(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023138881
(43)【公開日】2023-10-03
(54)【発明の名称】接触動剛性算出システム及び加工システム
(51)【国際特許分類】
B24B 49/16 20060101AFI20230926BHJP
B24B 41/06 20120101ALI20230926BHJP
B24B 49/04 20060101ALI20230926BHJP
B24B 5/04 20060101ALI20230926BHJP
B23Q 17/22 20060101ALI20230926BHJP
【FI】
B24B49/16
B24B41/06 J
B24B49/04 A
B24B5/04
B23Q17/22 F
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022044782
(22)【出願日】2022-03-21
(71)【出願人】
【識別番号】000001247
【氏名又は名称】株式会社ジェイテクト
(74)【代理人】
【識別番号】110000648
【氏名又は名称】弁理士法人あいち国際特許事務所
(72)【発明者】
【氏名】小林 久修
(72)【発明者】
【氏名】久原 淳司
(72)【発明者】
【氏名】森 知也
【テーマコード(参考)】
3C029
3C034
3C043
【Fターム(参考)】
3C029AA34
3C034AA01
3C034BB74
3C034BB92
3C034CA13
3C034CA16
3C034CB14
3C043AA01
3C043CC03
3C043CC13
3C043DD02
3C043DD03
3C043DD05
3C043DD06
3C043EE04
(57)【要約】
【課題】工作物と工作物支持部材との間の接触状態を考慮して、接触動剛性を高精度に算出することができる接触動剛性算出システムを提供する。
【解決手段】
接触動剛性算出システム130は、工作物支持部材34、41により支持された工作物Wにおける加工位置Iの情報を含む工作物Wに関する基本情報を取得する。また、接触動剛性算出システム130は、工作物支持部材34、41により支持された工作物Wに砥石車Tから作用力が加わっていない初期状態から作用力が加わった作用状態に変化したときの、工作物Wと工作物支持部材34、41との接触部における工作物曲げ角度と支持部材曲げ角度との差分である差分曲げ角度を算出する。そして、基本情報と差分曲げ角度とに基づいて、工作物Wと工作物支持部材34、41との接触部におけるばね定数及び減衰係数を算出して接触動剛性を算出する。
【選択図】
図6
【特許請求の範囲】
【請求項1】
工作物支持部材により支持された工作物を工具により加工する際の工作物と工作物支持部材との接触部における接触動剛性を算出する接触動剛性算出システムであって、
上記工作物における加工位置の情報を含む工作物に関する基本情報を取得する基本情報取得部と、
上記工作物支持部材により支持された上記工作物に上記工具から作用力が加わっていない初期状態から上記工具から上記工作物に作用力が加わった作用状態に変化したときの、上記工作物と上記工作物支持部材との接触部における上記工作物の曲げ角度である工作物曲げ角度と上記工作物支持部材の曲げ角度である支持部材曲げ角度との差分である差分曲げ角度を算出する差分曲げ角度算出部と、
上記基本情報取得部が取得した上記基本情報と、上記差分曲げ角度算出部が算出した上記差分曲げ角度とに基づいて上記工作物と上記工作物支持部材との接触部におけるばね定数及び減衰係数を算出し、該ばね定数及び該減衰係数に基づいて上記工作物の接触動剛性を算出する接触動剛性算出部と、
を備える、接触動剛性算出システム。
【請求項2】
上記加工位置と上記差分曲げ角度との対応関係が予め記憶された対応関係記憶部を有し、
上記差分曲げ角度算出部は、上記対応関係記憶部に記憶された上記対応関係と上記基本情報に含まれた上記加工位置とに基づいて上記差分曲げ角度を算出する、請求項1に記載の接触動剛性算出システム。
【請求項3】
上記基本情報取得部は、上記工作物における上記工作物支持部材により支持される被支持部の最大支持径を上記基本情報としてさらに取得し、
上記接触動剛性算出部は、少なくとも上記基本情報取得部が取得した上記最大支持径と、上記差分曲げ角度算出部が算出した上記差分曲げ角度とに基づいて上記ばね定数及び上記減衰係数を算出する、請求項1又は2に記載の接触動剛性算出システム。
【請求項4】
請求項1~3のいずれか一項に記載の接触動剛性算出システムと、上記工作物を加工する加工装置と、上記加工装置による加工を制御する制御装置とを備える加工システムであって、
上記制御装置は、上記接触動剛性算出システムにより算出された上記接触動剛性を含む上記工作物側の動剛性に基づいて上記加工装置による加工を制御する、加工システム。
【請求項5】
請求項1~3のいずれか一項に記載の接触動剛性算出システムと、上記工作物を加工する加工装置と、上記加工装置による加工を制御する制御装置と、上記接触動剛性算出システムにより算出された上記接触動剛性を含む上記工作物側の動剛性に基づいて上記加工装置による上記工作物における加工結果を推定する推定部とを備える加工システムであって、
上記制御装置は、上記推定部による推定された上記加工結果に基づいて上記加工装置による加工を制御する、加工システム。
【請求項6】
上記工具は砥石であって、上記加工装置は研削盤である、請求項4又は5に記載の加工システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、接触動剛性算出システム及び加工システムに関する。
【背景技術】
【0002】
従来、砥石車等の工具により工作物を加工したときの加工結果を推定する構成が種々提案されている。例えば、特許文献1には、工作物を砥石車により研削加工する場合に、工作物と砥石車との間の接触静剛性を加味して、工作物の研削痕深さを推定することが記載されている。ここで用いられる接触静剛性は、砥石車を静止しているときに測定した値ではなく、研削時における理論接触静剛性を用いて算出している。接触静剛性は、工作物と砥石車との間のばね定数Kにより表される。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に開示の構成では、砥石や工作物を支持する工作物支持部材に関する支持剛性を考慮して、工作物の研削痕深さを推定している。当該支持剛性は、工作物を支持する支持部材としての剛性のみならず、工作物と工作物支持部材との間の接触状態によっても変化する。しかしながら、特許文献1に開示の構成では当該接触状態の変化を考慮していないため、工作物側の動剛性の算出結果に誤差が生じて推定精度が低下している。そのため、工作物の加工結果を高精度に推定するには、工作物と工作物支持部材との間の接触状態を考慮して、工作物における加工点の動剛性を高精度に算出することが求められている。
【0005】
本発明は、かかる課題に鑑みてなされたものであり、工作物と工作物支持部材との間の接触状態を考慮して、接触動剛性を高精度に算出することができる接触動剛性算出システムを提供しようとするものである。
【課題を解決するための手段】
【0006】
本発明の一態様は、工作物支持部材により支持された工作物を工具により加工する際の工作物と工作物支持部材との接触部における接触動剛性を算出する接触動剛性算出システムであって、
上記工作物における加工位置の情報を含む工作物に関する基本情報を取得する基本情報取得部と、
上記工作物支持部材により支持された上記工作物に上記工具から作用力が加わっていない初期状態から上記工具から上記工作物に作用力が加わった作用状態に変化したときの、上記工作物と上記工作物支持部材との接触部における上記工作物の曲げ角度である工作物曲げ角度と上記工作物支持部材の曲げ角度である支持部材曲げ角度との差分である差分曲げ角度を算出する差分曲げ角度算出部と、
上記基本情報取得部が取得した上記基本情報と、上記差分曲げ角度算出部が算出した上記差分曲げ角度とに基づいて上記工作物と上記工作物支持部材との接触部におけるばね定数及び減衰係数を算出し、該ばね定数及び該減衰係数に基づいて上記工作物の接触動剛性を算出する接触動剛性算出部と、
を備える、接触動剛性算出システムにある。
【発明の効果】
【0007】
上記態様によれば、接触動剛性算出部は、加工位置の情報を含む基本情報と、差分曲げ角度算出部が算出した差分曲げ角度とに基づいて、工作物と工作物支持部材との接触部におけるばね定数及び減衰係数を算出し、該ばね定数及び該減衰係数に基づいて、接触部における動剛性である接触動剛性を算出する。これにより、接触動剛性は、工作物の曲げ角度である工作物曲げ角度と工作物支持部材の曲げ角度である支持部材曲げ角度との間に生じるズレを考慮して算出されることとなる。その結果、工作物と工作物支持部材との間の接触状態を考慮して、接触動剛性を高精度に算出することができる。
【0008】
以上のごとく、上記態様によれば、工作物と工作物支持部材との間の接触状態を考慮して、接触動剛性を高精度に算出することができる接触動剛性算出システムを提供することができる。
【図面の簡単な説明】
【0009】
【
図2】実施形態1における接触動剛性算出システムを含む加工推定装置の機能ブロック図。
【
図3】研削加工時の工作物と砥石車との干渉状態を示す模式図。
【
図4】研削加工シミュレーションにおける工作物の形状を径方向の線分群にて表した図であり、研削加工時において径方向の線分で表した工作物が砥石車の外周線に干渉する状態を示す図。
【
図5】実施形態1の接触動剛性算出システムにおける加工位置と差分曲げ角度との対応関係を示す図。
【
図6】(a)工作物支持部材に支持した工作物の初期状態を示す断面図、(b)工作物に砥石から作用力を加えた状態を示す断面図。
【
図7】実施形態1における研削加工での工作物側動剛性、工具側動剛性を示す模式図。
【
図9】実施形態1における接触動剛性算出システムを含む動剛性決定部の機能ブロック図。
【
図10】実施形態3の加工システムを示す図である。
【
図11】実施形態3における切削加工での工作物側動剛性、工具側動剛性を示す模式図。
【発明を実施するための形態】
【0010】
(実施形態1)
1.加工システム1の構成
本実施形態1における加工システム1について
図1を参照して説明する。加工システム1は、研削加工を行う加工装置を対象とする。加工システム1は、加工装置としての研削盤2と、処理部3とを備える。
【0011】
研削盤2は、工作物Wを回転させ、回転体である工具としての砥石車Tを回転させ、かつ、砥石車Tを工作物Wに対して工作物Wの軸線に交差する方向に相対的に接近させることにより、工作物Wの外周面または内周面を研削する。研削盤2は、テーブルトラバース型の研削盤、砥石台トラバース型の研削盤などを適用可能である。また、研削盤2は、円筒研削盤、カム研削盤等を適用可能である。
【0012】
本実施形態においては、
図1に示すように、工作物Wは、例えば、軸状に形成された部材を例にあげる。ただし、工作物Wの形状は、軸状に限られず、任意の形状とすることができる。
【0013】
本実施形態においては、工作物Wは、略棒状であって両端に位置する被支持部WR、WLを備える。ただし、
図1に示す工作物Wは、一例であって、研削盤2は、種々の形状を有する工作物を研削加工の対象とすることができる。本実施形態では、一方の被支持部WLは軸方向一端面に位置して、後述する工作物支持部材としての主軸センタ34が挿入されるセンタ穴を構成している。被支持部WLを構成するセンタ穴は、主軸センタ34の先端形状に沿って円錐形状をなしている。
【0014】
また、他方の被支持部WRは軸方向他端面に位置して、後述する工作物支持部材としての主軸センタ34が挿入されるセンタ穴を構成している。被支持部WRは構成するセンタ穴は、主軸センタ34の先端形状に沿って円錐形状をなしている。そして、工作物Wにおいて、砥石車Tが接する位置が加工位置Iとなる。
【0015】
処理部3は、研削盤2を制御する制御装置3a、および、加工結果を推定する加工推定装置3bを備える。制御装置3aは、研削盤2を制御することにより、研削加工を制御することができる。加工推定装置3bは、後述する接触動剛性算出システム130を有しており、当該接触動剛性算出システム130によって算出された接触動剛性(Cwc,Kwc)を含む工作物側動剛性(Cw,Kw)を利用して研削加工のシミュレーションを行うことにより、工作物Wにおける加工結果を推定する処理を行う。
【0016】
加工推定装置3bは、研削盤2および制御装置3aとは独立したシミュレーション装置として機能させることもできるし、研削盤2および制御装置3aと連動して動作するシミュレーション装置として機能させることもできる。前者の場合には、加工推定装置3bは、例えば、実際の工作物Wの研削加工を行うことなく、最適な研削加工条件を決定することができる。後者の場合には、加工推定装置3bは、研削盤2による工作物Wの研削加工と並行して処理することにより、例えば、研削加工条件を補正したり、各種制御に影響を及ぼすように動作したりすることができる。また、加工推定装置3bは、研削盤2および制御装置3aの組込みシステムとすることもできる。
【0017】
2.研削盤2および制御装置3aの構成
研削盤2および制御装置3aの構成の一例について、
図1を参照して詳細に説明する。研削盤2は、テーブルトラバース型の円筒研削盤を例にあげる。つまり、当該研削盤2は、工作物Wを工作物Wの軸線方向に移動させ、かつ、砥石車Tを工作物Wの軸線に交差する方向に移動させる構成である。また、本実施形態においては、研削盤2は、砥石車Tにより工作物Wの円筒外周面を研削する場合を例にあげる。
【0018】
研削盤2は、ベッド10、テーブル20、主軸装置30、心押装置40、砥石台50を備える。テーブル20上に設けられた主軸装置30および心押装置40は、工作物Wを支持する工作物支持部材として機能する。砥石台50は、砥石車Tを支持する工具支持部材として機能する。つまり、研削盤2は、工作物支持部材に支持された工作物Wを、工具支持部材に支持された砥石車Tにより研削加工する。なお、研削盤2は、さらに、工作物Wの外形寸法を取得する図示しない定寸装置を備えることもできる。以下に、研削盤2の構成要素について詳細に説明する。
【0019】
ベッド10は、設置面上に設置されている。ベッド10は、X軸方向の正面側(
図1の下側)の幅(Z軸方向長さ)が長く形成されており、X軸方向の背面側(
図1の上側)の幅が短く形成されている。
【0020】
ベッド10は、X軸方向の正面側の上面に、Z軸方向に延在するZ軸案内面11を備える。さらに、ベッド10には、Z軸案内面11に沿って駆動するZ軸駆動機構12を備える。本実施形態1では、Z軸駆動機構12は、ボールねじ機構12aとZ軸用モータ12bとを備える場合を例にあげる。ボールねじ機構12aが、Z軸案内面11に平行に延在し、Z軸用モータ12bが、ボールねじ機構12aを駆動する。
【0021】
Z軸駆動機構12を駆動するために、図示しないZ軸用駆動回路およびZ軸用検出器12cが設けられる。Z軸用駆動回路は、アンプ回路を含み、Z軸用モータ12bを駆動する。Z軸用検出器12cは、本実施形態においては、例えば、エンコーダなどの角度検出器であって、Z軸用モータ12bの回転軸の角度を検出する。なお、Z軸駆動機構12は、上記のボールねじ機構12aを備える構成に代えて、リニアモータなどを適用することもできる。
【0022】
また、ベッド10は、X軸方向の背面側の上面に、Z軸方向に交差する方向に延在する案内面13を備える。本実施形態においては、案内面13は、Z軸に直交するX軸方向に延在するX軸案内面である。さらに、ベッド10には、X軸案内面13に沿って駆動するX軸駆動機構14を備える。本実施形態では、X軸駆動機構14は、ボールねじ機構14aとX軸用モータ14bとを備える場合を例にあげる。ボールねじ機構14aが、X軸案内面13に平行に延在し、X軸用モータ14bが、ボールねじ機構14aを駆動する。
【0023】
X軸駆動機構14を駆動するために、図示しないX軸用駆動回路およびX軸用検出器14cが設けられる。X軸用駆動回路は、アンプ回路を含み、X軸用モータ14bを駆動する。X軸用検出器14cは、本実施形態1においては、例えば、エンコーダなどの角度検出器であって、X軸用モータ14bの回転軸の回転角度を検出する。なお、X軸駆動機構14は、上記のボールねじ機構14aを備える構成に代えて、リニアモータなどを適用することもできる。
【0024】
テーブル20は、長尺状に形成されており、ベッド10のZ軸案内面11にZ軸方向(水平左右方向)に移動可能に支持されている。また、テーブル20は、Z軸ボールねじ機構12aのボールねじナットに固定されており、Z軸用モータ12bの回転駆動によってZ軸方向に移動する。
【0025】
主軸装置30は、工作物Wを支持し、工作物Wを回転駆動する。主軸装置30は、テーブル20上のZ軸方向の一端側に配置されている。主軸装置30は、主軸ハウジング31、主軸32、主軸用モータ33、主軸センタ34、主軸用検出器35および図示しない主軸用駆動回路を備える。
【0026】
主軸ハウジング31は、テーブル20上に固定されている。主軸32は、主軸ハウジング31に軸受を介して回転可能に支持される。主軸用モータ33は、主軸32を回転駆動する。
【0027】
主軸センタ34(支持センタに相当する)は、工作物Wの軸方向一端(
図1の左端)の端面を支持する工作物支持部材を構成している。詳細には、主軸センタ34は、工作物Wの軸方向一端の端面に形成された被支持部WRを構成する主軸側のセンタ穴(以下、「センタ穴WR」ともいう)に対して、工作物Wの軸方向に押圧した状態で支持する。
【0028】
主軸センタ34は、主軸32に固定されて、主軸ハウジング31に対して回転可能に設けられる。ただし、主軸装置30が、図示しないケレなどの回し部材を備える場合には、主軸センタ34は、主軸ハウジング31に固定されて、主軸ハウジング31に対して回転不能となるように設けられるようにしても良い。また、主軸装置30は、主軸センタ34に代えて、工作物支持部材として工作物Wを把持するチャックを備えるようにしても良い。なお、チャックは、主軸32に連結されることで回転駆動される。
【0029】
主軸用検出器35および主軸用駆動回路は、主軸用モータ33を駆動するために設けられている。主軸用検出器35は、本実施形態1においては、例えば、エンコーダなどの角度検出器であって、主軸用モータ33の回転軸の回転角度を検出する。主軸用駆動回路は、アンプ回路を含み、主軸用モータ33を駆動する。
【0030】
心押装置40は、主軸装置30と共に、工作物Wを支持する。心押装置40は、テーブル20上のZ軸方向の他端側に配置されている。心押装置40は、テーブル20上をZ軸方向に移動可能に設けられている。心押装置40は、心押センタ41および調整機構42を備える。なお、研削盤2が、工作物Wの内周面を研削加工する場合には、心押装置40は不要である。
【0031】
心押センタ41(支持センタに相当する)は、工作物Wの軸方向他端(
図1の右端)の端面を支持する工作物支持部材を構成している。詳細には、心押センタ41は、工作物Wの軸方向他端の端面に形成された被支持部WLを構成する心押側のセンタ穴(以下、「センタ穴WL」ともいう)に対して、工作物Wの軸方向に押圧した状態で支持する。心押センタ41は、回転不能に設けられるようにしても良いし、回転可能に設けられるようにしても良い。
【0032】
また、心押センタ41は、工作物Wに対して固定された位置に位置決めされるようにしても良いし、工作物Wに対して工作物Wの軸方向に動作可能に設けられるようにしても良い。後者において、心押センタ41は、工作物Wに対して工作物Wの軸方向への押圧力を調整可能に構成されるようにしても良い。押圧力は、スプリング力を調整する手段、流体圧を調整する手段などにより制御可能とすることができる。
【0033】
本実施形態1においては、心押装置40は、調整機構42を備えており、調整機構42は、例えばスプリングにより構成され、心押センタ41が押圧力を発揮するように構成されている。ここで、心押センタ41が工作物Wに対して押圧力を生じる状態において、反作用として、主軸センタ34も工作物Wに対して押圧力を発揮する。詳細には、調整機構42によって、心押センタ41および主軸センタ34は、工作物Wに対して工作物Wの軸方向への押圧力を調整可能に構成されている。つまり、調整機構42によって、心押センタ41および主軸センタ34は、工作物Wの支持力を調整可能に構成されている。ここで、心押センタ41および主軸センタ34による工作物Wに対する押圧力は、アクチュエータにより調整可能とすることもできるし、作業者により調整可能とすることもできる。
【0034】
砥石台50は、砥石車Tを備え、砥石車Tを回転駆動する。砥石台50は、砥石車Tの他に、砥石台本体51、砥石軸52、砥石車用モータ53及び図示しない砥石車用駆動回路を備える。
【0035】
砥石車Tは、円盤状に形成されている。砥石車Tは、工作物Wの外周面または内周面を研削するために用いられる。砥石車Tは、複数の砥粒を結合剤により固定されて構成されている。砥粒には、アルミナや炭化ケイ素などのセラミックス質の材料などにより形成される一般砥粒、ダイヤモンドやCBNなどの超砥粒などが適用される。
【0036】
結合剤には、ビトリファイド(V)、レジノイド(B)、ラバー(R)、シリケート(S)、シェラック(E)、メタル(M)、電着(P)、マグネシアセメント(Mg)などが存在する。さらに、砥石車Tは、気孔を有する構成と、気孔を有しない構成とがある。砥石車Tは、結合剤の種類や気孔の有無によって、弾性変形可能な構成である場合と、ほぼ弾性変形しない構成である場合とが存在する。弾性変形可能な砥石車Tにおいて、結合剤の種類、気孔の有無、気孔率などによって、弾性率が異なる。
【0037】
砥石台本体51は、例えば平面視にて矩形状に形成されており、ベッド10のX軸案内面13にX軸方向(水平前後方向)に移動可能に支持されている。また、砥石台本体51は、X軸ボールねじ機構14aのボールねじナットに固定されており、X軸用モータ14bの回転駆動によってX軸方向に移動する。砥石台本体51は、砥石車Tを支持する工具支持部材を構成する。
【0038】
砥石軸52は、砥石台本体51に軸受を介して回転可能に支持される。砥石軸52の先端に砥石車Tが固定されており、砥石軸52の回転によって砥石車Tが回転する。砥石車用モータ53は、砥石軸52を回転駆動する。軸受には、静圧軸受や転がり軸受などが用いられる。
【0039】
砥石車用モータ53は、例えば、ベルトを介して砥石軸52に回転駆動力を伝達する。ただし、砥石車用モータ53は、砥石軸52と同軸に配置しても良い。一般に、砥石車用モータ53の駆動による砥石車Tの回転速度は、主軸用モータ33の駆動による工作物Wの回転速度に比べて高速である。砥石車用駆動回路は、砥石車用モータ53を駆動するために設けられている。砥石車用駆動回路は、アンプ回路を含み、砥石車用モータ53を駆動する。
【0040】
制御装置3aは、加工制御を実行するCNC(Computer Numerical Control)装置およびPLC(Programmable Logic Controller)装置である。つまり、制御装置3aは、研削加工プログラムに基づいて、移動装置としてのZ軸駆動機構12およびX軸駆動機構14を駆動して、テーブル20および砥石台50の位置制御を行う。つまり、制御装置3aは、テーブル20および砥石台50などの位置制御を行うことで、工作物Wと砥石車Tとを相対的に接近および離間させる。さらに、制御装置3aは、主軸装置30および砥石台50の制御を行う。つまり、制御装置3aは、主軸32の回転制御および砥石車Tの回転制御を行う。
【0041】
また、心押センタ41および主軸センタ34による工作物Wに対する軸方向の押圧力がアクチュエータにより調整可能である場合には、制御装置3aは、当該アクチュエータを制御することにより、当該軸方向の押圧力を調整することができる。
【0042】
3.加工推定装置3bの構成
加工推定装置3bの構成について
図2を参照して説明する。加工推定装置3bは、指令値取得部101、推定部102、工作物側動剛性テーブル記憶部103、工具側動剛性テーブル記憶部104、動剛性決定条件取得部105、動剛性決定部106、補正量算出部107及び出力部108を備える。
【0043】
指令値取得部101は、研削加工において研削盤2を制御するための指令値を取得する。加工推定装置3bが、研削盤2および制御装置3aとは独立したシミュレーション装置である場合には、指令値取得部101は、研削加工プログラムおよび研削盤2の構成情報を入力することにより、研削盤2の各部を制御するための指令値を演算により生成する。また、加工推定装置3bが、研削盤2および制御装置3aによる研削加工と連動して動作するシミュレーション装置として機能する場合には、指令値取得部101は、制御装置3aから直接指令値を取得することができる。
【0044】
推定部102は、指令値取得部101が取得した指令値を用いて、研削加工シミュレーションを実行することにより、研削加工時における工作物Wまたは砥石車Tの状態、工作物Wの形状、砥石車Tの形状、および、研削盤2の機械状態の少なくとも1つを推定する。
【0045】
工作物Wの状態は、例えば、工作物Wの振動状態や温度状態などを含む。砥石車Tの状態は、例えば、砥石車Tの振動状態や温度状態、砥石車Tの外周面の部位毎に生じた研削抵抗、砥石車Tの切れ味、砥石車Tを構成する砥粒の状態などを含む。砥粒の状態は、例えば、砥粒の平均突き出し量や砥粒分布などを含む。工作物Wの形状は、研削加工の途中段階の形状、研削加工の終了段階の形状を含む。砥石車Tの形状は、研削加工の途中段階の形状、研削加工の終了段階の形状を含む。研削盤2の機械状態は、研削盤2を構成する部位の振動状態や温度状態などを含む。
【0046】
本実施形態においては、推定部102は、研削加工シミュレーションにより、工作物Wの形状が逐次変化する処理を行うことで、工作物Wの形状、工作物Wの状態、研削盤2の機械状態を推定対象とする場合を例にあげる。本実施形態においては、砥石車Tは変形しないものとして、研削加工シミュレーションを行う。なお、推定部102は、上記推定対象に加えて、砥石車Tの外周面の部位毎に生じた研削抵抗を推定することもできる。
【0047】
推定部102は、干渉量算出部111、研削能率算出部112、研削特性決定部113、研削抵抗算出部114を備える。
【0048】
干渉量算出部111は、指令値取得部101が取得した指令値を用いて得られた工作物Wと砥石車Tとの相対位置、工作物Wの外周面形状、および、砥石車Tの外周面形状に基づいて、工作物Wと砥石車Tとの干渉量を算出する。干渉量は、工作物Wの周方向の各部位における工作物Wの径方向の研削量に相当する。換言すると、干渉量は、砥石車Tにより研削される工作物Wの除去量、詳細には、工作物Wの周方向の各部位における工作物Wの径方向の除去量である。干渉量は、
図3に示すように、工作物Wと砥石車Tとが干渉する部分(
図3の斜線部分:干渉領域)の体積である。
【0049】
干渉量算出部111は、当該干渉量を演算処理によって幾何学的に算出する。ここで、干渉量算出部111は、工作物Wの外周面形状、および、砥石車Tの外周面形状を記憶している。
図4の右側部分に示すように、工作物Wの外周面形状は、工作物Wの回転中心Owを原点とした極座標上において、複数の径方向の線分群で表現されている。つまり、干渉量算出部111は、工作物Wを等角(p)に分割した外周面上の分割点(
図4の白色点)と工作物Wの回転中心Ow(原点)とを結ぶ複数の線分群を、工作物Wの外周面形状として記憶している。
図4における白色点にて示す分割点が、砥石車Tによる除去される前の工作物Wの外周面形状として記憶される。
【0050】
干渉量算出部111は、工作物Wと砥石車Tとの相対位置(軸間距離)および砥石車Tの外周面形状から、工作物Wの各線分と砥石車Tの外周面形状を表す線との交点(
図4の黒色点)を決定する。干渉量算出部111は、決定された交点(
図4の黒色点)を、砥石車Tにより工作物Wの除去された後の工作物Wの外周面形状として記憶する。つまり、干渉量算出部111は、記憶している工作物Wの外周面形状を変更する。
【0051】
そして、干渉量算出部111は、除去前の工作物Wの外周面形状を定義する点のうち隣り合う点a1、a2と原点Owとからなる三角形△Ow-a1-a2の面積から、除去後の点b1,b2(砥石車Tとの交点)と原点Owとからなる三角形△Ow-b1-b2の面積を減算する。減算後の面積を、工作物Wの外周面形状を定義する全ての隣り合う点について算出する。
【0052】
そして、干渉量算出部111は、各減算後の面積を積算し、積算した総和面積に工作物Wの厚みを掛けて干渉量(除去量)を算出する。なお、上記においては、2種類の三角形の面積を算出して、その面積の差分を算出することにより、除去される部分の面積を算出した。この他に、四角形a1-a2-b1-b2を直接算出することにより、除去される部分の面積を算出してもよい。
【0053】
図2に示す研削能率算出部112は、干渉量算出部111により算出された干渉量に基づいて、研削能率Z’を算出する。研削能率Z’は、単位時間当たりの干渉量、すなわち、単位時間において砥石車Tにより研削される工作物Wの体積を算出する。
【0054】
研削特性決定部113は、工作物Wの材質、砥石車Tの砥粒や結合剤の種類、および、砥石車Tの外周面の状態などに基づいて、研削特性kcを決定する。砥石車Tの外周面の状態は、例えば、砥石車Tの砥粒の摩耗状態や切れ味を表す指標を用いて表現される。ここで、研削特性決定部113は、予め実験や解析などにより各状態における研削特性を記憶しておく。
【0055】
研削抵抗算出部114は、研削能率Z’および研削特性kcに基づいて、工作物Wの外周面の法線方向(X軸方向)における研削抵抗Fnを算出する。研削抵抗Fnは、研削能率Z’に研削特性kcを乗算することにより得られる(Fn=kc×Z’)。
【0056】
なお、研削特性kcは、研削能率Z’が大きくなるほど法線方向(X軸線方向)の研削抵抗Fnが大きくなるようなほぼ線形の関係を有する。そして、研削特性kcは、例えば、砥石車Tが摩耗した場合には、当該関係が変化する。例えば、砥石車Tが摩耗した場合には、研削能率Z’に対して、法線方向の研削抵抗Fnが大きくなるように変化する。
【0057】
工作物側動剛性テーブル記憶部103は、加工部位を境界として工作物W側と砥石車T側とで分けた場合に、工作物W側に関する動剛性データCw,Kw(以下、工作物側動剛性データと称する)を記憶する。工作物側動剛性テーブル記憶部103は、工作物Wに関する動剛性テーブル記憶部103a、工作物支持部材を構成する各装置20,30,40に関する動剛性テーブル記憶部103b、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との接触部の動剛性である接触動剛性を算出するための対応関係記憶部103cを含む。
【0058】
工作物Wに関する動剛性テーブル記憶部103aは、工作物Wの動剛性データCwa,Kwa(以下、工作物動剛性データと称する)を記憶する。工作物動剛性データCwa,Kwaは、例えば、工作物Wに対する公知のハンマリングやFEM解析などにより取得することができる。研削対象の工作物Wが複数種類存在する場合には、当該動剛性テーブル記憶部103aは、複数種類の工作物Wのそれぞれについての工作物動剛性データCwa,Kwaを記憶する。
【0059】
工作物支持部材を構成する各装置20,30,40に関する動剛性テーブル記憶部103bは、工作物支持部材を構成する各装置20,30,40の動剛性データCwb,Kwb(以下、支持部材動剛性データと称する)を記憶する。支持部材動剛性データCwb,Kwbは、工作物支持部材を構成する各装置20,30,40のそれぞれに対するハンマリングやFEM解析などにより取得することができる。
【0060】
研削盤2が、複数種類の工作物支持部材を構成する各装置20,30,40を段取り替え可能な場合には、当該動剛性テーブル記憶部103bは、複数種類の工作物支持部材を構成する各装置20,30,40のそれぞれについての支持部材動剛性データCwb,Kwbを記憶する。また、支持部材動剛性データCwb,Kwbが加工条件などに応じて変化する場合には、当該動剛性テーブル記憶部103bは、加工条件などと支持部材動剛性データCwb,Kwbとの対応関係を記憶する。
【0061】
対応関係記憶部103cは、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との接触部における動剛性データCwc,Kwc(以下、接触動剛性データと称する)を算出するための対応関係を記憶する。そして、本実施形態1では、対応関係記憶部103cは、後述するように、
図5に示す加工位置Iと後述する差分曲げ角度ΔθL、ΔθRとの対応関係を記憶する。
【0062】
3-1.加工位置Iと差分曲げ角度ΔθL、ΔθRとの対応関係
図5に示す加工位置Iと後述する差分曲げ角度ΔθL、ΔθRとの対応関係について、
図6(a)及び
図6(b)を用いて以下に説明する。
【0063】
まず、
図6(a)に示す初期状態は、工作物Wに砥石車Tから作用力が加えられる前の状態である。そして、砥石車Tにより工作物Wが研削される際には、
図6(b)に示すように工作物Wの加工位置Iに砥石車Tから作用力が加えられることにより、工作物Wは砥石車Tと反対側に逃げるように撓む。そして、工作物Wの被支持部であるセンタ穴WR、WLが位置する両端部はそれぞれ、初期状態における工作物Wの軸線S0に対して傾斜するように変化する。工作物Wの一方のセンタ穴WRにおける初期状態に対する変化量は、初期状態における工作物Wの軸線S0とセンタ穴WRが位置する端部における軸線SWRとのなす角θWRとして表すことができる。同様に、工作物Wの他方のセンタ穴WLにおける初期状態に対する変化量は、初期状態における工作物Wの軸線S0とセンタ穴WLが位置する端部における軸線SWLとのなす角θWLとして表すことができる。
【0064】
また、
図6(b)に示すように、砥石車Tにより工作物Wが研削される際には、工作物Wが撓むのに伴って、工作物支持部材としての主軸センタ34及び心押センタ41も撓むこととなる。これにより、主軸センタ34及び心押センタ41もそれぞれ、初期状態における工作物Wの軸線S0に対して傾斜するように変化する。そして、心押センタ41における初期状態に対する変化量は、初期状態における工作物Wの軸線S0と変化後の心押センタ41における軸線SCRとのなす角θCRとして表すことができる。同様に、主軸センタ34における初期状態に対する変化量は、初期状態における工作物Wの軸線S0と変化後の主軸センタ34における軸線SCLとのなす角θCLとして表すことができる。
【0065】
そして、
図6(b)に示すように、工作物Wのセンタ穴WRの変化量θWRと心押センタ41の変化量θCRとにはズレが生じている。当該変化量のズレの絶対値を差分曲げ角度ΔθRとする。同様に、工作物Wのセンタ穴WLの変化量θWLと主軸センタ34の変化量θCLとにはズレが生じている。当該変化量のズレの絶対値を差分曲げ角度ΔθLとする。
【0066】
当該差分曲げ角度ΔθR、ΔθLはそれぞれ、加工位置Iに基づいて変化する。本実施形態では、工作物Wに1Nの圧力Fを作用させた位置を仮想加工位置として、当該仮想加工位置を軸方向において一方のセンタ穴WRの位置から他方のセンタ穴WLの位置まで移動させたときの差分曲げ角度ΔθR、ΔθLの実測値を取得し、
図5に示す加工位置Iと差分曲げ角度Δθとの対応関係を作成した。そして、上述のように、当該対応関係を対応関係記憶部103cに記憶させた。なお、当該対応関係は、差分曲げ角度ΔθR、ΔθLの実測値を取得して作成することに替えて、加工位置Iと変化量θWR、θWL、θCR、θCLとの関係を理論的に算出することにより、加工位置Iと差分曲げ角度ΔθR、ΔθLの対応関係を作成することとしてもよい。
【0067】
図2に示す工具側動剛性テーブル記憶部104は、加工部位を境界として工作物W側と砥石車T側とで分けた場合に、砥石車T側に関する動剛性データCt,Kt(以下、工具側動剛性データと称する)を記憶する。つまり、工具側動剛性テーブル記憶部104は、砥石車Tを含む砥石台50における工具側動剛性データCt,Ktを記憶する。工具側動剛性テーブル記憶部104は、例えば、砥石車Tの種類毎に、工具側動剛性データCt,Ktを記憶する。
【0068】
また、砥石車Tが静圧軸受により支持される構成であって、静圧軸受の圧力を制御可能な場合においては、工具側動剛性データCt,Ktは、静圧軸受の圧力に応じて変化するデータとなる場合がある。そこで、工具側動剛性テーブル記憶部104は、加工条件として静圧軸受の圧力に応じて、減衰係数Ct、ばね定数Ktを記憶するようにしても良い。工具側動剛性データCt,Ktが加工条件などに応じて変化する場合には、工具側動剛性テーブル記憶部104は、加工条件などと工具側動剛性データCt,Ktとの対応関係を記憶する。
【0069】
4.動剛性決定条件の取得
図2に示すように、動剛性決定条件取得部105は、研削盤2にて研削加工を行う際の動剛性決定条件を取得する。詳細には、動剛性決定条件取得部105は、推定部102による推定時(処理対象時)の動剛性決定条件を取得する。動剛性決定条件取得部105が取得する動剛性決定条件は、動剛性決定部106が各動剛性を算出するために用いる情報である。取得する動剛性決定条件は、例えば、工作物Wの種類、工作物支持部材の種類、砥石車Tの種類、主軸センタ34及び心押センタ41による押圧力などである。
【0070】
加工推定装置3bが、研削盤2とは独立したシミュレーション装置である場合には、動剛性決定条件取得部105は、研削盤2の機械構成および研削加工プログラムを入力することにより、動剛性を決定するための条件を取得する。また、加工推定装置3bが、研削盤2による研削加工と連動して動作するシミュレーション装置として機能する場合には、動剛性決定条件取得部105は、制御装置3aから研削盤2の機械構成および研削加工プログラムを入力することにより動剛性を決定するための条件を取得しても良いし、研削盤2の制御装置3aから直接条件に関する情報を取得しても良い。
【0071】
5.動剛性決定部106の構成
動剛性決定部106は、研削加工に影響を及ぼす動剛性データを決定する。動剛性決定部106は、
図7に示す工作物側動剛性データCw,Kwおよび工具側動剛性データCt,Ktを、それぞれ別々に決定する。つまり、動剛性決定部106は、工作物側動剛性決定部121、および、工具側動剛性決定部125を備える。
【0072】
工作物側動剛性(Cw,Kw)および工具側動剛性(Ct,Kt)について、
図7を参照して説明する。工作物側動剛性(Cw,Kw)は、工作物Wを含み、テーブル20、主軸装置30及び装置40に関する工作物W側の動剛性である。一方、工具側動剛性(Ct,Kt)は、砥石車Tを含み、砥石台50に関する動剛性である。以下、それぞれについて詳述する。
【0073】
5-1.工作物側動剛性(Cw,Kw)
工作物側動剛性(Cw,Kw)は、研削盤2を構成する工作物支持部材としての主軸装置30及び装置40により工作物Wを支持した状態において発揮する動剛性である。工作物側動剛性(Cw,Kw)は、減衰係数Cwおよびばね定数Kwにより定義される。減衰係数Cwは、研削盤2の基準位置に対する工作物Wの相対速度と、工作物Wが受ける外力との関係を表す値である。ばね定数Kwは、研削盤2の基準位置に対する工作物Wの相対位置と、工作物Wが受ける外力との関係を表す値である。なお、いずれの動剛性も減衰係数およびばね定数に加えて、質量項Mwを含んでいてもよい。
【0074】
図7に示すように、工作物側動剛性(Cw,Kw)は、工作物動剛性(Cwa,Kwa)と、支持部材動剛性(Cwb,Kwb)と、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との間の接触動剛性(Cwc,Kwc)とに分解することができる。
【0075】
そして、工作物側動剛性決定部121は、工作物動剛性算出部122、支持部材動剛性算出部123及び接触動剛性算出部133を有する。工作物動剛性算出部122は、工作物Wに関する動剛性テーブル記憶部103aに記憶された動剛性テーブルの中から、動剛性決定条件取得部105にて取得した工作物Wの種類に対応する工作物動剛性データCwa,Kwaを算出する。さらに、支持部材動剛性算出部123は、工作物支持部材を構成する各装置20,30,40に関する動剛性テーブル記憶部103bに記憶された動剛性テーブルの中から、動剛性決定条件取得部105にて取得した工作物支持部材の種類に対応する支持部材動剛性データCwb,Kwbを算出する。
【0076】
接触動剛性(Cwc,Kwc)は、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との間の動剛性であって、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との接触により発揮する動剛性である。そして、上述のように、接触動剛性(Cwc,Kwc)は、加工位置Iに依存して変化する。接触動剛性(Cwc,Kwc)は、減衰係数Cwcおよびばね定数Kwcにより定義される。減衰係数Cwcは、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との相対速度と、工作物Wが受ける外力との関係を表す値である。ばね定数Kwcは、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との相対位置と、工作物Wが受ける外力との関係を表す値である。そして、接触動剛性(Cwc,Kwc)は、
図2に示す接触動剛性算出システム130により算出する。
【0077】
5-1-1.接触動剛性算出システム130の構成
図7に示す接触動剛性算出システム130の構成について説明する。接触動剛性算出システム130は、工作物側動剛性決定部121に含まれる基本情報取得部131、差分曲げ角度算出部132及び接触動剛性算出部133と、工作物側動剛性テーブル記憶部103に含まれる対応関係記憶部103cとにより構成される。
【0078】
基本情報取得部131は、工作物Wに関する基本情報を取得する。当該基本情報は、少なくとも、工作物Wにおける加工位置Iの位置情報を含む。さらに、基本情報は、
図6(a)に示す工作物Wにおけるセンタ穴WR、WLの最大支持径dR、dLを含んでいてもよい。また、基本情報は、工作物Wの形状に関する情報を含んでいてもよい。本実施形態では、基本情報は、加工位置Iとともに、最大支持径dR、dLと工作物Wの形状に関する情報を含んでいる。
【0079】
図2に示す差分曲げ角度算出部132は、基本情報取得部131により取得された基本情報に含まれる加工位置Iと、対応関係記憶部103cに記憶された上記対応関係とに基づいて、当該工作物Wにおける加工位置Iに対応する差分曲げ角度ΔθR、ΔθLを算出する。
【0080】
接触動剛性算出部133は、差分曲げ角度ΔθR、ΔθLを利用して接触動剛性Cwc、Kwcを算出する。本実施形態では、基本情報取得部131により取得された工作物Wにおける被支持部であるセンタ穴WR、WLのセンタ穴サイズ、すなわち、最大支持径dR、dLを差分曲げ角度ΔθR、ΔθLとともに用いて、接触動剛性Cwc、Kwcを算出する。接触動剛性(Cwc、Kwc)は、工作物Wの一方のセンタ穴WRと心押センタ41との間の接触動剛性(Cwcr、Kwcr)と、工作物Wの他方のセンタ穴WLと主軸センタ34との間の接触動剛性(Cwcl、Kwcl)とを含む。そして、接触動剛性データCwcr、Kwcr)及び接触動剛性データCwcl、Kwclは次のように定義できる。
【0081】
まず、
図6(b)に示すように、差分曲がり角度ΔθR,ΔθLが大きくなると工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との接触部において曲がりが大きくなり、差分曲がり角度ΔθR,ΔθLが小さくなると工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との接触部において曲がりが小さくなる。また、最大支持径dR、dLが大きくなるとセンタ穴WR,WLが深くなって、主軸センタ34及び心押センタ41がセンタ穴WR,WLにより深く入り込むため、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)の接触部が大きくなる。逆に最大支持径dR、dLが小さくなるとセンタ穴WR,WLが浅くなって、主軸センタ34及び心押センタ41がセンタ穴WR,WLにより浅く入り込むため、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との接触部が小さくなる。その結果、接触動剛性におけるばね定数Kwcr、Kwclはそれぞれ、差分曲がり角度ΔθR,ΔθLに反比例し、最大支持径dR、dLに比例する。
【0082】
従って、接触動剛性におけるばね定数Kwcr、Kwclはそれぞれ、下記の関係式(式1、式2)の通り定義できる。
Kwcr=α/ΔθR・dR (式1)
Kwcl=β/ΔθL・dL (式2)
なお、α、βは係数であって、予め実測して取得した所定の差分曲げ角度ΔθR、ΔθL及び所定の最大支持径dR、dLから算出される実測ばね定数Kwcr、Kwclと、上記式1、式2により算出されるばね定数Kwcr、Kwclとが一致する値に定めることができる。
【0083】
一方、接触動剛性における減衰係数Cwcr、Cwclは、摩擦減衰が主であることから、摩擦減衰にのみ着目すると、差分曲げ角度ΔθR、ΔθLは減衰エネルギーに比例する。また、最大支持径dR、dLが大きくなると摩擦は増加し、最大支持径dR、dLが小さくなると摩擦は減少する。
【0084】
従って、接触動剛性における減衰係数Cwcr、Cwclはそれぞれ、下記の関係式(式3、式4)の通り定義できる。
Cwcr=γ・ΔθR・dR (式3)
Cwcl=δ・ΔθL・dL (式4)
なお、γ、δは係数であって、α及びβと同様の方法で定めることができる。
【0085】
以上のように、接触動剛性算出部133は、上記式1~4の関係式に基づいて、ΔθR、ΔθL及びdR、dLから接触動剛性Cwc(Cwcr及びCwcl)及びKwc(Kwcr及びKwcl)を算出することができる。
【0086】
5-2.工具側動剛性
図7に示すように工具側動剛性(Ct,Kt)は、砥石車Tを含み、砥石台50に関する動剛性である。工具側動剛性(Ct,Kt)は、減衰係数Ctおよびばね定数Ktにより定義される。減衰係数Ctは、砥石台50における基準位置に対する砥石車Tの相対速度と、砥石車Tが受ける外力との関係を表す値である。ばね定数Ktは、砥石台50における基準位置に対する砥石車Tの相対位置と、砥石車Tが受ける外力との関係を表す値である。そして、工具側動剛性(Ct,Kt)は、砥石車Tの動剛性(Cta,Kta)と、砥石台本体51により砥石車Tを支持する際に発揮する動剛性(Ctb,Ktb)とを含む。なお、いずれの動剛性も減衰係数およびばね定数に加えて、質量項を含んでいてもよい。
【0087】
工具側動剛性(Ct,Kt)は、
図2に示す工具側動剛性決定部125により、動剛性決定条件取得部105が取得する動剛性決定条件と、工具側動剛性テーブル記憶部104に記憶された動剛性決定条件と工具側動剛性データCt,Ktとの対応関係とに基づいて算出することができる。
【0088】
6.補正量算出部107
補正量算出部107は、研削抵抗に起因して砥石車Tおよび工作物WがX軸線方向に相対変位する補正量を、動剛性決定部106にて決定された各動剛性データに基づいて算出する。変位に関する補正量は、各動剛性データと研削抵抗から求めることができる。つまり、変位に関する補正量は、研削抵抗、工作物側動剛性データCw,Kw、工具側動剛性データCt,Ktから算出することができる。
【0089】
ただし、本実施形態においては、工作物側動剛性データCw,Kwは、工作物動剛性データCwa,Kwa、支持部材動剛性データCwb,Kwb、接触動剛性データCwc,Kwcのそれぞれを含む。つまり、変位に関する補正量は、研削抵抗、工作物側動剛性データCwa,Kwa,Cwb,Kwb,Cwc,Kwc、工具側動剛性データCt,Ktから算出する。
【0090】
補正量算出部107は、算出した補正量を、推定部102へ出力する。推定部102は、上述したように、指令値取得部101が取得した工作物Wと砥石車Tとの相対位置、工作物Wの外周面形状、および、砥石車Tの外周面形状に基づいて、推定対象を推定する。ただし、研削抵抗により、工作物Wと砥石車Tとの相対位置は、指令値による相対位置とは異なる位置となる。
【0091】
そこで、推定部102、推定対象の推定の際に、工作物Wと砥石車Tとの相対位置として、指令値取得部101が取得した相対位置に加えて、補正量算出部107により算出された補正量を加えた相対位置を用いる。つまり、推定部102は、指令値による相対位置と、各動剛性データを用いて算出された補正量とに基づいて、推定対象を推定する。
【0092】
特に、本実施形態1においては、補正量算出部107は、算出した補正量を、推定部102の干渉量算出部111へ出力する。干渉量算出部111は、上述したように、指令値取得部101が取得した工作物Wと砥石車Tとの相対位置、工作物Wの外周面形状、および、砥石車Tの外周面形状に基づいて、工作物Wと砥石車Tとの干渉量を算出する。ただし、研削抵抗により、工作物Wと砥石車Tとの相対位置は、指令値による相対位置とは異なる位置となる。
【0093】
そこで、干渉量算出部111は、干渉量の算出に用いる工作物Wと砥石車Tとの相対位置として、指令値取得部101が取得した相対位置に加えて、補正量算出部107により算出された補正量を加えた相対位置を用いる。つまり、干渉量算出部111は、指令値による相対位置と、各動剛性データを用いて算出された補正量とに基づいて、干渉量を算出する。
【0094】
干渉量算出部111が、補正量を考慮した干渉量を算出するため、研削能率算出部112、研削特性決定部113、研削抵抗算出部114は、補正量を考慮した干渉量に基づき得られた研削能率Z’、研削特性kc、研削抵抗Fnを得る。
【0095】
出力部108は、推定部102により推定された推定対象を出力する。つまり、出力部108は、研削加工時における工作物Wまたは砥石車Tの状態、工作物Wの形状、砥石車Tの形状、および、加工システム1の機械状態(研削盤2の機械状態に相当)の少なくとも1つを推定する。出力部108は、例えば、図示しない教示装置に推定結果を教示するようにしても良い。また、出力部108は、推定結果を研削盤2の制御装置3aに出力することもできる。この場合、制御装置3aが、推定結果を用いて、例えば、研削加工条件を補正することができる。つまり、制御装置3aは、推定結果を用いて研削加工を制御することができる。
【0096】
また、制御装置3aは、推定結果を用いて、心押装置40の調整機構42を制御して、主軸センタ34および心押センタ41による押圧力の調整を行うこともできる。また、研削盤2がチャックを備える場合には、制御装置3aは、推定結果を用いて、チャックの把持力の調整を行うこともできる。なお、制御装置3aは、推定結果を用いた制御対象を適宜選択することができる。
【0097】
また、制御装置3aは、推定結果を用いて、上記の種々の処理を行うこととした。この他に、制御装置3aは、推定結果によらず、動剛性決定部106により決定された各種の動剛性を用いて、加工の制御を行うこともできる。例えば、制御装置3aは、推定結果によらず、動剛性決定部106により決定された各種の動剛性を用いて、主軸センタ34および心押センタ41による押圧力の調整、チャックの把持力の調整などを行うこともできる。
【0098】
7.作用効果
本実施形態によれば、接触動剛性算出部133は、加工位置Iの情報を含む基本情報と、差分曲げ角度算出部132が算出した差分曲げ角度ΔθR,ΔθLとに基づいて、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との接触部におけるばね定数Kwc及び減衰係数Cwcを算出し、該ばね定数Kwc及び該減衰係数Cwcに基づいて、接触部における動剛性である接触動剛性(Kwc、Cwc)を算出する。これにより、接触動剛性(Kwc、Cwc)は、工作物Wの曲げ角度である工作物曲げ角度θWR、θWLと工作物支持部材(主軸センタ34、心押センタ41)の曲げ角度である支持部材曲げ角度θCR、θCLとの間に生じるズレを考慮して算出されることとなる。その結果、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との間の接触状態を考慮して、接触動剛性を高精度に算出することができる。
【0099】
また、本実施形態1では、加工位置Iと差分曲げ角度ΔθR,ΔθLとの対応関係が予め記憶された対応関係記憶部103cを有する。そして、差分曲げ角度算出部132は、対応関係記憶部103cに記憶された対応関係と基本情報に含まれた加工位置Iとに基づいて差分曲げ角度ΔθR,ΔθLを算出する。これにより、加工位置Iに基づいて差分曲げ角度ΔθR,ΔθLを容易に取得することができ、演算処理を高速に行うことができる。
【0100】
また、本実施形態1では、基本情報取得部131は、工作物Wにおける工作物支持部材(主軸センタ34、心押センタ41)により支持される被支持部であるセンタ穴WR、WLの最大支持径dR,dLを上記基本情報としてさらに取得する。そして、接触動剛性算出部133において、ばね定数Kwcr,Kwcl及び減衰係数Cwcr,Cwclは、少なくとも基本情報取得部131が取得した最大支持径dR,dLと、差分曲げ角度算出部132が算出した差分曲げ角度ΔθR,ΔθLとに基づいて算出される。これにより、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との接触状態をより正確に考慮できるため、動剛性をさらに高精度に算出することができる。
【0101】
また、本実施形態1における加工システム1は、接触動剛性算出システム130と、工作物Wを加工する加工装置2と、加工装置2による加工を制御する制御装置3aと、接触動剛性算出システム130により算出された接触動剛性(Cwc,Kwc)を含む工作物側動剛性(Cw、Kw)に基づいて加工装置2による工作物Wにおける加工結果を推定する推定部102とを備える。そして、制御装置3aは、推定部102による推定された加工結果に基づいて加工装置2による加工を制御する。これにより、接触動剛性(Cwc,Kwc)を含む工作物側動剛性(Cw、Kw)に基づいて推定された加工結果を反映させて工作物Wを加工することができるため、工作物Wをより高精度に目的形状に成形することができる。
【0102】
また、本実施形態1における加工システム1では、加工装置2における工具は砥石車Tであって、加工装置2は研削盤である。これにより、研削盤において加工される工作物Wをより高精度に目的形状に成形することができる。
【0103】
また、本実施形態1では、工作物側動剛性(Cw、Kw)を工作物動剛性(Cwa,Kwa)、支持部材動剛性(Cwb,Kwb)、および、接触動剛性(Cwc,Kwc)に分離した。このように、それぞれの動剛性データを分離することにより、それぞれの動剛性データの決定が容易になる。例えば、工作物Wおよび工作物支持部材を構成する各装置20,30,40が同一であっても、主軸センタ34及び心押センタ41による押圧力のみを調整した場合に、接触動剛性データCwc,Kwcのみが変更される。従って、演算処理が容易となる。例えば、加工推定装置3bによる推定処理と、制御装置3aによる研削加工の制御とを同時に行うような場合には、演算処理を高速に行うことにより、高精度な研削加工を実現できる。
【0104】
以上のごとく、本実施形態1によれば、工作物Wと工作物支持部材(主軸センタ34、心押センタ41)との間の接触状態を考慮して、接触動剛性(Cwc,Kwc)を高精度に算出することができる接触動剛性算出システム130を提供することができる。
【0105】
(実施形態2)
上記実施形態1では、
図1に示すように処理部3は制御装置3aと加工推定装置3bとを備えることとしたが、
図8に示す実施形態2では、処理部3は制御装置3aと動剛性決定部106を備え、加工推定装置3bを備えていない。
図9に示すように、動剛性決定部106の構成は上記実施形態1の場合と同様である。なお、実施形態1の場合と同等の構成には同一の符号を付してその説明を省略する。
【0106】
図9に示すように、実施形態2では、動剛性決定部106において決定された工作物側動剛性(Cw,Kw)を制御装置3aに指令値とともに入力する。当該工作物側動剛性(Cw,Kw)は、接触動剛性算出システム130により算出された接触動剛性(Cwc,Kwc)を含む。制御装置3aはこれらに基づいて加工装置2による加工を制御する。
【0107】
すなわち、本実施形態2の加工システム1は、接触動剛性算出システム130と、工作物Wを加工する加工装置2と、加工装置2による加工を制御する制御装置3aとを備える。そして、制御装置3aは、接触動剛性算出システム130により算出された接触動剛性(Cwc,Kwc)を含む工作物側動剛性(Cw,Kw)に基づいて加工装置2による加工を制御する。これにより、実施形態1の推定部102による推定結果を用いることなく、加工装置2による加工を制御することができるため、演算処理をより高速に行うことができ、高精度な研削加工を実現できる。
【0108】
(実施形態3)
本実施形態3の加工システム201について
図10を参照して説明する。加工システム201は、切削加工を行う加工システムを対象とする。加工システム201は、加工装置としての旋盤202と、処理部203とを備える。
【0109】
旋盤202は、工作物Wを回転させ、切削工具T2を工作物Wに対して相対移動させることにより、工作物Wを旋削する。処理部203は、旋盤202を制御する制御装置203a、および、加工に関する推定対象を推定する加工推定装置203bを備える。制御装置203aは、旋盤202を制御することにより、切削加工を制御することができる。加工推定装置203bは、旋盤202での切削加工時における工作物Wまたは切削工具T2の状態、工作物Wの形状、切削工具T2の形状、および、加工システム201の機械状態(旋盤202の機械状態に相当する)の少なくとも1つを推定する。加工推定装置203bは、切削加工に用いる情報を入力してシミュレーションを行うことにより、上記の推定対象の推定処理を行う。
【0110】
旋盤202は、例えば、ベッド210、主軸装置220、心押装置230と、工具台250を備える。主軸装置220、心押装置230は、工作物支持部材として機能する。主軸装置220は、ベッド210の上面に固定されており、工作物Wの一端WLを支持し、工作物Wを回転駆動する。主軸装置220は、主軸ハウジング221、主軸222、主軸用モータ223、チャック224及び主軸用検出器225と図示しない主軸用駆動回路とを備える。
【0111】
主軸ハウジング221は、ベッド210上に固定されている。主軸222は、主軸ハウジング221に軸受を介して回転可能に支持される。主軸用モータ223は、主軸222を回転駆動する。チャック224は、主軸222に固定され、工作物Wの一端を把持する。主軸用検出器225および主軸用駆動回路は、主軸用モータ223を駆動するために設けられている。なお、詳細には、チャック224が工作物支持部材を構成するとともに、チャック224が把持する工作物Wの一端が被支持部WLを構成する。そして、当該被支持部WLにおける最大支持径dLはチャック224の爪が当接する被支持部WLの外周面の径に相当する。
【0112】
心押装置230は、ベッド210上であって、主軸装置220に対してZ軸方向に対向するように配置されている。心押装置230は、ベッド210上において、Z軸方向に移動可能に設けられている。心押装置230は、工作物Wの他端を支持する心押センタ231を備える。なお、詳細には、心押センタ231が工作物Wの他端のセンタ穴WRに入り込んで工作物Wを支持する工作物支持部材を構成する。
【0113】
工具台250は、Z軸スライド台251と、X軸スライド台252と、タレット(旋回式の刃物台)253と、複数の切削工具T2とを備える。Z軸スライド台251は、ベッド210のZ軸案内面211にZ軸方向に移動可能に支持されており、ベッド210に設けられたZ軸駆動機構212によりZ軸方向に移動する。
【0114】
X軸スライド台252は、Z軸スライド台251上のX軸案内面251aにX軸方向に移動可能に支持されており、Z軸スライド台251に設けられたX軸駆動機構251bによりX軸方向に移動する。タレット253は、X軸スライド台252にZ軸方向に平行な軸回りに回転可能に設けられている。複数の切削工具T2は、タレット253の外周面に固定されている。複数の切削工具T2は、異なる種類の工具とすることができる。
【0115】
制御装置203aは、加工制御を実行するCNC(Computer Numerical Control)装置およびPLC(Programmable Logic Controller)装置である。つまり、制御装置203aは、切削加工プログラムに基づいて、移動装置としてのZ軸駆動機構212およびX軸駆動機構251bを駆動して、切削工具T2の位置制御を行う。つまり、制御装置203aは、切削工具T2などの位置制御を行うことで、工作物Wと切削工具T2とを相対的に移動させる。さらに、制御装置203aは、主軸222の回転制御およびタレット253の回転制御を行う。
【0116】
本実施形態の加工推定装置203bは、
図2に示す実施形態1の加工推定装置3bの構成と同様である。ただし、実施形態1における研削を切削に変更し、砥石車Tを切削工具T2に変更する。
【0117】
次に、本実施形態において、工作物側動剛性(Cw,Kw)および工具側動剛性(Ct,Kt)について、
図11を参照して説明する。工作物側動剛性(Cw,Kw)は、旋盤202を構成する工作物支持部材としてのチャック224及び心押センタ231により工作物Wを支持した状態において発揮する動剛性である。工作物側動剛性(Cw,Kw)は、減衰係数Cwおよびばね定数Kwにより定義される。減衰係数Cwは、主軸装置220および心押装置230の基準位置に対する工作物Wの相対速度と、工作物Wが受ける外力との関係を表す値である。ばね定数Kwは、主軸装置220および心押装置230の基準位置に対する工作物Wの相対位置と、工作物Wが受ける外力との関係を表す値である。
【0118】
そして、実施形態1と同様に、工作物側動剛性(Cw,Kw)は、工作物動剛性(Cwa,Kwa)と、支持部材動剛性(Cwb,Kwb)と、工作物Wと工作物支持部材(チャック224、心押センタ231)との間の接触動剛性(Cwc,Kwc)とに分解することができる。
【0119】
工具側動剛性(Ct,Kt)は、切削工具T2を含み、工具台250に関する動剛性である。工具側動剛性(Ct,Kt)は、減衰係数Ctおよびばね定数Ktにより定義される。減衰係数Ctは、工具台250における基準位置に対する切削工具T2の相対速度と、切削工具T2が受ける外力との関係を表す値である。ばね定数Ktは、工具台250における基準位置に対する切削工具T2の相対位置と、切削工具T2が受ける外力との関係を表す値である。
【0120】
本実施形態3における加工システム201は、実施形態1における加工システム1と同様の効果を奏する。
【0121】
(その他)
上記実施形態1~3においては、研削盤2を用いた研削加工と、旋盤202を用いた切削加工とについて例をあげて説明した。これらの他に、マシニングセンタを用いた切削加工についても同様に適用可能である。
【符号の説明】
【0122】
1、201 加工システム
130 接触動剛性算出システム
2 研削盤(加工装置)
202 旋盤(加工装置)
3a 制御装置
3b 加工推定装置
34 主軸センタ(工作物支持部材)
41、231 心押センタ(工作物支持部材)
203a 制御装置
203b 加工推定装置
224 チャック(工作物支持部材)