(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023128560
(43)【公開日】2023-09-14
(54)【発明の名称】光反応器システム
(51)【国際特許分類】
B01J 19/12 20060101AFI20230907BHJP
B01J 19/24 20060101ALI20230907BHJP
C02F 1/32 20230101ALI20230907BHJP
C02F 1/72 20230101ALI20230907BHJP
B01J 35/02 20060101ALI20230907BHJP
【FI】
B01J19/12 C ZAB
B01J19/24 Z
C02F1/32
C02F1/72 101
B01J35/02 J
【審査請求】未請求
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022032972
(22)【出願日】2022-03-03
(71)【出願人】
【識別番号】000005234
【氏名又は名称】富士電機株式会社
(71)【出願人】
【識別番号】504180239
【氏名又は名称】国立大学法人信州大学
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】大栗 延章
(72)【発明者】
【氏名】春山 晃寿
(72)【発明者】
【氏名】宇佐美 久尚
【テーマコード(参考)】
4D037
4D050
4G075
4G169
【Fターム(参考)】
4D037AA02
4D037AA11
4D037BA18
4D037BB01
4D037BB02
4D050AA04
4D050AA12
4D050BC04
4D050BC09
4D050BD02
4D050BD08
4G075AA03
4G075AA13
4G075AA37
4G075AA61
4G075BA05
4G075CA33
4G075CA54
4G075DA02
4G075EA06
4G075EB33
4G075FA12
4G075FB02
4G075FC04
4G169AA03
4G169BA04B
4G169BA14B
4G169BA48A
4G169CA01
4G169CA10
4G169DA06
4G169EA02X
4G169EA02Y
4G169EB18Y
4G169EC22Y
4G169FA02
4G169HA05
4G169HA20
4G169HB01
4G169HB02
4G169HB06
4G169HD10
4G169HE01
4G169HE05
4G169HF02
4G169HF05
(57)【要約】
【課題】光反応器内の温度を制御することができる光反応器モジュールを提供すること。
【解決手段】本発明の一態様による光反応器システムは、透光性を有する管と、前記管の内側に収容され、導光材料を含む複数の粒体とを有し、流体が前記管の内側に流通する光反応器と、前記管の外側に配置され、前記粒体に向けて光を照射する光源と、前記管の外側に配置され、前記光源を冷却する冷却機構と、前記冷却機構の出力を調整することで、前記光反応器の内部の温度を制御する制御部とを備える。
【選択図】
図4
【特許請求の範囲】
【請求項1】
透光性を有する管と、前記管の内側に収容され、導光材料を含む複数の粒体とを有し、流体が前記管の内側に流通する光反応器と、
前記管の外側に配置され、前記粒体に向けて光を照射する光源と、
前記管の外側に配置され、前記光源を冷却する冷却機構と、
前記冷却機構の出力を調整することで、前記光反応器の内部の温度を制御する制御部とを備える光反応器システム。
【請求項2】
前記粒体の表面に、光触媒層が設けられている、請求項1に記載の光反応器システム。
【請求項3】
前記光源を保持する支持部材を備え、
前記管と前記支持部材との間に冷却媒体が流通する、請求項1又は2に記載の光反応器システム。
【請求項4】
前記冷却機構は、空冷式ヒートシンクと、冷却ファンとを有する、請求項1から3のいずれか一項に記載の光反応器システム。
【請求項5】
前記冷却機構は、水冷式ヒートシンクと、ラジエータとを有する、請求項1から3のいずれか一項に記載の光反応器システム。
【請求項6】
前記光反応器の内部の温度を計測する第1温度計測部と、
前記光源の温度を計測する第2温度計測部とを備え、
前記制御部は、前記第1温度計測部及び前記第2温度計測部の計測温度に基づいて、前記冷却機構の出力を制御する、請求項1から5のいずれか一項に記載の光反応器システム。
【請求項7】
前記制御部は、前記第1温度計測部の計測温度が一定となるように前記冷却機構の出力を制御する、請求項6に記載の光反応器システム。
【請求項8】
前記制御部は、前記第1温度計測部の計測温度が前記流体に含まれる有機物の反応温度以上となるように前記冷却機構の出力を制御する、請求項6又は7に記載の光反応器システム。
【請求項9】
前記制御部は、前記第2温度計測部の計測温度が前記光源の許容温度以下となるように前記冷却機構の出力を制御する、請求項6から8のいずれか一項に記載の光反応器システム。
【請求項10】
前記制御部は、前記第1温度計測部の計測温度が所定の温度範囲内となり、且つ、前記第2温度計測部の計測温度が所定の温度以下となるように、前記冷却機構の出力を制御する、請求項6から9のいずれか一項に記載の光反応器システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光反応器システムに関する。
【背景技術】
【0002】
従来、光触媒をコーティングした光触媒体に光を照射すると共に、気体や液体等の被処理物を通過させ、光触媒反応により被処理物に含有される有機物を分解するようにした光反応器が知られている。
【0003】
例えば、特許文献1には、導光体で形成される内管、外管の間に、同一内径を有する複数の中空管が長手方向に配置され、各中空管の少なくとも内周面に、励起光によって励起される光触媒層が形成された光触媒浄化装置が開示されている。さらに、内管の中心、又は外管の外周側に、光触媒層を励起するための励起光源が設けられることが記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1の光触媒浄化装置では、励起光源からの放熱量が多くなると、光触媒浄化装置内の温度が必要以上に上昇し、反応物の分解や沸騰等、光触媒反応以外に影響を及ぼす可能性がある。励起光源として、光源寿命や装置の小型化の観点からLEDがよく用いられるが、特に励起光源がLEDの場合、光源からの放熱量が多く、上記のような光触媒反応以外の反応やLED自体の熱劣化が生じやすい。特許文献1の光触媒浄化装置では、このような化学反応への温度の影響を考慮した熱マネジメントについての検討はなされていない。
【0006】
上記の点に鑑みて、本発明の一態様は、光反応器内の温度を制御することができる光反応器モジュールを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の一態様による光反応器システムは、透光性を有する管と、前記管の内側に収容され、導光材料を含む複数の粒体とを有し、流体が前記管の内側に流通する光反応器と、前記管の外側に配置され、前記粒体に向けて光を照射する光源と、前記管の外側に配置され、前記光源を冷却する冷却機構と、前記冷却機構の出力を調整することで、前記光反応器の内部の温度を制御する制御部とを備える。
【発明の効果】
【0008】
本発明の一態様によれば、光反応器内の温度を制御することができる光反応器モジュールを提供することができる。
【図面の簡単な説明】
【0009】
【
図1】一実施形態による光反応器モジュールの斜視図である。
【
図3】一実施形態による光反応器モジュールの断面の要部拡大図である。
【
図4】一実施形態による光反応器システムを示す概略構成図である。
【
図5】制御部の処理の一例を示すフローチャートである。
【
図6】一実施形態による光反応器システムの他の例を示す概略構成図である。
【
図7】光反応器内の温度の経時変化を示す図である。
【発明を実施するための形態】
【0010】
以下、本発明を実施するための形態について図面を参照しながら説明する。なお、説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の符号を付して、重複する説明は省略する場合がある。
【0011】
本発明の一実施形態による光反応器モジュールについて説明する。
【0012】
図1は、一実施形態による光反応器モジュールの斜視図であり、
図2は、
図1のI-I断面図である。
図1及び
図2に示すように、本発明の一実施形態による光反応器モジュール100は、光反応器1と、光反応器1の外側に配置された光源5とを備える。光反応器モジュール100は、さらに、光源5を支持する支持部材4を備えていてよい。また、光反応器モジュール100は、一端に流体Fが流入する流入口と、他端に流体Fが流出する流出口とを備え、流通する流体Fを光触媒反応等の光反応(光化学反応)により処理する。
【0013】
光反応器モジュール100は、さらに、管2の外側に、光源5を冷却する冷却機構30を備えている。冷却機構30は、空冷式であってもよく、水冷式であってもよい。冷却機構30は、空冷式の場合、例えば、空冷式ヒートシンク6と、冷却ファン7とを有していてよい。冷却ファン7は、例えば、光反応器1の一端側に、台座11を介して取り付けることができる。冷却機構30は、水冷式の場合、後述する水冷式ヒートシンク6Aと、ラジエータ18とを有していてよい。
【0014】
光反応器1の流入口側の端部には、フランジ9と、フランジ9と係合し、開口を閉塞するキャップ8が設けられている。キャップ8は、キャップ8の側面を貫通する接続口81を有する。接続口81には、流体Fを流通させる配管が接続され、接続口81から光反応器1の内部に流体Fを流入させることができる。光反応器1の流出口側の端部にも、同様に、フランジ9と、キャップ8とを設けることで、キャップ8の側面を貫通する接続口81から光反応器1の外部に流体Fを流出させることができる。
【0015】
図3は、一実施形態による光反応器モジュールの断面の要部拡大図である。
図3示すように、光反応器1は、透光性を有する管2と、管2の内側に収容され、導光材料を含む複数の粒体3とを有し、粒体3の表面には、光触媒層31が設けられていてもよい。管2の中に、被処理物として、例えば、有害物質、有機物等を含む流体Fを流通する。管2の内側に流通する流体Fとしては、特に制限はなく、液体であってもよく、気体であってもよい。液体としては、例えば、地下水、水道水、汚水、飲料、反応物(光反応前の物質)等が挙げられる。
【0016】
管2の中心軸10に直交する断面形状(より詳細には、管2の内周面の断面形状)は、
図1~
図3に示す例では円形であるが、これに限らず、例えば、楕円形、多角形(六角形、五角形、四角形、三角形等)とすることができる。管2の中心軸10に直交する断面形状は、六角形でもよい。管2の中心軸10に直交する断面形状が六角形であると、管2の内側に収容された粒体3は、六方最密充填構造となる。そのため、粒体3と管2の内周面との接触部を規則的に形成することができ、後述する粒体3と管2との融着面15を規則的に形成することができる。よって、光源5の光軸53を融着面15の位置に容易に合わせることができ、融着面15全体における照度を向上させることができる。
【0017】
管2を構成する材料は、光源5から照射された光を透過する導光材料であればよく、例えば、ホウケイ酸ガラス等の耐熱ガラス、ソーダガラス等を用いることができる。例えば、光触媒として二酸化チタン(TiO2)を用いる場合は、二酸化チタンが400nm以下の波長に対して良好な吸収を示すことから、光源5は、励起波長365nmのUV-A(A領域紫外線、又は長波長紫外線) LED(Light Emitting Diode)が好ましい。そのため、光触媒として二酸化チタンを用いる場合、管2を構成する材料は、波長365nmの光に対して良好な透過率を示すホウケイ酸ガラスが好ましい。
【0018】
管2の内径L2は、特に制限はなく、光反応器モジュール100全体の圧力損失が小さくなるよう任意の内径を選択することができる。例えば、管2の内径L2は、6mm~400mmとすることができる。6mm以上の内径L2は、粒径2mm~20mmの汎用の粒体3を収容し融着することに好適である。400mm以下の内径L2は、融着して連結される粒体3の数を、光の減衰を抑制できる範囲とすることに好適である。なお、管2の内径とは、管2の中心軸10に直交する断面形状が円形ではない場合は、当該断面形状の中心を通る内径の最大値を意味し、管2の中心軸10に直交する断面形状が六角形である場合は、対辺距離(向かい合う辺の間の距離)を意味する。
【0019】
管2の厚さL3は、特に制限はないが、例えば、15mm以下とすることができる。管2の厚さL3が、15mm以下であることにより、光反応に十分な光の透過率を得ることができ、光反応を促進することができる。
【0020】
粒体3の形状は、特に限定されないが、球状であることが好ましく、複数の粒体3の粒径が同一であることが好ましい。これにより、光反応器モジュール100は、均質性が高く安定した処理能力を発揮することができる。
【0021】
粒体3の粒子径は、特に限定されないが、2mm~20mmが好ましく、3mm~10mmがより好ましい。粒体3の粒子径は、2mm~20mmであることにより、粒体3内での光の減衰を抑制することができ、光反応をより促進することができる。また、粒体3の粒子径は、3mm~10mmであることにより、表面積を増大させ光反応をさらに促進することができ、また、融着させる時の伝熱性が良くなり、容易に融着面15を形成することができる。
【0022】
粒体3を構成する材料は、光源5から照射された光を透過する導光材料であればよく、管2と同様の材料を用いることができる。例えば、光触媒として二酸化チタンを用いる場合は、二酸化チタンが400nm以下の波長に対して良好な吸収を示すことから、光源5は、励起波長365nmのUV-A LEDが好ましい。そのため、光触媒として二酸化チタンを用いる場合、粒体3を構成する材料は、波長365nmの光に対して良好な透過率を示すホウケイ酸ガラスが好ましい。
【0023】
図3に示すように、光反応器1は、粒体3と粒体3との当接部に、粒体3と粒体3とが融着した融着面15を有する。また、光反応器1は、粒体3と管2の内周面との当接部に、粒体3と管2の内周面とが融着した融着面15を有する。これらの融着面15は、複数の粒体3を収容した管2を、粒体3を構成する材料の融点以上の温度で加熱することにより、形成することができる。なお、管2の内周面と粒体3とが当接していない部分は、管2の内周面と粒体3とが融着していない非融着面16とする。即ち、光反応器1は、粒体3と管2の内周面とが融着した融着面15と、管2の内周面と粒体3とが融着していない非融着面16とを有する。
【0024】
光反応器1は、融着面15を有することにより、光源5から照射された光を、管2の内周面と粒体3との融着面15、及び粒体3同士の融着面15を介して、光反応器1の内部まで導光させることができる。換言すると、管2の内周面と粒体3の融着面15、及び粒体3同士の融着面15は、光源5から照射された光の導光路Cを構成する。
【0025】
管2の内周面と粒体3との融着面15は、管2の中心軸10と平行な方向に、10段以下形成されていることが好ましい。これにより、粒体3内での光の減衰を抑制することができ、光反応をより促進することができる。なお、上述の粒体3の粒子径は、管2の内周面と粒体3との融着面15が、管2の中心軸10と平行な方向に、10段以下となるように選択することができる。
【0026】
融着面15を形成する観点から、管2を構成する材料の融点は、粒体3を構成する材料の融点よりも高いことが好ましい。具体的には、例えば、管2を構成する材料にホウケイ酸ガラス等の耐熱ガラスを使用し、粒体3を構成する材料にソーダガラスを使用することができる。これにより、粒体3を構成する材料の融点以上の温度で加熱したとき、管2を熱により変形させることなく、融着面15を形成することができる。なお、融着面15を形成する際の加熱温度は、粒体3を構成する材料の融点以上、且つ管2を構成する材料の融点以下であることが好ましい。ただし、融着面15が適切に形成されることが必須であり、粒体3を構成する材料の融点と管2を構成する材料の融点が等しい場合には、逐次的な局所加熱法により粒体3と粒体3、および粒体3と管2の内周面とを適切に融着させてもよい。
【0027】
粒体3の表面には、光触媒層31が設けられていてもよい。光触媒層31を構成する光触媒としては、被処理物に応じて選択することができ、例えば、二酸化チタン、酸化亜鉛、バナジン酸ビスマス(BiVO4)等が挙げられる。光触媒層31を構成する光触媒が、二酸化チタンである場合、酸化反応及び分解反応により、空気洗浄、浄水、脱臭、除菌、防汚等の作用が得られる。粒体3の表面に、光触媒層31が設けられていることにより、被処理物である流体Fと光触媒との接触面積を増大させることができると同時に、光触媒に対する光の照射面積を増大させることができるため、光触媒反応を促進することができる。光触媒層31は、粒体3の表面と、管2の内周面とに設けられていてもよい。
【0028】
光源5は、管2の外側、具体的には、支持部材4の内周面に配置され、粒体3に向けて光を照射する。光源5から照射された光は、管2の外周面に入射し、管2の内周面側へ透過する。光源5としては、光触媒に応じて任意の光源を選択することができ、具体的には、例えば、UVライト(ブラックライト)、キセノンランプ、エキシマーランプ等が挙げられる。UVライトとしては、具体的には、UV-A LEDが挙げられる。例えば、光触媒として二酸化チタンを用いる場合は、400nm以下の波長に対して良好な吸収を示すことから、光源5としては、励起波長365nmのUV-A LEDが好ましい。
【0029】
光源5の個数は、特に制限はなく、光反応器モジュール100全体の消費電力及び光源5の放熱量から決定することができる。光源5は、例えば、複数の発光素子51(例えば、LED素子)が、支持部材4の内周面に直接又は間接的に取り付けられた基板52の表面に設けられている。光源5は、基板52の表面と直交する方向に光軸53が揃えられた状態で配列された複数の発光素子51を含んでもよい。
【0030】
光源5は、支持部材4における管2との対向面(支持部材4の内周面)に、管2の中心軸10と平行となる方向、又は直交する方向に複数並べて配置されていてもよい。光源5は、基板52に所定の間隔をおいて一列に配置された発光ユニットであってもよい。例えば、管2の中心軸10と平行に配列された複数の発光素子51をそれぞれ備える6個の発光ユニットを、支持部材4の内周面に周方向に等間隔に配置してもよい。また、管2の中心軸10と直交して配列された複数の発光素子51をそれぞれ備える6個の発光ユニットを、支持部材4の内周面に周方向に等間隔に配置してもよい。管2の中心軸10に直交する断面形状が六角形である場合、上述の通り、管2の内周面と粒体3との融着面15が、管2の周方向(管2の中心軸10と直交する方向)に沿って直線状に並んで形成される。そのため、光源5は、支持部材4における管2との対向面(支持部材4の内周面)に、管2の中心軸10と直交する方向に複数並べて配置されていることが好ましい。
【0031】
光源5は、光源5の光軸53が、粒体3と管2の内周面との融着面15に対して直交するように配置されていることが好ましい。換言すると、光源5の光軸53は、融着面15に対して垂直であることが好ましい。光源5の光軸53が、融着面15に対して垂直であることにより、融着面15における照度を、非融着面16における照度よりも大きくすることができる。よって、光源5から照射された光を粒体3と管2の内周面との融着面15から導光路Cに沿って光反応器1のより内部まで導光させることができる。また、粒体3の表面に光触媒層31が設けられている場合、粒体3表面の光触媒層31の受光量を増加させることができる。以上により、本実施形態の光反応器モジュール100は、光触媒反応等の光反応を促進することができる。
【0032】
支持部材4は、板状であってもよく、筒状の形状を有する外筒であってもよい。支持部材4が外筒である場合、支持部材4は、光反応器1を管2の径方向の外側から囲んで配置されている。換言すると、光反応器1は、支持部材4の内側に配置されている。支持部材4は、管2の中心軸10と同軸上に配置されていることが好ましい。この場合、中心軸10は、支持部材4の中心軸でもあると言える。以下、管2の中心軸10を支持部材4の中心軸としても用いる。
【0033】
支持部材4の内周面は、光源5の光を反射することが好ましい。光源5から放射された光は、光反応器1に直接入射する光と、光反応器1の外部を直進する光があるが、光反応器1の外部を直進する光は、支持部材4の内周面で反射され、光反応器1に入射する。また、光反応器1の外部において散乱した光も、支持部材4の内周面で反射され、光反応器1に入射する。よって、支持部材4の内周面が、光源5の光を反射することにより、光反応器1の外部のより多くの光を光反応器1の内部に導くことができるため、光触媒反応等の光反応を促進することができる。
【0034】
図3において、光反応器1の管2の外周面と、支持部材4の内周面との最短距離L1は、管2の外径が80mm~400mmの場合、40mm以下となるように設定することが好ましい。最短距離L1が40mm以下であることにより、光源5から放射された光が、光反応器1に到達するまでの間に、空気中で散乱し減衰することを抑制することができるため、光触媒反応等の光反応を促進することができる。
【0035】
支持部材4の内周面は、反射性材料から構成されていてもよく、反射性材料でコーティングされていてもよい。反射性材料としては、特に限定されないが、例えば、アルミニウム等の金属、ポリテトラフルオロエチレン等が挙げられる。これらの中でも、反射性材料は、金属であることが好ましい。反射性材料が金属であることにより、光源5から照射される光が短波長(例えば、280nm以下)である場合においても、劣化することを抑制することができる。
【0036】
支持部材4の内周面は、光源5の光に対する反射率が、80%以上であることが好ましく、高ければ高い程より好ましい。支持部材4の内周面の、光源5の光に対する反射率が、80%以上であることにより、光反応器1の外部のより多くの光を反射し光反応器1の内部に導くことができるため、光触媒反応等の光反応を促進することができる。支持部材4の内周面は、鏡面であってもよく、散乱面であってもよい。
【0037】
支持部材4の中心軸10に直交する断面形状(より詳細には、支持部材4の内周面の断面形状)は、円形、楕円形、又は多角形(六角形、五角形、四角形、三角形等)とすることができる。支持部材4の中心軸10に直交する断面形状は、管2の中心軸10に直交する断面形状と同じであってもよい。これにより、管2と支持部材4との距離が周方向に亘って均一となり、管2の内周面に配置された光源5の光を光反応器1に対して均一に照射することができる。よって、光反応器モジュール100は、均質性が高く安定した処理能力を発揮することができる。また、支持部材4の中心軸10に直交する断面形状は、六角形、五角形、四角形、三角形等の多角形であることが好ましい。これにより、支持部材4の内周面に光源5の取り付け平面(例えば、基板52の裏面)を密着して配置することができ、光源5の熱を支持部材4に伝導させ、支持部材4から放熱させることができる。よって、光反応器1内の温度が光源5の熱により必要以上に上昇することを抑制し、また、熱による光源5の破損又は劣化を抑制することができる。
【0038】
支持部材4の内径は、特に制限はなく、管2を構成する材料、管2の外径、及び光源5の励起波長等に応じて、任意の大きさを選択することができる。例えば、ホウケイ酸ガラスで構成された、直径80mmの管2、及び励起波長365nmの光源5を用いる場合は、支持部材4の内径は、光反応器1又は管2の外周面と支持部材4の内周面との最短距離L1が40mm以下となるように設定することが好ましい。なお、支持部材4の内径とは、支持部材4の中心軸10に直交する断面形状が円形ではない場合は、当該断面形状の中心を通る内径の最大値を意味し、支持部材4の中心軸10に直交する断面形状が六角形である場合は、対辺距離を意味する。
【0039】
次に、光反応器モジュール100の製造方法について説明する。
【0040】
まず、管2及び多数の粒体3を準備するとともに、光触媒層31を設けるための光触媒用溶液を準備する。光触媒用溶液は、例えば、二酸化チタンを主成分とし、必要なバインダ等を含ませることができる。次に、基板治具の上に管2を起立させ、管2の上端開口から粒体3を投入することにより管2の内部に充填する。そして、ヒータにより加熱を行う加熱炉の内部に、粒体3を充填した管2を収容し、加熱温度T〔℃〕の温度環境下で予め設定した加熱時間Zだけ加熱処理する。これにより、管2と粒体3の表面は、加熱温度T〔℃〕により溶解し、管2と粒体3間の当接部、及び粒体3同士の当接部がそれぞれ溶着することにより、所定の面積を有する融着面15が生成される。この場合、加熱温度T〔℃〕が低過ぎる場合には溶解不足が発生し、十分かつ良好な融着面15が得られない。また、加熱温度T〔℃〕が高過ぎる場合には過度に溶解し、良好な内部形状が得られないとともに、流路も狭くなる。したがって、加熱温度T〔℃〕及び加熱時間Zは、実験等により最適値を設定することが望ましい。なお、加熱温度T〔℃〕は、粒体3を構成する材料の融点以上、且つ管2を構成する材料の融点以下であることが好ましい。例えば、加熱温度T〔℃〕は、600~700〔℃〕とすることができる。これにより、管2及び粒体3には融着面15を介して連続する導光路Cが設けられる。そして、加熱時間Zが経過したなら加熱炉から管2を取り出し、自然冷却により常温まで冷却する。
【0041】
次いで、管2の上端開口から光触媒用溶液を注入し、管2の内部に光触媒用溶液を充填する(ステップa)。この際、必要により振動等を加え、粒体3同士の隙間等に光触媒用溶液を浸透させることができる。所定の時間が経過後、管2から光触媒用溶液を排出する(ステップb)。そして、光触媒用溶液を排出した後の粒体3を含む管2を、乾燥又は焼成する(ステップc)。これにより、融着面15を除く粒体3の表面及び管2の内周面に、二酸化チタンを用いた光触媒層31を設けられる。このような手法により、粒体3の表面及び管2の内周面には、均一の光触媒層31を容易に設けることができる。なお、必要により、ステップa~cを繰り返すことにより、光触媒層31の膜厚(層厚)を調整することができる。この後、基板治具を取り除き、管2の端面や外周面等に付着した不要な光触媒層31を取り除くなどの仕上げを行い、さらに、導光性等の検査を行えば、光反応器1を得ることができる。なお、粒体3の表面又は管2の内周面に光触媒層31を設けない場合は、ステップa~cは、不要となる。
【0042】
得られた光反応器1に対して、その両端開口にフランジ9と、キャップ8を装着すれば、光反応器モジュール100として構成することができる。そして、キャップ8の接続口81に流体Fを流通させる配管を接続する。これにより、管2の一端が流体Fの流入口となり、他端が流体Fの流出口となる光反応器モジュール100が得られる。
【0043】
次に、光反応器システム200について説明する。
【0044】
図4は、一実施形態による光反応器システムを示す概略構成図である。
図4に示すように、本発明の一実施形態による光反応器システム200は、透光性を有する管2と、管2の内側に収容され、導光材料を含む複数の粒体3とを有し、流体Fが管2の内側に流通する光反応器1と、管2の外側に配置され、粒体3に向けて光を照射する光源5と、管2の外側に配置され、光源5を冷却する冷却機構30とを備える。また、光反応器システム200は、冷却機構30の出力を調整することで、光反応器1の内部の温度を制御する制御部220を備える。
【0045】
図4に示す例では、冷却機構30は、空冷式ヒートシンク6と、冷却ファン7とを有し、空冷式である例を示すが、水冷式であってもよい。また、
図4に示す例では、冷却ファン7は、光反応器モジュール100における、流入口側に配置されている例について説明するが、これに限らず、例えば、光反応器モジュール100における、流出口側に配置されていてもよい。
【0046】
光反応器1の流入口側の端部には、光反応器1内に流体Fを供給する流体供給ライン241が接続され、光反応器1の流出口側の端部には、光反応器1において光反応により処理された流体Fを流通させる流体流出ライン242が接続されている。
【0047】
冷却ファン7が取り込んだ冷却空気(冷却媒体)A1は、光反応器1の管2と支持部材4との間に流通し、支持部材4に支持された光源5及び管2を冷却した後に、光反応器モジュール100の流出口側に接続された排気ライン243から排出される。冷却空気(冷却媒体)A1が、光反応器1の管2と支持部材4との間に流通することにより、光源5及び管2が冷却空気A1に直接当たって冷却されるため、光反応器1内及び光源5の温度を下げることができる。そして、制御部220が、冷却機構30の出力を調整することで、光反応器1内の温度を制御することができ、光反応器1内の温度を光反応に適切な温度に維持することができる。
【0048】
冷却ファン7が取り込んだ冷却空気(冷却媒体)A2は、支持部材4の外側を流通し、支持部材4の外周面に設けられた空冷式ヒートシンク6を冷却した後に、光反応器モジュール100の流出口側に接続された排気ライン243から排出されてもよい。冷却ファン7が取り込んだ冷却空気A2が、支持部材4の外側を流通することにより、空冷式ヒートシンク6が冷却空気A2に接触して冷却されるため、光源5から、支持部材4を介して空冷式ヒートシンク6に伝わった熱が放熱される。よって、光反応器1内及び光源5の温度を下げることができる。そして、制御部220が、冷却機構30の出力を調整することで、光反応器1内の温度を制御することができ、光反応器1内の温度を光反応に適切な温度に維持することができる。
【0049】
光反応器モジュール100又は光反応器システム200は、冷却ファン7が取り込んだ冷却空気(冷却媒体)を、光反応器1の管2と支持部材4との間に流通する場合、支持部材4の外側に流通する場合、又は、光反応器1の管2と支持部材4との間及び支持部材4の外側に流通する場合の3パターンに送風路を切替え可能な風路切替え機構を有していてもよい。風路切換え機構としては、特に限定されないが、例えば、光反応器1の一端側における管2と支持部材4との間の開口を開閉するダンパーを設けてもよく、又は、冷却ファン7の下流側のラインにダンパーを設けてもよい。
【0050】
光反応器システム200は、光反応器1の内部の温度を計測する第1温度計測部211と、光源5の温度を計測する第2温度計測部212とを備えていてよい。そして、制御部220は、第1温度計測部211及び第2温度計測部212の計測温度に基づいて、冷却機構30の出力を制御(調整)してもよい。第1温度計測部211は、
図4に示す例では、光反応器1の流出口側に設けられている例を示すが、光反応器1の任意の位置に設けることができる。第2温度計測部212は、例えば、光源5の基板52又は発光素子51に設けることができる。
【0051】
制御部220は、第1温度計測部211及び第2温度計測部212の計測温度に基づいて、冷却機構30の出力を制御してよい。冷却機構30が空冷式である場合、制御部220は、冷却ファン7の出力を制御し、冷却機構30が水冷式である場合は、後述するラジエータ18内に流れる冷却媒体の流れを制御する。制御部220が冷却ファン7を回すモータを制御する制御方式としては、例えば、可変電圧可変周波数(VVVF:Variable Voltage Variable Frequency)制御を用いることができる。
【0052】
制御部220は、光反応器1の内部の温度を計測する第1温度計測部211の計測温度が一定となるように冷却機構30の出力を制御することが好ましい。このように制御することにより、光反応器1内の温度を一定に維持することができ、光触媒反応等の光反応を安定に持続させることができる。また、制御部220は、第1温度計測部211の計測温度が流体Fに含まれる有機物の反応温度以上となるように冷却機構30の出力を制御することが好ましい。このように制御することにより、冷却機構30により光反応器1内の温度が有機物の反応温度より低くなり、反応速度が低下することを防止でき、光反応をより促進することができる。
【0053】
制御部220は、さらに、第1温度計測部211の計測温度が、流体Fに含まれる有機物の分解温度以下となるように冷却機構30の出力を制御してもよい。このように制御することにより、光反応器1内の温度が必要以上に上昇することを抑制し、流体Fに含まれる有機物が分解することを抑制することができる。また、制御部220は、第1温度計測部211の計測温度が、流体Fの沸点以下となるように冷却機構30の出力を制御してもよい。このように制御することにより、光反応器1内の温度が必要以上に上昇することを抑制し、流体Fが沸騰することを抑制することができる。
【0054】
制御部220は、第2温度計測部212の計測温度が光源5の許容温度以下となるように冷却機構30の出力を制御することが好ましい。許容温度は、光源5が絶縁破壊等により破損する破損温度、光源5の耐熱温度等を含む。このように制御することにより、光源5の発熱により光源5の温度が上昇し、光源5が破損することを防止することができる。よって、光反応器モジュール100及び光反応器システム200を長寿命化することができる。
【0055】
制御部220は、第1温度計測部211の計測温度が所定の温度範囲内となり、且つ、第2温度計測部212の計測温度が所定の温度以下となるように、冷却機構30の出力を制御することが好ましい。このように制御することにより、光反応器1内の温度を光触媒反応等の光反応に適切な温度に維持し、光反応を高い反応速度で安定に持続させることができ、光反応を高効率化することができる。同時に、光源5の発熱により光源5の温度が上昇し、光源5が破損することを防止することができ、光反応器モジュール100及び光反応器システム200を長寿命化することができる。
【0056】
制御部220は、前述の風路切換え機構を制御してもよい。風路切換え機構として、管2と支持部材4との間の開口を開閉するダンパーを設ける場合、制御部220は、ダンパーの開閉を制御してもよい。制御部220は、例えば、冷却機構30の冷却能力を上げるとき、ダンパーを開き、冷却ファン7が取り込んだ冷却空気を光反応器1の管2と支持部材4との間及び支持部材4の外側の両方に流通するようにし、冷却機構30の冷却能力を下げるとき、ダンパーを閉じ、支持部材4の外側にのみ流通するように制御してもよい。
【0057】
制御部220は、例えば、CPUと、メモリとを有するハードウエアの処理回路として実現される。この場合、制御部220の機能は、CPUがメモリに記憶されたプログラムを実行することにより実現される。
【0058】
次に、制御部220の処理手順について説明する。
【0059】
図5は、制御部220の処理の一例を示すフローチャートである。
図5に示すように、制御部220は、まず、冷却ファン7をONにし(ステップS201)、続いて、光源5をONにする(ステップS202)。次に、第1温度計測部211の計測温度が60℃以下であるか否かを判定する(ステップS203)。第1温度計測部211の計測温度が60℃以下である場合(ステップS203、YES)、第2温度計測部212の計測温度が80℃以下であるか否かを判定する(ステップS204)。
【0060】
一方、第1温度計測部211の計測温度が60℃以下でない場合(ステップS203、NO)、冷却ファン7の出力を+n%上げる(ステップS206)。n%とは、冷却ファン7の最大出力に対する割合を意味し、任意の値とすることができる。そして、再度、第1温度計測部211の計測温度が60℃以下であるか否かを判定する(ステップS203)。第1温度計測部211の計測温度が60℃を超えるまでこの処理を繰り返す。
【0061】
ステップS204において、第2温度計測部212の計測温度が80℃以下である場合(ステップS204、YES)、第1温度計測部211の計測温度が40℃以下であるか否かを判定する(ステップS205)。
【0062】
一方、第2温度計測部212の計測温度が80℃以下でない場合(ステップS204、NO)、冷却ファン7の出力を+n%上げる(ステップS206)。そして、ステップS203、ステップS204、ステップS206の処理を繰り返す。
【0063】
ステップS205において、第1温度計測部211の計測温度が40℃以上である場合(ステップS205、YES)、ステップS203に戻り、第1温度計測部211の計測温度が60℃以下であるか否かを判定する。
【0064】
一方、第1温度計測部211の計測温度が40℃以上でない場合(ステップS205、NO)、冷却ファン7の出力をn%下げる(ステップS207)。出力をn%下げることにより、第1温度計測部211の計測温度、即ち、光反応器1内の温度を上げることができる。そして、ステップS203に戻り、第1温度計測部211の計測温度が60℃以下であるか否かを判定する。
【0065】
以上のように制御部220が処理をすることにより、光反応器1内の温度を光反応に最適な温度範囲である40℃以上、且つ60℃以下に制御することができると共に、光源5の温度を光源5の許容温度である80℃以下に制御することができる。なお、光反応に最適な温度範囲は、流体Fに含まれる有機物の反応温度若しくは分解温度、又は流体Fの沸点等に応じて任意の温度範囲を選択することができ、光源5の許容温度は、光源5の材質等に応じて任意の温度を選択することができる。
【0066】
本実施形態による光反応器システム200において、制御部220が、第1温度計測部211及び第2温度計測部212の計測温度に基づいて、冷却機構30の出力を制御することにより、光反応器1の内部の温度と光源5の温度に基づいて、光反応器1内の温度をより適切な温度に制御することができる。同時に、光源5の発熱により光源5の温度が上昇し、光源5が破損することを防止することができ、光反応器モジュール100及び光反応器システム200を長寿命化することができる。
【0067】
次に、冷却機構30が水冷式である場合の光反応器システム200について説明する。
【0068】
図6は、一実施形態による光反応器システムの他の例を示す概略構成図である。
図6に示す例では、光反応器システム200は、
図4に示す例の空冷式ヒートシンク6に替えて水冷式ヒートシンク6Aを備え、
図4に示す例の冷却ファン7に替えてラジエータ18を備えている。光反応器システム200は、水冷式ヒートシンク6Aとラジエータ18との間に、冷却水(冷却媒体)を循環させる冷却水循環ポンプ17を備えている。水冷式ヒートシンク6Aは、光源5が放熱された熱を回収する。水冷式ヒートシンク6Aには、排熱を回収するための冷却水が循環される排熱回収循環ライン250が接続されている。排熱回収循環ライン250は、排熱回収後の水が流通する冷却水排出ライン251と、ラジエータ18で冷却された後の水が流通する冷却水供給ライン252とを有する。制御部220は、第1温度計測部211及び第2温度計測部212の計測温度に基づいて、ラジエータ18内に流れる冷却水の流量等を冷却水循環ポンプ17により制御する。制御部220が冷却水循環ポンプ17を回すモータを制御する制御方式としては、例えば、可変電圧可変周波数(VVVF:Variable Voltage Variable Frequency)制御を用いることができる。上述した構成を除いては、
図4に示す光反応器システム200と同様の構成を用いることができる。以上の構成により、
図6に示す光反応器システム200においても、
図4に示す光反応器システム200と同様の効果を奏する。
【実施例0069】
以下、実施例及び比較例を示して実施形態を更に具体的に説明するが、実施形態はこれらの実施例により限定されるものではない。
【0070】
(実施例1)
内径(対辺距離)30mm、高さ50mm、厚さ4mm、中心軸に直交する断面形状が正六角形のホウケイ酸ガラス製の管内に、同材質の粒径2mmの粒体を複数収容し融着連結した。アナターゼ型TiO2を塗布し焼き付けることで、管の内周面及び粒体の表面にTiO2光触媒層を形成した光反応器を得た。
【0071】
光反応器の外部に支持部材として、内径(対辺距離)60mm、高さ40mm、中心軸に直交する断面形状が正六角形のアルミ筒(反射率85%)を設置した。アルミ筒の内周面に、光源として、UV‐A LEDテープライト(365nm、60個/m、360μW/cm2)を一面に対して2本貼り付けた。アルミ筒の外周面に、厚み2mm、ピッチ2mm、高さ20mmのアルミヒートシンクを固定し、光反応器の下部に冷却用の直径90mmのDCファン(FAN-100)を設置することで実施例1の光反応器モジュールを得た。そして、光反応器の入口及び出口に、1/4インチのポリテトラフルオロエチレン製の継手で取り合い、出口部には反応器出口温度計測用の熱電対(TC-110)を設け、LED基板にはLED基板表面温度計測用の熱電対(TC-200)を設けることにより、実施例1の光反応器システムを得た。
【0072】
[油脂分解性能の評価]
光反応器モジュールで処理をする水溶系の油脂を含有する流体として、水で固形分を1%に調製した牛乳を用い、チューブポンプを用いて90mL/minにて光反応器内を循環しながら、光反応器にLEDを照射し、TC-110=60℃、TC-200<80℃となるようにファンの出力を制御して、光触媒反応による油脂分解試験を実施した。LEDを10h照射後の牛乳中の油脂量をTOC(全有機炭素測定)により定量することで、油脂分解性能を評価した。油脂分解性能が高いほど、光触媒反応が促進されていることを意味する。
【0073】
(比較例1)
実施例1と同様の光反応器システムを用い、ファンの出力を100%で運転したこと以外は、実施例1と同様にして光反応器内の温度の計測、LEDの温度の計測、及び油脂分解性能の評価を行った。
【0074】
(実施例2)
実施例1と同様の光反応器システムを用い、ファンの出力を5%で運転したこと以外は、実施例1と同様にして光反応器内の温度の計測、LEDの温度の計測、及び油脂分解性能の評価を行った。
【0075】
実施例1、比較例1及び比較例2の光反応器内の温度の経時変化を
図7に示し、光源の温度の経時変化を
図8に示す。実施例1の反応器内の温度は、60℃に維持された。実施例1のLEDの温度は、80℃を超えない温度に維持され、試験後に照度計でLEDの照度を計測した結果、LEDの照度低下は無かった。また、実施例1の油脂分解量は、40mg/Lであった。比較例1の油脂分解量は、3mg/Lに止まり、この時の反応器内の温度は、32℃であった。比較例2では、光反応器システムの運転と共に反応器内の温度及びLEDの温度が上昇し、反応器内の温度が100℃で反応液が沸騰し、系外への飛散がみられ、LED温度が140℃を超えた際に、LEDが破損(絶縁)した。以上により、実施例1の光反応器モジュール及び光反応器システムは、光反応器内の温度を制御し、光反応器における反応速度を最大化しながら、LEDの性能を損なうことなく、長時間運転することができることを確認した。
【0076】
以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更などを行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。