IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ OMデジタルソリューションズ株式会社の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023126838
(43)【公開日】2023-09-12
(54)【発明の名称】天体追尾装置および天体追尾方法
(51)【国際特許分類】
   G03B 5/02 20210101AFI20230905BHJP
   G03B 5/00 20210101ALI20230905BHJP
   G03B 5/04 20210101ALI20230905BHJP
   G03B 15/00 20210101ALI20230905BHJP
   H04N 23/68 20230101ALI20230905BHJP
【FI】
G03B5/02
G03B5/00 J
G03B5/04
G03B15/00 U
H04N23/68
【審査請求】有
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2023104297
(22)【出願日】2023-06-26
(62)【分割の表示】P 2019075186の分割
【原出願日】2019-04-10
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.VERILOG
(71)【出願人】
【識別番号】321001056
【氏名又は名称】OMデジタルソリューションズ株式会社
(74)【代理人】
【識別番号】110002907
【氏名又は名称】弁理士法人イトーシン国際特許事務所
(72)【発明者】
【氏名】野村 宏利
(57)【要約】
【課題】長時間露光時に天体を追尾する天体追尾装置及び天体追尾方法を提供する。
【解決手段】撮影光学系2内で並進移動可能な防振レンズ2aを駆動して手振れ補正を行う第1防振部3と、回転及び並進移動可能な撮像素子12を駆動して手振れ補正を行う第2防振部13とを有する撮影装置(1,10)のための天体追尾装置において、防振レンズ及び撮像素子が各センタ位置にある状態で天体追尾に係るパラメータに基づき撮像素子の有効結像領域内を移動する天体像の移動方向及び移動速度を予測する予測部15と、予測部の予測結果に基づき有効結像領域内で天体像を最も長時間追尾できる防振レンズ及び撮像素子の各初期位置を決定する演算部15と、防振レンズ及び撮像素子を各センタ位置から各初期位置に移動させた後に、天体像を有効結像領域内の同じ位置に静止させるように第1防振部及び第2防振部の少なくとも一方を駆動制御する追尾制御部15とを備える。
【選択図】図1
【特許請求の範囲】
【請求項1】
撮影光学系内において並進移動可能な防振レンズを駆動して手振れ補正を行う第1防振部と、回転及び並進移動可能な撮像素子ユニットを駆動して手振れ補正を行う第2防振部とを有する撮影装置のための天体追尾装置において、
上記防振レンズ及び上記撮像素子ユニットがそれぞれのセンタ位置にある状態で、天体追尾に係るパラメータに基づいて、上記撮像素子ユニットにおける有効結像領域内を移動する天体像の移動方向及び移動速度を予測する予測部と、
上記予測部の予測結果に基づいて、上記有効結像領域内において上記天体像を最も長い時間追尾できる上記防振レンズの初期位置及び上記撮像素子ユニットの初期位置を決定する演算部と、
上記防振レンズ及び上記撮像素子ユニットを上記それぞれのセンタ位置から上記それぞれの初期位置に移動させた後に、上記天体像を上記有効結像領域内の同じ位置に静止させるように上記第1防振部及び上記第2防振部の少なくとも一方を駆動制御する追尾制御部と、
を具備することを特徴とする天体追尾装置。
【請求項2】
上記演算部が決定する上記初期位置は、上記防振レンズ及び上記撮像素子ユニットの有効可動領域内の端部であることを特徴とする請求項1に記載の天体追尾装置。
【請求項3】
上記端部は、上記天体像の移動方向とは逆方向の端部であることを特徴とする請求項2の天体追尾装置。
【請求項4】
撮影光学系内において並進移動可能な防振レンズを駆動して手振れ補正を行う第1防振部と、回転及び並進移動可能な撮像素子ユニットを駆動して手振れ補正を行う第2防振部とを有する撮影装置のための天体追尾方法において、
上記防振レンズ及び上記撮像素子ユニットがそれぞれのセンタ位置にある状態で、天体像が上記撮像素子ユニットにおける有効結像領域内を移動する移動方向及び移動速度を予測し、
上記予測の結果に基づいて、上記有効結像領域内において上記天体像を最も長い時間追尾できる上記防振レンズの初期位置及び上記撮像素子ユニットの初期位置を決定し、
上記防振レンズ及び上記撮像素子ユニットを上記それぞれの初期位置に移動させた後に、上記有効結像領域内の同じ位置に上記天体像を静止させるように上記第1防振部及び第2防振部の少なくとも一方を駆動制御する、
ことを特徴とする天体追尾方法。
【請求項5】
上記初期位置として、上記天体像の移動方向とは逆方向の上記防振レンズ及び上記撮像素子ユニットの有効可動領域内の端部に移動させることを特徴とする請求項4の天体追尾方法。
【請求項6】
上記撮像素子ユニットの端部において、上記撮像素子ユニットの長手方向と上記天体像の移動方向がなす角度に応じて上記撮像素子ユニットを傾けることを特徴とする請求項5の天体追尾方法。
【請求項7】
並進移動可能なレンズと、回転及び並進移動可能な撮像素子ユニットとを有する撮影装置のための天体追尾方法において、
上記レンズ及び上記撮像素子ユニットがそれぞれの可動領域のセンタに位置する状態で、上記撮像素子ユニットにおける有効結像領域内を天体像が移動する移動方向及び移動速度を予測し、
上記予測した移動方向及び移動速度に基づいて、長時間の追尾動作が可能な上記レンズの初期位置及び上記撮像素子ユニットの初期位置を決定し、
上記レンズ及び上記撮像素子ユニットを上記それぞれのセンタ位置から上記それぞれの初期位置に移動させ、
上記予測した移動方向及び移動速度に基づいて上記レンズ及び上記撮像素子ユニットの少なくとも一方を駆動して、上記有効結像領域内の同じ位置に上記天体像を静止させる、
ことを特徴とする天体追尾方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、撮影光学系と撮像素子を有する撮影装置において、天体等を追尾できるようにした天体追尾装置および天体追尾方法に関する。
【背景技術】
【0002】
天体は天の北極を中心に回転移動しているため、長時間に亘って撮影すると光跡が流れた写真となってしまう。そこで、撮影装置内に設けられた防振機構を利用して、天体像を追跡し、天体像を静止させて撮影できるようにしたデジタルカメラが提案されている(特許文献1参照)。このデジタルカメラの防振機構は、撮像素子と撮影レンズ内の光学系を移動させることができ、天体像の移動に応じて、撮像素子と光学系を移動させ、天体像を静止させている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010-122672号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に開示されたデジタルカメラでは、天体等を追尾する際、カメラ本体側の防振機構は、天体像の回転運動を打ち消すことによって静止させるためのみに使用し、撮影レンズ側の防振機構は天体像の水平および垂直方向の運動を打ち消すことによって静止させるために使用している。カメラ本体側の防振機構と、撮影レンズ側の防振機構の両方を使用しても良い旨の記載はあるが、具体的に2つの防振機構をどの様に制御するかについて記載はない。そのため、算出した最長駆動可能位置へ、撮像素子を移動させるための可動部を制御することについて記載がない。特許文献1に記載のデジタルカメラは、最も長く駆動する際の初期位置は光軸位置であり、撮影レンズ側の防振機構のみを駆動するので、露光時間(観察時間)を長くすることができない。このため、露光時間を長くするために、カメラ本体を動かすことによって被写体との位置を再設定し直し、また、再設定し直す前の設定との整合を取らなければならなかった。
【0005】
本発明は、このような事情を鑑みてなされたものであり、長時間の露光時間(観察時間)の間、天体等の被写体を追尾可能な天体追尾装置および天体追尾方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本発明の一態様の天体追尾装置は、撮影光学系内において並進移動可能な防振レンズを駆動して手振れ補正を行う第1防振部と、回転及び並進移動可能な撮像素子ユニットを駆動して手振れ補正を行う第2防振部とを有する撮影装置のための天体追尾装置において、上記防振レンズ及び上記撮像素子ユニットがそれぞれのセンタ位置にある状態で、天体追尾に係るパラメータに基づいて、上記撮像素子ユニットにおける有効結像領域内を移動する天体像の移動方向及び移動速度を予測する予測部と、上記予測部の予測結果に基づいて、上記有効結像領域内において上記天体像を最も長い時間追尾できる上記防振レンズの初期位置及び上記撮像素子ユニットの初期位置を決定する演算部と、上記防振レンズ及び上記撮像素子ユニットを上記それぞれのセンタ位置から上記それぞれの初期位置に移動させた後に、上記天体像を上記有効結像領域内の同じ位置に静止させるように上記第1防振部及び上記第2防振部の少なくとも一方を駆動制御する追尾制御部と、を具備する。
【0007】
本発明の一態様の天体追尾方法は、撮影光学系内において並進移動可能な防振レンズを駆動して手振れ補正を行う第1防振部と、回転及び並進移動可能な撮像素子ユニットを駆動して手振れ補正を行う第2防振部とを有する撮影装置のための天体追尾方法において、上記防振レンズ及び上記撮像素子ユニットがそれぞれのセンタ位置にある状態で、天体像が上記撮像素子ユニットにおける有効結像領域内を移動する移動方向及び移動速度を予測し、上記予測の結果に基づいて、上記有効結像領域内において上記天体像を最も長い時間追尾できる上記防振レンズの初期位置及び上記撮像素子ユニットの初期位置を決定し、上記防振レンズ及び上記撮像素子ユニットを上記それぞれの初期位置に移動させた後に、上記有効結像領域内の同じ位置に上記天体像を静止させるように上記第1防振部及び第2防振部の少なくとも一方を駆動制御する。
【0008】
本発明の別の一態様の天体追尾方法は、並進移動可能なレンズと、回転及び並進移動可能な撮像素子ユニットとを有する撮影装置のための天体追尾方法において、上記レンズ及び上記撮像素子ユニットがそれぞれの可動領域のセンタに位置する状態で、上記撮像素子ユニットにおける有効結像領域内を天体像が移動する移動方向及び移動速度を予測し、上記予測した移動方向及び移動速度に基づいて、長時間の追尾動作が可能な上記レンズの初期位置及び上記撮像素子ユニットの初期位置を決定し、上記レンズ及び上記撮像素子ユニットを上記それぞれのセンタ位置から上記それぞれの初期位置に移動させ、上記予測した移動方向及び移動速度に基づいて上記レンズ及び上記撮像素子ユニットの少なくとも一方を駆動して、上記有効結像領域内の同じ位置に上記天体像を静止させる。
【発明の効果】
【0009】
本発明によれば、長時間の露光時間(観察時間)の間、天体等の被写体を追尾可能な天体追尾装置および天体追尾方法を提供することができる。
【図面の簡単な説明】
【0010】
図1】本発明の一実施形態に係るカメラの主として電気的構成を示すブロック図である。
図2】本発明の一実施形態に係るカメラにおいて、撮像素子と光学系の移動範囲の第1の例(第1追尾モード)を示す図である。
図3】本発明の一実施形態に係るカメラにおいて、撮像素子と光学系の移動範囲の第2の例(第2追尾モード)を示す図である。
図4】本発明の一実施形態に係るカメラにおいて、撮像素子と光学系の移動範囲の第3(第3追尾モード)の例を示す図である。
図5】本発明の一実施形態に係るカメラにおいて、天体の動きと像面移動速度を説明するための図である。
図6】本発明の一実施形態に係るカメラにおいて、天体像が日周運動によって撮像素子上を移動する様子を示す図である。
図7】本発明の一実施形態に係るカメラにおいて、防振機構の感度を説明する図である。
図8】本発明の一実施形態に係るカメラにおいて、上述の第1および第2の例におけるX方向およびY方向の可動量リミットを説明する図である。
図9】本発明の一実施形態に係るカメラにおいて、上述の第2の例におけるθ方向の可動量リミットを説明する図である。
図10A】本発明の一実施形態に係るカメラの天体撮影の動作を示すフローチャートである。
図10B】本発明の一実施形態に係るカメラの天体撮影の動作を示すフローチャートである。
図10C】本発明の一実施形態に係るカメラの天体撮影の動作を示すフローチャートである。
図10D】本発明の一実施形態に係るカメラの天体撮影の動作を示すフローチャートである。
図11】本発明の一実施形態に係るカメラの天体撮影の動作の変形例を示すフローチャートである。
図12】本発明の一実施形態に係るカメラにおいて、天体の追尾を説明する図である。
【発明を実施するための形態】
【0011】
以下、本発明の一実施形態に係る天体追尾装置として撮影装置であるデジタルカメラ(以下、「カメラ」と称す)に適用した例について説明する。このカメラは、撮像部を有し、この撮像部によって被写体像を画像データに変換し、この変換された画像データに基づいて、被写体像をカメラ本体の背面等に配置した表示部にライブビュー表示する。撮影者はライブビュー表示を観察することにより、構図やシャッタタイミングを決定する。レリーズ操作時には、画像データが記録媒体に記録される。記録媒体に記録された画像データは、再生モードを選択すると、表示部に再生表示することができる。
【0012】
また、このカメラは、レンズ鏡筒1内に配置された光学系の一部(防振レンズ2a)が光軸に直交する面において移動するレンズ側防振機構(レンズ側防振ユニット)を有する。また、カメラ本体(ボディ)10に配置された撮像素子12が光学系の光軸に直交する面において、X軸方向およびY軸方向に移動可能であり、さらに光軸に直交する面内において、光軸を中心に回転可能なカメラ本体(ボディ)側防振機構を有する。天体像を撮影(露光)または観察する際には、カメラの位置情報(緯度φ等)、撮影方位情報(方位A)、撮影高度情報(高度h)、および光学系の焦点距離情報(焦点距離f)を入力する。これらの入力情報を用いて、レンズ側防振機構およびカメラ側防振機構を駆動し、天体像を追尾し、天体像を静止させた状態で撮影する。
【0013】
図1は、本実施形態に係るカメラの主として電気的構成を示すブロック図である。このカメラは、レンズ鏡筒1とボディ(カメラ本体)10を有する交換レンズ式カメラ(一眼カメラ)である。レンズ鏡筒1は、ボディ10に装着自在に構成されている。なお、交換レンズ式カメラに限らず、レンズ鏡筒とボディが一体に構成されたカメラであってもよい。
【0014】
レンズ鏡筒1内には、撮影レンズ2、防振レンズ駆動部3、レンズ側ブレ補正マイコン4、レンズ側システムコントローラ5、焦点距離検出部6が設けられている。
【0015】
撮影レンズ2は、フォーカスレンズ、ズームレンズ、固定レンズ、および防振用レンズ2a(図2参照)を有し、撮像素子12上に被写体像を形成する。フォーカスレンズは、図示しないレンズ駆動部によって光軸方向に移動され、焦点調節がなされる。ズームレンズは、手動または図示しないレンズ駆動部によって光軸方向に移動され、焦点距離が変更される。防振用レンズ2aは、防振レンズ駆動部3によって光軸方向と直交する面内でX軸方向およびY軸方向に移動され、防振動作および天体像の追尾動作を行うことができる。なお、X軸方向はボディの長手方向であり、Y軸方向はX軸方向と直交する方向である(図2参照)。撮影レンズ2は、防振レンズを有する撮影光学系として機能する。
【0016】
防振レンズ駆動部3はレンズ駆動回路を有し、防振用レンズ2aを駆動する。特に、防振レンズ駆動部3は、レンズ側ブレ補正マイコン4から制御信号に基づいて、撮影レンズ2の光軸と直交する面内において、X軸方向およびY軸方向に、防振用レンズ2aを駆動する。また防振レンズ駆動部3は、防振用レンズ2aのX軸方向、Y軸方向における位置を検出する位置センサを有する。例えば、この位置センサは、特開2017-037130号公報の図3に開示されているような磁石とホール素子等によって構成してもよい。この場合には、防振レンズ駆動部3内の固定部側に磁石を、また可動部側にホール素子を配置し、ホール素子が出力する電圧の大小に基づいて、防振用レンズ2aの現在位置を認識する。
【0017】
レンズ側ブレ補正マイコン4は、CPU(Central Processing Unit)、プログラムを記憶したメモリ、および周辺回路を有するプロセッサである。上述した磁石とホール素子によって位置検出する場合には、レンズ側ブレ補正マイコン4内で処理できるように、ホール素子から取得した電圧信号をAD変換回路によってAD変換し、デジタル信号として現在の位置を認識する。レンズ側ブレ補正マイコン4は、レンズ側システムコントローラ5からの制御信号に基づいて、手ブレ補正のために防振用レンズ2aの可動部の現在位置が目標位置になるように駆動制御を行う。この目標位置は、加速度センサやジャイロセンサ等の出力に基づいて、撮像面でのブレ量を算出し、そのブレ量を打ち消すために、どれだけ防振レンズ2aを移動させればよいかを算出することによって得られる位置である。この算出された目標位置は、防振レンズ駆動部3に出力される。
【0018】
また、レンズ側ブレ補正マイコン4は、追尾モードが設定されている場合には、天体像を静止させて撮影できるように、防振用レンズ2aの可動部の現在位置が目標位置になるように駆動制御も行う。この目標位置は、天体の移動を像面上で打ち消すために、どれだけ防振レンズ2aの可動部を移動させればよいかを算出した値(積分値)と、基準位置(初期位置)の和であり、防振レンズ駆動部3に対して出力される位置情報である。天体の移動量は、各センサの出力に基づいて、撮像面での単位時間当たりの天体移動量を算出することによって得られる。防振レンズ駆動部3は、防振レンズを移動することによって手振れを補正する第1防振部として機能する。また、防振レンズ駆動部3は、第1防振部によって移動された防振レンズの位置を検出する第1位置検出部として機能する。
【0019】
レンズ側システムコントローラ5は、CPU(Central Processing Unit)、プログラムを記憶したメモリ、および周辺回路を有するプロセッサである。レンズ側システムコントローラ5は、ボディ側システムコントローラ15と通信を行うための通信回路を有する。レンズ側システムコントローラ5は、ボディ側システムコントローラ15からの制御信号に基づいて、レンズ鏡筒1内の絞り制御、フォーカスレンズの焦点調節、および防振用レンズ2aの制御等、レンズ鏡筒1内の全体制御を行う。
【0020】
焦点距離検出部6は、ズームエンコーダ等のセンサを有し、撮影レンズ2内のズームレンズの位置に基づいて、撮影レンズ2の焦点距離情報fを検出する(図10AのS3参照)。検出した焦点距離情報fは、ボディ側システムコントローラ15に送信する。なお、焦点距離情報fを、直接、ボディ側システムコントローラに送信してもよいが、レンズ側システムコントローラ5内の通信回路を通じて、ボディ側システムコントローラ15に送信してもよい。
【0021】
ボディ10内であって、撮影レンズ2の光軸上に、シャッタ11が配置されている。シャッタ11は、フォーカルプレーンシャッタ等のメカニカルシャッタであり、撮像素子12上への被写体光束の露光時間を制御する。
【0022】
撮像素子12は、撮影レンズ2によって被写体像が形成される位置付近に配置される。撮像素子12は、例えば、CCD(Charge-Coupled Device)イメージセンサ、CMOS(Complementary Metal-Oxide-Semiconductor)イメージセンサ等である。撮像素子12は、画素が2次元状に配列され、撮影レンズ2によって形成された被写体像をフォトダイオードによって光電変換し、光電変換信号を生成する。この光電変換信号に基づいて、画像信号が出力され、ライブビュー表示用および記録画像用に画像処理が施される。なお、画像信号を用いて、コントラスト値(焦点評価値)を算出し、このコントラスト値を用いてフォーカスレンズの焦点調節を行ってもよい。また、撮像素子12の撮像面に位相差画素を配置し、この位相差画素に基づくデフォーカス量を用いて、撮影レンズの焦点調節を行うようにしてもよい。
【0023】
防振駆動部13は、駆動回路を有し、撮像素子12を光軸と直交する平面内のX軸方向およびY軸方向に移動し、また光軸周りに回転駆動する。すなわち、防振駆動部13は、ボディ側ブレ補正マイコン14からの制御信号に基づいて、撮像素子12に対して種々の駆動を行う。例えば、防振駆動部13は、手ブレを打ち消すように、または天体像を追尾するように、またはその両方を同時に行うように、撮像素子12を駆動する。また、防振駆動部13は、撮像素子12の中心を撮影レンズ2の光軸と一致する位置に移動させ(センタリング動作)、または、天体像を追尾し静止状態で撮影するために所定の初期位置へ移動させる。
【0024】
また、防振駆動部13は、撮像素子12のX軸方向、Y軸方向、および回転方向の位置を検出する位置センサを有する。防振駆動部13(撮像素子12)の位置を検出する位置センサは、X方向、Y方向に加えて、もう1つ方向のセンサを追加することでも実現できる。この位置センサは、例えば、特開2016-152602号公報の図3および図4に開示されているような磁石とホール素子等によって構成してもよい。この場合には防振駆動部13の固定部側に磁石を、また可動部側にホール素子を配置し、ホール素子が出力する電圧の大小に基づいて、防振駆動部13(撮像素子12)の現在位置を認識する。
【0025】
なお、レンズ側ブレ補正マイコン4と同様に、ホール素子から取得した電圧信号をボディ側ブレ補正マイコン14内のAD変換回路によってAD変換し、デジタル信号として現在の位置を認識する。これによって、ホール素子で取得した電圧信号をボディ側ブレ補正マイコン14内で処理でき、デジタル信号としてボディ側可動部の現在位置を認識することができる。また、撮像素子12を駆動源としてパルスモータを使用する場合には、ホール素子等を設けずに、パルスモータに印加するパルス数によって位置検出を行ってもよい。この場合には、印加パルス数をカウントによる検出が位置センサの機能にあたる。
【0026】
防振駆動部13は、撮像素子12を含む撮像素子ユニットを移動することによって手振れを補正する第2防振部として機能する。防振駆動部13は、第2防振部によって移動された撮像素子ユニットの位置を検出する第2位置検出部として機能する。
【0027】
地磁気センサ16は、磁界の向きを計測し、撮影方位Aを求める(図10AのS3参照)。計測結果はボディ側ブレ補正マイコン14に出力される。加速度センサ17は、単位時間当たりの速度、すなわち加速度を検出し、検出結果をボディ側ブレ補正マイコン14に出力する。角速度センサ18は、ボディ10に加えられた単位時間当たりの回転角、すなわち角速度を検出し、検出結果をボディ側ブレ補正マイコン14に出力する(図10AのS3における高度h参照)。
【0028】
ボディ側ブレ補正マイコン14は、加速度センサ17、角速度センサ18からの検出結果を入力し、ボディ10に加えられた手ブレ量を検出し、この検出結果に基づいて、手ブレを打ち消すように、防振駆動部13によって撮像素子12を駆動制御する。また、ボディ側ブレ補正マイコン14は、地磁気センサ16からの検出結果に基づいて、撮影方位Aを算出し、後述するGPSセンサ21からの検出結果に基づいて、現在地を算出し、加速度センサ17・角速度センサ18からの検出結果に基づいて、撮影方位Aと撮影高度hを算出する(図10AのS3参照)。ボディ側ブレ補正マイコン14は、ボディ側システムコントローラ15からの制御信号に従い、前述の算出結果や時計回路24が出力する現在時刻等に基づいて、撮像素子12の現在位置が目標位置になるように、防振駆動部13の可動部の駆動制御を行う。この駆動制御によって、カメラの撮像素子12上に結像される天体像が静止状態となる。また、ボディ側システムコントローラ15、レンズ側システムコントローラ5、レンズ側ブレ補正マイコン5によって撮影レンズ2の防振用レンズ2aの駆動制御を行う。
【0029】
ボディ側システムコントローラ15は、CPU(Central Processing Unit)、プログラムを記憶したメモリ、および周辺回路を有するプロセッサである。ボディ側システムコントローラ15は、レンズ側システムコントローラ5と通信を行うための通信回路を有する。ボディ側システムコントローラ15は、プログラムに従って、ボディ11内の各部を制御し、またレンズ側システムコントローラ5によってレンズ鏡筒1内の各部を制御することによって、ボディ11およびレンズ鏡筒1からなるカメラの全体制御を行う。全体制御の一部として、ボディ側システムコントローラ15は、防振レンズ2aおよび撮像素子12を撮影レンズ2の光軸と直交する面内で並進駆動、回転駆動することによって、天体等の被写体を追尾する。
【0030】
ボディ側システムコントローラ15は、撮像素子ユニットに対して被写体像が移動する移動方向及び移動速度を算出する算出部として機能する(図10AのS13、S23、S29、図10CのS47、S49、S51等参照)。ボディ側システムコントローラ15は、撮像素子ユニットにおける有効結像領域内の所定位置に、被写体像が存在しているか否かを判定する判定部として機能する(図10CのS52、S55、S56等参照)。なお、ここで有効結像領域とは、撮像素子12上にあるエリアであり、防振部が回転、並進することによって、結像された像が動いていないとみなすことができる領域をいう。被写体像が有効結像領域内にあるか否かの判定は、検出された天体群の動きから算出される第1または第2防振部の目標位置と、第1または第2防振部の位置センサによって算出された現在位置の差(偏差)が十分小さいと推定できる領域内にあるか否かである。第1または第2防振部の可動部がメカ端に当たっていても、偏差が画質上の許容値の範囲内であれば、有効結像領域内として扱うことができる。
【0031】
ボディ側システムコントローラ15は、算出部によって算出された移動方向及び移動速度に基づいて、第1防振部及び第2防振部の少なくとも一方を駆動制御して、撮像素子ユニットにおける有効結像領域内の所定位置に被写体像が常に位置するように追尾する追尾制御部として機能する(例えば、図10CのS53、S57、S59参照)。また、ボディ側システムコントローラ15は、第1防振部または第2防振部の一方を第1の移動速度で駆動させて当該被写体像を有効結像領域内において第1の方向へ可動部の現在位置を目標位置にシフトさせ(図10BのS21、S23参照)、判定部によって更にシフト可能であると判定された際には第1防振部または第2防振部の他方を第2の移動速度で駆動させて当該被写体像を有効結像領域内において第2の方向へ可動部の現在位置を目標位置にシフトさせる追尾動作(図10CのS55、S57、S59参照)を行うことが可能な追尾制御部として機能する。
【0032】
上述の追尾制御部は、最初に第1位置検出部および第2位置検出部のいずれか一方からの出力に基づいていずれか一方の位置検出部に対応する防振部がシフト可能な第1目標位置にシフトするまで第1防振部を駆動制御し(例えば、図10CのS57参照)、次に第1および第2位置検出部のいずれか他方の位置検出部からの出力に基づいていずれか他方の防振部がシフト可能な第2目標位置にシフトするまでいずれか他方の防振部を制御する(例えば、図10CのS59参照)。追尾制御部は、第1防振部及び第2防振部の一方の防振部のみの駆動で、撮像素子ユニットの有効結像領域内において被写体像の位置が最大移動可能距離となると判定部によって判定された場合には、他方の防振部によって駆動できるか判定し、この判定の結果、他方の防振部が駆動可能であれば、他方に防振部を駆動する(例えば、図10CのS55~S59参照)。
【0033】
上述の追尾制御部は、撮像素子ユニットを適正な位置に回転駆動させて被写体像の方向を補正する必要がある場合には、最初に第2防振部を駆動することによって被写体像を回転させ(図10CのS53参照)、次に第1防振部及び上記第2防振部の一方を駆動することによってレンズを当該レンズの光軸と垂直な方向に駆動し(図10CのS57参照)、最後に第1防振部及び第2防振部の他方を駆動することによって撮像素子ユニットを当該レンズの光軸と垂直な方向に駆動する(図10CのS59参照)。
【0034】
ボディ側システムコントローラ15は、撮像素子ユニットの結像領域上において単位時間当たりに被写体が移動する方向と移動量を予測する予測部として機能する(図10CのS21、S27参照)。ボディ側システムコントローラ15は、予測部に基づいて、撮像素子ユニットの有効結像領域内において最も長い時間追尾できるレンズの初期位置及び撮像素子ユニットの初期位置を演算する演算部として機能する(図10CのS21、S27参照)。ボディ側システムコントローラ15は、演算部の出力に基づいて第1防振部及び上記第2防振部を駆動することによってレンズ及び撮像素子を初期位置に移動させ、撮像素子上の被写体像の位置が最長時間駆動可能となる初期位置に移動させてから追尾を開始させる追尾制御部として機能する(図10CのS29参照)。追尾動作は、被写体像が有効結像領域内にあるか否かの判定が不合格になる直前、もしくは指定された時間になるまで繰り返される(例えば、図10CのS62参照)。
【0035】
通信部19は、通信回路を有し、有線通信または無線通信によって、ボディ10の外部と通信を行う。例えば、撮像素子12に取得された画像データを、Wifi等によって外部の携帯電話に送信し、また、外部から画像データを受信する。その他にも、携帯電話からGPS情報等のセンサ情報を、外部の機器から受信してもよい。また、無線通信に限らず、USB端子等を通じて、外部機器と有線通信を行ってもよい。
【0036】
レリーズSW20は、レリーズ釦に連動するスイッチであり、スイッチのオンオフ状態は、ボディ側システムコントローラ15に出力される。ユーザは、ボディ10に撮影準備を指示する場合には、半押しされ、撮影を指示する場合には、全押しする。レリーズ釦が全押しされると、ボディ10は撮影を開始する。レリーズSW20以外にも、撮影モード等を設定するために、ユーザがカメラボディに指示を入力するための操作部材(インターフェース)を有する。この操作部材としては、タッチパネルを有していてもよい。操作部材によって、後述する追尾モード等を設定することができる。
【0037】
GPS(Global Positioning System)センサ21は、衛星測位システムであり、地球上の現在位置を検出し、検出結果をボディ側システムコントローラ15に出力する。電子ビューファインダ(EVF)22は、接眼窓を通じて小型の電子モニタを観察できるファインダである。EVF22としては、ボディ10の外装に配置された表示モニタであってもよく、2種類のEVFを備えていてもよい。
【0038】
メモリカード23は、電気的書き換え可能な不揮発性メモリを有する記録媒体であり、ユーザはメモリカード23をボディ10に出し入れすることができる。メモリカード23には、撮像素子12によって取得された画像データが記録され、また記録された画像データは読み出し可能である。時計回路24は、カレンダー情報や、現在の日時情報を計測しており、これらの情報をボディ側システムコントローラ15に出力する。
【0039】
次に、図12を用いて、撮像素子12における有効結像領域内の所定位置に被写体像が常に位置するように、第1防振部(レンズ側の防振部)及び第2防振部(ボディ側の防振部)の少なくとも一方を駆動制御して追尾することについて説明する。
【0040】
図12(a)において、撮像素子12は、有効可動領域ILの範囲内で防振駆動部13によって移動可能である。領域STAは、撮像素子12の画素群の中で、ユーザが狙った星が存在するエリアである。図12(b)は、防振駆動部13(第1防振部)による追尾動作をしない状態で、長時間に亘って被写体像(例えば、星等の天体像)を撮影した場合を示す。この場合には、被写体像の軌跡STATが撮影される。
【0041】
被写体像を静止した状態で撮影するためには、被写体像が撮像素子12上で常に同じ位置にあるように、すなわち、撮像素子12上の同じ画素群に被写体像があればよい。そこで、図12(c)領域STAにおける被写体の移動方向および移動速度(図12(c)のMD参照)を算出する。この算出された移動方向及び移動速度に基づいて、図12(d)(e)に示すように、撮像素子12を防振部13によって被写体を追尾し、撮影を行う。この追尾動作を行うことにより、被写体の存在する領域STAは、撮像素子12上において、常に同じ位置となる。このため、移動する星等の被写体を長時間撮影しても、静止した状態で撮影したような画像となる。
【0042】
なお、図12に示す例では、撮像素子12を移動させていた。しかし、これに限らず、防振レンズ駆動部3によって防振レンズ2aを駆動することによって、または両方を組み合わせることによって、被写体を追尾させるようにすればよい。この場合には、図7を用いて後述するIS感度nに基づいて、移動速度等を算出して、防振レンズ2aの駆動を制御する。これらのどの場合においても、撮像素子上のある画素群で被写体が静止していると見なせるようにするように駆動制御すればよい。
【0043】
次に、図2を用いて、カメラに第1追尾モードが設定された場合において、撮像素子12と撮影レンズ2内の防振レンズの位置関係について説明する。第1追尾モードは、後述する図10AのS5においてNoと判定された場合の処理に相当する。
【0044】
図2において、撮像素子12は、撮像素子有効可動領域ILの範囲内で、防振駆動部13によって移動可能である。また、撮影レンズ2内の防振レンズ2aは、レンズ有効可動領域LLの範囲内で、防振レンズ駆動部3によって移動可能である。図2(a)は、撮像素子12の中心は撮影レンズ2の光軸と一致しており、また防振レンズ2aの中心も撮影レンズ2の光軸と一致している。
【0045】
第1追尾モードは、撮像素子12と防振レンズ2aは互いに光軸を中心とし、像面移動方向が適切になるように別々に移動する。例えば、X軸とY軸に垂直なZ軸方向の十分に遠い位置から見て、防振レンズと撮像素子の中心の相対ズレが大きければ大きいほど像のずれが大きい光学系を考えると、図2(b)に示すように、撮像素子12と防振レンズ2aが、逆方向に移動すれば、片側の動作範囲よりも最大像面移動距離が大きくなる。図2(b)は、例えば、図2(a)の状態から追尾を開始し、天体が回転などなく、X方向に最大量だけ移動し、最大露光時間が経過した後の防振レンズ2aと撮像素子12の位置を表した図である。この結果、星等の天体像を追尾可能な最大露光時間が長くなる。すなわち、図2(a)(b)に示す例では、X方向だけ考えると、撮像素子12は-X方向にL1だけ移動可能であり、また防振レンズ2aは+X方向にL2だけ移動可能である。このため、天体像を追尾するために、L1+L2の距離だけ移動することができる。
【0046】
図2(c)は、例えば、図2(a)の状態から追尾を開始し、天体群が像面上で光軸を中心として回転方向にも移動し、最大露光時間が経過した後の防振レンズ2aと撮像素子12の位置を表した図である。図2(c)では、撮像素子12が角度θだけ回転している。後述するように、天体像はX軸方向およびY軸方向への並進駆動に加えて、θ周りの回転駆動がある。防振レンズ2aでは回転駆動を行っても、天体像を静止させることができない。これに対して、ボディ側の撮像素子12は回転することによって、天体像の回転運動を静止させることができる。ボディ10側で、X軸方向およびY軸方向の並進駆動に加えて、θ方向の回転駆動を行い、レンズ鏡筒1側でX軸方向およびY軸方向の並進駆動を行ってもよい。また、ボディ10側ではθ方向の回転駆動のみを行い、レンズ鏡筒1側でX軸方向およびY軸方向の並進駆動のみを行うように、役割を分けてもよい。本実施形態においては、X軸とY軸に垂直なZ軸方向の十分に遠い位置から見て、防振レンズと撮像素子の中心の相対ズレが大きければ大きいほど像のずれが大きい光学系を考えている。しかし、これに限らず、防振レンズの移動による像のずれ方が逆になる光学系においても、同様に考えることができる。本明細書において、以下に紹介する実施形態においても、像面の移動量に着目すれば全て同様に考えることができる。
【0047】
次に、図3を用いて、カメラに第2追尾モードが設定された場合において、撮像素子12と撮影レンズ2内の防振レンズの位置関係について説明する。第2追尾モードは、後述する図10AのS11においてNoと判定された場合の処理に相当する。
【0048】
図3において、撮像素子12は撮像素子有効可動領域ILの範囲内で、防振駆動部13によって移動可能である。また、撮影レンズ2内の防振レンズ2aは、レンズ有効可動領域LLの範囲内で、防振レンズ駆動部3によって移動可能である。図3(a)は、図2(a)と同様に、撮像素子12の中心は撮影レンズ2の光軸と一致しており、また防振レンズ2aの中心も撮影レンズ2の光軸と一致している。
【0049】
第2追尾モードでは、長時間追尾のために、撮像素子12と防振レンズ2aは、天体追尾前に防振レンズ2aと撮像素子12の初期位置として、星等の天体像追尾時の移動方向と逆方向に移動する。この場合、並進方向の相対像面移動量がほぼない(理想的には0)ようになるように、撮像素子12と防振レンズ2aを移動させる。例えば、図3(b)に示すように、天体像が移動方向Qに移動する場合には、撮像素子12と防振レンズ2aを、Q方向と逆方向の-Q方向に移動させる。また、このとき、撮像素子12は、移動方向とX軸方向となす角度θだけ傾ける。第2追尾モードでは、撮影開始前に、図3(b)に示すような、撮像素子12と防振レンズ2aが、有効可動領域LL、ILに当て付くような位置(初期位置1と称する)に移動させ、移動後に撮影を開始する(図10AのS13、S15参照))。なお、有効可動領域はメカ端など物理的にこれ以上移動できない領域で決まってもよいし、位置検出の精度が十分とれる領域でもよい。
【0050】
天体写真F1は、図3(a)における撮像素子12および防振レンズ2aにおいて撮影した画像である。これに対して、天体写真F2は、図3(b)における撮像素子12および防振レンズ2aにおいて撮影した画像である。撮像素子12または防振レンズ2aのいずれか一方のみを駆動させると、図3(c)に示すように、撮影したい星等が撮像面から外れてしまう可能性がある。そこで、撮像素子12および防振レンズ2aの両方を並進相対像面移動量がほぼない状態(理想的には0)になるように同じ方向に移動(シフト)させている。両方とも同じ方向に移動すると、撮影したい天体を撮像面に投影したまま、露光時間を拡大することができる。
【0051】
本実施形態における第2追尾モードは、図3(b)に示すように、撮像素子12と防振レンズ2aの両方を、初期動作でいずれか一方に寄せている。しかし、いずれか一方、例えば、撮像素子12のみを片側に寄せてしまうと、図3(c)に示すように、星等の天体像が画面から外れてしまう。すなわち、図3(c)に示す例では、撮像素子12のみを撮像素子有効可動領域ILの左下端部側に寄せ、防振レンズ2aは、その中心位置をレンズ有効可動領域LLの中心と一致させたままである。この場合には、天体写真F3の画面内には、星ST1、ST2のみとなり、星ST3は画面外に出てしまう。この場合には、ユーザは、撮影レンズの向きを変え、星ST1~ST3が画面内に入るように調整しなければならない。
【0052】
次に、図4を用いて、カメラに第3追尾モードが設定された場合の、撮像素子12と撮影レンズ2内の防振レンズの位置関係について説明する。第3追尾モードは、後述する図10AのS11においてYesと判定された場合の処理に相当する。
【0053】
第3追尾モードでは、第2追尾モードによる追尾と比較して、さらに長時間追尾を行うために、天体の移動方向、移動速度、またその積分値が算出され、防振レンズ2aおよび撮像素子12は、それぞれ天体追尾する方向とは逆方向に移動する。例えば、上述の算出が終了した後に、図4(a)に示すように、算出結果に基づき、撮像素子12が撮像素子有効可動領域ILの一旦側に当て付け、防振レンズ2aは撮像素子12とは反対側に当て付ける。そして、撮像素子12と防振レンズ2aの移動方向を、それぞれ逆方向とする。例えば、図4(a)に示すように、天体像が移動方向Qに移動している場合には、撮像素子12を撮像素子有効可動領域ILの左下側の一端に寄せ、防振レンズ2aをレンズ有効可動領域LLの右上側の一端に寄せる。この状態で、ユーザは星等の天体像の構図調整を行う。
【0054】
ユーザが図4(a)の状態で構図調整を行うと、カメラのブレ補正マイコン14は、再度、GPSに基づく現在地、撮影方位と撮影高度、現在時刻、撮影レンズの焦点距離等に基づいて、カメラの撮像素子12上に結像している天体像が静止状態となるような、像面移動速度を算出し、さらに最大露光時間(撮影時間)を算出する。図4(a)の状態から追尾動作を開始すると、撮像素子12はQ方向に移動し、防振レンズ2aは-Q方向に移動する。すなわち、撮像素子12と防振レンズ2aはそれぞれ逆方向に移動する。第3追尾モードは、手動調整を行うことによって、レンズ側とボディ側の両方の最大可動量まで使用することができる。なお、手動調整を省略すると(例えば、図10BのS25~S31を省略し、S31において初期位置2からの最大露光時間を算出する)、天体の位置がずれることがある。しかし、ユーザが天体の位置がずれることを気にしなければ、そのまま露光開始することで、長い時間の天体撮影は可能である。
【0055】
次に、図5ないし図9を用いて、天体の動きと像面移動速度について説明する。図5は、像面速度を算出するに当たって使用する天体の位置関係を示す図である。ユーザは現在位置PSにおり、恒星STの天体写真を撮影しようとしている。図5における各位置は以下の通りである。
【0056】
P:天の北極
Z:天頂
N:真北
S:真南
ST:対象恒星(説明の便宜上、この対象恒星は撮影画面の中心であり、撮影レンズの光軸Oの延長線上に位置するものとする。)
φ:現在位置の緯度
A:撮影方位(撮影レンズが狙う恒星Sの方位、撮影レンズの光軸と天球との交点の方位)
h:撮影高度(撮影レンズが狙う恒星Sの高度、撮影レンズの光軸と天球との交点の高度)
H:恒星Sの時角(通常、時角の単位は時間が使われるが、ここでは角度(1時間=15度)に換算して扱うこととする。)
δ:恒星Sの赤緯
θ:天球面上において、天の極と対象恒星S(天体)とを最短で結ぶ曲線と、天頂と対象恒星S(天体)とを最短で結ぶ曲線とがなす角。
【0057】
天体は天の北極Pを中心に回転しており、撮影方位A、高度hの恒星STを撮影する場合、時角Hと赤緯δの関係は、下記(1)式、(2)式となる。
tanH=sinA/(cosθ・tan(h)+sinφ・cosA) ・・・(1)
sinδ=sin(h)・sinφ-cos(h)・cosφ・cosA ・・・(2)
【0058】
図6は、星等の天体ST4、ST4aと、撮影レンズ2と、撮像素子12との関係を示す。すなわち、恒星ST4が、所定時間後にST4aの位置に移動する場合、撮影方位でΔA、撮影高度でΔhだけ移動し、天頂に対してΔθだけ傾く。また、撮像素子12上では、恒星ST4の画像は、水平方向のΔX、垂直方向にΔYだけ移動し、Δθだけ傾く。なお、撮影レンズ2の焦点距離はf、光軸中心はOである。
【0059】
星などの天体の移動量を算出するために、検出しなければならない量は、以下のような値である。
・撮影方位A・・・方位センサ(地磁気センサ16)などから取得
・撮影高度h・・・重力センサ(加速度センサ17、角速度センサ18)などから取得
・カメラの位置(緯度φ)・・・GPSなどから取得
【0060】
天体の単位時角あたりの撮影方位変化、撮影高度変化、角度変化は以下の式で算出できる。
dA/dH=sinφ+cosφ・tan(h)・cosA ・・・(3)
dh/dH=-sinA・cosφ ・・・(4)
dθ/dH=cosA・cosφ/cos(h) ・・・(5)
なお、cos(h)が0に近づくときには、対策として特開2015-215427に示される式で算出してもよい。
【0061】
実際には、撮像素子12から恒星STを見ると、同一高度hで方位変化しているように見えるので、単位時角での同一高度での方位変化量は下記(6)式で算出できる。
dα/dH= arccos(sin2(h)+ cos2(h)・cos(dA/dH)) ・・・(6)
但し、dαは、単位時角に同一高度で変化した天体の方位角変化量である。
【0062】
撮像素子12上の単位自角辺りのX方向、Y方向、回転方向の像面移動量は、上述の天体移動量に焦点距離fを考慮し、以下の(7)式~(9)式で算出できる。
ΔX=ftan(dα/dh) ・・・(7)
ΔY=ftan(dA/dH) ・・・(8)
Δθ=dθ/dH ・・・(9)
なお、(9)式は、角度次元のためtanは不要である。また、上述の値はカメラが地軸に対して傾けてない場合であるが、傾けた場合は、その方向の計算が異なる。その場合には、傾きを考慮して算出すればよい。
【0063】
上述の(7)式~(9)式によって、撮像素子12上における星等の天体の像面移動速度(ΔX、ΔY、Δθ)を算出できる。しかし、防振レンズ2aおよび撮像素子12の移動量ではない。天体を追尾し、静止状態で撮影するには、防振レンズ2aおよび撮像素子12の移動速度を求めなければならない。防振レンズ2aおよび撮像素子12によって天体を追尾するには、3通りの駆動方法がある。この3通りの駆動方法を説明する前に、図7を用いて、防振ユニット(IS)のIS感度について説明する。
【0064】
図7(a)は、防振レンズ2aの光軸と、撮像素子12の中心位置が一致している場合を示す。すなわち、レンズ鏡筒1内の防振ユニット(IS)の可動部は防振レンズ2aであり、ボディ10内の防振ユニット(IS)の可動部は、防振駆動部13と一体に移動される撮像素子12である。
【0065】
図7(b)は、ボディ10内の防振ユニット(IS)のみを動かす場合を示す。この場合には、防振レンズ2aは移動しないが、ボディ10内の防振ユニット(IS)である撮像素子12は移動する。ボディ10内の防振ユニット(IS)の移動量が「1」であれば、撮像素子12における移動量も「1」であり、IS感度は「1」である。
【0066】
図7(c)は、レンズ鏡筒1内の防振ユニット(IS)のみを動かす場合を示す。この場合には、ボディ10内の防振ユニット(IS)は移動しないが、レンズ鏡筒1内の防振ユニット(IS)である防振レンズ2aは移動する。レンズ鏡筒1内の防振ユニット(IS)の移動量が「1」であっても、撮像素子12における光線のズレ量は「1」ではなく、「n」となる。防振レンズ2aは、光学レンズであり、恒星からの光線を屈折するため、撮像素子12での光線ズレ量は「1」ではなく「n」となる。この「n」がIS感度となる。
【0067】
次に、防振レンズ2aおよび撮像素子12の3通りの駆動方法について説明する。なお、これらの方法で共通するのは、回転操作は撮像素子12によって行うことである。
【0068】
(1) 第1の駆動方法
第1の駆動方法は、回転は撮像素子12のみで行い、並進移動(X軸方向、Y軸方向への移動)は防振レンズ2aのみで行う。この駆動方法のメリットは、演算が単純になることである。また、回転のみをボディ側の撮像素子12に割り振るので、回転方向の移動が大きい天体でも長時間に亘って追従できる。またレンズ側の位置検出部とボディ側の位置検出部のデジタル分解能が異なる場合であっても、回転方向と並進方向をそれぞれ分けて駆動するので、誤差が目立たないこともメリットである。なお、後述する図10Cは、第2の駆動方法を主として採用している。しかし、図10Cにおいて、ステップS53→S55→S57→S61のみの場合は(すなわち、S55→S56→S59を実行しない)、第1の駆動方法にあたる。
【0069】
第1の駆動方法における速度は、以下の通りである。
レンズ側のX方向速度:ΔX
レンズ側のY方向速度: ΔY
ボディ側のX方向速度:0
ボディ側のY方向速度:0
ボディ側の回転速度:Δθ
なお、ΔXは(7)式、ΔYは(8)式、Δθは(9)式参照(後述する第2、第3の駆動方法も同じ)。
【0070】
(2)第2の駆動方法
第2の駆動方法は、回転はボディ側でのみ行い、X方向とY方向の並進運動はレンズ側で行う。レンズ側で駆動が終わってから後に、ボディ側で駆動を行う。または、逆に、ボディ側で駆動が終わってから後に、レンズ側で駆動を行う。ボディ側で回転量が少なく、回転を行うよりも先にレンズ側でX、Y方向の可動量リミットに達してしまう場合、あまりをボディ側においてX、Y方向の駆動を行うことによって、撮影可能時間を延長することができる。なお、前述したように、図10CのステップS53~S61において、第2の駆動方法によって、防振部の駆動を行っている。
【0071】
第2の駆動方法における速度は、以下の通りである。
レンズ側のX方向速度:ΔX/n
レンズ側のY方向速度:ΔY/n
ボディ側のX方向速度:ΔX (レンズ側と同時には動かない)
ボディ側のY方向速度:ΔY (レンズ側と同時には動かない)
ボディ側の回転速度:dθ/dH
前述したように、レンズ側のX、Y方向と、ボディ側のX、Y方向とは、同時には動かさない。また、「n」は、前述した防振ユニット(IS)の感度である。
【0072】
(3)第3の駆動方法
第3の駆動方法は、回転はボディ側でのみ行い、X方向とY方向の並進運動はレンズ側とボディ側で同時に行う。第3の駆動方法は、基本的には第2の駆動方法と同じである。X方向およびY方向に並進有働を行う際に、レンズ側とボディ側での切り替えポイントがなく、その部分による段差などは発生しない。また、同時に動いているので、レンズ側とボディ側での位置検出の分解能段差の影響は見えにくい。なお、図11のステップS53~S61において、第3の駆動方法によって、防振部の駆動を行っている。
【0073】
第3の駆動方法における速度は、以下の通りである。
レンズ側のX方向速度:ΔX/n*LX/(BX+LX) ・・・(10)
レンズ側のY方向速度:ΔY/n*LY/(BY+LY) ・・・(11)
ボディ側のX向速度:ΔX*BX/(BX+LX) ・・・(12)
ボディ側のY方向速度:ΔY*BY(BY+LY) ・・・(13)
ボディ側の回転速度:dθ/dH ・・・(14)
【0074】
なお、BXとLX、BYとLYは、それぞれのレンズとボディにおけるX、Y方向の割り振り係数であり、BX+LX=1、BY+LY=1となる係数を算出する。また、第1、第2、第3の駆動方法に、手ブレ信号を載せてもよく、また手ブレ補正動作中に第1、第2、第3の駆動方法を使用してもよい。このように、本実施形態においては、防振レンズ2aおよび撮像素子12における、第1の方向、第1の移動速度、第2の方向、第2の移動速度は、被写体の像の移動量及び移動速度から可動時間が最長になるように、上述した第1、第2、第3の駆動方法の中で割り振り可能である。
【0075】
次に、図8および図9を用いて、防振レンズ2aと撮像素子12の駆動範囲の限界(可動量リミット)、および最大露光時間Tlim_FINALについて説明する。図2ないし図4においては防振レンズ2aの駆動範囲を円形で示したが、ここでは、撮像素子12および防振レンズ2aの駆動範囲を長方形として説明する。駆動範囲の形状は、円形や長方形に限らず、どんな形でもよく、以下の説明と同様の考え方で可動量リミットを求めることができる。
【0076】
まず、図8を用いて、第1追尾モードが設定された場合の可動量リミットを説明する。第1追尾モードにおいては、センタから移動を開始する。仮想最大像面移動量XLIM、YLIMは、ボディ側の有効可動領域と、IS感度を考慮したレンズ側の有効可動領域の和となることから、下記(15)式~(18)式で与えられる。なお、仮想最大像面移動量XLIM_Bは、図8(a)において、LBX/2に相当し、XLIM_Lは、図8(b)において、LBL/2に相当する。
XLIM=XLIM_B+XLIN_L*n ・・・(15)
=LBX/2+n*LLX/2 ・・・(16)
YLIM=YLIM_B+YLIN_L*n ・・・(17)
=LBY/2+n*LLY/2 ・・・(18)
【0077】
時刻tでの可動部4角形における頂点の並進像面移動量dXpi(t)、dYpi(t)は、下記(19)式および(20)式で与えられる。
dXpi(t)=∫ΔXdt(0~tまでの積分) ・・・(19)
dYpi(t)=∫ΔYdt(0~tまでの積分) ・・・(20)
【0078】
また、時刻tにおいて、四角形の可動部における頂点の回転による移動量dXBθi(t)、dYBθi(t)は、初期の回転中心をXBθ(0)、YBθ(0)とすると、下記(21)式および(22)式で与えられる。
dXBθi(t)=cosθ(t)*(XiB(0)-XBθ(0))-sinθ(t)*(YiB(0)-YBθ(0))+XθB(0)-XiB(0) ・・・(21)
dYBθi(t)=cosθ(t)*(YiB(0)-YBθ(0)+sinθ(t)*(XiB(0)-XBθ(0))+YθB(0)-YiB(0) ・・・(22)
【0079】
従って、時刻tまでの総移動量dXi(t)、dYi(t)は、下記(23)式および(24)式で与えられる。
dXi(t)=dXpi(t)+dXBθi(t) ・・・(23)
dYi(t)=dYpi(t)+dYBθi(t) ・・・(24)
【0080】
次に、ボディとレンズの防振ユニット(IS)の駆動範囲内の各点で、防振ユニット値(IS)が当てつかない条件i=1,2,3,4として、
XLIM-dXi(txi)>0 ・・・(25)
YLIM-dYi(tyi)>0 ・・・(25)
を満たす、最大のtxi,tyi値を算出する。算出された全てのtxi,tyiのうち、最小の値をTlim_tmpとする。
【0081】
但し、算出されたTlim_tmpは、ボディ側での回転可能最大量を超えて回転している可能性がある。そこで、ボディ内で回転によって当て付いていないか、以下の(26)式および(27)式に示す判定を満たしている場合に、防振ユニット(IS)は当て付いてないと判定する。
XLIM_B-dXBθi(Tlim_tmp)>0 ・・・(26)
YLIM_B-dYBθi(Tlim_tmp)>0 ・・・(27)
なお、この場合には、ボディ側でのX方向およびY方向への移動よりも先に、レンズ側におけるX方向およびY方向への移動を優先したほうがよい。ボディ側の撮像素子12は回転することができるのに対して、レンズ鏡筒側の防振レンズ2aは並進しかできない。このため、並進成分についてレンズ側を使用すれば、この後、更に撮像素子12において並進成分と回転成分について移動させることにより、長時間露光が可能となる。
【0082】
上記(26)式および(27)式が成り立っていない場合には、
XLIM_B-dXBθi(tix)>0 ・・・(28)
YLIM_B-dYBθi(tiv)>0 ・・・(29)
を満たす、最大のtxi,tyi値を算出する。算出された全てのtxi,tyiのうち、最小の値をTlim_FINALとする。Tlim_FINALを最終露光時間とし、これを超える露光時間が設定された場合には、Tlim_FINALに露光時間をクリップする。
【0083】
次に、図8および図9を用いて、第2追尾モードが設定された場合の可動量リミットを説明する。第2追尾モードにおいては、前述したように、ボディ側の防振ユニットとレンズ側の防振ユニットは、初期位置1に移動する。この第2追尾モードでは、ユーザが途中で撮影方向を調整しなくてもよい。また、第2追尾モードでは、第1追尾モードに比較して露光時間を長くすることができる。ボディ側とレンズ側の初期位置1を算出する例について説明する。なお、第1追尾モードの場合の可動量リミットの説明と同様に、ボディ側防振ユニットおよびレンズ側防振ユニットの駆動範囲を長方形として説明する。駆動範囲の形状は、円形や長方形に限らず、どんな形でもよく、以下の説明と同様の考え方で可動量リミットを求めることができる。
【0084】
まず、初期位置において、ボディ側の撮像素子12が回転していない場合について説明する。レンズが第1追尾モードを想定した時に使用していない移動量を算出する。
n*LLX/2-|dXpi(Tlim_FINAL)|>0 ・・・(30)
n*LLY/2-|dYpi(Tlim_FINAL)|>0 ・・・(31)
上記(30)式を満たし、かつ上記(31)式を満たす場合には、並進方向の移動量でなく、回転方向の移動量がボトルネックとなり、最大露光時間が上限として決まっている。この移動量に基づいて最終露光時間Tlim_FINALを再計算する。撮影中動作の前に天体追尾移動方向と逆方向に回転移動をすることによって、露光時間を拡大できる。
【0085】
ボディ側防振ユニット(撮像素子12)を回転移動させた場合の露光時間を算出する。まず、
XLIM_B>dXBθi(tx) ・・・(32)
YLIM_B>dYBθi(ty) ・・・(33)
を満たす最大のtx,tyを算出し、tx、tyの最小値tθを算出する。このときの角度θを算出する。回転追尾と逆方向にθを回転させた位置を初期位置にすることで、回転可能量が増える。-θの初期位置から、回転動作のみで、可動リミットにあたるまでに時間を同様に算出し、この時間を最終露光時間Tlim_tmpとする。
【0086】
上述した(32)式、(33)式を用いて、最終露光時間Tlim_tmpを算出する方法は、回転だけであれば、露光時間を2倍にすることができる。しかし、露光時間が回転動作で律速されず、並進動作によって律速される場合がある。この場合には、
n*LLX/2-|dXpi(Tlim_tmp)|>0 ・・・(34)
n*LLY/2-|dYpi(Tlim_tmp)|>0 ・・・(35)
上記(34)式および(35)式の両方を満たす場合に、最大露光時間は、Tlm_FINAL=Tlim_tmpとなる。
【0087】
また、上記(34)式を満たさない場合、すなわち、
n*LLX/2-|dXpi(Tlim_tmp)|<0 ・・・(36)
の場合には、像面移動の残りを、
XZ_RESTi=n*LLX/2-|dXpi(Tlim_tmp)| ・・・(37)
YZ_RESTi=n*LLY/2-|dYpi(Tlim_tmp)| ・・・(38)
として、同様に、時刻Tlim_tmpでのボディ可動部の各頂点での位置を算出し、そこから可動リミットまでの残りXB_RESTi、YB_RESTiを計算する。像面移動方向のボディの可動リミットまでの残りXB_RESTiがXZ_RESTiを超えていれば、超えた時間だけ、露光時間を拡大することができる。
【0088】
また、上記(35)式を満たさない場合、すなわち、
n*LLY/2-|dYpi(Tlim_tmp)|<0 ・・・(39)
の場合には、像面移動の残りを、
YZ_RESTi=n*LLY/2-|dYpi(Tlim_tmp)| ・・・(38)
として、同様に、時刻Tlim_tmpでのボディ側の可動部の各頂点での位置を算出し、そこから可動リミットまでの残りYB_RESTiを計算する。像面移動方向のボディ側の可動リミットまでの残りYB_RESTiがYZ_RESTiを超えていれば、超えた時間だけ、露光時間を拡大することができる。
【0089】
それでも、可動部の各頂点が当てつくようであれば、-θから微少量dθだけ初期値を変更し、その状態で、同様の演算を行う。これを繰り返し、回転方向と並進方向の両方で最も露光時間が長い条件、初期位置を算出し、最大露光時間を算出する。この際、ボディ側防振ユニット(IS)の可動部の初期位置を変えて計算を行っても良いが、回転方向以外はボディ側防振ユニット(IS)を移動させた分、レンズ側防振ユニット(IS)もIS感度を考慮し移動させる。
【0090】
次に、第3追尾モードが設定された場合の可動量リミットを説明する。第3追尾モードは、前述したように、天体の移動方向、移動速度、その積分値をもとに、天体追尾する方向とは逆方向に防振レンズ2aおよび撮像素子12をそれぞれ移動し、そこを初期位置とする。例えば、上述の計算の結果に基づいて、ボディ側の防振ユニットを有効可動領域ILの一旦側に寄せ、レンズ側の防振ユニットをボディ側防振ユニットとは反対側に寄せ、この位置を初期位置とする。そして、この初期位置から、ボディ側防振ユニットとレンズ側防振ユニットをそれぞれ逆方向に移動させる。第2追尾モードの場合に比較し、第3追尾モードで撮影した場合の方が、露光時間を長くすることができる。
【0091】
第3追尾モードでは、まず、第1追尾モードにおける通常動作と同様に、各頂点の動きを計算する。次いで、ボディおよびレンズにおけるそれぞれの防振ユニットの可動部が、追尾方向と逆方向の可動リミット端にいると仮定して、その位置から各頂点の動きを計算する。そして、各防振ユニットが各可動リミットに当たらない最大の露光時間を算出する。
【0092】
続いて、可動リミット端まで可動部を動かし、ユーザに再度、画角微調整を促す。天体パラメータ、ボディおよびレンズ内のパラメータを基に、撮影方向をX方向およびY方向のいずれにも移動させずに露光時間を、第1追尾モードで追尾する場合に比較して、長くできるレンズ側防振ユニットの防振レンズ2aおよびボディ側防振ユニットの撮像素子12の初期位置3を算出する。
【0093】
ボディ側防振ユニットの可動部(撮像素子12)について、微調整された位置から軌跡の計算を行い、回転によって可動部が可動端に当てつかない場合、そのときの露光時間を最大露光時間とする。可動部が可動端に当て付く場合、内側に可動部を僅かに移動させ、当てつかないように可動部の位置調整を行い、そこから再度露光時間を計算する。
【0094】
次に、図10Aないし図10Dに示すフローチャートを用いて、本実施形態における天体撮影の動作について説明する。このフローは、ボディ側システムコントローラ15内のCPUがメモリに記憶されたプログラムに従って、ボディ10およびレンズ鏡筒1内に各部を制御することによって実現する。なお、レンズ鏡筒1が交換レンズ鏡筒の場合には、交換レンズ鏡筒がカメラ本体に装着された際に、撮影レンズ2の焦点距離f、感度n等のレンズ情報を、交換レンズ鏡筒からカメラ本体に送信する。
【0095】
図10Aに示す天体撮影のフローが開始すると、まず、防振ユニットをセンタに戻す(S1)。ここでは、レンズ側ブレ補正マイコン4は、レンズ駆動3を制御することによって、防振レンズ2aを駆動範囲の中心に移動させる(図2(a)参照)。また、ボディ側ブレ補正マイコン14は、防振駆動部13を制御することによって、撮像素子12を駆動範囲の中心に移動させる(図2(a)参照)。
【0096】
続いて、天体位置パラメータとして、方位A、高度h、緯度φを各センサから取得し、また焦点距離情報を取得する(S3)。ここでは、天体位置パラメータとして、恒星STの方位A、高度hおよび緯度φを取得する(図5参照)。方位Aおよび高度hは、地磁気センサ16、加速度センサ17、および角速度センサ18の出力に基づいて算出する。緯度φは、GPSセンサ21によって取得する。
【0097】
次に、長時間露光モードか否かを判定する(S5)。本実施形態においては、天体を追尾する際に、ユーザは、長時間露光モードを、ボディ10の操作部を操作することによって、予め設定することができる。長時間露光モードが設定されていない場合には、前述の第1追尾モードによって、天体を追尾し、天体撮影を行う。長時間露光モードが設定された場合には、前述の第2または第3追尾モードによって、天体を追尾し、天体撮影を行う。ユーザは、意図する露光時間に応じて、適宜、追尾モードの設定を行う。
【0098】
ステップS5における判定の結果、長時間露光モードが設定されていない場合には、センタ位置からの最大露光時間Tlim_FINALを算出する(S7)。このステップでは、図8を用いて説明した第1追尾モードにおける最大露光時間Tlim_FINALを算出する。すなわち、ボディ側ブレ補正マイコン14またはボディ側システムコントローラ15内のCPUは、天体の移動速度に基づいて、初期動作を行わない状態で、センタ位置から可動リミットまで移動するに要する最大露光時間Tlim_FINALを算出する。この追尾モードでは、センタ位置が初期位置となる。
【0099】
ステップS5における判定の結果、長時間露光モードであった場合には、次に、撮影方向を手動で微調整するか否かについて判定する(S11)。前述したように、第3追尾モードにおける最大露光時間は、第1及び第2追尾モードにおける最大露光時間と比較して、長くすることができる。しかし、第3追尾モードでは、撮像素子12と防振レンズ2aを、可動リミットまで移動させると、ユーザの意図する一部の天体が、撮影画面からはみ出る可能性がある(図3(c)の画像F3参照)。このような場合には、一旦、構図を変えて、意図する天体が撮影画面内に収まるようにしてから、最大露光時間を算出し、追尾を行う。ユーザは、操作部によって第2追尾モードまたは第3追尾モードを設定することができる。このステップでは、撮影方向の微調整を行う第3追尾モードで天体撮影するか、それとも撮影方向の微調性を必要としない第2追尾モードで天体撮影を行うか否かについて、ユーザの設定に基づいて判定する。
【0100】
ステップS11における判定の結果、撮影方向を手動で微調整しない場合には、レンズおよびボディの初期位置1を算出する(S13)。ここでは、ステップS3で取得した天体位置パラメータ、ボディ内パラメータ、およびレンズ内パラメータに基づいて、撮影方向を変更せずに、露光時間を第1追尾モードで追尾する場合よりも長くできるレンズとボディの初期位置1を算出する。図3(b)を用いて説明したように、第2追尾モードでは、防振レンズ2aと撮像素子12を、それぞれ有効可動領域LL、ILの一端側に当て付く初期位置1まで移動させる。このステップでは、この初期位置1を算出する。なお、初期位置1としては、レンズ側の防振レンズ2aの初期位置と、ボディ側の撮像素子12の初期位置がある。ここでは、レンズ側とボディ側の初期位置を総称して初期位置1という。
【0101】
ステップS13において初期位置1を算出すると、天体追尾動作として、初期位置1に移動する(S15)。ここでは、ボディ側ブレ補正マイコン14が防振駆動部13によって撮像素子12を初期位置1に移動させる。またレンズ側ブレ補正マイコン4が防振レンズ駆動部3によって防振レンズ2aを初期位置1に移動させる(図3参照)。
【0102】
初期位置1に移動すると、初期位置1からの最大露光時間Tlim_FINALを算出する(S17)。このステップでは、図8および図9を用いて説明した第2追尾モードにおける最大露光時間Tlim_FINALを算出する。すなわち、ボディ側ブレ補正マイコン14またはボディ側システムコントローラ15内のCPUは、天体の移動速度に基づいて、初期位置1から可動リミットまで移動するに要する最大露光時間Tlim_FINALを算出する。
【0103】
ステップS11における判定の結果、撮影方向を手動で微調整する場合には、レンズとボディの初期位置2を算出する(S21)。ここでは、ステップS3において取得した天体パラメータ、ボディ内パラメータ、およびレンズ内パラメータに基づいて、撮影方向を変更させて良い状態で、露光時間を第2追尾モードの場合と比較して長くできるレンズとボディの初期位置2を算出する。図4を用いて説明したように、第3追尾モードでは、防振レンズ2aを有効可動領域LLの一端側に当て付かせ、撮像素子12を有効可動領域ILの他端側に当て付かせる、初期位置2まで移動させる。このステップでは、この初期位置2を算出する。
【0104】
初期位置2を算出すると、天体追尾動作として初期位置2に移動する(S23)。ここでは、ボディ側ブレ補正マイコン14が防振駆動部13によって撮像素子12を初期位置2に移動させる。またレンズ側ブレ補正マイコン4が防振レンズ駆動部3によって防振レンズ2aを初期位置2に移動させる。なお、初期位置2としては、レンズ側の防振レンズ2aの初期位置と、ボディ側の撮像素子12の初期位置がある。ここでは、レンズ側とボディ側の初期位置を総称して初期位置2という。
【0105】
初期位置2に移動すると、ユーザに撮影方向の微調を促す表示を行う(S25)。前述したように、第3追尾モードでは、一部の天体が撮影画面からはみ出る可能性があるので、ユーザに撮影方向を微調整することを促すダイヤログをEVF22に表示を行う。また、微調整が終了すると、ユーザにOK釦等を操作してもらうように表示する。
【0106】
なお、ユーザが撮影方向の微調性を行わなくても、第1及び第2防振部が初期位置2に保持されている状態で、最大露光時間Tlim_FINALを算出してもよい。すなわち、図10BのS25~S29を省略し、S31において、初期位置2における最大露光時間Tlim_FINALを算出し、ステップS41に進み、追尾動作を行ってもよい。この場合には、ユーザが撮影方向を微調整しないので、星等の天体が画面内から外れてしまう可能性がある。しかし、ユーザが、このことを気にしなければ、追尾時間を最大限にすることができる。この場合には、ボディ側システムコントローラ15が、防振レンズおよび撮像素子ユニットを、撮像面上において追尾方向とは逆方向に移動させ、その位置を第2の初期位置とし、当該第2の初期位置から再度移動方向及び移動速度を再算出し、第1防振部または第2防振部の一方を第1の移動速度で駆動させて当該被写体像を有効結像領域内において第1の方向へシフトさせ、更にシフト可能であると判定された際には第1防振部または第2防振部の他方を第2の移動速度で駆動させて当該被写体像を有効結像領域内において第2の方向へシフトさせる追尾動作を露光時間に達するまで繰り返す追尾制御部として機能する。
【0107】
ユーザによる微調整が終わると、次に、レンズとボディの初期位置3を算出する(S27)。ここでは、ユーザが微調整した位置を基準にして初期位置3を算出する。この初期位置3は、ステップS3において取得した天体パラメータ、ボディ内パラメータ、およびレンズ内パラメータに基づいて、撮影方向を変更せずに、露光時間を第2追尾モードの場合と比較して長くできるレンズとボディの位置である。微調整された初期位置3から軌跡の計算を行い、回転移動により有効可動領域の端部に当て付かない場合、そこまで移動する時間を最大露光時間とする。有効可動領域の端部に当て付く場合、可動部を微小に内側に移動させ、当て付かないように可動部の位置調整を行い、そこから再度露光時間を計算する。
【0108】
初期位置3を算出すると、天体追尾動作として初期位置3に移動する(S29)。ここでは、ボディ側ブレ補正マイコン14が防振駆動部13によって撮像素子12を初期位置3に移動させる。またレンズ側ブレ補正マイコン4が防振レンズ駆動部3によって防振レンズ2aを初期位置3に移動させる。なお、初期位置3としては、レンズ側の防振レンズ2aの初期位置と、ボディ側の撮像素子12の初期位置がある。ここでは、レンズ側とボディ側の初期位置を総称して初期位置3という。
【0109】
初期位置3に移動すると、初期位置3からの最大露光時間Tlim_FINALを算出する(S31)。このステップでは、第3追尾モードにおける最大露光時間Tlim_FINALを算出する。すなわち、ボディ側ブレ補正マイコン14またはボディ側システムコントローラ15内のCPUは、天体の移動速度に基づいて、初期位置3から可動リミットまで移動するに要する最大露光時間Tlim_FINALを算出する。
【0110】
ステップS7、S17、またはS31において、最大露光時間Tlim_FINALを算出すると、次に、露出時間はTlim_FINAL以内か否かを判定する(S41)。ユーザは、天体撮影に先立って、操作部を操作することによって、露光時間を設定する。このステップでは、設定された露光時間が、ステップS7、S17、またはS31において設定された最大露光時間Tlim_FINAL以内か否かを判定する。
【0111】
ステップS41における判定の結果、露出時間が最大露光時間Tlim_FINAL以内でない場合には、露出時間=Tlim_FINALにする(S43)。最大露光時間Tlim_FINALまでは、目的とする恒星STを追尾することができる。しかし、ユーザによって設定された露出時間が最大露光時間Tlim_FINALを超えると、目的とする恒星STを追尾することができない。そこで、露出時間をTlim_FINALに制限する。
【0112】
ステップS43において露出時間の再設定を行うと、またはステップS41における判定結果がYesであった場合には、露出を開始する(S45)。ここでは、ユーザがレリーズ釦を操作し、レリーズSW20がオンとなると、ボディ側システムコントローラ15は、シャッタ11を開かせ、撮像素子12に被写体像を光電変換させる。
【0113】
露出を開始すると、次に、天体位置パラメータとして、方位A、高度h、緯度φ、焦点距離fを、各センサから取得する(S47)。露出を開始すると、ステップS47以下において、天体の追尾を開始する。まず、ステップS3と同様に、各センサから最新の各種パラメータを取得する。
【0114】
続いて、天体位置パラメータから天体移動速度dA/dH,dh/dH,dθ/dHを算出する(S49)。ここでは、前述した(3)式を用いてdA/dHを算出し、(4)式を用いてdh/dHを算出し、(5)式を用いてdθ/dHを算出する。
【0115】
続いて、天体移動速度から単位時角当たりの像面天体移動量ΔX、ΔY、Δθを算出する(S51)。ここでは、前述の(7)式を用いてΔXを算出し、(8)式を用いてΔYを用いて算出し、(9)式を用いてΔθを算出する。
【0116】
像面天体移動量を算出すると、次に、ボディ可動部位置は可動リミット内か否かを判定する(S52)。ここでは、防振駆動部13が撮像素子12の有効可動領域内にあるか否かを判定する。この判定の結果、可動リミット内にある場合には、ボディ可動部をΔθで駆動制御する(S53)。ここでは、ボディ側ブレ補正マイコン14は、ステップS51において算出したΔθで、防振駆動部13によって、撮像素子12の回転駆動を行う。
【0117】
ステップS53において駆動制御を行うと、またはステップS52における判定の結果、ボディ可動部位置が可動リミット内にない場合には、レンズ可動部位置は可動リミット内にあるか否かを判定する(S55)。ここでは、ステップS51で算出したΔX、ΔYが、防振レンズ2aの有効可動領域LL内にあるか否かを判定する。
【0118】
ステップS55における判定の結果、可動リミット内の場合には、レンズ可動部をΔX/n、ΔY/nで駆動制御する(S57)。ここでは、レンズ駆動部である防振レンズ2aを駆動する場合に、図7(c)を用いて説明したように、天体移動量ΔX、ΔYに対してIS感度nで除算することによって、レンズ駆動部の移動量を算出する。レンズ側ブレ補正マイコン4は、防振レンズ駆動部3によって、算出した移動量に基づいてレンズ可動部(防振レンズ2a)を駆動する。
【0119】
一方、ステップS55における判定の結果、可動リミット内でない場合には、ボディ可動部位置は可動リミット内か否かを判定する(S56)。ここでは、防振駆動部13が撮像素子12の有効可動領域内にあるか否かを判定する。この判定の結果、可動リミット内にある場合には、ボディ可動部をΔX、ΔYで駆動制御する(S59)。ここでは、ボディ可動部である撮像素子12を駆動する場合に、ステップS51において算出した天体移動量ΔX、ΔYに基づいて、ボディ側ブレ補正マイコン14は、撮像素子12を駆動する。
【0120】
ステップS57においてレンズ可動部を駆動すると、またはステップS59においてボディ可動部を駆動すると、次に、露出時間が経過したか否かを判定する(S61)。ここでは、ステップS45において露出を開始してから、ユーザが設定した露出時間、またはステップS43において設定された露出時間が、経過したか否かを判定する。
【0121】
ステップS61における判定の結果、露出時間が経過していない場合には、直前の動作でボディ可動部とレンズ可動部の両方が動いているか否かを判定する(S62)。露出終了となる露出時間が経過していない場合には、レンズ側の防振部とボディ側の防振部の両方が可動リミットまで動いてしまった場合には、追尾動作を行うことができない。このステップでは、2つの防振部の動作状態に基づいて判定する。この判定の結果、いずれか一方の防振部が可動リミットに達していない場合には、ステップS47に戻り、露出を続行する。
【0122】
ステップS61における判定の結果、露出時間が経過した場合、またはステップS62における判定の結果、ボディ可動部とレンズ可動部の両方共、動いていない場合には、露出を終了する(S63)。ここでは、ここでは、ボディ側システムコントローラ15は、シャッタ11を閉じさせ、露出を終了する。
【0123】
次に、撮影画像データを取得する(S65)。ここでは、ボディ側システムコントローラ15は、撮像素子12から撮影画像データを読み出す。続いて、画像処理を行う(S67)。ここでは、ボディ側システムコントローラ15内に設けられている画像処理回路が、ステップS65において読み出した撮影画像データに対して、画像処理を施す。
【0124】
画像処理を行うと、次に、撮影画像をモニタに表示し、また撮影画像をメモリカードに記録する(S69)。ここでは、ステップS67において画像処理を施した撮影画像データを用いて、EVF22に撮影画像を表示する。また、記録用に画像処理が施された撮影画像データをメモリカード23に記録する。
【0125】
このように、本実施形態に係る天体撮影のフローチャートにおいては、長時間露光モードでない場合には(S5No)、防振レンズ2aおよび撮像素子12を、撮影レンズの光軸中心に移動させてから(図2参照)、追尾動作を行うようにしている。また、この時の最大露光時間を算出し(S7参照)、この最大露光時間が、設定露出時間より長い場合には、この最大露光時間をリミット時間としている(S41、S43参照)。
【0126】
また、本実施形態に係る天体撮影のフローチャートにおいては、長時間露光モードの場合には防振ユニットを初期位置に移動した後に、撮影方向の微調整を行うか否かを判定している(S11参照)。そして、撮影方向の微調整を行わない場合には、初期位置1、すなわち防振レンズ2aと撮像素子12を、それぞれ有効可動領域LL、ILの異なる端部側に移動させてから(図3(b)、S13、S15参照)、追尾動作を行うようにしている。また、この時の最大露光時間を算出し(S17参照)、この最大露光時間が設定露出時間より長い場合には、この最大露光時間をリミット時間としている(S41、S43参照)。
【0127】
また、本実施形態に係る天体撮影のフローチャートにおいては、防振ユニットを初期位置に移動した後に、撮影方向の微調整を行ってもよい場合には(S11Yes)、初期位置2、すなわち、すなわち防振レンズ2aと撮像素子12を、それぞれ有効可動領域LL、ILの同じ端部側に移動させる(図4(a)、S21、S23参照)。この後、ユーザ等によって、撮影方向が微調整された場合には、この微調整から天体の軌跡を演算し、回転によって可動部(撮像素子12)が有効可動領域ILに当て付かない場合には、可動部がその位置まで移動するに要する時間を最大露光時間とする。一方、可動部が当て付く場合には、可動部を僅かに内側に動かし、当て付かない可動部の位置調整を行う。当て付かない可動部の位置が決まると、その位置から再度露光時間を計算する(S27~S31参照)。
【0128】
また、本実施形態に係る天体撮影のフローチャートにおいては、ステップS45において露出を開始すると、ステップS47以下において、天体追尾を実行する。まずS47~S51において、天体位置パラメータ等に基づいて、追尾のための像面天体移動量(ΔX、ΔY、Δθ)を算出する。像面移動量を算出すると、ボディ可動部が可動リミット範囲内にあるか否かを判定し(S52)、可動リミット範囲内にある場合には、ボディ可動部による駆動がなされる(S53)。また、レンズ可動部が可動リミット範囲内にあるか否かを判定し(S55)、可動リミット範囲内にある場合にはレンズ可動部による駆動がなされる(S57)。ステップS52~S59において、像面天体移動量(ΔX、ΔY、Δθ)だけ駆動すると、露出出時間が経過していない場合には、再びステップS47に戻り、再度、像面移動量を算出し、ボディ可動部およびレンズ可動部による駆動を行って、天体の追尾を続行する。
【0129】
また、本実施形態に係る天体撮影のフローチャートにおいては、判定部によって被写体像が有効結像領域内に存在可能であると判定された際には(S55Yes又はS56Yes)、第1防振部(レンズ可動部)または第2防振部(ボディ可動部)の一方を第1の移動速度で駆動させて被写体像を有効結像領域内において第1の方向へシフトさせ(S57又はS59)、シフト後に(S62No)、判定部によって更にシフト可能であると判定された際には(S56YesまたはS55Yes)、第1防振部または第2防振部の他方を第2の移動速度で駆動させて被写体像を有効結像領域内において第2の方向へシフトさせる追尾動作を行う(S59またはS57)。
【0130】
なお、図10Cに示すフローチャートにおいては、レンズ可動部が可動リミット内にあるか否かを先に判定しているが(S55参照)、ボディ可動部が可動リミット内にあるか否かの判定を先に行っても勿論構わない。すなわち、防振部(防振可動部(撮像素子12用の防振駆動部13、防振レンズ2a用の防振レンズ駆動部3))を駆動する順番として、先にレンズ可動部(防振レンズ2a用の防振レンズ駆動部3)を先に駆動し、その後にボディ可動部(撮像素子12用の防振駆動部13)を駆動していたが、この順番は逆にしても勿論構わない。
【0131】
次に、図11に示すフローチャートを用いて、図10Aないし図10Dに示した天体撮影の動作の変形例を説明する。図10Aないし図10Dに示すフローでは、レンズとボディの位置分解能が大きく異なる場合に、レンズの追尾駆動が終了してから、ボディの追尾駆動を行っていると、露光初期と露光末期でX方向とY方向の分解能が異なり、撮影画像に影響が表れる可能性がある。そこで、図11に示す変形例は、この点を改善している。この変形例は、図10CにおけるステップS55,S56,S57,S59を、図11のステップS55a,S56a,S58,S60に置き換えただけである。そこで、この相違点を中心に説明する。
【0132】
ステップS51において像面天体移動量ΔX、ΔY、Δθを算出し、ステップS52における判定の結果、ボディ可動部が可動リミット内にあれば、ステップS53においてボディ可動部をΔθで駆動制御する。続いて、ボディ可動部が可動リミット内であれば(S55aYes)、ボディ可動部をΔX*Bx/(Lx+Bx)、ΔY*By/(Ly+Bx)で駆動制御する(S58)。
【0133】
一方、ボディ可動部が可動リミット内にない場合には(S55aNo)、レンズ可動部位置が可動リミット内か否かを判定し(S56a)、可動リミット内である場合には(S56aYes)、レンズ可動部をΔX/n*Lx/(Lx+Bx)、ΔY/n*Ly/(Ly+By)で駆動制御する(S60)。Lx、Bx、Ly、Byは、0~1の間でどのような数値でも良い。さらに、これらの値を一律で意図的に少なくしてもよい。天体以外の地上のものも同時に移したい場合、あえて追尾の性能を少なくすることによって、地上のもののぶれが抑えられるためである。
【0134】
ステップS58、S60において、ボディ可動部とレンズ可動部の駆動制御を行うと、ステップS61以下において、一実施形態と同様の処理を行う。
【0135】
このように、天体撮影のフローの変形例においては、駆動量ΔX、ΔYを、レンズとボディにおけるX、Y方向の割り振り係数、BXとLX、BYとLYを用いて、それぞれ正規化しているので、露光初期と露光末期で分解能が異なることがなく、精度よく追尾を行うことができる。すなわち、分解能に応じてX方向およびY方向に、ボディ可動部とレンズ可動部の駆動制御がなされる。分解能が露光初期と露光末期で異なると、X方向とY方向の駆動量が異なってしまう。本変形例では、分解能が一定であることから、露光初期から露光末期まで駆動量が一定であり、精度よく追尾を行うことができる。
【0136】
以上説明したように、本発明の一実施形態や変形例においては、第1及び第2防振部が初期位置に保持されている状態で、撮像素子ユニットの有効結像領域内に存在する被写体像の移動方向及び移動速度を算出し(例えば、図10CのS47、S49、S51参照)、第1及び第2防振部の少なくとも一方が駆動された時に、被写体像を算出された移動方向及び移動速度でシフトさせても当該被写体像が有効結像領域内で存在しているか否かを判定し(例えば、図10CのS55参照)、被写体像が有効結像領域内に存在可能であると判定された際には第1防振部または第2防振部の一方を第1の移動速度で駆動させて当該被写体像を有効結像領域内において第1の方向へシフトさせ(例えば、図10CのS57参照)、更にシフト可能であると判定された際には(例えば、図10CのS56参照)、第1防振部または第2防振部の他方を第2の移動速度で駆動させて当該被写体像を有効結像領域内において第2の方向へシフトさせる追尾動作を行っている(例えば、図10CのS59参照)。このため、長時間の露光時間(観察時間)の間、天体等の被写体を追尾可能である。
【0137】
また、本発明の一実施形態や変形例においては、撮像素子ユニットの有効結像領域内の所定位置に、被写体像が存在するか否かを判定し、撮像素子ユニットに対して被写体像が移動する移動方向及び移動速度を算出している(例えば、図10CのS49参照)。そして、算出された移動方向及び移動速度に基づいて、撮像素子ユニットにおける有効結像領域内の所定位置に、被写体像が常に位置するように第1防振部および第2防振部の少なくとも一方を駆動制御して当該被写体像を追尾している(例えば、図10CのS51~S59参照)。
【0138】
なお、本発明の一実施形態や変形例においては、レンズ側ブレ補正マイコン4がレンズ側の可動部(防振レンズ2a)の駆動制御を行い、ボディ側ブレ補正マイコン14がボディ側の可動部(撮像素子129の駆動制御を行い、天体等の被写体の追尾を行っていた。しかし、レンズ鏡筒とボディ内の両可動部を補正するブレ補正マイコンを設け、一元的にレンズ側およびボディ側の可動部の駆動制御を行い、天体等の被写体の追尾を行うようにしていた。さらに、追尾のための可動部は、ブレ補正用の可動部を兼用していたが、追尾専用の可動部を設けてもよい。
【0139】
また、本発明の一実施形態や変形例においては、被写体として星等の天体を追尾する例について説明した。しかし、被写体としては、星等の天体に限らず、例えば、空を航行する航空機等の移動体であっても本発明を適用できる。天体の場合には、撮影地点や高度等が分かれば追尾が可能であるが、移動体の場合には初期時点で移動体の移動方向等の情報を取得し、追尾すればよい。
【0140】
また、本発明の一実施形態や変形例においては、ボディ側ブレ補正マイコン14およびボディ側システムコントローラ15内に、種々の周辺回路を設けていた。しかし、これらのプロセッサとは別に、種々の周辺回路の機能を実現するためのプロセッサを設けてもよい。また、CPUや周辺回路は、CPUとプログラムによってソフトウエア的に構成してもよく、ヴェリログ(Verilog)によって記述されたプログラム言語に基づいて生成されたゲート回路等のハードウエア構成でもよく、またDSP(Digital Signal Processor)を利用して構成してもよい。これらは適宜組み合わせてもよいことは勿論である。また、CPUに限らず、コントローラとしての機能を果たす素子であればよい。また、CPUに限らず、コントローラとしての機能を果たす素子であればよく、ハードウエアとして構成された1つ以上のプロセッサが行うようにしてもよい。例えば、CPUで実現される機能は、それぞれが電子回路として構成されたプロセッサであっても構わないし、FPGA(Field Programmable Gate Array)等の集積回路で構成されたプロセッサにおける各回路部であってもよい。または、1つ以上のCPUで構成されるプロセッサが、記録媒体に記録されたコンピュータプログラムを読み込んで実行することによって、各部としての機能を実行するようにしても構わない。
【0141】
また、本実施形態においては、撮影のための機器として、デジタルカメラを用いて説明したが、カメラとしては、デジタル一眼レフカメラでもミラーレスカメラでもコンパクトデジタルカメラでもよく、ビデオカメラ、ムービーカメラのような動画用のカメラでもよく、さらに、携帯電話、スマートフォン、携帯情報端末、パーソナルコンピュータ(PC)、タブレット型コンピュータ、ゲーム機器等に内蔵されるカメラ、医療用カメラ、顕微鏡等の科学機器用のカメラ、自動車搭載用カメラ、監視用カメラでも構わない。いずれにしても、天体等の被写体を追尾する機器であれば、本発明を適用することができる。
【0142】
また、本明細書において説明した技術のうち、主にフローチャートで説明した制御に関しては、プログラムで設定可能であることが多く、記録媒体や記録部に収められる場合もある。この記録媒体、記録部への記録の仕方は、製品出荷時に記録してもよく、配布された記録媒体を利用してもよく、インターネットを介してダウンロードしたものでもよい。
【0143】
また、本発明の一実施形態においては、フローチャートを用いて、本実施形態における動作を説明したが、処理手順は、順番を変えてもよく、また、いずれかのステップを省略してもよく、ステップを追加してもよく、さらに各ステップ内における具体的な処理内容を変更してもよい。
【0144】
また、特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず」、「次に」等の順番を表現する言葉を用いて説明したとしても、特に説明していない箇所では、この順で実施することが必須であることを意味するものではない。
【0145】
本発明は、上記実施形態にそのまま限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素の幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
【符号の説明】
【0146】
1・・・レンズ鏡筒、2・・・撮影レンズ、3・・・レンズ駆動部、4・・・レンズ側ブレ補正マイコン、5・・・レンズ側システムコントローラ、6・・・焦点距離検出部、10・・・カメラボディ、11・・・シャッタ、12・・・撮像素子、13・・・駆動部、14・・・ボディ側ブレ補正マイコン、15・・・ボディ側システムコントローラ、16・・・地磁気センサ、17・・・加速度センサ、18・・・角速度センサ、19・・・通信部、20・・・レリーズSW、21・・・GPSセンサ、22・・・EVF、23・・・メモリカード、24・・・時計回路
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10A
図10B
図10C
図10D
図11
図12