデルは、複数のルールそれぞれに対応し、
前記予備審査部は、
前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、
前記映像の制作に関わるユーザに対して前記予備審査結果を通知する第1の審査結果通知部と、
を備え、
前記本審査部は、
前記複数の学習モデルの全てに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、
前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する第2の審査結果出力部と、
前記審査者に対して前記本審査結果を通知する第2の審査結果通知部と、を更に備える広告審査システム。
【請求項8】
前記コミュニケーションツールは、電子メールを含み、
前記第1の審査結果通知部は、前記ユーザの電子メールアドレスへの前記電子メールの送信によって前記予備審査結果を通知する、請求項1から請求項のいずれか1項に記載の広告審査システム。
【請求項9】
広告用に制作された映像を審査する広告審査システムによる広告審査方法であって、
映像の広告としての適否を予備的に審査する予備審査ステップと、
前記予備審査ステップによって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査ステップと、
を含み、
前記予備審査ステップでは、
前記映像を取得し、
前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、
前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知し、
前記本審査ステップでは、
前記予備審査済み映像を取得し、
前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、
前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する、広告審査方法。
【請求項10】
広告用に制作された映像を審査する広告審査プログラムであって、
映像の広告としての適否を予備的に審査する予備審査処理と、
前記予備審査処理によって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査処理と、
をコンピュータに実行させ、
前記コンピュータは、
前記予備審査処理では、
前記映像を取得し、
前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、
前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知し、
前記本審査処理では、
前記予備審査済み映像を取得し、
前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、
前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する、広告審査プログラム。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0010
【補正方法】変更
【補正の内容】
【0010】
本開示の広告審査システムは、広告用に制作された映像を審査する広告審査システムであって、前記映像を取得する映像取得部と、映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、映像の広告としての適否を予備的に審査する予備審査部と、前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、を備え、前記複数の学習モデルは、複数のルールそれぞれに対応し、前記予備審査部は、前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知する第1の審査結果通知部と、を備え、前記本審査部は、前記複数の学習モデルの全てに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する第2の審査結果出力部と、を備える構成とする。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0011
【補正方法】変更
【補正の内容】
【0011】
本開示の広告審査方法は、広告用に制作された映像を審査する広告審査システムによる広告審査方法であって、映像の広告としての適否を予備的に審査する予備審査ステップと、前記予備審査ステップによって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査ステップと、を含み、前記予備審査ステップでは、前記映像を取得し、前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知し、前記本審査ステップでは、前記予備審査済み映像を取得し、前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する構成とする。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0012
【補正方法】変更
【補正の内容】
【0012】
本開示の広告審査プログラムは、広告用に制作された映像を審査する広告審査プログラムであって、映像の広告としての適否を予備的に審査する予備審査処理と、前記予備審査処理によって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査処理と、をコンピュータに実行させ、前記コンピュータは、前記予備審査処理では、前記映像を取得し、前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知し、前記本審査処理では、前記予備審査済み映像を取得し、前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する構成とする。
【手続補正5】
【補正対象書類名】明細書
【補正対象項目名】0015
【補正方法】変更
【補正の内容】
【0015】
前記課題を解決するためになされた第1の発明は、広告用に制作された映像を審査する広告審査システムであって、前記映像を取得する映像取得部と、映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、映像の広告としての適否を予備的に審査する予備審査部と、前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、を備え、前記複数の学習モデルは、複数のルールそれぞれに対応し、前記予備審査部は、前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知する第1の審査結果通知部と、を備え、前記本審査部は、前記複数の学習モデルの全てに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する第2の審査結果出力部と、を備える構成とする。
【手続補正6】
【補正対象書類名】明細書
【補正対象項目名】0025
【補正方法】変更
【補正の内容】
【0025】
また、第6の発明は、広告用に制作された映像を審査する広告審査システムであって、前記映像を取得する映像取得部と、映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、映像の広告としての適否を予備的に審査する予備審査部と、前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、を備え、前記複数の学習モデルは、複数のルールそれぞれに対応し、前記予備審査部は、前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知する第1の審査結果通知部と、を備え、前記本審査部は、前記複数の学習モデルのうち前記予備審査において使用されていない少なくとも1つの学習モデルを含む1つ以上の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を通知する第2の審査結果通知部と、を備える構成とする。
【手続補正7】
【補正対象書類名】明細書
【補正対象項目名】0027
【補正方法】変更
【補正の内容】
【0027】
また、第7の発明は、広告用に制作された映像を審査する広告審査システムであって、前記映像を取得する映像取得部と、映像の広告としての適否に関する審査用の複数の学習モデルを記憶する記憶部と、映像の広告としての適否を予備的に審査する予備審査部と、前記予備審査部において審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査部と、を備え、前記複数の学習モデルは、複数のルールそれぞれに対応し、前記予備審査部は、前記複数の学習モデルのうち少なくとも1つに基づき、前記映像に関する予備審査結果を生成する第1の映像審査部と、前記映像の制作に関わるユーザに対して前記予備審査結果を通知する第1の審査結果通知部と、を備え、前記本審査部は、前記複数の学習モデルの全てに基づき、前記予備審査済み映像に関する本審査結果を生成する第2の映像審査部と、前記予備審査済み映像の広告審査に関わる審査者に対して前記本審査結果を出力する第2の審査結果出力部と、前記審査者に対して前記本審査結果を通知する第2の審査結果通知部と、を更に備える構成とする。
【手続補正8】
【補正対象書類名】明細書
【補正対象項目名】0029
【補正方法】変更
【補正の内容】
【0029】
また、第8の発明は、前記コミュニケーションツールは、電子メールを含み、前記第1の審査結果通知部は、前記ユーザの電子メールアドレスへの前記電子メールの送信によって前記予備審査結果を通知する構成とする。
【手続補正9】
【補正対象書類名】明細書
【補正対象項目名】0031
【補正方法】変更
【補正の内容】
【0031】
また、第9の発明は、広告用に制作された映像を審査する広告審査システムによる広告審査方法であって、映像の広告としての適否を予備的に審査する予備審査ステップと、前記予備審査ステップによって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査ステップと、を含み、前記予備審査ステップでは、前記映像を取得し、前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知し、前記本審査ステップでは、前記予備審査済み映像を取得し、前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、前記予備審査済み映像の広告審査に関わる審査者に対して前記学習モデルに基づく前記本審査結果を出力する構成とする。
【手続補正10】
【補正対象書類名】明細書
【補正対象項目名】0033
【補正方法】変更
【補正の内容】
【0033】
また、第10の発明は、広告用に制作された映像を審査する広告審査プログラムであって、映像の広告としての適否を予備的に審査する予備審査処理と、前記予備審査処理によって審査済みの前記映像である予備審査済み映像について、広告としての適否を審査する本審査処理と、をコンピュータに実行させ、前記コンピュータは、前記予備審査処理では、前記映像を取得し、前記映像の広告としての適否に関する複数のルールそれぞれに対応する複数の学習モデルの少なくとも1つに基づき、前記映像に関する予備審査結果を生成し、前記映像の制作に関わるユーザに対してコミュニケーションツールによって前記予備審査結果を通知し、前記本審査処理では、前記予備審査済み映像を取得し、前記複数の学習モデルに基づき、前記予備審査済み映像に関する本審査結果を生成し、前記予備審査済み映像の広告審査に関わる審査者に対して前記学習モデルに基づく前記本審査結果を出力する構成とする。