IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ピンポイントフォトニクス株式会社の特許一覧

特開2023-133652軸移動ステージとカメラの連携制御システム、2軸移動ステージとカメラの連携制御システムの画像保存方法、2軸移動ステージとカメラの連携制御システムのステージ移動方法、2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法、および、2軸移動ステージとカメラの連携制御システムの位置情報表示方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023013365
(43)【公開日】2023-01-26
(54)【発明の名称】2軸移動ステージとカメラの連携制御システム、2軸移動ステージとカメラの連携制御システムの画像保存方法、2軸移動ステージとカメラの連携制御システムのステージ移動方法、2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法、および、2軸移動ステージとカメラの連携制御システムの位置情報表示方法
(51)【国際特許分類】
   G02B 21/36 20060101AFI20230119BHJP
   G01N 21/64 20060101ALI20230119BHJP
   G06F 16/14 20190101ALI20230119BHJP
【FI】
G02B21/36
G01N21/64 E
G06F16/14 100
【審査請求】未請求
【請求項の数】26
【出願形態】OL
(21)【出願番号】P 2021117494
(22)【出願日】2021-07-16
(71)【出願人】
【識別番号】518161916
【氏名又は名称】ピンポイントフォトニクス株式会社
(74)【代理人】
【識別番号】715008975
【氏名又は名称】木島 公一朗
(72)【発明者】
【氏名】木島 公一朗
【テーマコード(参考)】
2G043
2H052
【Fターム(参考)】
2G043AA03
2G043AA06
2G043EA01
2G043FA02
2G043HA01
2G043HA09
2G043LA03
2H052AA09
2H052AB25
2H052AC04
2H052AC05
2H052AC14
2H052AD18
2H052AF14
2H052AF21
2H052AF25
(57)【要約】
【課題】複数のウェルを有するウェルプレートに搭載された試料を光学顕微鏡にて観察し、その画像を記録する際に、カメラにより保存される観察像の画像ファイル名は、撮影日時の情報のみであり、観察試料の情報を付加することが容易でないために、試料の間違いなどが生じる危険性があるとともに確認のための時間が必要であった。
【解決手段】ウェルプレートを搭載する移動ステージと光学顕微鏡の画像を取得するカメラを1つのシステムにより制御することにより、画像ファイル名にウェル番号を入れることが可能となり試料の間違いなどが生じる危険性を低減するとともに、協調制御により作業効率を改善する。
【選択図】図29
【特許請求の範囲】
【請求項1】
光学顕微鏡により観察する試料を搭載する2軸移動ステージと、光学顕微鏡により観察する試料の光学顕微鏡観察像を撮影するカメラ装置と、2軸移動ステージおよび撮影装置を制御するとともに前記カメラにより撮影された画像を保存する機能を有するコントローラーよりなる2軸移動ステージとカメラの連携制御システムにおいて、
前記コントローラーは、前記カメラ装置により撮影した画像の保存を行う際に、2軸移動ステージのステージ位置情報を用いて、画像保存名を生成することを特徴とする2軸移動ステージとカメラの連携制御システム
【請求項2】
上記2軸移動ステージとカメラの連携制御システムにおいて、
前記光学顕微鏡により観察する試料は、複数のウェルを有するウェルプレートのウェル内に配置されており、
生成される画像保存名は、ウェルプレートのウェル数に応じて構成された各ウェルの位置情報と2軸移動ステージのステージ位置情報を比較して推定されるウェル番号情報を含むことを特徴とする請求項1に記載の2軸移動ステージとカメラの連携制御システム
【請求項3】
上記2軸移動ステージとカメラの連携制御システムにおいて、
前記各ウェルの位置情報と2軸移動ステージのステージ位置情報を比較して推定されるウェル番号情報は、2軸移動ステージのそれぞれの軸の位置情報からそれぞれ推定される2つのウェル番号情報を含むことを特徴とする請求項1および2に記載の2軸移動ステージとカメラの連携制御システム
【請求項4】
上記2軸移動ステージとカメラの連携制御システムにおいて、
前記コントローラーによる2軸移動ステージとカメラ装置の制御は、モニター画面上に表示されるグラフィックユーザインターフェースにより指示がなされる構成となっており、
画像保存の指示が、グラフィックユーザインターフェースを介して行われることを特徴とする請求項1より3のいずれかに記載の2軸移動ステージとカメラの連携制御システム
【請求項5】
上記2軸移動ステージとカメラの連携制御システムにおいて、
前記コントローラーによる2軸移動ステージとカメラ装置の制御は、モニター画面上に表示されるグラフィックユーザインターフェースにより指示がなされる構成となっており、
画像保存名を構成するウェル番号情報の推定にもちいられる各ウェルの位置情報は、
グラフィックユーザインターフェースにおけるウェルプレートのウェル数選択機能により選択された状態を反映することを特徴とする請求項1より4のいずれかに記載の2軸移動ステージとカメラの連携制御システム
【請求項6】
上記2軸移動ステージとカメラの連携制御システムにおいて、
モニター画面上に表示されるグラフィックユーザインターフェースにおいて、ウェル番号を選択する領域が存在し、ウェル番号を選択することにより、
ウェルプレートのウェル数に応じて構成された各ウェルの位置情報に応じて、顕微鏡の観察視野に選択したウェル番号が配置されるように、2軸移動ステージが移動することを特徴とする請求項1より5のいずれかに記載の2軸移動ステージとカメラの連携制御システム
【請求項7】
上記2軸移動ステージとカメラの連携制御システムにおいて、
モニター画面上に表示されるグラフィックユーザインターフェースにおいて、2軸移動ステージのいずれかあるいは両方の移動をその移動方向とともに選択する領域が存在し、その領域を選択することにより、2軸移動ステージが指定された移動量移動することを特徴とする請求項1より6のいずれかに記載の2軸移動ステージとカメラの連携制御システム
【請求項8】
上記2軸移動ステージとカメラの連携制御システムにおいて、
2軸移動ステージが移動した後には、撮影がなされ、モニター画面に表示されることを特徴とする請求項1より7のいずれかに記載の2軸移動ステージとカメラの連携制御システム
【請求項9】
上記2軸移動ステージとカメラの連携制御システムにおいて、
モニター画面に表示される画像は、カラーマップ画像であることを特徴とする請求項1より8のいずれかに記載の2軸移動ステージとカメラの連携制御システム
【請求項10】
上記2軸移動ステージとカメラの連携制御システムにおいて、
2軸移動ステージが移動した後には、
2軸移動ステージのステージ位置情報がグラフィックユーザインターフェース内に表示されることを特徴とする請求項1より9のいずれかに記載の2軸移動ステージとカメラの連携制御システム
【請求項11】
上記2軸移動ステージとカメラの連携制御システムにおいて、
2軸移動ステージが移動した後には、
ウェルプレートのウェル数に応じて構成された各ウェルの位置情報と2軸移動ステージのステージ位置情報を比較して推定されるウェル番号情報がグラフィックユーザインターフェース内に表示されることを特徴とする請求項1より10のいずれかに記載の2軸移動ステージとカメラの連携制御システム
【請求項12】
上記2軸移動ステージとカメラの連携制御システムにおいて、
光学顕微鏡は、接眼レンズが具備されている光学顕微鏡であることを特徴とする請求項1より11のいずれかに記載の2軸移動ステージとカメラの連携制御システム
【請求項13】
上記2軸移動ステージとカメラの連携制御システムにおいて、
光学顕微鏡に2軸移動ステージを取り付ける際に、2軸移動ステージを取り付ける前の光学顕微鏡における試料ステージを取り除くことなく、2軸移動ステージが取り付けられており、
前記2軸移動ステージを構成する2つの移動距離が短い軸のモーター駆動軸は、光学顕微鏡における試料ステージよりも対物レンズ側に位置することを特徴とする請求項1より12のいずれかに記載の2軸移動ステージとカメラの連携制御システム
【請求項14】
光学顕微鏡により観察する試料を搭載する2軸移動ステージと、光学顕微鏡により観察する試料の光学顕微鏡観察像を撮影するカメラ装置と、2軸移動ステージおよび撮影装置を制御するとともに前記カメラにより撮影された画像を保存する機能を有するコントローラーよりなる2軸移動ステージとカメラの連携制御システムにおいて、
前記コントローラーは、前記カメラ装置により撮影した画像の保存を行う際に、2軸移動ステージのステージ位置情報を、画像保存名の一部に用いることを特徴とする2軸移動ステージとカメラの連携制御システムの画像保存方法
【請求項15】
光学顕微鏡により観察する試料を搭載する2軸移動ステージと、光学顕微鏡により観察する試料の光学顕微鏡観察像を撮影するカメラ装置と、2軸移動ステージおよび撮影装置を制御するとともに前記カメラにより撮影された画像を保存する機能を有するコントローラーよりなる2軸移動ステージとカメラの連携制御システムにおいて、
前記光学顕微鏡により観察する試料は、複数のウェルを有するウェルプレートのウェル内に配置されており、
前記コントローラーは、前記カメラ装置により撮影した画像の保存を行う際に生成される画像保存名は、ウェルプレートのウェル数に応じて構成された各ウェルの位置情報と2軸移動ステージのステージ位置情報を比較して推定されるウェル番号情報を含むことを特徴とする2軸移動ステージとカメラの連携制御システムの画像保存方法
【請求項16】
上記2軸移動ステージとカメラの連携制御システムの画像保存方法において、
前記各ウェルの位置情報と2軸移動ステージのステージ位置情報を比較して推定されるウェル番号情報は、2軸移動ステージのそれぞれの軸の位置情報からそれぞれ推定される2つのウェル番号情報を含むことを特徴とする請求項15に記載の2軸移動ステージとカメラの連携制御システムの画像保存方法
【請求項17】
上記2軸移動ステージとカメラの連携制御システムの画像保存方法において、
前記コントローラーによる2軸移動ステージとカメラ装置の制御は、モニター画面上におけるグラフィックユーザインターフェースにより指示がなされる構成となっており、
画像保存の指示が、グラフィックユーザインターフェースを介して行われることを特徴とする請求項14より16のいずれかに記載の2軸移動ステージとカメラの連携制御システムの画像保存方法
【請求項18】
上記2軸移動ステージとカメラの連携制御システムの画像保存方法において、
前記コントローラーによる2軸移動ステージとカメラ装置の制御は、モニター画面上におけるグラフィックユーザインターフェースにより指示がなされる構成となっており、
画像保存名を構成するウェル番号情報の推定にもちいられる各ウェルの位置情報は、
グラフィックユーザインターフェースにおけるウェルプレートのウェル数選択機能により選択された状態を反映することを特徴とする請求項15より17のいずれかに記載の2軸移動ステージとカメラの連携制御システムの画像保存方法
【請求項19】
上記2軸移動ステージとカメラの連携制御システムの画像保存方法において、
光学顕微鏡は、接眼レンズが具備されている光学顕微鏡であることを特徴とする請求項14より18のいずれかに記載の2軸移動ステージとカメラの連携制御システムの画像保存方法
【請求項20】
光学顕微鏡により観察する試料を搭載する2軸移動ステージと、光学顕微鏡により観察する試料の光学顕微鏡観察像を撮影するカメラ装置と、2軸移動ステージおよび撮影装置を制御するとともに前記カメラにより撮影された画像を保存する機能を有するコントローラーよりなる2軸移動ステージとカメラの連携制御システムにおいて、
グラフィックユーザインターフェースにおいて、ウェル番号を選択する領域が存在し、ウェル番号を選択することにより、
ウェルプレートのウェル数に応じて構成された各ウェルの位置情報に応じて、顕微鏡の観察視野に選択したウェル番号が配置されるように、2軸移動ステージを移動させることを特徴とする2軸移動ステージとカメラの連携制御システムのステージ移動方法
【請求項21】
上記2軸移動ステージとカメラの連携制御システムのステージ移動方法において、
光学顕微鏡は、接眼レンズが具備されている光学顕微鏡であることを特徴とする請求項20に記載の2軸移動ステージとカメラの連携制御システムのステージ移動方法
【請求項22】
光学顕微鏡により観察する試料を搭載する2軸移動ステージと、光学顕微鏡により観察する試料の光学顕微鏡観察像を撮影するカメラ装置と、2軸移動ステージおよび撮影装置を制御するとともに前記カメラにより撮影された画像を保存する機能を有するコントローラーよりなる2軸移動ステージとカメラの連携制御システムにおいて、
2軸移動ステージが移動した後には、前記カメラ装置による撮影がなされ、モニター画面に表示されることを特徴とする2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法
【請求項23】
上記2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法において、
モニター画面に表示される画像は、カラーマップ画像を含む画像であることを特徴とする請求項22に記載の2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法
【請求項24】
上記2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法において、
光学顕微鏡は、接眼レンズが具備されている光学顕微鏡であることを特徴とする請求項22および23に記載の2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法
【請求項25】
光学顕微鏡により観察する試料を搭載する2軸移動ステージと、光学顕微鏡により観察する試料の光学顕微鏡観察像を撮影するカメラ装置と、2軸移動ステージおよび撮影装置を制御するとともに前記カメラにより撮影された画像を保存する機能を有するコントローラーよりなる2軸移動ステージとカメラの連携制御システムにおいて、
2軸移動ステージが移動した後には、
ウェルプレートのウェル数に応じて構成された各ウェルの位置情報と2軸移動ステージのステージ位置情報を比較して推定されるウェル番号情報がグラフィックユーザインターフェース内に表示されることを特徴とする2軸移動ステージとカメラの連携制御システムの位置情報表示方法
【請求項26】
上記2軸移動ステージとカメラの連携制御システムの位置情報表示方法において、
光学顕微鏡は、接眼レンズが具備されている光学顕微鏡であることを特徴とする請求項25に記載の2軸移動ステージとカメラの連携制御システムの位置情報表示方法
【発明の詳細な説明】
【技術分野】
【0001】
バイオメディカル領域において、複数のパラメータの実験および観察を行う際に、ウェルと呼ばれる試料を配置する場所が複数配置されているウェルプレートが用いられることがある。ウェルプレートには、ウェルの数が24個、96個、384個形成されている24ウェルプレート、96ウェルプレート、384ウェルプレートなど複数の種類があるが、これらウェルプレートの外形は、ほぼ長辺の長さが127.6ミリメートル程度、短辺の長さが85.4ミリメートル程度のものとされている。
【0002】
これらウェルプレートは、複数のパラメータの実験および観察を行うことを目的に開発されたため、特許文献1に示すように自動で信号を検出するマイクロプレートリーダーと呼ばれる装置で信号が検出されることが多い。
このマイクロプレートリーダーは、各ウェルからの蛍光の発光の有無およびその蛍光発光強度を自動で検出する装置が一般的である。そのため、この特許文献1にも示すように、マイクロプレートリーダーには、観察者が目視で試料を観察するような光学系は具備されていない。
また、ウェルプレートには特許文献2に用いられているように、底面にカバーガラスが張り付けられており、光学顕微鏡での観察が可能なウェルプレートも存在する。
【0003】
細胞培養を行う研究者は、従来シャーレあるいは35mmディッシュとよばれる培養部分が複数のエリアに分割されておらず、かつハンドリングがしやすい大きさの容器で細胞培養することが一般的であった。しかし、これらの培養容器は容量が大きいために、多くの培養液および試薬を必要とするため、パラメータを与える実験を行う場合には、実験費が高額化するという問題がある。近年、再生医療および免疫治療という培養した細胞を人体に入れることが想定された分野の研究領域においては、試薬および培養液の高精度化もありきわめて高額な試薬も存在する。
【0004】
24ウェル、96ウェル、384ウェルというウェルプレートは、マイクロプレートリーダーでの信号検出が可能なように、前述のように全体の大きさがほぼ決まった外形であるので、ウェル数が多くなるにつれてウェルの大きさが小さくなっていく。ウェルの大きさが小さくなるということは、1つのウェルに対して必要とする培養液および試薬の量が少なくなることを示している。消費する試薬の量が少なくなることは、少ない予算で多くの実験を行うことができることを示しているので、従来ウェルプレートは、マイクロプレートリーダーという自動機で用いられることが前提であったが、マニュアルの装置、例えば作業者が接眼レンズおよび対物レンズを介して試料を観察する光学顕微鏡などの装置で用いられる機会が増えてきている。
【背景技術】
【0005】
そのため、光学顕微鏡には、非特許文献1に用いられているウェルプレートを搭載することができ、コンピュータによる制御が可能な2軸移動ステージ、例えばソーラボ社製MLS203などが販売されている。
【0006】
作業者が、ウェルプレートを用いた観察を行いながら記録するデータとして画像データがある。この画像データの保存は、光学顕微鏡に取り付けられたデジタルカメラの画像を保存することが一般的である。
【0007】
近年、光学顕微鏡に接続する機器のPC制御を容易にするべく、マイクロマネージャーというオープンソースソフトウェア(非特許文献2)が出現したが、この規格は、ユーザーがマイクロマネージャーに対応したXYステージとカメラを購入し、ソフトウェアを構築する必要があるため、システム構築にはソフトウェアエンジニアが必要であるため、普及していない。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2016-212115号明細書
【特許文献2】特許第6373864号明細書
【非特許文献】
【0009】
【非特許文献1】Nathan Blanke, Veronica Go, Douglas L. Rosene, and Irving J. Bigio,"Quantitative birefringence microscopy for imaging the structural integrity of CNS myelin following circumscribed cortical injury in the rhesus monkey",Neurophotonics, Vol.8, number 1, 015010 (2021)
【非特許文献2】Arthur D. Edelstein, Mark A. Tsuchida, Nenad Amodaj, Henry Pinkard, Ronald D. Vale, and Nico Stuurman "Advanced methods of microscope control using micro manager software", Journal of Biology Methods, Vol. 1, number 2, e10 (2014)
【非特許文献3】L.D. Bergman, B.E. Rogowitz, and L.A. Treinish,” A rule-based tool for assisting colormap selection”, Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95) pp. 118-125 (1995)
【発明の概要】
【発明が解決しようとする課題】
【0010】
ウェルプレートに搭載された試料の観察画像データの保存する方法は、2軸移動ステージおよびカメラが同一のコンピュータに接続されている場合においても、カメラメーカーが提供するソフトウェアを用いて行うことが一般的であり、2軸移動ステージを制御するソフトウェアとの連携がなされることはまれである。
【0011】
カメラメーカーが提供するソフトウェアを用いて撮影画像データを保存する際には、撮影時間が保存ファイル名になることが一般的である。そのため、作業者は時間情報を基に、観察していたウェルの番号と保存された画像情報とを紐づけ管理している。
ウェル番号の確認は、2軸移動ステージのポジション情報を用いて行うこととなるが、市販されている2軸移動ステージにはウェルプレートのウェル番号を表示する機能がない。したがって、作業者は観察しているウェル番号を頻繁に確認する作業を行っている。作業者がマニュアルでウェル番号を確認する方法は、対物レンズの位置から現在観察しているウェルが何番目にあるのかを確認する作業となる。
【0012】
試料を観察する方法が蛍光観察であり、試料の発光が弱い場合には室内の照明を落として観察する必要があるが、室内が暗い状態においては作業者がマニュアルでウェル番号を確認するのは容易でないので、その都度部屋の照明を明るくしなければならないという不都合が存在する。
【0013】
ひとたび作業者が観察しているウェル番号と撮影した写真のつながりを間違えてしまうと、実験結果に齟齬が生じることとなるので、データの信頼性が失われることとなる。
【0014】
一方、試料を観察する方法が蛍光観察であり試料の発光が弱い場合には、顕微鏡の焦点を合わせることおよび目標とする試料を探すことが容易でないので、露光時間を長くする方法あるいは照明強度を強くする方法、さらには、NAの高い高倍率の対物レンズに変えて観察するなどの方法を用いることとなる。しかし試料の耐光性が弱い場合、および、蛍光の褪色が早い場合などにおいては、試料が焦点調整工程において損傷を受けてしまうなどの問題がある。このような状況においては、観察作業を迅速に行うことが重要であるので、露光時間の変更あるいは対物レンズの変更など観察条件の変更を行うことは望ましくない。
【0015】
本発明は以上の点を考慮してなされたもので、作業者が観察しているウェルの番号の確認に手間がかかるという問題解決する。また、観察画像を保存した画像と観察していたウェル番号などの試料情報との相関情報(紐づけ情報)を容易として、試料と画像の関係を間違えるという課題を解決する。
さらに、試料を観察する方法が蛍光観察であり試料の発光が弱い場合、および、試料の耐光性が弱い場合において、試料が焦点調整工程において損傷を受けてしまうなどの問題を解決する。
【課題を解決するための手段】
【0016】
かかる課題を解決するため本発明の2軸移動ステージとカメラの連携制御システム、2軸移動ステージとカメラの連携制御システムの画像保存方法、2軸移動ステージとカメラの連携制御システムのステージ移動方法、2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法、および、2軸移動ステージとカメラの連携制御システムの位置情報表示方法においては、ウェルプレートなどの試料を搭載する2軸移動ステージとカメラを1つのコントローラーで連携制御することにより、作業者が観察しているウェルの番号の確認を容易とする。観察画像を保存した画像と観察していたウェル番号などの試料情報との相関情報(紐づけ情報)を容易とするため、試料観察位置およびウェル番号を画像保存ファイル名に挿入することにより、試料と画像の関係を間違えるという課題を解決する。
さらに、画像強調処理された画像を表示することにより、試料を観察する方法が蛍光観察であり試料の発光が弱い場合、および、試料の耐光性が弱い場合において、焦点合わせ工程あるいは対象物を探す時間を短縮することにより、試料が損傷を受けてしまう危険性を低減する。
【発明の効果】
【0017】
本発明の2軸移動ステージとカメラの連携制御システム、2軸移動ステージとカメラの連携制御システムの画像保存方法、2軸移動ステージとカメラの連携制御システムのステージ移動方法、2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法、および、2軸移動ステージとカメラの連携制御システムの位置情報表示方法においては、作業者の確認作業の手間を低減するとともに、サンプル番号間違いなどの危険性を低減することとなるので、画像データと試料との紐づけが容易であるのでデータ整理作業の効率も改善する。
さらに、画像強調処理された画像を表示することにより、試料を観察する方法が蛍光観察であり試料の発光が弱い場合、および、試料の耐光性が弱い場合において、焦点合わせ工程あるいは対象物を探す工程において時間を短縮することにより、試料が損傷を受けてしまう危険性を低減することにより、長期の観察が可能となるなどの効果がある。
【図面の簡単な説明】
【0018】
図1】本発明の2軸移動ステージとカメラの連携制御システムの構成要素を示す図である。
図2】光学顕微鏡の概略構成図である。
図3】本発明の2軸移動ステージとカメラの連携制御システムが取り付けられた光学顕微鏡の概略構成図である。
図4】本発明の2軸移動ステージの概略構成図である。
図5】本発明の2軸移動ステージの概略構成図である。
図6】本発明のモーターコントローラーボックスの構成図である。
図7】ウェルプレートの構成と本発明の撮影範囲を示す図である。
図8】本発明の2軸移動ステージの移動の基準位置を示す図である。
図9】本発明の2軸移動ステージとカメラの連携制御システム稼働時のコンピュータモニターに表示される画面の概略図である。
図10】本発明の2軸移動ステージとカメラの連携制御システムの制御を行うグラフィックユーザインターフェースの説明図である。
図11】本発明の2軸移動ステージとカメラの連携制御システムの制御を行うグラフィックユーザインターフェースの説明図である。
図12】本発明の2軸移動ステージとカメラの連携制御システムの制御を行うグラフィックユーザインターフェースの説明図である。
図13】96ウェルプレートの長辺方向のウェル番号とモーター位置の関係を示す図である。
図14】96ウェルプレートの短辺方向のウェル番号とモーター位置の関係を示す図である。
図15】24ウェルプレートの長辺方向のウェル番号とモーター位置の関係を示す図である。
図16】24ウェルプレートの短辺方向のウェル番号とモーター位置の関係を示す図である。
図17】384ウェルプレートの長辺方向のウェル番号とモーター位置の関係を示す図である。
図18】384ウェルプレートの短辺方向のウェル番号とモーター位置の関係を示す図である。
図19】本発明の2軸移動ステージとカメラの連携制御システムの制御方法を示すフロー図である。
図20】本発明の2軸移動ステージとカメラの連携制御システムの制御方法を示すフロー図である。
図21】本発明の2軸移動ステージとカメラの連携制御システムの制御方法を示すフロー図である。
図22】本発明の2軸移動ステージとカメラの連携制御システムの制御方法を示すフロー図である。
図23】本発明の2軸移動ステージとカメラの連携制御システムの制御方法を示すフロー図である。
図24】本発明の2軸移動ステージとカメラの連携制御システムの制御方法を示すフロー図である。
図25】本発明の2軸移動ステージとカメラの連携制御システムの制御方法を示すフロー図である。
図26】本発明の2軸移動ステージとカメラの連携制御システムの画像強調方法を示す図である。
図27】本発明の2軸移動ステージとカメラの連携制御システムが取り付けられた光学顕微鏡の概略構成図である。
図28】試料台が光学系の剛性を支える光学顕微鏡の概略構成図である。
図29】本発明の2軸移動ステージとカメラの連携制御システムが取り付けられた光学顕微鏡の概略図である。
図30】本発明の2軸移動ステージの概略構成図である。。
図31】本発明の2軸移動ステージとカメラの連携制御システムが取り付けられた光学顕微鏡の概略構成図である。
図32】本発明の2軸移動ステージとカメラの連携制御システムが取り付けられた光学顕微鏡の概略構成図である。
【発明を実施するための形態】
【0019】
本発明の2軸移動ステージとカメラの連携制御システムの構成図を図1に示す。2軸移動ステージとカメラの連携制御システム11は、2軸移動ステージ30と、2軸移動ステージ30のモーターを駆動するモーターコントローラーボックス31とカメラ12と2軸移動ステージ30とカメラ12の制御を行うコントローラー13よりなる。また2軸移動ステージとカメラの連携制御システム11は、2軸移動ステージ30とモーターコントローラーボックス31を接続するモーターケーブル32、モーターコントローラーボックス31とコントローラー13接続するモーターコントローラーケーブル56、カメラ12とコントローラー13を接続するカメラケーブル15を含んでいる。図1に示した構成図においては、2軸移動ステージ30とモーターコントローラーボックス31が分離されておりモーターケーブル32で接続された例を示したが、2軸移動ステージ30とモーターコントローラーボックス31は一体化することも可能である。ここで、コントローラー13は、2軸移動ステージ30とカメラ12の制御を行うソフトウェアがインストールされたPC(パーソナルコンピューター)などである。またカメラ12はUCB3フォーマットに準拠したカメラ装置などであり、カメラ12がUCB3フォーマットに準拠したカメラ装置である場合には、カメラケーブル15はUSB3ケーブルとなる。
【0020】
2軸移動ステージ30は、ウェルプレートなどの観察試料を搭載する試料搭載部29を有する。また2軸移動ステージ30は、互いにほぼ直交する方向に搭載した試料を移動させるX軸モーター33およびY軸モーター34を有する。
【0021】
図2は、本発明の2軸移動ステージとカメラの連携制御システムが接続されて使用される光学顕微鏡8の概略構成図を示す図である。光学顕微鏡8は、試料台3の上に搭載されているウェルプレート20の各ウェル21に配置されている試料の観察を行う光学顕微鏡であり、蛍光励起光源60と透過照明光源73の2つの光源を有する例を示している。
蛍光励起光源60から発せられた照明光はレンズ61により集光され蛍光フィルターキューブ62に導かれる。蛍光フィルターキューブ62には、試料の蛍光励起に有効な波長を照明光の波長から選択透過するするエキサイトフィルター70、試料の蛍光励起に用いる波長を反射し試料が発光する蛍光波長を透過するダイクロイックミラー71、試料の蛍光波長を透過し試料の蛍光励起に用いた波長をブロックするエミッションフィルター72が配置されている。
【0022】
エキサイトフィルター70を透過した光を対物レンズ63によりウェル21ないの試料に照射し、試料が発光する蛍光はエミッションフィルター72を透過した後、結像レンズ64に入射される。結像レンズ64に入射した試料の蛍光観察像は、ミラー65、ミラー66、さらに切り替えミラー67により反射された後、接眼レンズ68により作業者に観察される。
また光学顕微鏡8はカメラが接続されるカメラポート18を有しており、切り替えミラー67の位置を変更することにより、カメラポート18に接続されるカメラによっても、試料の蛍光観察を行うことができる構成である。
【0023】
光学顕微鏡8は、透過照明光源73および透過照明光源73から発せられた光を試料に集光照射する集光レンズ74を有しており、試料の透過観察像の観察も可能な構成となっている。試料の透過観察像の観察を行う際には、蛍光フィルターキューブ62を光路から回避させる構成とする。透過照明光源73、集光レンズ74、対物レンズ63、ミラー65、ミラー66は、高い剛性の顕微鏡の躯体1により位置合わせがなされた構成となっており、試料の透過観察像の観察が、接眼レンズ68を介して観察を行う作業者およびカメラポート18に接続されるカメラにより観察できる構成となっている。
【0024】
試料台3はステージ取り付け部19に取り付けられている。光学顕微鏡8は顕微鏡の躯体1の剛性が高いために、試料台3をステージ取り付け部19から取り外しても、試料の透過観察像の観察が、接眼レンズ68を介して観察を行う作業者およびカメラポート18に接続されるカメラにより観察できる構成となっている。
【0025】
図3は、本発明の2軸移動ステージとカメラの連携制御システムが接続された光学顕微鏡10の概略構成図を示す図である。
光学顕微鏡10は、図2に示した試料台3が取り外され、ステージ取り付け部19に2軸移動ステージ30が取り付けられており、カメラポート18にはカメラ12が取り付けられている。光学顕微鏡10は、本発明の2軸移動ステージとカメラの連携制御システムの画像保存方法、2軸移動ステージとカメラの連携制御システムのステージ移動方法、2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法、および、2軸移動ステージとカメラの連携制御システムの位置情報表示方法が適用される光学顕微鏡である。
2軸移動ステージ30には、複数のウェル21を有するウェルプレート20が取り付けられており、2軸移動ステージ30を移動させることにより、複数のウェル21内の試料の光学顕微鏡による観察がなされる構成となっている。カメラ12は、蛍光励起光源60あるいは透過照明光源73を発光させることにより対物レンズ63および結像レンズ64による拡大観察像を画像情報として取得する。コントローラー13には、カメラ12により観察された拡大観察像の表示を行うモニター14がモニターケーブル16を介して接続されている。モニター14には、2軸移動ステージ30およびカメラ12の制御を行うためのグラフィックユーザインターフェースが表示されるとともに、カメラ12により撮影された画像、およびその画像を画像強調した画像なども表示される。
【0026】
図4に2軸移動ステージ30の概略構成図を示す。2軸移動ステージ30は、ステージ取り付け部19に取り付けられるステージ固定部37を有し、ステージ固定部37にX軸モーター33が配置されている。X軸モーター33はX軸シャフト35を回転する機能を有し、X軸モーター33を回転させることにより、X軸シャフト35に搭載されているXステージテーブル38がX軸シャフト35の回転軸に平行な方向に移動する構成となっている。本例では、X軸シャフト35にはピッチ2.54mmのねじが形成されており、X軸シャフト35を1回転させるとXステージテーブル38がX軸モーター33の回転方向に対応する方向に2.54mm移動する構成となっている。
【0027】
Xステージテーブル38には、Y軸モーター34が配置されている。Y軸モーター34はY軸シャフト36を回転する機能を有し、Y軸モーター34を回転させることにより、Y軸シャフト36に搭載されているYステージテーブル39がY軸シャフト36の回転軸に平行な方向に移動する構成となっている。本例では、Y軸シャフト36にはX軸シャフト35と同様にピッチ2.54mmのねじが形成されており、Y軸シャフト36を1回転させるとYステージテーブル39がY軸モーター34の回転方向に対応する方向に2.54mm移動する構成となっている。X軸シャフト35とY軸シャフト36を直交するように配置されている。また、X軸シャフト35とY軸シャフト36は、対物レンズ63および結像レンズ64による観察光学系とも直交される構成とされていることにより、X軸モーター33およびY軸モーター34を回転させることにより、対物レンズ63および結像レンズ64により観察される観察位置を移動させることができる。
【0028】
図4に示すように、2軸移動ステージ30の試料搭載部29には、ウェルプレート20が搭載されている。ウェルプレート20には2つの面取り部22が長辺方向の片側に配置されており、ウェルプレートの向きが規定されている。2軸移動ステージ30には、ウェルプレート20の面取り部22を抑えるウェルプレート押さえ40が配置されており、ウェルプレート20は試料搭載部29においてウェルプレート押さえ40と対向するコーナー側にウェルプレート20が押さえつけられる構成となっている。
本例においては、ウェルプレート20の長辺方向がX軸シャフト35の回転軸と平行な方向になるように配置され、ウェルプレート20の短辺方向がY軸シャフト36の回転軸と平行な方向になるように配置されている。
【0029】
光学顕微鏡10を用いて観察を行う試料をウェルプレートとする場合には、2軸移動ステージ30のXステージテーブル38およびYステージテーブル39の移動範囲は、ウェルプレート20に配置されているすべてのウェル21の観察がなされる範囲を有していればよい。そのため、2軸移動ステージ30においては、Xステージテーブル38およびYステージテーブル39が、不必要な位置に移動させることを防止するためのリミットセンサーが配置され、移動範囲を制限する構成となっている。図5は、Yステージテーブル39の移動範囲を制限するリミットセンサー42および43を含むY軸の構成概略図である。
【0030】
Y軸モーター34に接続されているY軸シャフト36は、Y軸シャフト36の回転による軸ブレを抑えることを目的として、Y軸モーター34に取り付けられていない側の端はシャフトホルダー41に固定されている。Y軸モーター34の回転方向に応じてY軸シャフト36の回転軸と平行方向に移動するYステージテーブル39には、リミットセンサーブレード44および45が配置されている。リミットセンサー42および43は、例えば発光部と受光部が一体化され発光部から発光された光が遮蔽物によりさえぎられ受光部に入射しないと発報する非接触型のリミットセンサーであり、リミットセンサー42および43の所定の発光部から発光された光がさえぎられ受光部に入射しない位置にリミットセンサーブレード44および45が位置すると発報する構成となっている。したがって、Y軸モーター34の回転によりYステージテーブル39がY軸モーター34側に近づいていき、リミットセンサーブレード44がリミットセンサー42内の光学系を遮蔽する位置に達した時にリミットセンサー42が発報する構成となっている。また、Y軸モーター34の回転によりYステージテーブル39がY軸モーター34から離れていき、リミットセンサーブレード45がリミットセンサー43内の光学系を遮蔽する位置に達した時にリミットセンサー43が発報する構成となっている。X軸モーター33に関しても、Y軸モーター34と同様にX軸モーター33に近づく方向およびX軸モーター33から離れる方向にそれぞれリミットセンサーが配置されている。
【0031】
図6は、モーターコントローラーボックス31の構成を示す図である。本例ではX軸モーター33およびY軸モーター34は2相ステッピングモーターよりなり、X軸モーター33およびY軸モーター34はそれぞれモーターコントローラーボックス31内のX軸モータードライバー46、およびY軸モータードライバー47よりモーター内にケーブル32a、およびケーブル32bを介して電力が与えられる例を示している。X軸モーター33およびY軸モーター34の回転する方向および回転量は、コントローラー13からケーブル56を介してコントローラーボックス31に指令されるが、コントローラー13内においては、デジタルコントローラー51により回転するモーターの選択とモーターの回転方向の指示がなされ、パルス発生器52によりX軸モーター33およびY軸モーター34の回転量に応じた数のパルス信号が生成され、X軸パルス伝送ケーブル53およびY軸パルス伝送ケーブル54を介してモーターコントローラー50に伝送される。モーターコントローラー50は、X軸モーター33に近づく方向およびX軸モーター33から離れる方向のリミットセンサー、Y軸モーター34に近づく方向およびY軸モーター34から離れる方向のリミットセンサーの信号を、ケーブル32c、32d、32e、32fを介して受信し、各軸各方向のリミットセンサーの状態を把握することができる。また、この各リミットセンサーの状態は、デジタルコントローラー51を介してコントローラー13によるモニターも可能となっている。
【0032】
リミットセンサーのモニターをデジタルコントローラー51を介してコントローラー13が行う場合には、数10ミリ秒程度のタイムラグが生じる危険性がある。そこで、タイムラグを防止するためにパルス発生器52によるX軸モーター33およびY軸モーター34の回転量に応じた数のパルス信号をX軸モータードライバー46、およびY軸モータードライバー47に伝送する際にモーターコントローラー50を中継することとし、移動を行うモーターによる移動を行う方向のリミットセンサーが発報した場合には直ちに、モーターコントローラー50によりパルス信号がモータードライバーに出力されないような対応を行っている。モーターコントローラー50によりリミットセンサーが発報に応じてパルス信号のX軸モータードライバー46、およびY軸モータードライバー47への伝送を停止する方法においては、10マイクロ秒以下の時間で対応を行うことが可能なので、タイムラグのない安全機構を形成している。
本発明の例においては、X軸モーター33およびY軸モーター34を3200のパルス数を与えた場合に1回転するように設定した。前述のようにX軸モーター33およびY軸モーター34が1回転することにより、ウェルプレート20は、長辺方向および短辺方向に2.54mm動くように設定されている。したがって、1パルスの信号を与えることにより、ウェルプレート20は、長辺方向および短辺方向に約0.79ミクロンメートル動くこととなる。
【0033】
図7および図8を用いて、ウェルレート20に96個のウェル21が形成されている96ウェルプレートを用いた場合を例として、2軸移動ステージとカメラの連携制御システムによるウェルプレート20における観察撮影範囲の説明を行う。図7に示すようにウェルプレートはその長辺方向に数字の番号が1から12まで与えられており、短辺方向にアルファベットがAからHまで与えられており、数字とアルファベットを組み合わせることにウェルの特定がなされるようになっている。本発明に用いる2軸移動ステージ30は、低コストであることが望ましいので、ウェルプレート20の長辺方向、短辺方向ともにウェルプレート20の位置をモニターするスケール機構は有していない構成となっている。そのため、コントローラー13によるウェルプレート20の位置情報の把握は、X軸モーター33およびY軸モーター34に与えた移動命令情報を蓄積することにより把握する方法を用いている。
そのため、電源投入時あるいはコントローラー13による2軸移動ステージ30の制御開始時には、上述したリミットセンサーを用いて位置情報を把握する工程により制御システムにおける原点情報を取得する必要がある。また、上述したようにX軸モーター33およびY軸モーター34を移動している最中にリミットセンサーが発報するとパルス信号が送信されていてもモーターを停止させる安全機構が稼働してしまうので、パルス情報の蓄積によるステージ位置情報の把握ができなくなる。そのため、本発明の2軸移動ステージ30の制御方法においては、コントローラー13によりウェルプレート20の位置情報を常に把握するため、通常使用状態においてリミットセンサーが発報しない範囲でウェルプレート20を動かす方法を採用している。
【0034】
上記の図4の説明において記したように、ウェルプレート20はウェルプレート押さえ40により押し付けられた状態で2軸移動ステージ30に固定され搭載されている。そのため、ウェルプレート押さえ40により押さえつけられている面取り部分22と対向する角付近の拡大図を図8に示すが、ウェルプレート押さえ40により押さえつけられている面取り部分22と対向する角20aの位置は、固定されている状態である。図7および図8にリミットセンサーに規定される可動範囲を破線80で示す。つまり、本発明の2軸移動ステージ30においては、ウェルプレート20の外形の4辺の0.5mm内側の位置である破線80b、80c、80d、80eの位置にリミットセンサーを配置した。
【0035】
電源投入時あるいはコントローラー13による2軸移動ステージ30の制御開始時に行う原点だしにおいては、X軸モーター33をリミットセンサーの信号が発報した時点で直ちにモーターを停止できる程度の速度で動かすことにより、コントローラー13により破線80bの位置を把握する。その後、Y軸モーター34をリミットセンサーの信号が発報したら直ちにモーターを停止できる程度の速度で動かすことにより、コントローラー13により破線80cの位置を把握する。この2軸の動作により、図8の機械原点80aの位置情報を取得する。
【0036】
コントローラー13によるウェルプレート20の位置は制御中に常に位置を把握するために、通常駆動可能範囲は破線80b、80c、80d、80eよりもマージンをもって内側であり、ウェル20のすべてのウェル21を含む範囲である必要がある。本発明においては、コントローラー13によるウェルプレート20の可動範囲、すなわち、観察撮影範囲を図7の破線81b、81c、81d、81eの内側の範囲とした。具体例としては、破線81b、81c、81d、81eの位置を破線80b、80c、80d、80eよりもそれぞれ0.5mm内側とすることにより、ウェル20のすべてのウェル21を含む範囲とすることができる。そのため、コントローラー13による2軸移動ステージ30の位置情報管理としては、電源投入時あるいはコントローラー13による2軸移動ステージ30の制御開始時に行う原点だし工程において機械原点80aの位置情報を把握した後、X軸モーター33およびY軸モーター34にそれぞれウェルプレートが0.5mm移動する命令を与え81aに移動させ、X軸モーター33およびY軸モーター34に与える蓄積パルス数をゼロリセットし、81aをコントローラー13による2軸移動ステージ30の移動命令の原点(ソフトウェア原点)とする。コントローラー13からの移動命令の方向とパルス量を記録することにより、図8における矢印82に示すウェル20の長辺方向の移動量であるX軸方向移動量(ステージ移動距離)と、矢印83に示すウェル20の短辺方向の移動量であるY軸方向移動量(ステージ移動距離)の管理を行うことができる。また、ウェルプレート20の
外形は、長辺の長さが127.6ミリメートル程度、短辺の長さが85.4ミリメートル程度のものとされているため、破線81bから破線81cまでの距離は、125.6ミリメートル、破線81dから破線81eまでの距離は83.4ミリメートルとすることによりコントローラー13によるウェルプレートの駆動においてリミットセンサーを発報することなくステージの移動を行うことができることとなる。
【0037】
本発明のモーターおよびモーターコントローラーの設定においては、3200のパルスを与えた場合において2.54mm動くように設定されているので、破線81bから破線81cまでの距離である125.6ミリメートルは158236パルス、破線81dから破線81eまでの距離である83.4ミリメートルは105070パルスとなる。したがって、ウェルの長辺方向の移動を行う前に、移動後の累積パルス数が0よりも大きく、かつ、158236よりも少なければ移動後において破線81bと81cの内側であることが移動前にわかることとなり、ウェルの短辺方向の移動を行う前に、移動後の累積パルス数が0よりも大きく、かつ、105070よりも少なければ移動後において破線81dと81eの内側であることが移動前にわかることとなる。
【0038】
図9は、本発明の2軸移動ステージとカメラの連携制御システムの制御が行われている際に、モニター14に表示されている画面の例を示す。モニター90には、2軸移動ステージとカメラの制御を行うことを可能にするグラフィックユーザインターフェースのウィンドウ90とカメラ12により撮影された画像を表示する第1のウィンドウ91、第2のウィンドウ92、第3のウィンドウ93が表示されている。この例においては、第1のウィンドウ91にはカメラ12により撮影された画像の全体を表示し、第2のウィンドウ92にはカメラ12により撮影された画像の拡大画像を表示し、第3のウィンドウ93には、対象物の認識が容易となるようにカメラ12により撮影された画像をカラーマップ変換した強調画像を表示している。この例においては、画像を表示するウィンドウが3つある例を示しているが、画像を表示するウィンドウ数は3つである必要はない。
【0039】
図10には、グラフィックユーザインターフェースのウィンドウ90の具体例を示す。2軸移動ステージ30にスケールが具備されていない場合には、図7および図8の説明に示したように、電源投入時あるいはソフトウェアの立ち上げ時に、ウェルプレート20の位置がコントローラー13により把握されていないため、機械原点80aを認識した後、ソフトウェア原点81aに移動し、X軸モーター33およびY軸モーター34に与える蓄積パルス数をゼロリセットする工程が必要である。本発明の2軸移動ステージとカメラの連携制御システムの使用者は、ソフトウェアの立ち上げた後にボタン101を押すことにより、機械原点80aの認識工程、ソフトウェア原点81aへの移動工程、X軸モーター33およびY軸モーター34に与える蓄積パルス数をゼロリセットする工程という一連の初期化工程を行う必要がある。この一連の初期化工程が終了した際には、表示ウィンドウ102に2軸移動ステージとカメラの連携制御システムの準備が終了した旨を示す表示が提示される。
【0040】
メッセージ画面103は、初期化工程が終了していないにも関わらずステージ移動指令が入力された場合において、初期化工程が必要であることを知らせるなどコントローラー側より作業者に伝えるべき内容がある際にメッセージが表示される画面である。
【0041】
観察対象である試料がウェルプレートである場合には、ウェルプレート選択・表示エリア104において観察しているウェルプレートのウェル数を選択する。この例においては、ウェル数は、24、96、384が選択肢となっており、2軸移動ステージ30に搭載されているウェルプレートのウェル数を選択する。また、選択したウェル数はこのウェルプレート選択・表示エリア104にその数値が提示される。ユーザーが撮影した画像を保存する際に試料に関する情報をファイル名に加えたい場合には、サンプル情報入力・表示エリア105にテキストを入力する。図10においては、GFP1と入力された例を示すが、入力されたテキストは、書き換えられるまで表示されている。観察資料の観察を行いたい位置をソフトウェア原点からの距離で入力したい場合には、入力エリア106、107にその数値を入力し、数値を入力後に目標位置への移動開始ボタン108を押すことにより、2軸移動ステージ30がその目標位置に移動する。観察資料の観察を行いたい位置をウェル番号にて入力したい場合には、入力エリア109、110にその数値およびアルファベットを入力し、それら数値およびアルファベットの入力後に目標位置への移動開始ボタン111を押すことにより、2軸移動ステージ30がその目標位置に移動する。
【0042】
目標位置への移動開始ボタン108あるいは目標位置への移動開始ボタン111を押し2軸移動ステージ30の移動が終了したら、入力エリア106、107および入力エリア109、110に入力した数値は消去され、移動した位置の情報から位置表示エリア120、121にソフトウェア原点からの距離が表示され、122、123にはウェル番号が表示される。入力エリア106、107および入力エリア109、110に入力した数値が消去される理由は、2軸移動ステージ30が入力エリア106、107および入力エリア109、110に入力した目標位置への移動が終了した後に、観察位置の相対移動などにより、別の位置に移動した際に、位置表示エリア120、121および122、123に表示される数値と入力エリア106、107および入力エリア109、110に入力した数値が異なる可能性があり、その際に作業者が現在位置ではない入力エリア106、107および入力エリア109、110を現在位置であると作業者が解釈しないようにするためである。したがって、2軸移動ステージ30が静止している状態においては、入力エリア106、107および入力エリア109、110に入力した数値は表示されないこととしている。
本発明の2軸移動ステージとカメラの連携制御システムにおいては、2軸移動ステージ30の移動が終了した時点でカメラ12による画像撮影が行われ、モニター14の撮影された画像を表示する第1のウィンドウ91、第2のウィンドウ92、第3のウィンドウ93のいずれかあるいはすべてに画像が表示される。
【0043】
2軸移動ステージ30の移動方法としては、現在位置からの相対移動を行うことも可能である。図11にグラフィックユーザインターフェースのウィンドウ90の相対移動を行うボタンが配置されている領域部分の拡大図を示す。本発明においては、ウェルプレートの長辺方向に対応するX方向、および、ウェルプレートの短辺方向に対応するY方向に関して、10ミクロンメートル、あるいは100ミクロンメートルの距離を移動させるボタン130~137および140~147が配置されている。このボタンが押されたら直ちに、それぞれ所定のステージ移動が行われる。具体的にはボタン130が押された場合には、X方向のプラス方向に10ミクロンメートルの移動がなされる。本例においては、図8において矢印82が示す方向がX方向のプラス方向としている。また、ボタン131が押された場合には、X方向のマイナス方向に10ミクロンメートルの移動がなされる。また、ボタン132が押された場合には、Y方向のプラス方向に10ミクロンメートルの移動がなされる。本例においては、図8において矢印83が示す方向がY方向のプラス方向としている。ボタン133が押された場合には、Y方向のマイナス方向に10ミクロンメートルの移動がなされる。
【0044】
ボタン134が押された場合には、X方向のプラス方向とY方向のプラス方向にそれぞれ10ミクロンメートルの移動がなされる。ボタン135が押された場合には、X方向のプラス方向とY方向のマイナス方向にそれぞれ10ミクロンメートルの移動がなされる。ボタン136が押された場合には、X方向のマイナス方向とY方向のプラス方向にそれぞれ10ミクロンメートルの移動がなされる。ボタン137が押された場合には、X方向のマイナス方向とY方向のマイナス方向にそれぞれ10ミクロンメートルの移動がなされる。
【0045】
ボタン140が押された場合には、X方向のプラス方向に100ミクロンメートルの移動がなされ、ボタン141が押された場合には、X方向のマイナス方向に100ミクロンメートルの移動がなされる。ボタン142が押された場合には、Y方向のプラス方向に100ミクロンメートルの移動がなされる。ボタン143が押された場合には、Y方向のマイナス方向に100ミクロンメートルの移動がなされる。
ボタン144が押された場合には、X方向のプラス方向とY方向のプラス方向にそれぞれ100ミクロンメートルの移動がなされる。ボタン145が押された場合には、X方向のプラス方向とY方向のマイナス方向にそれぞれ100ミクロンメートルの移動がなされる。ボタン146が押された場合には、X方向のマイナス方向とY方向のプラス方向にそれぞれ100ミクロンメートルの移動がなされる。ボタン147が押された場合には、X方向のマイナス方向とY方向のマイナス方向にそれぞれ100ミクロンメートルの移動がなされる。
【0046】
ボタン130~137が押された場合には2軸移動ステージ30の移動が終了した時点でカメラ12による画像撮影が行われ、モニター14の撮影された画像を表示する第1のウィンドウ91、第2のウィンドウ92、第3のウィンドウ93のいずれかあるいはすべてに画像が表示される。
【0047】
本発明においては、ボタン140~147が押された場合には2軸移動ステージ30が20ミクロンメートル移動するごとにカメラ12による画像撮影が行われ、モニター14の撮影された画像を表示する第1のウィンドウ91、第2のウィンドウ92、第3のウィンドウ93のいずれかあるいはすべてに画像が表示される。20ミクロンメートルごとに画像撮影を行う理由は、高倍率の対物レンズを用いた場合には、100ミクロンの移動は視野範囲よりも大きいため、途中にある観察物の見逃しを防止するためである。
【0048】
グラフィックユーザインターフェースのウィンドウ90には、2軸移動ステージ30の制御だけではなくカメラ12の制御も行うことが可能となっている。図12を用いて、カメラ12の制御および、撮影した画像の保存など画像関係の機能を行うボタン150~156についての説明を行う。カメラ12の撮影条件としてカメラ条件入力・表示エリア150、151はカメラ12の露光時間および撮影後の信号増幅に関する入力エリア・表示エリアである。入力エリア・表示エリア150はカメラ12の露光時間をマイクロ秒単位で入力し、その入力値がカメラ12の設定範囲であればその数値を表示しカメラ12の駆動の際に指定された露光時間で撮影を行う。また、入力値がカメラ12の設定範囲外であれば、最も近い数値を表示するとともにその表示数値の露光時間で撮影を行う。同様に入力エリア・表示エリア151はカメラ12の撮影画像の増幅値を数値で入力し、その入力値がカメラ12の設定範囲であればその数値を表示しカメラ12の撮影画像に対して増幅を行う。また、入力値がカメラ12の設定範囲外であれば、最も近い数値を表示するとともにその表示数値で撮影画像に対して増幅を行う。カメラ条件入力・表示エリア150、151を用いて設定された条件によりカメラ12で撮影された画像は、モニター14の撮影された画像を表示する第1のウィンドウ91に表示される。なおこの例においては、カメラ12の撮影画素数がモニター14の表示画素数と同等あるいはそれよりも大きい場合には、カメラ12の撮影画像の全体が表示できるように第1のウィンドウ91には縮小された画像の表示を行う。
【0049】
入力・表示エリア152は、カメラ12で撮影された画像に対して画像強調を行う場合の画像強調法の指定とその設定値を表示する画像強調条件入力・表示エリアである。カメラ12で撮影された画像に関して指定された画像強調を行いモニター14の撮影された画像を表示する第2のウィンドウ92に表示される。なお、第2のウィンドウ92への画像表示に関しても、カメラ12の撮影画素数がモニター14の表示画素数と同等あるいはそれよりも大きい場合には、カメラ12の撮影画像の全体が表示できるように縮小画像の表示を行う。
【0050】
入力・表示エリア153は、カメラ12の撮影画像を拡大して表示を行う際の拡大倍率を入力・表示するエリアであり、例えば1という数値を入力すると、カメラ12の撮影画像が縮小されることなく第3のウィンドウ93に表示される。カメラ12の撮影画素数がモニター14の表示画素数と同等あるいはそれよりも大きい場合には、カメラ12の撮影画像の中心付近の一部を第3のウィンドウ93に表示する。
【0051】
連続撮影・表示ボタン154を押すと、カメラ12の撮影および第1のウィンドウ91、第2のウィンドウ92、第3のウィンドウ93への画像表示が、一定時間の間連続的に行われる。作業者が光学顕微鏡の焦点合わせなどを行う際に便利な機能である。
本発明の2軸移動ステージとカメラの連携制御システムにおいては、各ステージの移動が行われた後にカメラ12による画像撮影が行われることとなるが、画像撮影ボタン155を押すことにおいても、カメラ12による画像撮影を行うことができる。また画像撮影がなされたら、その撮影画像は第1のウィンドウ91、第2のウィンドウ92、第3のウィンドウ93への画像表示がなされる。カメラ12による撮影がなされた場合には、撮影画像を保存する場合に備えて、キャッシュメモリーに画像を記録しておくとともに、画像撮影がなされた時間情報(年・月・日・時間・分・秒)もキャッシュメモリーに記録しておく。
【0052】
画像保存ボタン156が押された場合には、その直前に撮影され、第1のウィンドウ91、第2のウィンドウ92、第3のウィンドウ93への画像表示がなされている画像がコントローラーのハードディスクドライブなどのストレージ領域内あるいは指定されたストレージ領域にファイル名を付与されて保存される。
【0053】
本発明の2軸移動ステージとカメラの連携制御システム、2軸移動ステージとカメラの連携制御システムの画像保存方法、2軸移動ステージとカメラの連携制御システムのステージ移動方法、2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法、および、2軸移動ステージとカメラの連携制御システムの位置情報表示方法においては観察しているウェルプレートのウェル番号の確認を観察者が容易にでき、かつ、撮影画像の管理においてウェル番号の間違いなどが生じないように、2軸移動ステージ30の位置情報をコントローラーが常に把握し、グラフィックユーザインターフェース90の所定位置であるステージ位置表示エリア120、121、122、123に表示を行うとともに、カメラ12により撮影した画像を保存する際にはそのファイル名にステージ位置とともにウェル番号名を挿入することによりウェル番号の間違いを防止している。
【0054】
ファイル名に挿入するステージ位置とともにウェル番号は、2軸移動ステージ30がスケールを具備している場合にはステージ座標からのウェル位置の推定、また2軸移動ステージ30がスケールを具備しておらずステッピングモーターを用いたステージ移動である場合には、機械原点あるいはソフトウェア原点からの累積パルス数管理による位置推定およびウェル位置の推定により行う。
【0055】
本発明の例においては、2軸移動ステージ30がスケールを具備しておらずステッピングモーターを用いたステージ移動であり、ソフトウェア原点からの累積パルス数管理による位置推定およびウェル位置の推定の方法について、図13から図19を用いて説明する。ソフトウェア原点81aは上述のごとくウェルプレート20のコーナーである20aより、X方向から1ミリメートル、Y方向から1ミリメートルの位置に配置されている。そして光学顕微鏡10の対物レンズ63による観察エリアの中心がソフトウェア原点81aに位置している時に、X軸モーター33およびY軸モーター34に与える蓄積パルス数をゼロリセットされた状態である。またウェルプレート20に形成されている面取り部22を用いてウェルプレート20を2軸移動ステージ30に搭載していることから、ソフトウェア原点81aに最も近いウェル番号は図7に示すように1Aとなる。
【0056】
そして、上述のように、X軸モーター33およびY軸モーター34を3200のパルス数を与えた場合に1回転するように設定されており、X軸モーター33およびY軸モーター34に接続されるX軸シャフトおよびY軸シャフトが1回転することにより、ウェルプレート20は、長辺方向および短辺方向に2.54mm動くように設定されている。
【0057】
図13には、ウェル21が96形成されている96ウェルプレートの場合におけるウェルプレートの長辺方向(X方向)に関する各ウェルの中心位置のソフトウェア原点からのミリメートル単位の距離およびソフトウェア原点からの累積パルス数の関係表を示している。ウェルプレートの情報として、ウェル番号1aに最も近い頂点20aから各ウェルの中心位置についての情報は公開されているので、関係表における原点からの距離はソフトウェア原点81aがウェルプレート20のウェル番号1aに最も近い頂点20aからX方向において1ミリメートル離れた点であるという情報を基に容易に形成することができる。さらに各ウェルの累積パルス数は、2.54ミリメートルが3200パルスであることから容易に計算することができる。図14には、ウェル21が96形成されている96ウェルプレートの場合におけるウェルプレートの短辺方向(Y方向)に関する各ウェルの中心位置のソフトウェア原点からのミリメートル単位の距離およびソフトウェア原点からの累積パルス数の関係表を示している。
また、図15図16には、24ウェルプレートを用いた場合におけるウェルプレートの長辺方向(X方向)および短辺方向(Y方向)における各ウェルの中心位置のソフトウェア原点からのミリメートル単位の距離およびソフトウェア原点からの累積パルス数の関係表を示し、図17図18には、384ウェルプレートを用いた場合におけるウェルプレートの長辺方向(X方向)および短辺方向(Y方向)における各ウェルの中心位置のソフトウェア原点からのミリメートル単位の距離およびソフトウェア原点からの累積パルス数の関係表を示す。
【0058】
96ウェルプレートを用いた場合を例として、ウェル番号の推定方法を図19に示す。この例においてはX方向の累積パルス情報が81300パルス、Y方向の累積パルス情報が27000パルスである場合についてのウェル番号の類推方法を示す。
グラフィックユーザインターフェース90においてウェルプレートの情報がウェルプレート選択・表示エリア104に入力されているかの確認を行い情報がない場合にはウェルプレート情報が入力されていない旨をメッセージ表示エリア103に表示をするとともに、X方向およびY方向の位置をX軸モーター33およびY軸モーター34が3200パルスで1回転するという情報およびX軸シャフトおよびY軸シャフトが1回転することにより、長辺方向および短辺方向に2.54mm動くという情報により、X方向およびY方向の位置情報を算出し、位置情報エリア120および121にその数値を表示する。
【0059】
ウェルプレートの情報がウェルプレート選択・表示エリア104に入力されている場合には、X方向の累積パルス情報が81300パルスを読み込みその数値を図13に示した表と比較し、81300というパルスが7番目のウェル中心位置のパルス数である80755と8番目のウェル中心位置のパルス数である92094との間であることを知るとともに、7番目のウェル中心位置のパルス数である80755との数値の差が545であり、8番目のウェル中心位置のパルス数である92094との数値の差が10794であることを知る。さらにこれらの数値の差を比較し、81300というパルスが7番目のウェル中心位置のパルス数である80755の数値に最も近いことがわかり、X方向のウェル番号は7が最も近いことが解る。
【0060】
次にY方向についても同様の計算を行い、Y方向のウェル番号はBであることが解る。ステージ位置表示エリア122および123には、文字列の表示を行うようにしている場合には、それぞれの表示を行う文字列変数であるSTR_wel_XおよびSTR_wel_Yという変数に“7”および“B”という文字列を入力することにより表示を容易に行うことができる。
図19に示した96ウェルプレートを用いた例であるため図13および図14に示した表の数値を用いたが、それ以外のウェルの場合にはそれぞれ対応するデータを用いてウェル番号の推定を行う。
【0061】
図20は、X方向およびY方向にステージの移動命令がなされた際の制御方法を示す図である。具体的にはグラフィックユーザインターフェース90における移動目標座標(X)入力エリア106および移動目標座標(Y)入力エリア107に数値の入力がなされ、目標位置への移動開始ボタン108が押された際の制御フローの説明図である。
まず、現在位置の情報であるX方向の累積パルス情報X(now)とY方向の累積パルス情報Y(now)を読み込む。次に移動先の位置情報から目標とするX方向とY方向の位置のパルス情報X(end)とY(end)と算出する。この算出工程は、2.54ミリメートルが3200パルスであることから算出することができる。現在位置のパルス情報と移動先のパルス情報を比較して移動方向の算出を行う。つまり、移動先のX(end)がX(now)よりも大きい場合には、Xの移動方向はプラス側となるので、移動方向情報DIR(X)は1とし、移動先のX(end)がX(now)よりも小さい場合には、Xの移動方向はマイナス側となるので、移動方向情報DIR(X)は0とする。移動量としてそれら数値の差から送信パルス数P(X)、P(Y)を算出する。なお送信パルス数はP(X)、P(Y)正の数である。
【0062】
ここで、X方向、Y方向には上述のように移動範囲の制限があり、X方向においては、破線81bから破線81cまでの距離である125.6ミリメートルは158236パルスが許容最大パルス数X(limit)となり、Y方向においては破線81dから破線81eまでの距離である83.4ミリメートルは105070パルスが許容最大パルス数Y(limit)となる。そのため、移動前に移動先パルス数X(end)、Y(end)をそれぞれX(limit)、Y(limit)と比較して、X(end)、Y(end)をそれぞれX(limit)、Y(limit)よりも大きい場合、あるいはX(end)、Y(end)が負の数となる場合には、移動は行わず許容範囲を超えている旨をメッセージ表示エリア103に表示する。
【0063】
移動先が許容範囲内である場合には、モーターコントローラーボックス31内のデジタルコントローラー51およびパルス発生器52に移動方法DIR(X)、DIR(Y)およびパルス数P(X)、P(Y)を送信し、ステージの移動を行う。ステージの移動が終了した後には図19に示したウェル番号推定を行い、ウェル番号を表示するとともに現在位置のパルス累積情報の更新を行う。さらには、カメラ12により画像撮影を行い撮影した画像を第1のウィンドウ91、第2のウィンドウ92、第3のウィンドウ93のいずれかあるいはすべてに画像表示を行う。カメラ12による撮影がなされた場合には、撮影画像を保存する場合に備えて、キャッシュメモリーに画像を記録しておくとともに、画像撮影がなされた時間情報(年・月・日・時間・分・秒)もキャッシュメモリーに記録しておく。
【0064】
図21は、X方向およびY方向にステージの移動命令がウェル番号入力によりなされた際の制御方法を示す図である。具体的にはグラフィックユーザインターフェース90における移動目標ウェル番号(X)入力エリア109および移動目標ウェル番号(Y)入力エリア110に数値の入力がなされ、目標位置への移動開始ボタン111が押された際の制御フローの説明図である。
【0065】
最初にグラフィックユーザインターフェース90においてウェルプレートの情報がウェルプレート選択・表示エリア104に入力されているかの確認を行い情報がない場合にはウェルプレート情報が入力されていない旨をメッセージ表示エリア103に表示をするとともに、移動を行わない。
【0066】
ウェルプレートの情報がウェルプレート選択・表示エリア104に入力されている場合には、現在位置の情報であるX方向の累積パルス情報X(now)とY方向の累積パルス情報Y(now)を読み込む。次に移動先の位置情報から目標とするX方向とY方向の位置のパルス情報X(end)とY(end)と算出する。この算出は、96ウェルプレートの場合には図13あるいは図14の表に示されている各ウェル番号の中心位置に対応するパルス情報より取得する。現在位置のパルス情報と移動先のパルス情報を比較して移動方向の算出を行う。つまり、移動先のX(end)がX(now)よりも大きい場合には、Xの移動方向はプラス側となるので、移動方向情報DIR(X)は1とし、移動先のX(end)がX(now)よりも小さい場合には、Xの移動方向はマイナス側となるので、移動方向情報DIR(X)は0とする。移動量としてそれら数値の差から送信パルス数P(X)、P(Y)を算出する。なお送信パルス数はP(X)、P(Y)正の数である。
【0067】
このウェル番号入力の場合には、ウェルはすべて移動可能範囲内であることが期待されるが、念のため図20に示した場合と同様に移動前に移動先パルス数X(end)、Y(end)をそれぞれX(limit)、Y(limit)と比較して、X(end)、Y(end)をそれぞれX(limit)、Y(limit)よりも大きい場合、あるいはX(end)、Y(end)が負の数となる場合には、移動は行わず許容範囲を超えている旨をメッセージ表示エリア103に表示する。
ステージの移動、ウェル番号の推定、現在位置情報の書き換え、画像撮影、画像表示などの工程を、図20に示した例と同様に行う。
【0068】
図22は、X方向およびY方向にステージの移動命令が相対位置として指定された際の制御方法を示す図である。具体的にはグラフィックユーザインターフェース90における長辺方向および短辺方向に10ミクロンメートル同時に移動させるボタン130~137が押された際の制御フローの説明図である。この場合においては、移動パルスおよび移動方向についての情報は、押されたボタンにより取得可能である。したがって、現在のパルス位置情報を取得した後、移動先のパルス位置情報X(end)、Y(end)はボタンの種類により算出できる。
【0069】
移動先パルス数X(end)、Y(end)をそれぞれX(limit)、Y(limit)と比較して、X(end)、Y(end)をそれぞれX(limit)、Y(limit)よりも大きい場合、あるいはX(end)、Y(end)が負の数となる場合には、移動は行わず許容範囲を超えている旨をメッセージ表示エリア103に表示する。
移動先が許容範囲内である場合には、モーターコントローラーボックス31内のデジタルコントローラー51およびパルス発生器52に移動方法DIR(X)、DIR(Y)およびパルス数P(X)、P(Y)を送信し、ステージの移動を行う。ステージの移動が終了した後には図19に示したウェル番号推定を行い、ウェル番号を表示するとともに現在位置のパルス累積情報の更新を行う。さらには、カメラ12により画像撮影を行い撮影した画像を第1のウィンドウ91、第2のウィンドウ92、第3のウィンドウ93のいずれかあるいはすべてに画像表示を行う。
【0070】
図23は、X方向およびY方向にステージの移動命令が相対位置として指定された際の制御方法を示す第2の図である。具体的にはグラフィックユーザインターフェース90における長辺方向および短辺方向に100ミクロンメートル同時に移動させるボタン140~147が押された際の制御フローの説明図である。この場合においては、移動量が比較的大きいので移動を一度に行わす、1回の移動量を目標移動量の20%である20ミクロンメートルとし、5回の移動に分割するとともに、いったん停止した際に画像撮影と表示を行う工程である。ステージを20ミクロンメートル動かすごとに画像の撮影と表示を行うので、作業者が観察対象を探している時に便利な機能である。
図22の場合と同様に移動パルスおよび移動方向についての情報は、押されたボタンにより取得可能である。したがって、現在のパルス位置情報を取得した後、移動先のパルス位置情報X(end)、Y(end)はボタンの種類により算出できる。
【0071】
移動先パルス数X(end)、Y(end)をそれぞれX(limit)、Y(limit)と比較して、X(end)、Y(end)をそれぞれX(limit)、Y(limit)よりも大きい場合、あるいはX(end)、Y(end)が負の数となる場合には、移動は行わず許容範囲を超えている旨をメッセージ表示エリア103に表示する。
移動先が許容範囲内である場合には、モーターコントローラーボックス31内のデジタルコントローラー51およびパルス発生器52に移動方法DIR(X)、DIR(Y)およびパルス数P(X)、P(Y)のそれぞれ20%のパルス数を送信し、ステージの移動を行う。そして移動が終了したら画像撮影と表示を行う。そしてこの移動工程、画像撮影工程、画像表示工程を5回行い、合計の移動量が指示された移動量になるまで行う。
5回のステージの移動が終了した後には図19に示したウェル番号推定を行いウェル番号を表示するとともに現在位置のパルス累積情報の更新を行う。
【0072】
図24は、2軸移動ステージとカメラの連携制御システム、2軸移動ステージとカメラの連携制御システムの画像保存方法における画像保存ファイル名の生成を行うフロー図である。2軸移動ステージとカメラの連携がなされていない従来のカメラにより撮影された画像を、カメラメーカーから提供されているソフトウェアで保存を行う際には、撮影時間の情報のみしか付与されないが、本発明においては、2軸移動ステージとカメラの連携制御がなされているため、位置情報など有益な情報もファイル名に挿入することができる。まず、サンプル情報入力・表示エリア105に例えば、GFP1などとテキストが入力されている場合には、そのテキスト情報を取得し、文字列変数STR_sampleにGFP1を入力する。つぎにカメラ12の撮影時に画像とともにキャッシュに保存されている撮影時間情報を取得し、文字列変数STR_timeに例えば_20210703101223などと入力する。またX方向あるいはY方向のステージ位置情報であるX(now)およびY(now)より現在のステージ位置情報を算出する。例えば図9に示した例と同様にX(now)が81300パルスであった場合には、61.5mmであるので、61500という数値と、Y(now)が27000パルスであった場合には21.4mmであるので21400という数値を用いて、位置情報の文字列変数STR_posiに_X64500_Y21400と入力する。
【0073】
次に、グラフィックユーザインターフェース90においてウェルプレートの情報がウェルプレート選択・表示エリア104に入力されているかの確認を行い情報がない場合にはウェル番号情報の文字列変数であるSTR_wellにスペースを入力し、ウェルプレート選択・表示エリア104に情報がある場合にはSTR_wellにウェルプレートの情報が入力されている場合には、その情報からウェル番号の推定を行うとともに、ウェルプレートのウェル数情報とともに、STR_wellに_wel96_7Bなどと入力する。そして画像フォーマットの種類情報とともに上述の各文字数変数をマージして画像ファイル名を完成させる。この例では画像フォーマットとしてtiffフォーマットが選択されており、ファイル名は、GFP1_20210703101223_X64500_Y21400_wel96_7B.tiffとなる。このファイル名より、画像撮影日時のみではなく、撮影位置およびウェル番号の情報が含まれているので、記録された画像とサンプル番号を間違える危険性をなくすことができる。
【0074】
図25にはファイル名の挿入されるウェル番号を示す文字列変数の生成方法を示す。具体的ステップは、図19に示すX方向のウェル番号の文字列変数STR_wel_XとY方向のウェル番号の文字列変数STR_wel_Yの生成方法は同様であり、これら文字列変数にウェルプレートの種類の文字列変数SRT_wel_headerをグラフィックユーザインターフェース90においてウェルプレートの情報がウェルプレート選択・表示エリア104に入力されている情報から生成し、これらをマージすることにより、図24に示す文字列変数STR_welをwel96_7Bとしている。
【0075】
図26は、上記第2のウィンドウ92に表示される強調画像の生成方法を示す図である。低輝度領域および高輝度領域ともに画像が白黒画像であった場合には少ない輝度変化を目視で認識することが容易でないので、非特許文献3に示すようなカラーマップ処理と呼ばれる処理を行い、カラー画像化することにより輝度変化を敏感にとらえることができる画像強調方法がある。図26には白黒画像に対して赤緑青のカラー画像データを割り当てる一例であるカラーマップ化方法を示すが、この方法により赤緑青の輝度データは、傾斜が大きくなっているので、微妙な輝度変化を観察者が容易に観察できることとなる。
例えば白黒画像で輝度3の画素は、赤0、緑0.青143と変換され、輝度4の画素は、赤0、緑0、青147と変換されるので、輝度変化は4となり4倍の輝度変化となっている。
【0076】
観察対象が、蛍光発光が弱い試料である場合などにおいて焦点調整はNAの高い高倍率の対物レンズに変えて焦点調整を行う、あるいは照明の輝度を高めて焦点調整を行うなどの方法が用いられていたため、褪色しやすい試料の場合には観察可能時間を短くしてしまうなどの問題があった。また観察対象を探す場合においても広いエリアの観察が可能な低倍率のレンズはNAが低い場合が多いので、蛍光画像が暗く対象物を探すのが困難であったので、観察可能エリアが狭くなるにも関わらず、高いNAの高倍率対物レンズを用いるという方法も用いられていた。
このカラーマップ化という画像強調手法を用いることにより、暗い画像においても焦点位置調整が可能になるというメリットがあるとともに、対象物を探す場合において高いNAの高倍率対物レンズに交換することなく低い倍率のレンズで対象物を見つけることができやすくなるというメリットが存在する。また、対物レンズの倍率変更や、カメラ条件の変更などを行う作業を低減することができるので、作業時間の短縮という効果も得られる。
【0077】
図27は、本発明の2軸移動ステージとカメラの連携制御システムが接続された第2の光学顕微鏡210の概略構成図を示す図である。
図3に示した本発明の2軸移動ステージとカメラの連携制御システムが接続された光学顕微鏡10は、対物レンズ63が上向きに配置された倒立顕微鏡であったが、本発明の2軸移動ステージとカメラの連携制御システムが接続される顕微鏡は倒立顕微鏡に限定されない。図27に示した光学顕微鏡210には試料として半導体が形成されるウェハ25が2軸移動ステージ30に搭載されている。ハロゲンランプ光源などの光源装置76と集光レンズ77による照明光はハーフミラー78を介して対物レンズ63に入射される同軸落射照明光学系が構成されており、カメラ12によりその画像が観察される。作業者はウェハに例えば傷などの不良部分が観察された際には、2軸移動ステージとカメラの連携制御システムにおけるグラフィックユーザインターフェース90を使用して画像の撮影と保存を行うことにより、撮影された傷の画像は、撮影日時の情報とともに位置情報も記録されることとなる。したがって、傷などの情報を容易にその座標を残すことができる。また、微細な浅い傷などの発見においてカラーマッピング機能などの画像強調手法は有効であるので、画像強調手法を用いることにより傷の発見も容易となる。
【0078】
図28は、本発明の2軸移動ステージとカメラの連携制御システムが接続される光学顕微鏡9を示す図である。図2に示した光学顕微鏡装置8は、顕微鏡の躯体1の剛性が高く、試料台3を取り外しても、試料の透過観察像の観察が、接眼レンズ68を介して観察を行う作業者およびカメラポート18に接続されるカメラにより観察できる構成となっているが、図28に示す光学顕微鏡9は、試料台3が光学系の剛性を支える構成となっており、試料台3を取り外された顕微鏡の躯体2の剛性は不十分であり、試料の透過観察像の観察が、接眼レンズ68を介して観察を行う作業者およびカメラポート18に接続されるカメラにより観察される画像品質が低下してしまう顕微鏡である。しかしながら、光学顕微鏡9は軽量であるため、細胞培養現場なので多く用いられている。
画像品質が低下する原因は、試料台3を取り外すことにより透過照明光源73および集光レンズ74の位置が不安定となるためである。
【0079】
図29は、本発明の2軸移動ステージとカメラの連携制御システムが接続された第3の光学顕微鏡211の概略構成図を示す図であり、図28に示す光学顕微鏡装置9の試料台3を取り除くことなく、2軸移動ステージ230、カメラ12、コントローラー13、モーターコントローラーボックス31より構成される2軸移動ステージとカメラの連携制御システムを接続した例である。ここで、カメラ12、コントローラー13、モーターコントローラーボックス31は、図3に示した例と同様であるので、説明を省略する。
【0080】
図28に示した光学顕微鏡9はウェルプレート20を試料台3の上に配置した際にウェル21に配置されている試料の観察ができる構成となっているので、図28に示した光学顕微鏡9に図4に示す2軸移動ステージ30を取り付けると、対物レンズの可動範囲よりも高い位置に試料が配置されてしまうこととなるので、光学顕微鏡211に用いられる2軸移動ステージ230は、2軸移動ステージ30と異なる構造となっている。
【0081】
2軸移動ステージ230の構成概略図を図30に示す。図30に示す2軸移動ステージ230は、試料台3に取り付けられるステージ固定部37を有し、ステージ固定部37にY軸モーター34が配置されている。Y軸モーター34はY軸シャフト36を回転する機能を有し、Y軸モーター36を回転させることにより、Y軸シャフト36に搭載されているYステージテーブル39がY軸シャフト36の回転軸に平行な方向に移動する構成となっている。本例では、Y軸シャフト36にはピッチ2.54mmのねじが形成されており、Y軸シャフト36を1回転させるとYステージテーブル39がY軸モーター34の回転方向に対応する方向に2.54mm移動する構成となっている。
【0082】
Yステージテーブル39には、X軸モーター33が配置されている。X軸モーター33はX軸シャフト35を回転する機能を有し、X軸モーター33を回転させることにより、X軸シャフト35に搭載されているXステージテーブル38がX軸シャフト35の回転軸に平行な方向に移動する構成となっている。本例では、X軸シャフト35にはY軸シャフト36と同様にピッチ2.54mmのねじが形成されており、X軸シャフト35を1回転させるとXステージテーブル38がX軸モーター33の回転方向に対応する方向に2.54mm移動する構成となっている。X軸シャフト35とY軸シャフト36を直交するように配置するとともに、X軸シャフト35とY軸シャフト36は、対物レンズ63および結像レンズ64による観察光学系とも直交される構成とされている。
【0083】
また図4に示す2軸移動ステージ30と同様に、2軸移動ステージ330の試料搭載部29には、ウェルプレート20が搭載されている。ウェルプレート20には2つの面取り部22が長辺方向の片側に配置されており、ウェルプレートの向きが規定されている。2軸移動ステージ230には、ウェルプレート20の面取り部22を抑えるウェルプレート押さえ40が配置されており、ウェルプレート20は、試料搭載部29においてウェルプレート押さえ40と対向するコーナー側にウェルプレート20が押さえつけられる構成となっている。
【0084】
本例においては、ウェルプレート20の長辺方向がX軸シャフト35の回転軸と平行な方向になるように配置され、ウェルプレート20の短辺方向がY軸シャフト36の回転軸と平行な方向になるように配置されている。また図30には図示しないが、2軸移動ステージ30と同様にリミットセンサーなどは具備されており、その制御方法は2軸移動ステージ30と同様である。
【0085】
図31に本発明の2軸移動ステージとカメラの連携制御システムが接続された第3の光学顕微鏡211のX方向からみた部分的な透視構成図を示し、図32に本発明の2軸移動ステージとカメラの連携制御システムが接続された第3の光学顕微鏡211のY方向からみた透視構成図を示す。
【0086】
ステージ固定部37は試料台3に取付板17を介して取り付けられている。ステージ固定部37は、試料台3の上面である試料を配置する側に位置しているが、Y軸モーター34およびY軸シャフト36は、試料台3よりも対物レンズ側に位置している。また、Y軸モーター34およびY軸シャフト36は、X方向において試料台3よりも外側に配置されている。図28に示すように光学顕微鏡9における試料台3は、接眼レンズおよびカメラポート18と、透過照明73の支柱にそれぞれ対向する辺が固定された構造となっているので、X方向の試料移動を行うX軸モーター33およびX軸シャフト35は、Y方向の試料移動を行うY軸モーター34およびY軸シャフト36のいずれかを試料台3の外側に配置し、かつ、試料台3よりも対物レンズ側に配置させる場合には、選択肢としてはY方向の試料移動を行うY軸モーター34およびY軸シャフト36を選択するほうが容易である。
【0087】
X方向の試料移動を行うX軸モーター33およびX軸シャフト35を試料台3よりも対物レンズ側に配置させる場合には、試料台3を取り外して組み立てる方法、もしくは、2軸移動ステージ230の組み立てを試料台3の両側から行う方法のいずれかが必要となってしまうことに対して、Y方向の試料移動を行うY軸モーター34およびY軸シャフト36を試料台3の対物レンズ側、かつ、試料台3の外側に配置させる場合には、組み立てが終了した2軸移動ステージ230を設置することができるという点で、Y方向の試料移動を行うY軸モーター34およびY軸シャフト36を試料台3の対物レンズ側、かつ、試料台3の外側に配置させる場合が容易となる。
【0088】
図29に示したY軸モーター34およびY軸シャフト36が、試料台3よりも対物レンズ側に位置している2軸移動ステージ230は、図9に示した試料台3が取り外すされた場合に顕微鏡の躯体2の剛性は不十分となる光学顕微鏡9に取り付けることが可能であるが、図2に示す試料台3が取り外すされた場合に顕微鏡の躯体1の剛性が十分である光学顕微鏡8にも取り付けが可能であるので、Y軸モーター34およびY軸シャフト36が、試料台3よりも対物レンズ側に位置している2軸移動ステージ230が取り付けられる光学顕微鏡は、試料台3が取り外された場合に顕微鏡の躯体2の剛性は不十分となる光学顕微鏡に限定される必要はない。
【産業上の利用可能性】
【0089】
本発明の2軸移動ステージとカメラの連携制御システム、2軸移動ステージとカメラの連携制御システムの画像保存方法、2軸移動ステージとカメラの連携制御システムのステージ移動方法、2軸移動ステージとカメラの連携制御システムの画像撮影および表示方法、および、2軸移動ステージとカメラの連携制御システムの位置情報表示方法は、医薬品開発、治療法開発など細胞に対して複数の条件を検討する領域において、作業効率の改善と細胞番号の取り違えミスなどの低減をもたらすことができる。また、自動ステージな従来効果な剛性の高い顕微鏡においてのみに適用される装置であったが、本発明により安価な光学顕微鏡に対しても導入が可能であるとともに、ウェハの検査など細胞を扱わないユーザーが用いる顕微鏡においても適用可能となるので、多くの面で作業効率の改善をもたらすことができる。
【符号の説明】
【0090】
1、2……顕微鏡の躯体、3……試料台、8、9……顕微鏡システム、10、210、211、310……XYステージカメラ統合システムが接続された顕微鏡システム、11……2軸移動ステージとカメラの連携制御システム、12……カメラ、13……コントローラー、14……モニター、15……カメラケーブル、16……モニターケーブル、17……取付板、18……カメラポート、19……ステージ取り付け部、20……ウェルプレート、21……ウェル、22……面取り部、25……ウェハ、29……試料搭載部、30、230……XYステージ、31……モーターコントローラーボックス、32……モーターケーブル、33……X軸モーター、34……Y軸モーター、35……X軸シャフト、36……Y軸シャフト、37……ステージ固定部、38……Xステージテーブル、39……Yステージテーブル、40……ウェルプレート押さえ、41……シャフトホルダー、42、42……リミットセンサー、44、45……リミットセンサーブレード、46……X軸モータードライバー、47……Y軸モータードライバー、48……X軸モータードライバーケーブル、49……Y軸モータードライバーケーブル、50……モーターコントローラー、51……デジタルコントローラー、52……パルス発生器、53……X軸パルス伝送ケーブル、54……Y軸パルス伝送ケーブル、55……デジタルコントローラーケーブル、56……モーターコントローラーケーブル、60……蛍光励起光源、61……レンズ、62……蛍光フィルターキューブ、63……対物レンズ、64……結像レンズ、65、66……ミラー、67……切り替えミラー、68……接眼レンズ、70……エキサイトフィルター、71……ダイクロイックミラー、72……エミッションフィルター、73……透過照明光源、74、77……集光レンズ、76……照明光源、78……ハーフミラー、80……リミットセンサーに規定される可動範囲、80a……機械原点、81……ソフトウェアで移動が可能な範囲、81a……ソフトウェア原点、82……X軸方向移動量(ステージ移動距離)、83……Y軸方向移動量(ステージ移動距離)、90……グラフィックユーザインターフェース(GUI)、91、92、93……画像表示ウィンドウ、101……原点復帰ボタン、102……ステージ制御状態表示エリア、103……メッセージ表示エリア、104……ウェルプレート選択・表示エリア、105……サンプル情報入力・表示エリア、106……移動目標座標(X)入力エリア、107……移動目標座標(Y)入力エリア、108、111……目標位置への移動開始ボタン、109……移動目標(X軸ウェル番号)入力エリア、110……移動目標(Y軸ウェル番号)入力エリア、120……ステージ位置表示(X座標)、121……ステージ位置表示(Y座標)、122……ステージ位置表示(X方向ウェル番号)、123……ステージ位置表示(Y方向ウェル番号)、130,131,132,133,134,135,136,137、140,141,142,143,144,145,146,147……相対移動指定ボタン、150,151……カメラ条件入力・表示エリア、152……画像強調条件入力・表示エリア、153……拡大表示条件入力・表示エリア、154……連続撮影・表示ボタン、155……画像撮影ボタン、156……画像保存ボタン
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32