IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 芝浦メカトロニクス株式会社の特許一覧

特開2023-13151プラズマアプリケータ、およびプラズマ処理装置
<>
  • 特開-プラズマアプリケータ、およびプラズマ処理装置 図1
  • 特開-プラズマアプリケータ、およびプラズマ処理装置 図2
  • 特開-プラズマアプリケータ、およびプラズマ処理装置 図3
  • 特開-プラズマアプリケータ、およびプラズマ処理装置 図4
  • 特開-プラズマアプリケータ、およびプラズマ処理装置 図5
  • 特開-プラズマアプリケータ、およびプラズマ処理装置 図6
  • 特開-プラズマアプリケータ、およびプラズマ処理装置 図7
  • 特開-プラズマアプリケータ、およびプラズマ処理装置 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023013151
(43)【公開日】2023-01-26
(54)【発明の名称】プラズマアプリケータ、およびプラズマ処理装置
(51)【国際特許分類】
   H05H 1/24 20060101AFI20230119BHJP
   C02F 1/30 20230101ALI20230119BHJP
   B01J 19/08 20060101ALI20230119BHJP
【FI】
H05H1/24
C02F1/30
B01J19/08 E
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2021117118
(22)【出願日】2021-07-15
(71)【出願人】
【識別番号】000002428
【氏名又は名称】芝浦メカトロニクス株式会社
(74)【代理人】
【識別番号】100108062
【弁理士】
【氏名又は名称】日向寺 雅彦
(74)【代理人】
【識別番号】100168332
【弁理士】
【氏名又は名称】小崎 純一
(74)【代理人】
【識別番号】100146592
【弁理士】
【氏名又は名称】市川 浩
(72)【発明者】
【氏名】イヴァン ペトロフ ガナシェフ
【テーマコード(参考)】
2G084
4D037
4G075
【Fターム(参考)】
2G084AA02
2G084AA03
2G084AA19
2G084AA25
2G084BB05
2G084CC04
2G084CC06
2G084CC14
2G084CC33
2G084CC34
2G084CC35
2G084DD04
2G084DD20
2G084DD44
2G084DD45
2G084DD61
2G084FF07
2G084HH07
2G084HH23
2G084HH29
4D037AB03
4D037AB18
4D037BA16
4D037BB01
4G075AA13
4G075AA61
4G075BA10
4G075CA47
4G075DA02
4G075DA11
4G075EA02
4G075EB41
4G075EC21
4G075FB02
4G075FC15
(57)【要約】      (修正有)
【課題】電界強度分布の時間平均値が均一で、且つ、瞬間的なプラズマ分布の均一化を図ることができるプラズマアプリケータ、およびプラズマ処理装置を提供することである。
【解決手段】実施形態に係るプラズマアプリケータ1は、スロットを有し、マイクロ波が導入される導波管11と、前記導波管の内部に設けられ、前記導波管の管軸に沿って並ぶ複数の可変インピーダンス素子12aと、前記複数の可変インピーダンス素子のそれぞれに電気的に接続され、前記複数の可変インピーダンス素子のそれぞれのインピーダンスの高低を電気的に切り替え可能なスイッチング素子13aと、を備えている。
【選択図】図1
【特許請求の範囲】
【請求項1】
スロットを有し、マイクロ波が導入される導波管と、
前記導波管の内部に設けられ、前記導波管の管軸に沿って並ぶ複数の可変インピーダンス素子と、
前記複数の可変インピーダンス素子のそれぞれに電気的に接続され、前記複数の可変インピーダンス素子のそれぞれのインピーダンスの高低を電気的に切り替え可能なスイッチング素子と、
を備えたプラズマアプリケータ。
【請求項2】
(m-1)個以上の前記可変インピーダンス素子が等間隔で前記導波管の管軸に沿った方向に配置され、前記可変インピーダンス素子の前記間隔が以下の式を満足する請求項1記載のプラズマアプリケータ。
L=(n+1/m)×(λ/2)
Lは、前記可変インピーダンス素子の前記間隔である。
nは、0、1、2のいずれかである。
mは、2以上の整数である。
λは、前記導波管内の前記マイクロ波の波長である。
【請求項3】
前記導波管の一方の端部は開口し、
前記導波管の管軸に沿った方向において、前記スロットは、前記開口と、前記複数の可変インピーダンス素子と、の間に設けられている請求項1または2に記載のプラズマアプリケータ。
【請求項4】
請求項1~3のいずれか1つに記載のプラズマアプリケータと、
前記プラズマアプリケータに設けられた導波管にマイクロ波を導入するマイクロ波発生部と、
前記プラズマアプリケータに設けられた複数のスイッチング素子に電気的に接続された電源と、
前記複数のスイッチング素子を制御するコントローラと、
を備え、
前記コントローラは、
前記複数のスイッチング素子のうちの1つをON状態とし、
残りの前記スイッチング素子をOFF状態とするプラズマ処理装置。
【請求項5】
前記コントローラは、前記ON状態とする前記スイッチング素子を選択することで、前記マイクロ波が反射される位置を変化させる請求項4記載のプラズマ処理装置。
【請求項6】
前記コントローラは、前記複数のスイッチング素子の前記ON状態と前記OFF状態を切り替えることで、前記マイクロ波が反射される位置を移動させる請求項4または5に記載のプラズマ処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、プラズマアプリケータ、およびプラズマ処理装置に関する。
【背景技術】
【0002】
プラズマ処理は、例えば、微細構造体を製造する際に活用されている。例えば、半導体装置、フラットパネルディスプレイ、フォトマスクなどの製造においては、エッチングや、アッシングなどの各種の処理が行われている。
また、近年においては、大気圧以上の雰囲気においてプラズマ処理を行う大気圧プラズマ処理や、液体中においてプラズマ処理を行う液中プラズマ処理なども行われている。
【0003】
この様なプラズマ処理において、マイクロ波を用いてプラズマを発生させる場合がある。マイクロ波を用いれば、高密度プラズマを容易に生成することができる。例えば、スロットを有し、マイクロ波が導入される導波管を備えたプラズマアプリケータが提案されている。
【0004】
この様なプラズマアプリケータにおいては、導波管の一方の端部は閉鎖されている。そのため、導波管の内部を伝播する進行波と、導波管の端面で反射した反射波とが重なり合って、導波管の内部に定在波(定常波)が形成される。ところが、定在波が形成されると、導波管の管軸に沿った方向(導波管が延びる方向)において、定在波に、電界強度が高い部分と、電界強度が低い部分とが生じることになる。スロットの外側に放射されるマイクロ波に、電界強度が高い部分と、電界強度が低い部分とが生じると、発生するプラズマの密度が不均一となる。プラズマの密度が不均一となれば、均一な処理を行うことが困難となる。
【0005】
そこで、導波管の管軸に沿った方向に移動する反射板を、導波管の端部に設ける技術が提案されている。(例えば、特許文献1を参照)
導波管の管軸に沿った方向に移動する反射板が設けられていれば、進行波が反射板により反射される位置が変わるので、反射波の位相を変えることができる。反射波の位相が変化すれば、定在波の最大電界強度位置を移動させることができる。例えば、反射板を所定の速度で往復移動させれば、定在波の最大電界強度位置が同じ速度で往復移動する。そのため、定在波に、電界強度が高い部分と、電界強度が低い部分とがあったとしても、時間平均で見れば、電界強度を均一化させることができる。そのため、導波管から照射されるマイクロ波で生成されるプラズマの密度も、時間平均で見れば、均一化される。
【0006】
ところが、半導体ウェーハを処理して電子デバイスを製造する際に、電界強度の変化が遅い場合、プラズマが時間的に均一であっても、瞬間的に見れば、不均一である。そのため、ウェーハが瞬間的に不均一に帯電(チャージアップ)され、帯電度合いの異なる領域の間に瞬間的に強い電流が流れる。その結果、ウェーハ中の電子デバイスに電気的なダメージが起きる。そのため、プラズマは、時間平均で高い均一性があるだけではなく、瞬間的な密度分布においても高い均一性が要求される。すなわち、プラズマが均一で、プラズマ密度に局所的な変動のない状態が要求される。
電界強度の変化が遅い場合、プラズマ分布が電界強度分布に応じて変動するので、瞬間的なプラズマ分布が均一にならない。したがって、電界強度の変化が遅いプラズマアプリケータでは、電界強度の分布を時間平均で見れば均一にできたとしても、電界強度の瞬間的な分布には、定在波を反映するムラが残る。
【0007】
瞬間的なプラズマ分布のムラを無くすには、電界の変動は、プラズマの応答時間より速くしなければならない。プラズマの応答時間は、数ms(ミリ秒)である。そのため、機械的な方法によって反射板を数ms以下で任意の位置に高速で移動させるのは困難である。そのため、瞬間的なプラズマ分布にムラが残り、ウェーハは不均一に帯電され、デバイスに電気的なダメージが入る。そこで、瞬間的なプラズマ分布の均一化(ムラが生じないように抑制すること)を図ることができる技術の開発が望まれていた。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2001-203099号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明が解決しようとする課題は、電界強度分布の時間平均値が均一で、且つ、瞬間的なプラズマ分布の均一化を図ることができるプラズマアプリケータ、およびプラズマ処理装置を提供することである。
【課題を解決するための手段】
【0010】
実施形態に係るプラズマアプリケータは、スロットを有し、マイクロ波が導入される導波管と、前記導波管の内部に設けられ、前記導波管の管軸に沿って並ぶ複数の可変インピーダンス素子と、前記複数の可変インピーダンス素子のそれぞれに電気的に接続され、前記複数の可変インピーダンス素子のそれぞれのインピーダンスの高低を電気的に切り替え可能なスイッチング素子と、を備えている。
【発明の効果】
【0011】
本発明の実施形態によれば、電界強度分布の時間平均値が均一で、且つ、瞬間的なプラズマ分布の均一化を図ることができるプラズマアプリケータ、およびプラズマ処理装置が提供される。
【図面の簡単な説明】
【0012】
図1】本実施の形態に係るプラズマ処理装置を例示するための模式断面図である。
図2】本実施の形態に係るプラズマ処理装置を例示するための模式平面図である。
図3】比較例に係る導波管を例示するための模式断面図である。
図4】他の比較例に係る導波管を例示するための模式断面図である。
図5】他の比較例に係る導波管を例示するための模式断面図である。
図6】他の実施形態に係るプラズマ処理装置を例示するための模式断面図である。
図7】他の実施形態に係るプラズマ処理装置を例示するための模式平面図である。
図8】(a)他の実施形態に係るプラズマ処理装置を例示するための模式断面図である。(b)他の実施形態に係るプラズマ処理装置を例示するための模式平面図である。
【発明を実施するための形態】
【0013】
以下、図面を参照しつつ、実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
【0014】
図1は、本実施の形態に係るプラズマ処理装置100を例示するための模式断面図である。
図2は、本実施の形態に係るプラズマ処理装置100を例示するための模式平面図である。
図1および図2に例示をしたプラズマ処理装置100は、大気中においてプラズマ処理を行うプラズマ処理装置である。すなわち、プラズマ処理装置100は、大気圧以上の雰囲気においてプラズマ処理を行う大気圧プラズマ処理装置の一例である。
【0015】
図1および図2に示すように、プラズマ処理装置100には、例えば、プラズマアプリケータ1、電源2、マイクロ波発生部3、載置部4、およびコントローラ5が設けられている。
プラズマアプリケータ1は、例えば、導波管11、反射部12、およびスイッチング部13を有する。
【0016】
導波管11には、マイクロ波が導入される。例えば、導波管11は、管状を呈し、一方向に延びる形状を有する。導波管11の一方の端部は開口している。導波管11の他方の端部は閉鎖されている。導波管11の開口には、例えば、後述するマイクロ波発生部3が接続される。導波管11の内部空間は、マイクロ波が伝播する空間となる。
【0017】
導波管11の断面形状には特に限定がない。導波管11の断面形状は、例えば、四角形、円形などとすることができる。図1に例示をした導波管11の断面形状は、矩形である。断面形状が四角形の導波管11の、管軸に平行な一方の側面は、マイクロ波の電界方向に垂直な方向の面(H面)となる。管軸に平行で、且つ、H面に対して垂直な面(E面)は、マイクロ波Mの電界方向に平行な面となる。一般的な導波管の場合には、管軸に垂直な面(端面)が反射面(短絡面;R面)となるが、本実施の形態に係るプラズマアプリケータ1の場合には、導波管11の内部に設けられた、後述する反射部12がR面として機能する。
【0018】
一方のH面には、スロット11aが形成されている。スロット11aは、導波管11の外壁と内壁との間を貫通している。スロット11aは、少なくとも1つ設けることができる。1つのスロット11aを設ける場合には、導波管11が延びる方向に延びるスロット11aを設けることができる。複数のスロット11aを設ける場合には、複数のスロット11aが直線を描くように、スロット11aを、導波管11が延びる方向に複数並べて設けることができる。導波管11の管軸に沿った方向において、スロット11aは、導波管11の開口と、複数の可変インピーダンス素子12aと、の間に設けられている。
なお、スロット11aの延びる方向(長手方向)、導波管11の延びる方向、および導波管11の管軸に沿った方向は、どれも同じ方向である。
【0019】
導波管11は、例えば、アルミニウム合金などのマイクロ波を反射しやすい材料から形成される。
【0020】
また、導波管11の外面などに、スロット11aを覆う窓11bを設けることもできる。窓11bは、板状を呈し、マイクロ波を透過させる材料から形成される。窓11bは、例えば、石英などの誘電体材料から形成することができる。
【0021】
ここで、導波管11の内部において形成される定在波について説明する。
前述したように、一般的な導波管の場合には、管軸に垂直な面(端面)が反射面(R面)となる。そのため、導波管の内部を伝播した進行波は、導波管の端面で反射する。導波管の端面で反射した反射波は、導波管の内部を進行波とは逆の方向に伝播する。
【0022】
図3は、比較例に係る導波管211を例示するための模式断面図である。
導波管211は、断面形状が四角形の導波管である。図3に示すように、マイクロ波は、導波管211の開口端から、導波管211の内部に導入される。導波管211の内部に導入されたマイクロ波は、導波管211の端面(R面)に向かう進行波となる。進行波は、R面で反射され、導波管211の内部を進行波とは逆の方向に伝播する反射波となる。
【0023】
この場合、進行波と反射波は、波長、周期(振動数または周波数)、振幅、速さが同じで進行方向が互いに逆となる。そのため、導波管211の内部において、進行波と反射波とが重なり合って定在波が形成される。定在波が形成されると、電界強度の分布210は図3に示すものとなる。そのため、導波管211の管軸に沿った方向において、電界強度が高い部分210aと、電界強度が低い部分210bとが生じる。また、定在波は、波形が進行せずその場に止まって振動しているようにみえる波動であるため、電界強度が高い部分210aと、電界強度が低い部分210bとが同じ位置に留まる。
【0024】
電界強度が高い部分210aと、電界強度が低い部分210bとが同じ位置に留まると、図3に示すように、スロット211aから放射されるマイクロ波のエネルギーにむらが生じる。マイクロ波のエネルギーにむらが生じると、スロット211aの外側において発生するプラズマの密度が不均一となる。プラズマの密度が不均一となれば、均一な処理を行うことが困難となる。
【0025】
図4は、他の比較例に係る導波管311を例示するための模式断面図である。
導波管311は、断面形状が四角形の導波管である。図4に示すように、マイクロ波は、導波管311の開口端から、導波管311の内部に導入される。導波管311の内部に導入されたマイクロ波は、R面に向かう進行波となる。進行波は、R面で反射され、導波管311の内部を進行波とは逆の方向に伝播する反射波となる。そのため、導波管311においても、前述した導波管211と同様に、進行波と反射波とが重なり合って定在波が形成される。定在波が形成されると、電界強度の分布310は図4に示すものとなる。
【0026】
ただし、導波管311の場合には、導波管311の開口側とは反対側の端部に、反射板311bが設けられている。導波管311の管軸に沿った方向において、反射板311bの位置は、移動可能となっている。例えば、ソレノイドやモータなどの駆動機器を用いて、反射板311bを導波管311の管軸に沿った方向に往復移動させることができる。導波管311の管軸に沿った方向において、反射板311bの位置が変化すれば、進行波が反射される位置が変わるので、反射波の位相を変えることができる。反射波の位相が変化すれば、図4に示すように、定在波の最大電界強度位置を移動させることができる。
【0027】
例えば、反射板311bを所定の速度で往復移動させれば、定在波の最大電界強度位置が同じ速度で往復移動する。そのため、定在波に、電界強度が高い部分と、電界強度が低い部分とがあったとしても、時間平均で見れば、電界強度を均一化させることができる。 その結果、スロット311aの外側において発生するプラズマの密度が不均一となるのを抑制することができる。
【0028】
図5は、他の比較例に係る導波管411を例示するための模式断面図である。
導波管411は、断面形状が四角形の導波管である。図5に示すように、マイクロ波は、導波管411の開口端から、導波管411の内部に導入される。導波管411の内部に導入されたマイクロ波は、R面に向かう進行波となる。進行波は、R面で反射され、導波管411の内部を進行波とは逆の方向に伝播する反射波となる。そのため、導波管411においても、前述した導波管211と同様に、進行波と反射波とが重なり合って定在波が形成される。定在波が形成されると、電界強度の分布410は図5に示すものとなる。
【0029】
ただし、導波管411の場合には、導波管411の開口側とは反対側の端部の近傍に、複数の反射板411bが設けられている。導波管411の管軸に沿った方向において、複数の反射板411bは、並べて設けられている。複数の反射板411bのそれぞれは、導波管411の管軸に垂直な方向に移動可能となっている。例えば、ソレノイドやモータなどの駆動機器を用いて、複数の反射板411bから選択された1つの反射板411bを、導波管411の内部に挿入したり、導波管411の内部から引き抜いたりすることができる。例えば、複数の反射板411bを、導波管411の内部に順次挿入したり、導波管411の内部から順次引き抜いたりすることができる。
【0030】
この様にすれば、導波管411の管軸に沿った方向において、進行波が反射される位置が変わるので、反射波の位相を変えることができる。反射波の位相が変化すれば、図5に示すように、定在波の最大電界強度位置を移動させることができる。そのため、定在波に、電界強度が高い部分と、電界強度が低い部分とがあったとしても、時間平均で見れば、電界強度を均一化させることができる。
その結果、スロット411aの外側において発生するプラズマの密度が不均一となるのを抑制することができる。
【0031】
ここで、前述した反射板311b、411bの移動速度が速くなれば、定在波の最大電界強度位置の移動速度が速くなる。そのため、電界強度分布の変動速度も速くなる。
この場合、電界強度分布の変動がプラズマの応答速度より速くなると、瞬間的なプラズマ密度分布の不均一も抑制することができる。
【0032】
ところが、図4および図5において説明したものの場合には、反射板311b、411bを機械的に移動させているので、反射板311b、411bの移動速度を速くするのには限界がある。
【0033】
そこで、図1に示すように、本実施の形態に係るプラズマアプリケータ1には、反射部12、およびスイッチング部13が設けられている。
複数の反射部12のそれぞれは、可変インピーダンス素子12a、導体12b、および導体12cを有する。
可変インピーダンス素子12aは、導波管11の内部であって、導波管11の開口側とは反対側の端部の近傍に複数設けられている。導波管11の管軸に沿った方向において、複数の可変インピーダンス素子12aは、並べて設けられている。
【0034】
後述するように、スイッチング素子13aをON状態とすれば、反射部12が反射面(R面)となる。そのため、反射波の位相の制御を考慮すると、複数の可変インピーダンス素子12aは、等間隔で並べることが好ましい。
【0035】
また、定在波の櫛をm段階で等間隔に移動できるように、導波管11の管軸に沿った方向における、(m-1)個以上の可変インピーダンス素子12aを間隔Lで設置し、導波管11内のマイクロ波の波長をλとした場合に、間隔Lは、以下の式を満足するようにすることが好ましい。
L=(n+1/m)×(λ/2)
なお、nは、0、1、2のいずれかである。
mは、2以上の整数である。
間隔Lをこの様にすれば、反射波の位相の制御性を向上させることができる。
【0036】
可変インピーダンス素子12aは、例えば、PINダイオード(p-intrinsic-n Diode)とすることができる。PINダイオードのアノード端子にある程度以上の正の電圧をかけると、PINダイオードに直流電流が流れ、PINダイオードのマイクロ波に対するインピーダンスが小さくなる。電圧をかけない場合、PINダイオードに直流電流がほとんど流れず、PINダイオードのインピーダンスが高い。そのため、PINダイオードは、可変インピーダンス素子として好ましい。PINダイオードは、アノードとカソードが区別されるので、今後の説明にも区別する表現を使う。しかし、可変インピーダンス素子は、必ずしもアノード・カソードの区別のつく素子に限定されない。
また、導波管11の、管軸に直交する断面における可変インピーダンス素子12aの位置には特に限定はない。ただし、反射波の位相の制御性を考慮すると、導波管11の管軸の位置(断面の中心)、または、管軸の近傍に、可変インピーダンス素子12aを設けることが好ましい。
【0037】
導体12bの一方の端部は、可変インピーダンス素子12aのアノード側に電気的に接続されている。導体12bの他方の端部は、スイッチング部13(スイッチング素子13a)を介して、電源2に電気的に接続されている。導体12bは、例えば、銅やアルミニウムなどの金属を含む導線とすることができる。
【0038】
導体12cの一方の端部は、可変インピーダンス素子12aのカソード側に電気的に接続されている。導体12cの他方の端部は、グランド、または、電源2の負極側に電気的に接続されている。図1に例示をした導体12cは、接地された導波管11に電気的に接続されている。導体12cは、例えば、銅やアルミニウムなどの金属を含む導線とすることができる。
【0039】
スイッチング部13は、導波管11の外部に設けられている。スイッチング部13は、複数のスイッチング素子13aを有する。スイッチング部13は、複数の可変インピーダンス素子12aのそれぞれに電気的に接続されている。例えば、1つのスイッチング素子13aは、1組の可変インピーダンス素子12a、導体12b、および導体12cと電気的に接続されている。スイッチング素子13aは、例えば、トランジスタなどとすることができる。
後述するように、スイッチング部13は、複数の可変インピーダンス素子12aのそれぞれのインピーダンスの高低を電気的に切り替えることができる。
【0040】
電源2は、導波管11の外部に設けられている。電源2は、例えば、直流電源とすることができる。電源2は、複数のスイッチング素子13aに電気的に接続されている。例えば、電源2の正極は、スイッチング部13(スイッチング素子13a)を介して、複数の反射部12(可変インピーダンス素子12a)に電気的に接続される。可変インピーダンス素子12aのカソード側が接地されない場合には、電源2の負極と可変インピーダンス素子12aのカソード側とを、導体12cを介して電気的に接続することができる。
【0041】
マイクロ波発生部3は、導波管11の外部に設けられている。マイクロ波発生部3は、例えば、導波管11の開口側に接続することができる。マイクロ波発生部3は、導波管11にマイクロ波を導入する。マイクロ波発生部3は、例えば、マグネトロンとすることができる。マイクロ波発生部3は、例えば、周波数が1GHz~50GHz(例えば2.45GHz)のマイクロ波を発生させる。
【0042】
載置部4は、導波管11の外部に設けられている。載置部4の上面には、ワーク200が載置される。載置部4の上面は、導波管11のスロット11aに対向している。導波管11のスロット11aが設けられる側と、載置部4の上面との間の空間が、プラズマPが発生する領域となる。また、載置部4には、ワーク200を保持する手段を適宜設けることができる。ワーク200を保持する手段は、例えば、静電チャック、バキュームチャック、メカニカルチャックなどである。
【0043】
図2に示すように、載置部4は、プラズマアプリケータ1の下方を通過する。
ワーク200は、プラズマ処理の対象となるのであれば特に限定はない。ワーク200は、例えば、半導体ウェーハ、ガラス基板などとすることができる。
【0044】
コントローラ5は、導波管11の外部に設けられている。コントローラ5は、例えば、CPU(Central Processing Unit)などの演算部と、メモリなどの記憶部とを有する。例えば、コントローラ5は、コンピュータなどとすることができる。例えば、演算部は、記憶部に格納されている制御プログラムに基づいて、プラズマ処理装置100に設けられている各要素の動作を制御する。
【0045】
次に、プラズマ処理装置100の作用について説明する。
コントローラ5は、マイクロ波発生部3を制御して、マイクロ波を発生させる。発生したマイクロ波は、導波管11の開口から導波管11の内部に導入される。導波管11の内部に導入されたマイクロ波は、複数の反射部12に向けて伝播する。
【0046】
コントローラ5は、電源2を制御して、複数の可変インピーダンス素子(PINダイオード)12aにスイッチング素子13aを介して電圧を印加する。
また、コントローラ5は、スイッチング部13を制御して、複数の反射部12に向けて伝播するマイクロ波が反射する位置を変化させる。
例えば、コントローラ5は、複数のスイッチング素子13aを制御する。
コントローラ5は、複数のスイッチング素子13aのうちの1つをON状態とし、残りのスイッチング素子13aをOFF状態とする。
コントローラ5は、ON状態とするスイッチング素子13aを選択することで、マイクロ波が反射される位置を変化させる。
コントローラ5は、複数のスイッチング素子13aのON状態とOFF状態を切り替えることで、マイクロ波が反射される位置を移動させる。
【0047】
次に、複数のスイッチング素子13aの切り替えについてさらに説明する。
複数のスイッチング素子13aには電圧が印加されているので、ON状態となったスイッチング素子13aに電気的に接続されている、可変インピーダンス素子12a、導体12b、および導体12cには電流が流れる。電流が流れた可変インピーダンス素子12aは、導体となるので、入射したマイクロ波を反射させることができる。
【0048】
一方、OFF状態となったスイッチング素子13aには電流が流れない。そのため、OFF状態となったスイッチング素子13aに電気的に接続されている、可変インピーダンス素子12a、導体12b、および導体12cには電流が流れない。電流が流れない可変インピーダンス素子12aは、不導体となるので、入射したマイクロ波を透過させることができる。
【0049】
そのため、コントローラ5は、ON状態とするスイッチング素子13aを選択することで、反射面(R面)の位置(マイクロ波を反射させる位置)を変えることができる。例えば、複数のスイッチング素子13aのON状態とOFF状態を順次切り替えることで、導波管11の管軸に沿った方向に並ぶ複数の反射部12の、導体化と不導体化とを順次切り替えることができる。複数の反射部12の、導体化と不導体化とを順次切り替えれば、反射面の位置を順次変えることができる。反射面の位置を順次変えれば、反射波の位相が順次変わるので、図1に示すように、定在波の最大電界強度位置110を移動させることができる。
【0050】
そのため、定在波に、電界強度が高い部分と、電界強度が低い部分とがあったとしても、時間平均で見れば、電界強度を均一化させることができる。
また、複数のスイッチング素子13aのON状態とOFF状態を切り替えることで、反射面の位置を順次変えることができる。そのため、前述した反射板を機械的に移動させる場合と比べて、反射面の移動速度を速くすることができる。反射面の移動速度が速くなれば、定在波の最大電界強度位置110の移動速度が速くなる。そのため、プラズマ密度が電界強度分布変動に応じなくなり、時間平均された電界強度の振幅分布で決まり、プラズマ密度分布のムラが抑制される。
【0051】
なお、複数のスイッチング素子13aのON状態とOFF状態を切り替える際には、導波管11の管軸に沿った方向に、順番にスイッチング素子13aの切り替えを行うことができる。また、導波管11の管軸に沿った方向に、所定の数をあけてスイッチング素子13aの切り替えを行うこともできる。例えば、1つ置きにスイッチング素子13aの切り替えを行うこともできる。
【0052】
導波管11の内部を伝播するマイクロ波は、スロット11aを介して導波管11の外部に放射される。導波管11の外部に放射されたマイクロ波により、導波管11の外部の、スロット11aの近傍にプラズマPが励起される。前述したように、導波管11の外部に放射されたマイクロ波の、時間平均で見た場合の電界強度は均一化されているので、発生したプラズマPの密度も時間平均で見た場合に均一となる。さらに、切り替えを充分に速く(プラズマPの応答より速く)行うことによって、プラズマ密度分布の変動も抑制され、ムラの無いプラズマPになる。
【0053】
プラズマPが発生した領域に含まれている空気が、プラズマPにより励起、活性化されてラジカルおよびイオンなどのプラズマ生成物が生成される。生成されたプラズマ生成物が、ワーク200の表面に到達することで、ワーク200にプラズマ処理が施される。
【0054】
高い処理速度を実現するため、載置部4と導波管11との間の距離を短くした。そのため、プラズマPおよびプラズマ生成物がワーク200に到達し易くなる。また、プラズマ生成物が外部に拡散するのを抑制することができる。しかしながら、プラズマPの密度にむらがある状態で、載置部4と導波管11との間の距離を短くすると、処理ムラが発生し易くなる。
【0055】
前述したように、本実施の形態に係るプラズマ処理装置100によれば、定在波の最大電界強度位置110の移動速度を速くすることができるので、プラズマPの密度を均一にすることができる。そのため、載置部4と導波管11との間の距離を短くしても、処理ムラが発生するのを抑制することができる。載置部4と導波管11との間の距離は、数十μm以上、数mm以内とすることが好ましい。特に、数百Pa以上の圧力雰囲気、または、後述の液中プラズマでは、電子の拡散が弱まり、プラズマがスロット11aに接近して集中する。そのため、載置部4をできる限り導波管11に近づけることが好ましい。
【0056】
図6は、他の実施形態に係るプラズマ処理装置100aを例示するための模式断面図である。
図7は、他の実施形態に係るプラズマ処理装置100aを例示するための模式平面図である。
図6および図7に示すように、プラズマ処理装置100aには、例えば、プラズマアプリケータ1、電源2、マイクロ波発生部3、載置部4、コントローラ5、チャンバ6、およびガス供給部7が設けられている。
【0057】
チャンバ6は、例えば、気密構造を有する容器とすることができる。チャンバ6の内部の底面には、載置部4を設けることができる。載置部4は、駆動部4aによって回転される。チャンバ6の外部の天井面には、プラズマアプリケータ1を設けることができる。チャンバ6は、例えば、アルミニウム合金などの金属から形成することができる。
【0058】
図7に示すように、プラズマ処理装置100aのプラズマアプリケータ1のスロット11aは、導波管11の、管軸に平行な方向の長さ(以下、単にスロット11aの長さと呼ぶ)は、プラズマ処理装置100のプラズマアプリケータ1よりも短い。ワーク200が多角形の場合、スロット11aの長さは、ワーク200の回転中心と外周の角とを結ぶ線の長さ以下である。ワーク200が円形の場合、スロット11aの長さは、ワーク200の回転中心と円周上の一点とを結ぶ線の長さ以下である。
【0059】
また、ワーク200の回転中心から外周へ行くほど、回転速度は大きくなる。そのため、スロット11aは、ワーク200の回転中心から外周へ向かって幅が大きくなる形状であることが好ましい。例えば、スロット11aを扇形状とすることが好ましい。
または、回転中心側から外周側に向かうにつれて曲率が徐々に大きくなる湾曲形状としてもよい。より具体的には、最も中心に近い部分では径方向に沿い、最も外周に近い部分では径方向とは直交する方向に沿うように、回転中心側から徐々に曲率が大きくなる湾曲形状に形成される。このような形状にすることによっても、回転するワーク200の表面の任意の点がスロットを通過する長さを外周側ほど長くできるので、扇形状と同様の効果を得ることができる。
【0060】
ガス供給部7は、チャンバ6の内部の、載置部4と導波管11との間の空間にガスGを供給する。
ガス供給部7は、例えば、ノズル7a、ガス源7b、およびガス制御部7cを有する。 ノズル7aは、例えば、チャンバ6の側壁に設けることができる。
ガス源7bは、チャンバ6の外部に設けられている。ガス源7bは、ガスGが収納された高圧ボンベ、または、ガスGを供給する工場配管などとすることができる。
ガス制御部7cは、ノズル7aとガス源7bとの間に配管を介して接続されている。ガス制御部7cは、例えば、ノズル7aに供給されるガスGの流量および圧力の少なくともいずれかを制御する。また、ガス制御部7cは、ガスGの供給の開始と、ガスGの供給の停止とを切り替えることもできる。ガス制御部7cは、例えば、MFC(Mass Flow Controller)などとすることができる。
【0061】
ガスGは、プラズマ処理の種類や、ワーク200の表面の材料などに応じて適宜選択することができる。ガスGは、例えば、フッ素原子を含むガスや、酸素原子を含むガスなどである。
【0062】
プラズマ処理装置100aは、広い範囲のガス圧力(数百mPa~数気圧)の雰囲気においてプラズマ処理を行うプラズマ処理装置とすることができる。特に大気圧の場合、チャンバ6の内部を所定の圧力にまで減圧する排気部は要らない。
【0063】
本実施の形態に係るプラズマ処理装置100aは、前述したプラズマ処理装置100と同様の作用、効果を有する。
また、ガス供給部7が設けられているので、必要に応じて各種のガスを用いることができる。この場合、チャンバ6が設けられているので、フッ素原子を含むガスのような反応性の高いガスが、プラズマ処理装置100aの周辺に拡散するのを抑制することができる。
そのため、プラズマ生成物の成分の多様化、ひいては、プラズマ処理の多様化を図ることができる。
また、載置部4を回転可能とすることで、前述したプラズマ処理装置100と比べて、プラズマアプリケータ1を小型化することができる。
なお、プラズマ処理装置100aに排気部を設け、減圧雰囲気においてプラズマ処理を行うようにしてもよい。
【0064】
図8(a)は、他の実施形態に係るプラズマ処理装置100bを例示するための模式断面図である。
図8(b)は、他の実施形態に係るプラズマ処理装置100bを例示するための模式平面図である。
プラズマ処理装置100bは、液体中においてプラズマ処理を行う液中プラズマ処理装置の一例である。
図8(a)および図8(b)に示すように、プラズマ処理装置100bには、例えば、プラズマアプリケータ1、電源2、マイクロ波発生部3、コントローラ5、チャンバ8、および搬送部9が設けられている。
【0065】
チャンバ8は、例えば、液密構造を有する容器とすることができる。チャンバ8には、ワーク200を搬入する図示しない搬入口と、ワーク200を搬出する図示しない搬出口を設けることができる。
【0066】
チャンバ8の内部には、液体300が満たされている。液体300には特に限定がない。液体300は、例えば、水、アルコールなどの有機溶剤、薬液などとすることができる。
【0067】
搬送部9は、チャンバ8の内部に設けられている。搬送部9は、液体300中にあるワーク200を所定の位置まで搬送する。搬送部9は、例えば、コンベアなどとすることができる。
【0068】
プラズマ処理装置100bにおいては、以下の様にしてプラズマ処理を行うことができる。
例えば、図示しない搬入装置により、搬入口を介して、ワーク200をチャンバ8の内部の液体中に搬入する。搬送部9は、液体中にあるワーク200を、スロット11aに対向する位置まで搬送する。
【0069】
プラズマアプリケータ1は、スロット11aを介して液体300にマイクロ波を放射する。この際、複数の反射部12とスイッチング部13とにより、時間平均で見た場合の電界強度の均一化が図られる。
【0070】
液体300にマイクロ波が放射されると、液体300が加熱されて気泡300aが発生する。そして、気泡300aにマイクロ波が入射することでプラズマが発生し、プラズマによりプラズマ生成物が生成される。例えば、気泡300aに含まれる蒸気やガス、あるいは気泡300aと液体300との界面にある液体300や液体300に含まれている物質などがプラズマによって励起、活性化されて中性活性種、イオンや電子などの荷電粒子などのプラズマ生成物が生成される。
【0071】
生成されたプラズマ生成物は、液体300中に拡散し、液体300中に拡散したプラズマ生成物により、ワーク200にプラズマ処理が施される。
【0072】
搬送部9は、プラズマ処理されたワーク200を、搬出口の位置まで搬送する。搬出口の位置まで搬送されたワーク200は、図示しない搬出装置により、チャンバ8の外部に搬出される。
【0073】
なお、以上においては、液体300を加熱し、液体300を沸騰させて気泡300aを発生させたが、これに限定されるわけではない。例えば、液体300を減圧して気泡300aを発生させてもよい。また、液体300にガスを供給して気泡300aを生成してもよい。
【0074】
また、以上においては、プラズマ生成物により、ワーク200をプラズマ処理する場合を例示したが、プラズマ生成物により、液体300をプラズマ処理することもできる。例えば、液体300に含まれている不純物、細菌、ウィルスなどを、プラズマ生成物により分解したり、無害化したりすることもできる。
【0075】
以上、実施の形態について例示をした。しかし、本発明はこれらの記述に限定されるものではない。
前述の実施の形態に関して、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。
例えば、プラズマ処理装置やプラズマアプリケータに設けられる要素の形状、寸法、材質、配置などは、例示をしたものに限定されるわけではなく適宜変更することができる。 また、前述した各実施の形態が備える各要素は、可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。
【符号の説明】
【0076】
1 プラズマアプリケータ、2 電源、3 マイクロ波発生部、5 コントローラ、11 導波管、11a スロット、11b 窓、12 反射部、12a 可変インピーダンス素子、12b 導体、12c 導体、13 スイッチング部、13a スイッチング素子、100 プラズマ処理装置、100a プラズマ処理装置、100b プラズマ処理装置、110 定在波の最大電界強度位置、200 ワーク、300 液体、300a 気泡
図1
図2
図3
図4
図5
図6
図7
図8