IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイエムエス ナノファブリケーション アーゲーの特許一覧

<>
  • 特開-電磁レンズ及び荷電粒子光学装置 図1
  • 特開-電磁レンズ及び荷電粒子光学装置 図2
  • 特開-電磁レンズ及び荷電粒子光学装置 図3
  • 特開-電磁レンズ及び荷電粒子光学装置 図3A
  • 特開-電磁レンズ及び荷電粒子光学装置 図4
  • 特開-電磁レンズ及び荷電粒子光学装置 図5
  • 特開-電磁レンズ及び荷電粒子光学装置 図5A
  • 特開-電磁レンズ及び荷電粒子光学装置 図6
  • 特開-電磁レンズ及び荷電粒子光学装置 図7
  • 特開-電磁レンズ及び荷電粒子光学装置 図8
  • 特開-電磁レンズ及び荷電粒子光学装置 図9
  • 特開-電磁レンズ及び荷電粒子光学装置 図10
  • 特開-電磁レンズ及び荷電粒子光学装置 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023014010
(43)【公開日】2023-01-26
(54)【発明の名称】電磁レンズ及び荷電粒子光学装置
(51)【国際特許分類】
   H01J 37/145 20060101AFI20230119BHJP
   H01J 37/143 20060101ALI20230119BHJP
   H01J 37/305 20060101ALI20230119BHJP
   H01L 21/027 20060101ALI20230119BHJP
【FI】
H01J37/145
H01J37/143
H01J37/305 B
H01L21/30 541B
【審査請求】未請求
【請求項の数】15
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022110238
(22)【出願日】2022-07-08
(31)【優先権主張番号】21185599.4
(32)【優先日】2021-07-14
(33)【優先権主張国・地域又は機関】EP
(71)【出願人】
【識別番号】509316578
【氏名又は名称】アイエムエス ナノファブリケーション ゲーエムベーハー
(74)【代理人】
【識別番号】100080816
【弁理士】
【氏名又は名称】加藤 朝道
(74)【代理人】
【識別番号】100098648
【弁理士】
【氏名又は名称】内田 潔人
(72)【発明者】
【氏名】クリストフ シュペングラー
(72)【発明者】
【氏名】ディートマール プーフベルガー
(72)【発明者】
【氏名】ヨハネス ライトナー
(72)【発明者】
【氏名】テオドール アダクテュロース
(72)【発明者】
【氏名】シュテファン エーデル-カプル
【テーマコード(参考)】
5C101
5F056
【Fターム(参考)】
5C101AA27
5C101EE13
5C101EE57
5C101EE64
5C101EE65
5C101EE67
5C101EE68
5C101EE69
5C101FF02
5F056AA33
5F056EA02
5F056EA04
5F056EA05
5F056EA12
(57)【要約】      (修正有)
【課題】永久磁石を含むが光学的性質を高精度で調節可能にする電磁レンズを提供する。
【解決手段】荷電粒子光学装置のための微調節可能な電磁レンズは1つ以上のリングマグネットを含む磁気回路アセンブリと縦軸の周りに全体的に回転対称性のスリーブインサートとを含む。スリーブインサートは通路孔の内部に静電界を生成するよう構成された幾つかの導電性電極要素を含む。リングマグネットはインナーヨークシェルの周囲に配置されかつアウターヨークシェルによって包囲される;インナーヨークシェルはスリーブインサートの中央部分を包囲する。リングマグネットはその2つの磁極の一方がインナーヨークシェルを及び他方がアウターヨークシェルを指向するように配向されるよう磁化されている。これらのシェルはスリーブインサートによって生成される静電界と空間的に重なり合う磁界を生成するために、少なくとも1つのギャップを有する磁気回路を形成する。
【選択図】図1
【特許請求の範囲】
【請求項1】
荷電粒子光学装置(401)の荷電粒子ビームを修正するよう構成された電磁レンズであって、
前記電磁レンズは、縦軸(c1)に沿って延伸しかつ荷電粒子ビームの通過を可能にする通路孔(120)を備え、
前記電磁レンズは、
・少なくとも1つのリングマグネット(101、102)とヨークボディ(13)を含む磁気回路アセンブリ(11);及び
・スリーブインサート(12)
を含み、
前記スリーブインサート(12)は前記通路孔(120)を包囲しかつ前記縦軸(c1)に沿って前記通路孔(120)の第1端部と第2端部の間に延在し、前記スリーブインサート(12)は少なくとも1つの導電性電極要素(106、108、110、112)を含み、各電極要素は前記通路孔の内部に静電界を生成するよう電源(726、728、730、732)を介して夫々の電気ポテンシャルが印加されるよう構成されており、
前記ヨークボディ(13)はアウターヨークシェル(104)及びインナーヨークシェル(103)を含み、前記縦軸を中心とする周に配置されかつ透磁性材料を含み、前記インナーヨークシェルは前記スリーブインサートの少なくとも中央部分を包囲するよう配置され、前記アウターヨークシェルは前記インナーヨークシェル及び前記スリーブインサートを包囲し、
前記少なくとも1つのリングマグネット(101、102)は前記インナーヨークシェルの周囲に配置されかつ前記インナーヨークシェルと前記アウターヨークシェルの間に配置され、前記少なくとも1つのリングマグネットはその2つの磁極の一方が前記インナーヨークシェルを及び他方が前記アウターヨークシェルを指向するよう磁気的に配向された永久磁石材料を含むこと、
前記磁気回路アセンブリ(11)において、前記インナーヨークシェルと前記少なくとも1つのリングマグネットと前記アウターヨークシェルは閉磁気回路を形成し、該閉磁気回路は、前記アウターヨークシェルの夫々対応する部分(141a、142b)を指向する前記インナーヨークシェルの軸方向端部(103a、103b)に位置付けられ、内方に向かって前記通路孔(120)内に到達しかつ前記スリーブインサートの前記電極要素によって生成される静電界(202)と空間的に重なり合う磁界(201)を生成するよう構成された少なくとも2つのギャップを有すること
を特徴とする、電磁レンズ。
【請求項2】
請求項1に記載の電磁レンズにおいて、
前記磁気回路は2つのギャップ(14a、14b)を有し、
前記2つのギャップは前記アウターヨークシェルの夫々対応する部分を指向する前記インナーヨークシェルの軸方向端部に夫々位置付けられ、
各ギャップは内方に向かって前記通路孔(120)内に到達する定められた磁界(201)を生成し、
前記スリーブインサートの前記電極要素(106、108、110、112)の少なくとも1つによって生成される前記静電界(202)は前記磁界(201)と少なくとも部分的に重なり合うよう構成されていること
を特徴とする、電磁レンズ。
【請求項3】
請求項1又は2に記載の電磁レンズにおいて、
前記電磁レンズは前記縦軸(c1)に沿って全体的に回転対称的な形状を有し、
前記インナーヨークシェルと前記アウターヨークシェルは互いに対し同心をなしていること
を特徴とする、電磁レンズ。
【請求項4】
請求項1~3の何れかに記載の電磁レンズにおいて、
前記インナーヨークシェルは前記スリーブインサートを受容する通路空間(200)に沿ってその2つの軸方向端部の間に延在し、
前記アウターヨークシェルは前記インナーヨークシェルの半径方向外方において前記インナーヨークシェルを包囲し、かつ、前記インナーヨークシェルの2つの軸方向端部に夫々対応する各側部へ延伸すること
を特徴とする、電磁レンズ。
【請求項5】
請求項1~4の何れかに記載の電磁レンズにおいて、
前記少なくとも1つのリングマグネット(101、102)は実質的に半径方向に配向された磁化を有すること
を特徴とする、電磁レンズ。
【請求項6】
請求項1~5の何れかに記載の電磁レンズにおいて、
前記少なくとも1つのリングマグネット(101、102)は前記縦軸(c8)に沿って積み重ねられた2つ以上の層(81)から構成されること
を特徴とする、電磁レンズ。
【請求項7】
請求項1~6の何れかに記載の電磁レンズにおいて、
前記少なくとも1つのリングマグネット(101、102)は前記縦軸の周りに周方向に沿って均等に配置された3つ以上のセクタ(sectors)から構成されること、
好ましくは、前記セクタは、前記縦軸(c9)に対するセクタを形成する実質的にウェッジ(wedge)形状の要素であること
を特徴とする、電磁レンズ。
【請求項8】
請求項1~7の何れかに記載の電磁レンズにおいて、
前記電極要素(複数)は、前記ギャップの1つ以上において、好ましくは各ギャップにおいて、前記通路孔の内部の前記磁界(201)と連携して粒子光学レンズを形成するよう構成されていること、
前記粒子光学レンズの焦点距離は前記電極要素(複数)(106、112)に印加される電気ポテンシャルを変更することによって調節可能であること
を特徴とする、電磁レンズ。
【請求項9】
請求項1~8の何れかに記載の電磁レンズにおいて、
前記電極要素(複数)(106、108、110、112)は少なくとも1つの単レンズを形成するよう構成されていること
を特徴とする、電磁レンズ。
【請求項10】
請求項1~9の何れかに記載の電磁レンズにおいて、
前記電極要素の少なくとも1つは、前記縦軸の周りに周方向に沿って均等に配置された複数のサブ電極を含む静電マルチポール電極を含むこと
を特徴とする、電磁レンズ。
【請求項11】
請求項1~10の何れかに記載の電磁レンズにおいて、
前記電極要素(複数)は、前記縦軸(c3)の周りに、定められた直径(d6)を有する境界画定口(605)を形成するビームアパーチャ要素(601)を含み、前記境界画定口は前記縦軸に沿って伝搬する荷電粒子ビーム(600)の横方向幅を制限すること
を特徴とする、電磁レンズ。
【請求項12】
請求項11に記載の電磁レンズにおいて、
前記ビームアパーチャ要素(601)は、前記ビームアパーチャ要素において吸収される荷電粒子ビームの量を測定する電流測定装置(702)に接続されていること
を特徴とする、電磁レンズ。
【請求項13】
請求項11又は12に記載の電磁レンズにおいて、
前記縦軸に沿った前記ビームの伝搬の方向に見て前記ビームアパーチャ要素(601)の前方に、前記縦軸の周りに周方向に沿って均等に配置された複数のサブ電極を含み、好ましくは前記縦軸(c3)に対する前記ビーム(600)の横方向位置を決定するよう構成された、静電マルチポール電極(602)が配置されていること
を特徴とする、電磁レンズ。
【請求項14】
請求項1~13の何れかに記載の電磁レンズにおいて、
前記スリーブインサートは、夫々限定された形状及び面積を有する導電性被膜として構成された電極要素(複数)が配されたセラミックボディを含むこと
を特徴とする、電磁レンズ。
【請求項15】
請求項1~14の何れかに記載の電磁レンズ(10)を含む荷電粒子光学装置であって、
当該装置の縦軸(c1)に沿って前記電磁レンズを貫通して伝搬する当該装置の荷電粒子ビームに影響を及ぼすよう構成された装置において、
前記電磁レンズは当該装置の投射光学システムの部分であること、
好ましくは、当該装置は複数の粒子光学カラムを含むマルチカラムシステムであり、各粒子光学カラムは、夫々の粒子ビームを使用し、かつ、夫々の電磁レンズ(100)を含む夫々の投射光学システムを含むこと
を特徴とする、装置。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は2021年7月14日に出願された欧州特許出願第21185599.4号についてのパリ条約上の優先権の利益を主張するものであり、当該出願の全内容は引照を以って本書に繰り込みここに記載されているものとする。
【0002】
本発明は、ナノパターニング(パターン形成)を含む、リソグラフィ描画及び同様の処理目的のための、荷電粒子光学装置の荷電粒子ビームを修正するよう構成された電磁レンズに関する。そのようなレンズは、縦方向に沿った荷電粒子ビームのための通路を備える。該縦方向は、荷電粒子ビーム自身の伝搬方向に対応するであろうが、通常は、荷電粒子光学装置の光軸と同心になるよう調整(整列)されるであろう。本発明は、上記のタイプの電磁レンズを含む荷電粒子光学装置にも関する。
【背景技術】
【0003】
本出願人は、1つ以上の上記のタイプの電磁レンズを含む荷電粒子マルチビーム装置(複数)を既に実現しており、対応する荷電粒子光学コンポーネント、パターン画定(規定)装置及びマルチビームのための描画方法を既に開発しており、193nm液浸リソグラフィ用の任意のフォトマスク並びにEUVリソグラフィ用の(任意の)マスク及びナノインプリント(nanoimprint)リソグラフィ用の(任意の)テンプレートを実現するために使用されるeMET(電子マスク露光ツール:electron Mask Exposure Tool)又はMBMW(マルチビームマスク描画機:multi-beam mask writer)と称される50keV電子マルチビーム描画機を既に上市している。本出願人のシステムは、基板に対する電子ビーム直接描画機(EBDW:electron beam direct writer)適用のためのPML2(Projection Mask-Less Lithography)とも称されている。
【0004】
とりわけマスクレスリソグラフィ及び基板(例えばウェハ)に対する直接描画に関し、大量工業生産におけるスループットを増大するために、荷電粒子ナノパターニング(パターン形成)装置を貫通通過する荷電粒子ビームによって運ばれる電流を増大する必要がある;これは通常は荷電粒子間のクーロン(相互)作用による分解能(resolution)の制限という代償を伴い、当該装置によって他の機構を介して導入される光学収差の大きさの減少による対応する補償を必要とする。この目的のために、本出願人は、マルチカラム的態様で組み合わされた複数の並列光学カラムを含む荷電粒子マルチビーム装置であって、各カラムが縮小された(「スリム」)横断面直径を有するものを既に開発している。そのようなマルチビーム装置は、その一実施形態は以下において図4を参照して議論されているが、極めてより大きい荷電粒子ビーム電流を可能にする一方で、シングルカラムシステムにおいて見出される電流と光学収差の間のトレードオフによる制限を克服している。これは、ターゲットへ供給される全電流が複数の光学軸へと分割される一方で、分解能の制限は光学軸当たりの電流の量によって支配される(の影響を受ける)という事実に基づく。このタイプのシングルカラムは、本出願人のUS 6,768,125、EP 2 187 427 A1(=US 8,222,621)及びEP 2 363 875 A1(=US 8,378,320)のような先行技術においてよく知られている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】US 6,768,125
【特許文献2】EP 2 187 427 A1
【特許文献3】US 8,222,621
【特許文献4】EP 2 363 875 A1
【特許文献5】US 8,378,320
【特許文献6】US 7,067,820
【特許文献7】US 9,165,745
【発明の概要】
【発明が解決しようとする課題】
【0006】
典型的なマルチカラムシステムは複数の光学的サブカラムを含み、これらのサブカラムは、夫々、幅広の(ブロード)テレセントリック荷電粒子ビームをパターン画定システムへ供給する照明システムを含み、パターン画定システムには、例えば複数の静電及び/又は電磁レンズを含む荷電粒子投射光学系が後置(下流に配置)されている。そのようなシステムを高スループットウェハ直接描画機として使用するためには、相当の数のサブカラム、例えば100のオーダーのサブカラムを1つの半導体ウェハの上方に配することが必要になる。しかしながら、これは、各サブカラムが、ウェハの幅の何分の一かの直径、例えば300mm(12インチ)ウェハの場合は31mm以下の直径を有することを必要とする。他方、スリム直径の磁気レンズは、所望の磁界の生成のためにコイル型磁気レンズによっては実現することができない。なぜなら、カラム径の縮小は、顕著に強い磁界の生成のためにコイルを駆動するのに必要な大きな電流による極めて大きなジュール熱の発生に相当するであろうからである。タイトな空間の要求のために、伝統的なコイル型磁気レンズのために要求され得る高精度センサ及び等方性(isotropic)・均一性冷却手段(cooling)を含む適切な温度制御システムのために不十分な空間しか存在しない。更に、タイトな空間の要求は、これはスリムカラム(複数)のターゲット直径及び適切なマルチカラムシステムにおけるそれらの配置から生じるが、適切なコイル型磁気レンズの製造を妨げるであろう。熱及び幾何学的要求によって決定される上記の制限はシビアであるが、本発明の可能な実施形態(複数)のような磁界を生成するための高透磁性ハウジングボディ内部の永久磁石(複数)に基づく磁気レンズを採用することによって克服可能である。しかしながら、そのような永久磁石型システムは、製造及び組立プロセスの完了後再較正(再調整)されることができないが、これは、とりわけ製造及び組立精度に基づく目標磁界の精度(正確性)に対する本来的制限を考慮すると、コイルを流れる電流の再調節によってその磁界が制御可能なコイル型磁気レンズに比べて深刻な欠点を表す。電流(current)精度(正確性)制限は、目標磁界に対し凡そ±1.0%のずれに相当するが、これは、要求される磁界精度(正確性)の欠如の補償を可能にする幾つかの追加コンポーネントなしには、補償されることができない。
【0007】
微調節のための静電要素と組み合わせた永久磁石及び高透磁性ハウジングボディに基づく電磁レンズはUS 7,067,820のような先行技術において既知であるが、これは、マルチポールのような高精度調節手段も、荷電粒子収集較正アパーチャも含まず、従って、ビーム形状を変化させ、その位置を較正し、所望のパターンを生成する手段を提供することはできない。US 9,165,745は、微調節のためのコイル型磁気レンズと組み合わせた永久磁石型電磁レンズを記載しているが、これは上記の熱及び幾何学的問題を有する。更に、上記の先行技術の磁気レンズの磁界は、レンズ自身の空間への制限(局限化)は不十分であり、そのため、複数のレンズが並置される場合、深刻な交差効果(cross-effects)が引き起こされる。
【0008】
上記の観点から、本発明の課題は、永久磁石を含むが光学的特性(例えば焦点距離)を高精度(高い正確性)での調節を可能にする電磁レンズを提供することである。同時に、漂遊(漏洩:stray)磁界の効果(作用)が制限されることが望まれる。
【課題を解決するための手段】
【0009】
本発明の第1の視点により、荷電粒子光学装置の荷電粒子ビームを修正するよう構成された電磁レンズであって、縦軸に沿って延伸しかつ荷電粒子ビームの通過を可能にする通路孔を備えた電磁レンズが提供される。
前記電磁レンズは、
・少なくとも1つのリングマグネットとヨークボディを含む磁気回路アセンブリ;及び
・スリーブインサート
を含み、
前記スリーブインサートは前記通路孔を包囲しかつ前記縦軸に沿って前記通路孔の第1端部と第2端部の間に延在し、前記スリーブインサートは少なくとも1つの導電性電極要素を含み、各電極要素は前記通路孔の内部に静電界を生成するよう電源を介して夫々の電気ポテンシャル(電圧)が印加されるよう構成されており、
前記ヨークボディはアウターヨークシェル及びインナーヨークシェルを含み、前記縦軸を中心とする周に配置されかつ透磁性材料を含み、前記インナーヨークシェルは前記スリーブインサートの少なくとも中央部分を包囲するよう配置され、前記アウターヨークシェルは前記インナーヨークシェル及び前記スリーブインサートを包囲し、
前記少なくとも1つのリングマグネットは前記インナーヨークシェルの周囲に配置されかつ前記インナーヨークシェルと前記アウターヨークシェルの間に配置され、前記少なくとも1つのリングマグネットはその2つの磁極の一方が前記インナーヨークシェルを及び他方が前記アウターヨークシェルを指向するよう磁気的に配向された永久磁石材料を含むこと、
前記磁気回路アセンブリにおいて、前記インナーヨークシェルと前記少なくとも1つのリングマグネットと前記アウターヨークシェルは閉磁気回路を形成し、該閉磁気回路は、前記アウターヨークシェルの夫々対応する部分を指向する前記インナーヨークシェルの軸方向端部に位置付けられ、(半径方向)内方に向かって前記通路孔内に到達しかつ前記スリーブインサートの前記電極要素によって生成される静電界と空間的に重なり合う磁界を生成するよう構成された少なくとも2つのギャップを有すること
を特徴とする(形態1)。
本発明の第2の視点により、本発明に応じた電磁レンズを含む荷電粒子光学装置であって、当該装置の縦軸に沿って前記電磁レンズを貫通して伝搬する当該装置の荷電粒子ビームに影響を及ぼすよう構成された、但し前記電磁レンズは当該装置の投射光学システムの部分である、装置が提供される。
当該荷電粒子装置は複数の粒子光学カラムを含むマルチカラムシステムであり、各粒子光学カラムは、夫々の粒子ビームを使用し、かつ、夫々の電磁レンズを含む夫々の投射光学システムを含むことを特徴とする(形態15)。
【発明を実施するための形態】
【0010】
(形態1)上掲本発明の第1の視点参照。
(形態2)形態1の電磁レンズにおいて、
前記磁気回路は2つのギャップを有し、
前記2つのギャップは前記アウターヨークシェルの夫々対応する部分を指向する前記インナーヨークシェルの軸方向端部に夫々位置付けられ、
各ギャップは(半径方向)内方に向かって前記通路孔内に到達する定められた(定義ないし限定された:defined)磁界を生成し、
前記スリーブインサートの前記電極要素の少なくとも1つによって生成される前記静電界は前記磁界と少なくとも部分的に重なり合うよう構成されていることが好ましい。
(形態3)形態1又は2の電磁レンズにおいて、
前記電磁レンズは前記縦軸に沿って全体的に回転対称的な形状を有し、
前記インナーヨークシェルと前記アウターヨークシェルは互いに対し同心をなしていることが好ましい。
(形態4)形態1~3の何れかの電磁レンズにおいて、
前記インナーヨークシェルは前記スリーブインサートを受容する通路空間に沿ってその2つの軸方向端部の間に延在し、
前記アウターヨークシェルは前記インナーヨークシェルの半径方向外方において前記インナーヨークシェルを包囲し、かつ、前記インナーヨークシェルの2つの軸方向端部に夫々対応する各側部へ延伸することが好ましい。
(形態5)形態1~4の何れかの電磁レンズにおいて、
前記少なくとも1つのリングマグネットは実質的に半径方向に配向された磁化を有することが好ましい。
(形態6)形態1~5の何れかに記載の電磁レンズにおいて、
前記少なくとも1つのリングマグネットは前記縦軸に沿って積み重ねられた2つ以上の層から構成されることが好ましい。
(形態7)形態1~6の何れかの電磁レンズにおいて、
前記少なくとも1つのリングマグネットは前記縦軸の周りに周方向に沿って均等に配置された3つ以上のセクタ(sectors)から構成されること、
好ましくは、前記(マグネット)セクタは、前記縦軸に対する(前記縦軸を中心として放射状に分割された)セクタを形成する実質的にウェッジ(wedge)形状(断面においてV字状に先細となるが先端の鋭角部分がない形状)の要素であることが好ましい。
(形態8)形態1~7の何れかの電磁レンズにおいて、
前記電極要素(複数)は、前記ギャップの1つ以上において、好ましくは各ギャップにおいて、前記通路孔の内部の前記磁界と連携して粒子光学レンズを形成するよう構成されていること、
前記粒子光学レンズの焦点距離は前記電極要素(複数)に印加される電気ポテンシャル(電圧)を変更することによって調節可能であることが好ましい。
(形態9)形態1~8の何れかの電磁レンズにおいて、
前記電極要素(複数)は少なくとも1つの単レンズを形成するよう構成されていることが好ましい。
(形態10)形態1~9の何れかの電磁レンズにおいて、
前記電極要素の少なくとも1つは、前記縦軸の周りに周方向に沿って均等に配置された複数のサブ電極を含む静電マルチポール電極を含むことが好ましい。
(形態11)形態1~10の何れかの電磁レンズにおいて、
前記電極要素(複数)は、前記縦軸の周りに、定められた(定義ないし限定された:defined)直径を有する境界画定口を形成するビームアパーチャ要素を含み、前記境界画定口は前記縦軸に沿って伝搬する荷電粒子ビームの横方向幅を制限することが好ましい。
(形態12)形態11の電磁レンズにおいて、
前記ビームアパーチャ要素は、前記ビームアパーチャ要素において吸収される荷電粒子ビームの量を測定する電流測定装置に接続されていることが好ましい。
(形態13)形態11又は12の電磁レンズにおいて、
前記縦軸に沿った前記ビームの伝搬の方向に見て前記ビームアパーチャ要素の前方に、前記縦軸の周りに周方向に沿って均等に配置された複数のサブ電極を含み、好ましくは前記縦軸に対する前記ビームの横方向位置(径方向位置)を決定するよう構成された、静電マルチポール電極が配置されていることが好ましい。
(形態14)形態1~13の何れかの電磁レンズにおいて、
前記スリーブインサートは、夫々限定された形状及び面積を有する導電性被膜として構成された電極要素(複数)が配されたセラミックボディを含むことが好ましい。
(形態15)上掲本発明の第2の視点参照。
【0011】
上記の課題は、荷電粒子光学装置の荷電粒子ビームを修正する(例えば整形する(shape)、合焦する(focus)/脱焦する(defocus)又は別の方法で操作する)よう構成された電磁レンズによって解決される。電磁レンズは縦軸に沿って延伸しかつ荷電粒子ビームの通過を可能にする通路孔を備え、電磁レンズは少なくとも1つのリングマグネット及びヨークボディを含む磁気回路アセンブリとスリーブインサートとを含み、スリーブインサートは通路孔を包囲しかつ縦軸に沿って通路孔の第1端部と第2端部の間に延在し、スリーブインサートは1つ以上の、好ましくは少なくとも2つの、導電性電極要素を含み、電極要素(複数)は通路孔の内部に静電界を生成するよう(アースポテンシャル(アース電位)に等しいハウジングの電気ポテンシャル(電位)に対する)夫々の電気ポテンシャル(電圧)が印加されるよう構成されており、ヨークボディはアウターヨークシェル及びインナーヨークシェルを含み、縦軸を中心とする周に配置されかつ透磁性材料を含み、インナーヨークシェルはスリーブインサートの少なくとも中央部分を包囲するよう配置され、アウターヨークシェルはインナーヨークシェル及びスリーブインサートを包囲し、少なくとも1つのリングマグネットはインナーヨークシェルの周囲に配置されかつインナーヨークシェルとアウターヨークシェルの間に配置され、少なくとも1つのリングマグネットはその2つの磁極の一方が前記インナーヨークシェルを及び他方が前記アウターヨークシェルを指向するよう磁気的に配向された永久磁石材料を含み、磁気回路アセンブリにおいて、インナーヨークシェルと少なくとも1つのリングマグネットとアウターヨークシェルは閉磁気回路を形成し、閉磁気回路は、アウターヨークシェルの夫々対応する(内面)部分を指向するインナーヨークシェルの軸方向端部に位置付けられ、(半径方向)内方に向かって通路孔内に到達しかつスリーブインサートの電極要素(複数)によって生成される静電界と空間的に重なり合う定められた(定義ないし限定された:defined)磁界を生成するよう構成された少なくとも1つのギャップ、好ましくは少なくとも2つのギャップ、を有する。
【0012】
多くの実施形態では、スリーブインサートは、少なくとも2つの導電性電極要素を含み、これらの電極要素に印加される電気ポテンシャル(電圧)は、ハウジング又は他の外部コンポーネントに対し及び/又は互いに対し定められ(定義され)得る。
【0013】
かくして、本発明に応じた電磁レンズは(1)磁気回路アセンブリと(2)静電インレーを含むであろう。(1)の磁気回路アセンブリは、電磁レンズを貫通して伝搬する荷電粒子ビームに対しレンズ効果(作用)を及ぼすことができる静磁界を生成する。磁気回路アセンブリは1つ以上のシリンダ状永久磁石を含み、(複数の)永久磁石は、好ましくはシステムの光軸に沿いかつ同心をなすよう積重ねられ(上下に配設され)、高透磁性材料製のハウジングボディの内部に収容され、磁力線を光軸の標的部位へ、即ち通路孔の定められた(定義ないし限定された)部位へ、とりわけハウジングボディに設けられる(形成される)1つ、2つ又は3つ以上のギャップに対応する部位へ、指向させるよう構成される。(2)の静電インレーは、横断(縦断)する荷電粒子ビームに対する電磁レンズのレンズ効果(作用)を微調節するために使用可能な電界を生成するために、更には、所望であれば、形状及び粒子ビームの光軸に対する逸れ(deflection)を変化するために、場合によっては、電磁レンズそれ自身及び/又は電磁レンズが組み込まれるべき荷電粒子ビーム光学装置によって導入される光学収差を修正するためにも、設けられる。更に、電磁レンズを作動するために、ライナー(liner)及びマルチポールのロッドのような、静電インレーの要素(複数)を個別の電圧調節のため外部電源ユニット(複数)へ接続するために、配線システムが使用され得る。
【0014】
本発明に応じたインレーは上記の磁界に重なる静電界の生成を可能にし、かくして、高精度での、例えば10ppm以下のオーダーでの、(電磁)レンズの焦点距離のインサイチュ―(in-situ)微調節、及び、形状及び光学収差のような荷電粒子ビームの特定の性質(複数)の制御を可能にすることにより、設計(目標)ターゲットからの磁界の上記のズレを補償することができる。従って、本発明は、描画機ツールの、とりわけマルチカラムマルチビームマスク描画機ツールの、レイアウト、組立、微調節及び制御を著しく容易化する。
【0015】
US 9,165,745と異なり、本発明の電磁レンズは、ハウジングボディの幾つかのエアギャップを除き完全に閉じられた磁気ループを有し、このため、磁界を光軸の所望の領域に集中させることができ、それによって、荷電粒子マルチビームナノパターン形成装置において採用されるような電磁レンズのパフォーマンスを低下させる漂遊フィールド(磁界)の作用(悪影響)を大きく減じることができる。この事実は、アンペアの回路法則(Ampere's circuital law)の観点から容易に理解することができる。アンペアの法則によれば、閉曲線の周りの磁界の線積分は、そのような閉曲線によって囲まれる面を横切って流れる全電流に比例するが、これは、無電流系(current-free system)では、ここでは同様に永久磁石が使用されるが故に、ゼロに等しい。従って、光軸への(少なくとも)2つのギャップを使用することによって、及び、軸方向において反対方向の空間的にシャープに(狭い範囲に)限定された、これらの領域において磁気レンズとして作用する2つの(又は複数の)磁界を生成するレイアウトによって、該レイアウトは、付加的な不所望の漂遊フィールド(磁界)を生じることなくアンペアの法則を満たすことを可能にする。これに対し、光軸に沿って1つの方向において空間的にシャープに限定されたただ1つのアキシャル磁界を生成するシングルギャップレイアウトについては、アンペアの法則は、光軸に沿って反対方向における付加的なアキシャル漂遊磁界(複数)の存在を予言する。それらの磁界は荷電粒子光学的には問題である。なぜなら、これらの(漂遊)磁界は空間的にシャープに限定されておらず、そのためビームとの不所望の相互作用を、従ってシステムにおける収差(複数)を引き起こすからである。従って、縦方向に沿った生成されたアキシャル磁界(複数)が(全体で)意図的に打ち消し合うレイアウトは漂遊磁界の存在を最小化する。そうでなければ、漂遊磁界は各サブカラムだけではなく、場合によっては隣接するサブカラム(複数)にも影響を及ぼすであろうし、そのため、システム全体に非回転対称的な歪みをもたらすであろうが、この歪みはシステムを、工業上のハイテク(high-tech)ノード精度(node-precision)描画品質の要求に対し不適切にするであろう。漂遊磁界を最小化するこのアプローチは、上記の先行技術のシステムにおいては採用されていない。
【0016】
少なくとも上記の理由のために、本発明及び基板の直接描画のためのマルチカラムマルチビーム荷電粒子ナノパターン形成システムのような描画機ツールにおけるその適用は、磁気コンポーネント、電気コンポーネント及び較正コンポーネントの唯一無二の組み合わせを提案するが、これは、集積回路の高スループット工業プロセスの発展に対し著しいインパクトを与えることが期待される。
【0017】
多くの実施形態では、磁気回路は、アウターヨークシェルの夫々対応する部分を指向するインナーヨークシェルの軸方向端部に夫々位置付けられる2つのギャップを有し、各ギャップは(半径方向)内方に向かって通路孔内に到達しかつスリーブインサートの電極要素(複数)によって生成される静電界と空間的に重なり合う定められた(定義ないし限定された:defined)磁界を生成する。尤も、ギャップの個数は、電磁レンズの工業的応用に依存して、3つ又は4つ又は5つ以上のように、より多くてもよいことは明らかであろう。
【0018】
有利には、電磁レンズは、しばしば、縦軸に沿って全体的に回転対称的な形状を有し、
インナーヨークシェルとアウターヨークシェルは互いに対し同心をなす(よう配置される)であろう。
【0019】
1つの好適な幾何学的レイアウトによれば、インナーヨークシェルはスリーブインサートを受容する通路空間に沿ってその2つの軸方向端部の間に延在し得、及び、アウターヨークシェルはインナーヨークシェルの半径方向外方においてインナーヨークシェルを包囲する一方で、インナーヨークシェルの2つの軸方向端部に夫々対応する各側部(sides)へと延伸し得る。
【0020】
多くの実施形態では、少なくとも1つのリングマグネットは、実質的に半径方向に配向された磁化を有し得、及び/又は、半径方向に磁化されたリングマグネットとして実現(構成)され得る。更に、少なくとも1つのリングマグネットは縦軸の周りに周方向に沿って均等に(uniformly)配置された3つ以上の(例えば4つ、6つ、8つの)マグネット部分から構成され得る。一般的には、リングマグネットは、通常、中空シリンダ又は中空多角柱の形状を有する一方で、少なくとも1つのリングマグネットは、複数のリング部分が縦軸の周りに周方向に沿って分散配置されている一般的なリング形状を有することができる;これは、リング部分とリング部分の間に何らかの角度の広がり(angular extension)を有するギャップ(複数)も含み得る。例えば、マグネット部分(複数)は、縦軸に対する(縦軸を中心として放射状に分割された)セクタ(sectors)を形成する実質的にウェッジ(wedge)形状の要素(ここで「実質的に」とは例えば中空シリンダの中心軸に向かう2つの側辺によって形成されるテーパ形状が当該中空シリンダの中空空間に対応する部分を欠落していることを意味する。)であり得る。これの代わりに又はこれとの組み合わせで、リングマグネット(又はマグネット部分(複数)の幾つか又は全部)は、縦軸に沿って積重ねられた(上下に配置された)2つ以上の層(セグメント)から構成され得る。
【0021】
本発明の極めて有利な一側面として、電極要素(複数)は、ギャップ(複数)の1つに、ギャップ(複数)の幾つかの夫々1つに、又は好ましくは各ギャップにおいて、通路孔の内部の磁界と連携して粒子光学レンズを形成するよう構成され得、及び、マルチプルギャップ(複数)の場合には、これらのギャップの各々において、粒子光学レンズが形成され得る。そのような(1つ以上の)粒子光学レンズの焦点距離は、電極要素(複数)に印加される電気ポテンシャルを修正(変化)することによって調節され得る。例えば、電極要素(複数)はしばしば少なくとも1つの単レンズ(Einzel lens)を形成するよう(機械的に及び電気的に)構成され得る。
【0022】
更に、本発明の多くの実施形態では、電極要素(複数)の少なくとも1つは、縦軸の周りに周方向に沿って均等に(uniformly)配置された複数のサブ電極を含む静電マルチポール電極を含み得る。
【0023】
本発明の(電磁)レンズの多くの実施形態では、とりわけ(電磁)レンズがPDシステムと結合されて(組み合わされて)使用されることが意図されている場合、電極要素(複数)の間に(に囲まれた)、縦軸の周りに定められた半径を有する境界画定口(delimiting opening)を形成するビームアパーチャ要素があり得るが、境界画定口は縦軸にそって伝搬する荷電粒子ビームの横方向幅を制限する。この境界画定口は、PDシステムにおいて意図的に偏向された(荷電)粒子が荷電粒子ビームのターゲットに到達することを阻止するよう、当該偏向された粒子を含む粒子を収集(回収)するために使用される粒子収集(回収)較正アパーチャとして使用され得る。更に、ビームアパーチャ要素は、例えばビームアパーチャ要素において吸収される荷電粒子ビームの量を測定するために使用され得る電流測定装置に接続され得る。縦軸に沿ったビームの伝搬の方向に見てビームアパーチャ要素の前方には、縦軸の周りに周方向に沿って均等に配置された複数のサブ電極を含み、好ましくは、異なる適切な静電ポテンシャルをサブ電極(複数)へ印加することによって、縦軸に対するビームの横方向位置(径方向位置)を決定するよう構成された、静電マルチポール電極を提供することはしばしば有利である。
【0024】
有利な実施形態(複数)では、スリーブインサートは、夫々限定された形状及び面積を有する導電性被膜として実現(構成)される電極要素(複数)が配されたセラミックボディを含み得る。
【0025】
本発明の更なる一側面は、本発明に応じた電磁レンズを含む荷電粒子光学装置であって、当該装置の縦軸に沿って電磁レンズを貫通して伝搬する当該装置の荷電粒子ビームに影響を及ぼすよう構成され、当該電磁レンズが当該装置の投射光学システムの部分を構成する装置に向けられている。とりわけ、荷電粒子光学装置は、好ましくは、複数の粒子光学カラムを含むマルチカラムシステムを実現し得、各粒子光学カラムは夫々の粒子ビームを使用しかつ夫々の電磁レンズを含み、複数の粒子光学カラムの少なくとも1つ、好ましくは幾つか、最も好ましくは全てが夫々の投射光学システムを含む。
【0026】
以下に、本発明の更なる説明のために、図面に示されている例示的かつ非限定的実施形態(複数)について議論する。
【図面の簡単な説明】
【0027】
図1】本発明の第1実施形態による電磁レンズの一例の縦断面図。
図2】縦座標の関数としての中心軸c1の位置における磁界(実線)及び電界(破線)の一例の軸方向(アキシャル)成分の強度;縦座標は図1におけるものと同じ(とりわけ同じスケール)である。
図3図1の電磁レンズのスリーブインサートのコンポーネント(複数)としての較正アパーチャ及び上流側のマルチポールの一例の拡大詳細図。
図3A】光学収差(複数)を変化可能にする修正ライナー(liner)を含む一変形形態のスリーブインサートの一例の下側部分の拡大詳細図。
図4図1の電磁レンズの複数の具体例を含むマルチカラム描画機ツールの一例の縦断面図。
図5】8つのサブ電極を有するマルチポール電極の一例の横断面図。
図5A】複数のロッドのうちの2つのロッドの間のギャップ領域の一例の拡大詳細図。
図6】4つのサブ電極を有するマルチポール電極の一変形例の斜視図。
図7図1の電磁レンズのスリーブインサート要素(複数)に接続された電圧供給部(複数)の一例の模式的概観図。
図8】ラジアル磁化を有するリングエレメント(複数)から構成されるリングマグネットの一実施形態。(A)は斜視図;(B)は縦断面図;(C)は横断面図。
図9】分割されたリングマグネットの一実施形態の横断面図。
図10】分割されたリングマグネットの更なる一実施形態の横断面図。
図11】分割されたリングマグネットの他の一実施形態の横断面図。
【実施例0028】
以下に与えられる本発明の例示的実施形態(複数)の詳細な議論は本発明の基本的思想、具現化及び更なる有利な発展を開示する。本発明の特定の適用に好適であると認められるようなここで議論される実施形態(複数)の幾つか又は全てを任意に組み合わせることは当業者には明らかなはずである。この開示全体において、「有利な」、「例示的な」又は「好ましい」のような用語は、本発明又はその一実施形態に特に好適である(但し不可欠ではない)要素又は寸法を表し、当業者によって好適であると認められる場合であれば、明示的に要求されない限り、修正可能である。本発明は、説明の目的のために与えられかつ単に本発明の好適な具体化例を提示するに過ぎない以下に議論する例示的実施形態(複数)に限定されないことは当然である。この開示の範囲内において、「上」又は「下」のような垂直(鉛直)方向に関する用語は、中心軸(ないし縦軸)に沿って下方に(「垂直に」)進行すると考えられる電磁レンズを横断する粒子ビームの方向に関するものとして理解されるべきである。この縦軸は、一般的に、X方向とY方向が横切るZ方向と同一である。
【0029】
電磁レンズ
【0030】
図1は本発明の第1実施形態による電磁レンズ10の一例を縦断面図で、即ち、その中心軸c1を通る(含む)切断面における(沿った)図で示す。より明確にするために、コンポーネント(複数)は寸法通りには示されていない。レンズ10は、対物レンズとして使用される場合、図4(下記参照)の描画機ツール401の最終レンズ414を具現化するために使用され得るが、本出願人のUS 9,443,699及びUS 9,495,499に開示されているようなマルチカラム又はシングルカラムアーキテクチャを具現化し得る多くの他の粒子光学装置における使用に好適であることは分かるはずである。なお、これらの文献の開示内容は引照を以って本書に繰り込みここに記載されているものとする。
【0031】
電磁レンズ10は、磁気回路アセンブリ11と、ビーム制御インレー(inlay)又は単に「インレー」とも称されるスリーブインサート12を含む。磁気回路アセンブリ11は、外半径10~13mm、(半径方向)厚み2~5mmを有し、長さが凡そ25mmであり、典型的には1Tの残留磁気を有することになる永久磁石材料からなる1つ以上のリングマグネット101、102;及び、リングマグネットのためのヨークボディとしても役立つハウジングボディ13を含む。そのようなハウジングボディは、凡そ5mmの内半径と凡そ15mmの外半径を有する2つの同心シリンダから構成され、これらのシリンダは、夫々、2~5mmの厚み及び50mm~100mmの長さを有する。スリーブインサート12は、これはビーム制御インレー又は単に「インレー」とも称されるが、以下において詳細に議論するような、5mm未満の外径及び1mm~20mmの長さを有し、静電電極、アパーチャ、又はフィールド(電界)終端キャップ(field-termination caps)としての機能を有する幾つかの電気的能動及び受動コンポーネントを含む。電磁レンズ10は、通常、(図4の描画機ツール401のような)粒子ビーム露光システムに配されており、そのため、その中心軸c1は露光システムの光軸と一致する;尤も、本発明による電磁レンズの適用に応じて他の相対的位置関係も選択され得ることは当業者であれば分かるであろう。破線100は、粒子ビーム露光システムの内部において電磁レンズ10を貫通して伝搬するときの粒子ビームの包絡線を示す。
【0032】
磁気回路アセンブリ
【0033】
磁気回路アセンブリ11について以下に議論する。ハウジングボディ13は、夫々インナーヨークシェル103及びアウターヨークシェル104と称される内側部分及び外側部分を含み、アウターヨークシェル104は、電磁レンズ10に組み込まれたとき、リングマグネット101、102、インナーヨークシェル103及びインレー12を(完全に)包囲する。リングマグネット101、102とハウジングボディ13は何れも中心軸c1に対して同心をなしている。リングマグネット101、102は、好ましくは、回転対称のリングないしリングセクタ(放射状に分割されたリングの部分(部分リングないし部分円環):ring sectors)の形状を有する。リングマグネットのサイズは、夫々の適用及び荷電粒子装置について適切であるように選択される;図示の実施形態(複数)では、幾何学的寸法は典型的には数ミリメートルのオーダーである(例えば外半径12mm、厚み3mm、長さ凡そ25mm)。好ましくはシステムの縦軸に沿って連続的に積み重なる形で配置される(図8A)複数のマグネットを使用してもよい。
【0034】
本発明の好ましい一実施形態では、リングマグネット101、102を構成する永久磁石はラジアル磁化を示す(以下の図8及び図9に関する議論参照)。リングマグネットは、磁気回路アセンブリ11において実現される磁気回路の磁束源としての機能を有する。インナーヨークシェル103は、例えば、積重ねたリングマグネットからその両端部において突出するために十分な長さを有する中空シリンダとして実現(構成)される。アウターヨークシェル104は、例えば、2つのコの字型縦断面を有する円筒対称形状を有するように実現(構成)される;換言すれば、アウターヨークシェル104は、インナーヨークシェル103の中空シリンダと同心をなしているがより大きい半径を有する中空シリンダとして構成された中央ボディ部分143と、中央ボディ部分143の縦方向両端部に結合された、中央穴部を有するディスク状の形状の2つの終端部分141、142を含む。各終端部分141、142の中央穴部は、好ましくは、インナーヨークシェル103の中空シリンダボディの内半径と同じ内半径を有する。そのため、中央穴部(複数)とインナーヨークシェルの中空空間は、中心軸c1に沿って磁気回路アセンブリ11を横断(縦断)する(半径r1の)通路空間200を包囲する。中空シリンダ部分103、143の幾何学的寸法は、これらのシリンダ(部分)がマグネット101、102を(半径方向)内方及び外方において覆う(包む)よう適切に選択される;これらのシリンダ(部分)は、有利には、マグネットとシリンダボディの対応する表面領域との間のギャップを最小化するように又は好ましくは回避するようにマグネットの対応する面にコンタクト(接触)する。他方、磁気回路11のポールピース(pole-pieces)を表すインナーヨークシェルの終端面103a、103bとアウターヨークシェルの終端部分の対応する内面141a、142bの間には、ギャップ14a、14bが形成される。中空シリンダの半径方向厚みは典型的には、かつ一般化を喪失することなく(それに限定されることなく)、数ミリメートルのオーダーである。ハウジングボディ13のインナーヨークシェル103及びアウターヨークシェル104は、(フェリ磁性又はフェロ磁性材料のような)好ましくは高透磁率の、透磁性材料からなる;ハウジングボディ13は、その形状に基づいて、マグネットによって生成される磁束を増強及び集束することができる。ギャップ14a、14bの領域の周りにおいて、磁気回路の磁束は、中心軸c1の特定の部分(複数)において半径方向内方に向かって通路空間200に到達する静磁(気)タイプの定められた(定義ないし限定された:defined)磁界も形成するであろう。従って、本発明に応じ、ハウジングボディは磁気レンズのヨークとしての機能を有し、その磁束の分布はポールピース103a、103b、141a、142bによって形成される。とりわけ、通路空間200に関しては、磁気回路11によって生成される磁界は2つの領域に限定される:即ち、ポールピース面103a、141aによって形成されるギャップ14aの内部の上側領域;及び、ポールピース面103b、142bによって形成されるギャップ14bの内部の下側領域である。従って、2つの磁気レンズが、ギャップ14a、14bに対応する縦軸の部分(複数)に(夫々)形成される。磁界は、アキシャル(軸方向)成分とラジアル(半径方向)成分を含む;ラジアル成分は殆ど重要性がない一方で、磁界Bの結果として生じるアキシャル成分は電磁レンズのレンズ効果(作用)のために利用される。縦座標の関数としての中心軸c1の位置における磁界Bのアキシャル成分の大きさ(強度)201が図2に示されている(実線);磁界Bのピーク値の典型的な値は、荷電粒子が電子である場合の適用においては、0.1Tのオーダーである。従って、磁気回路は(かなり)高い磁界強度を有する2つの領域を形成することになるが、これらの領域は、明確に定められた(定義ないし限定された)焦点距離と光学収差を有する2つの順次配置された(consecutive)磁気レンズとしての機能を有することになる。共通のヨーク13を介した2つの磁気レンズの磁気結合は、ギャップ14a、14bの領域以外の領域(複数)における漂遊(漏洩)磁界の効果(作用)を大きく減少するが、その他の点では、伝統的レイアウトの粒子レンズにおける永久磁石に必然的に関連付けられるであろう。
【0035】
インレー
【0036】
磁気レンズ10は、更に、光軸c1に沿ってハウジングボディ13の通路空間200内に挿入されるスリーブインサートないしインレー12を含む。これに応じて、インレー12の物理的寸法は、上記のようなハウジングボディ13に関して適切に選択される。インレー12は、通路空間において静磁界201(図2の実線)を重ねる調節可能な静電界202(図2の破線)を生成するために使用される1つ又は幾つかの電気的能動要素を含む複数のビーム制御要素を含む。ビーム制御要素(複数)は、電気的能動要素としての機能を有する一般的にリング形状のコンポーネントであり、中心軸c1に沿って積重ねられ、それらの幾何学的軸(線)が中心軸c1に対し同心かつ平行となるよう配向され、共通の内半径r2を有する;従って、ビーム制御要素(複数)は、中心軸c1に沿ってレンズ10を横断(縦断)しかつ磁気レンズの作動中におけるビーム経路のためのチャンネルとしての機能を有する通路孔120を定める(定義ないし画定する)。図1に示した実施形態では、ビーム制御要素は、図1の紙面下方に向かって、第1ライナー(liner)106、2つのマルチポール電極108、110、及び第2ライナー112-これらはすべて導電性材料からなる-を含む。マルチポール電極108、110は何れも例えば、図6を参照して以下において更に議論されるような円弧長さが等しい複数のセクションから構成される複合金属リングとして実現される;これらの(半径方向の)厚みは例えば2mm未満であり、それらの長さは5mm~20mmである。更に、好ましくは、2つのマルチポール電極108、110の間には電気的受動(passive)リング109が介装される;該コンポーネントは較正アパーチャと称されるが、これは以下において更に議論される。マルチポール108及び110は、中心軸c1の周りに周方向に沿って配置される複数のセクタ(放射状分割:sector)コンポーネント(例えば、かつ一般化を喪失することなく(それに限定されることなく)、夫々4つ、6つ又は8つのセクタコンポーネント)から構成されるのに対し、他のすべてのインレー要素は、好ましくは、中心軸c1に対し回転対称的に構成されている。電気的能動要素106、108、110、112は、好ましくは、静電電圧を有する夫々の電源726、728、730、732に接続されるため、それらの静電ポテンシャル(電位)は個別に調節可能である(図7);一変形形態では、電源(複数)は、個別の供給電圧を提供する共通の電源装置を構成するよう組み合わされ得る。最後に、電気的能動要素106、108、110、112は、互いに電気的に分離され、かつ、(夫々の)両端において、ハウジングボディ13と同じ電気ポテンシャルを有するフィールド(電界)終端キャップ105、107、111、113と称される要素によって終端される。フィールド終端キャップ105、107、111、113は、電界をインレーの内部空間120に限定(制限)する機能を有する;従って、これらは、(他の粒子光学カラム409、図4参照、のような)周囲のコンポーネントに対するインレーの明確に定められた(定義ないし限定された)「フィールド境界」を提供する。フィールド終端キャップ105、107、111、113と夫々に隣接する電気的能動要素106、108、110、112との間の空間(複数)は電気的に絶縁性であるが、例えば、真空又はセラミックスのような非導電性の、好ましくは耐電圧性の、材料を用いた充填材として実現される。インレーの種々の要素105~113は、(半径r1とr2の間の)中空シリンダ形状の支持リングボディによって一緒に支持されかつ保持され、かつ、例えば、図1に2つの破線の矩形(のボックス)で象徴的に示した、セラミック又はプラスチックのような電気的絶縁性材料からなる。電極要素は、夫々が限定された形状及び面積を有するよう、例えば、リングボディ内部において結合されかつ一緒に保持される別個の(不連続の:discrete)リング形状要素(複数)として、又は、リングボディの内面に形成される導電性被膜(コーティング)として、実現(具現化)され得る。軸c1に沿った座標の関数としての電界E(アキシャル成分、即ちZ方向に沿った(成分))の強度(大きさ)202は図2に示されている;電界Eのピーク値の典型的な値は10V/mのオーダーである。
【0037】
典型的一形態では、第1ライナー106及び第2ライナー112は、長さが2mm~10mmであり、例えば2mm未満の、小さい半径方向厚みを有する。各ライナー106、112は、静磁気レンズとして夫々機能するギャップ14a、14bの磁束領域(複数)の一方に対応して配置される。とりわけ、ライナー106、112は、例えば磁界201に重なる10V/mのオーダーの静電界202を生成するために、単レンズ(Einzel lenses)として使用可能である。これにより、対応する磁気レンズの焦点距離の微調節が可能になり、従って、システムは、焦点距離についてある程度の調節範囲を有することになる。ライナー106、112がなければ、焦点距離の正確性は、永久磁石101、102の機械的製造の制限された精度、組立の正確性の制限及び磁化正確性(の制限)によって悪化することになろうが、これは典型的には0.5%~1%のオーダーである。しかしながら、本出願人によって意図されるような磁気レンズの目的に関しては、0.1%未満の精度でさえも望ましいであろう。更に、永久磁石はエイジング効果を有することが知られている、即ち、しばしば、磁界は時間の経過と共により弱くなり、温度に依存してその強度が変化する。従って、永久磁石を荷電粒子光学応用(用途)に使用するためには、これらの種々の効果(作用)に対する適切な補償手段が必要となる。本発明は、組込型補正手段を含むことによっても、電界がppm(parts-per-million:百万分率)レジーム(regime)での精度で調節及び制御可能であるため、製造、組立、磁化強度及びエイジング効果に関する上記の制限をすべて克服することを可能にする。更に、ライナー(複数)の電圧は、光学収差に関する粒子ビーム露光装置の性質を変化するために及び/又は磁気レンズによって生成される像面のターゲットに対する高さを変化するために、システムの他の光学的及び電気的能動要素との組み合わせで調節可能である。
【0038】
図1及び図3を参照すると、インレー12は、好ましくは、粒子ビームの逸脱する又は偏向された部分に対するストッピング(阻止)コンポーネントとしての機能を有する較正アパーチャ109と称される受動要素を含み得る。図3は、較正アパーチャの一例の縦断面を拡大詳細図で示す。較正アパーチャ(部材)601は、軸c1に向かって突出する、従って小さな直径d6のアパーチャを形成する、インナーリング構造を有する。アパーチャは、直径d6の外側を進行するビームの部分606を吸収することによってインレー12を横断(縦断)するビーム600のサイズ(径)を制限する機能を有する。本発明の好ましい一実施形態では、先行する(上流側の)インレー要素の1つ、例えばマルチポール電極602は、(典型的には例えば±50Vの範囲の電圧を用いる)ダイポール(二極:dipole)フィールド(電界)を印加することによって、軸c1に対する横方向に沿ってビーム600を案内する(方向付ける)よう構成される。マルチポール電極602は、少なくとも2つの線型独立な方向においてマルチポール電極の選択された電極に印加されるダイポール(二極)電圧を変化することによって、縦軸c1に対するビーム600、606の横方向位置を定める(定義する)ことを可能にするが、これはビームアライメントにも使用可能である。上記の描画機ツール401の粒子ビームカラムにおいて、粒子ビームは、パターン画定システム412によって導入される追加の偏向の有無により当該パターン画定システム412を選択的に貫通通過可能な一束のビームレットへと分割される。そのような偏向は、そのビームレットがターゲットへ到達することを阻止するために、従って描画パターンを画定するために導入される。偏向されたビームレットは、較正アパーチャ601を通過して進行するというより寧ろ、較正アパーチャ601の脇の領域に到達することになり、従って、さもなければ不所望の漂遊(stray)電界を生成し得るシステムの他の部品の不所望のチャージアップを引き起こすことなく、較正アパーチャ601において吸収されることになる。この目的のために、ビーム較正アパーチャは、例えば、長さが凡そ20mmでありかつ底部(605)において数百マイクロメートルの最小径を有するフック状の(縦)断面を有するシリンダとして構成される。ビーム部分606の吸収は較正アパーチャ601を形成する要素に電荷の発生を引き起こすことになろうが、これは、ビームアパーチャの電気的接続を介して、例えば、図7を参照して以下に議論するような測定装置720の方へ、除去され得る、即ち、流出され得る。インレー12は、通常は、その縦軸c3がハウジングボディ13の中心軸c1と合致するよう、ハウジングボディ13の通路空間200に挿入される。
【0039】
インレーの一変形形態では、インレーの電極要素(複数)の1つ以上は、システムの収差が供給電圧の定められた範囲内において意図的に変化されるか又は一定に維持されるように、幾何学的に形成され得る。この目的を達成するために、(1つ以上の)個別(respective)電極は、縦軸に向かって先端が尖る形状を有する(縦)断面を有するような、従って縮小される(徐々に短縮される)内径を実現するような、修正された形状を有し得、及び、アース電位に対比し適切な電気ポテンシャル(電位)が印加される。
【0040】
図3Aは、内径の縮小を有するライナー212を含むインレー12’の例示的一実施形態を示す。図3Aは、インレー12’の「底部(bottom)」の一例の詳細を示す。短縮された内幅即ち直径d3へ縮小されたために、ライナー212は収差の変化を可能にする。とりわけ、ライナー212の領域におけるビームの直径が直径d3の凡そ70%以上であれば、著しい球面収差が生成されるが、これは、次いで、例えばラジアル空間ないし角度歪み、又は像面湾曲を変化するために、使用され得る。他の点では、インレー12’は上記のインレー12に対応し、とりわけ、ライナー212の(図3Aの紙面上下の)両側において内径d2=2・r2を有するフィールド終端キャップ211、213は、フィールド終端キャップ111、113と同一に実現(構成)され得る。
【0041】
リソグラフィ装置
【0042】
図4は、本発明の一実施形態に応じた電磁レンズの一例が組み込まれたマルチカラム描画機ツール401を模式的(縦)断面図で示す。描画機ツールは、電子又はイオン(例えば正電荷のイオン)であり得る荷電粒子から形成される荷電粒子ビームを使用する。
【0043】
描画機ツール401は、マルチカラム荷電粒子光学系402、該マルチカラム荷電粒子光学系がカラムベースプレート404によって配されるターゲットチャンバ403のための真空ハウジング410を含む。ターゲットチャンバ403の内部には、X-Yステージ405、例えば、基板チャック406、好ましくは静電チャックが適切なハンドリングシステムによってその上に取り付けられるレーザ干渉計制御型エアベアリング真空ステージがある。チャック406は、電子又はイオンビーム感受(感応)性レジスト層を備えたシリコンウェハのような、ターゲットとしての機能を有する基板407を保持する。
【0044】
マルチカラム光学系402は、複数のサブカラム409(図示のカラムの個数は見易さの観点から減少されており、実際の具体化例におけるマルチカラム装置に含まれるカラムの遥かにより多くの個数を代表している)を含む。好ましくは、サブカラム(複数)409は、同一のセットアップを有し、互いに軸(線)が平行になるように並べて配設される。各サブカラムは、電子又はイオン源411a、抽出システム411b及び静電型マルチ電極コンデンサ光学系411cを含む照明システム411を有し、複数のアパーチャを夫々透過するサブビーム(「ビームレット」)の形状を画定する当該複数のアパーチャのみをビームに通過させるよう適合化されたパターン画定(PD:pattern definition)システム412(ビーム整形装置)、及び、好ましくは静電及び/又は磁気レンズを、場合により更に他の粒子光学装置を含む複数の順次配置された光電磁気式(electro-magneto-optical)投射器ステージから構成される縮小型荷電粒子投射光学系416へ幅広のテレセントリックな荷電粒子ビームを供給する。図4に示した実施形態では、投射光学系416は、例えば、加速型静電マルチ電極レンズである第1レンズ413を含み、他方、第1レンズの下流に配置される第2レンズ414は、第1実施形態(図1)のレンズ10のような、本発明に応じた電磁レンズを用いて実現(構成)される。
【0045】
各サブカラム409において、投射光学系の第1レンズ413は粒子ビームの第1クロスオーバーを形成し、他方、第2レンズ414は第2クロスオーバーを形成する。第2レンズには、(図3のビームアパーチャ605に対応する)ビームアパーチャ415は、PDシステムにおいて偏向されたために夫々の光軸から逸れるビーム部分を除去するよう構成されている。サブカラムの各第2レンズ414は、好ましくは、適切な固定手段418によってカラムベースプレート404に取り付けられる基準プレート417に取り付けられ得る。基準プレート417には、軸外(off-axis)光学アライメントシステムのパーツ419が取り付けられる。
【0046】
基準プレートは、酸化ケイ素又は酸化アルミニウム系のセラミック材料のような低熱膨張性を有する適切な原材料から製造され、軽量、高弾性率及び高熱伝導性の利点を有し、及び、(静電荷を流出可能にすることにより)帯電を回避するために、少なくともその関連部分において、導電性被膜で適切に被覆され得る。
【0047】
PDシステム412は、粒子ビームから、ターゲットに転写されるべきパターンの情報を含む複数のいわゆるビームレットを形成する機能を有する。PDシステムの構造、オペレーション及びデータ処理については、本出願人のUS 9,443,699及びUS 9,495,499に開示されている。これらの文献の開示内容は引照を以って本書に繰り込みここに記載されているのもとする。
【0048】
マルチポール電極
【0049】
上記のように、インレーはマルチポール電極108及び110を含む。マルチポール電極108、110は、夫々、以下においてロッド(複数)とも称される、マルチポール電極の電極(複数)(サブ電極(複数))としての機能を有する3つ以上の金属製リングセクタコンポーネント(metallic ring sectorial components)から構成される。好ましくは、ロッド(複数)は同じ幾何学的形状を有する。横断面図において8つのロッド508(セクタ(部分円環型)電極:sectorial electrodes)を有するマルチポール電極511の一例の描写が図5に示されている;図5Aはこれらのロッドの2つの間のギャップ領域の詳細を拡大図で示す。図6は4つのセクタ電極544を有するマルチポール電極540の一変形例を示す。マルチポール電極の内部のロッドの好ましい個数は、達成されるべき所望の効果に依存して、4個、6個、8個、12個又は16個である。
【0050】
図5を参照すると、ロッド(複数)508は支持部材501としての機能を有する包囲スリーブの内部に配置されている。ロッド508には、各自の外部電源ユニット728、730(図7)によって電気ポテンシャル(電圧)が個別に印加されることができる。付加的に、それらを付加的静電レンズとして動作(挙動)させるために、グローバルオフセット電圧が印加され得る。異なる電圧が個別のロッド508に印加されることによって、ダイポール(二極:dipole)、クアドラポール(四極:quadrupole)又はより高次の静電界からなる種々のフィールド(電界)構成を実現することができ、それによって、光軸503の夫々対応する横セクションに交差する粒子ビームを整形することができる。図1図3の実施形態に関連する典型的な応用については、ロッド(複数)508に印加される電圧(複数)は典型的には数十ボルトまでのオーダーである。そのようなビーム整形は、磁気不均一性、機械的製造及び/又は組立正確性のような、光学システムの不完全性によるエラーを補償するために使用可能である。これに関して、マルチポール(複数)は、少なくとも4つの異なる電圧+V1(図5の紙面の右手側の斜線でハッチングされたロッド)、-V1(図5の紙面の左手側の斜線でハッチングされたロッド)、+V2(図5の紙面の上側の格子線でハッチングされたロッド)、-V2(図5の紙面の下側の格子線でハッチングされたロッド)がロッド(複数)に印加されるならば、X及びYによって定められる(定義される)面におけるその方向(複数)が任意であり得るダイポール(二極)(複数)として使用される場合、光軸503に対するビーム位置を補正することができる。付加的に、マルチポールがクアドラポール(四極)又はより高次のマルチポールとして使用される場合、個々のロッドに適切な電圧を印加することによって、ダイポール(二極)の場合と同様の方法で、マルチポール(複数)によって非点収差又は他のより高次の歪み(歪曲)を補償することができる。ライナー106、112については、マルチポール電極108、110の共通のオフセットポテンシャル(電位)も、レンズ10によって形成される磁気レンズ(複数)の光学収差を適正化(tune)するために、調節され得る。ロッド(複数)508を形成するセクタ電極(複数)間のギャップ(複数)505は、有利には、屈曲され(ないしジグザグ形状にされ、「迷路(labyrinth)」)、そのため、マルチポール電極の中央部の空間内を伝搬するビームから逸れる粒子504が、ロッドの表面に衝突するであろうが、マルチポール電極の外部へと進行し得ること、場合によっては支持部材501又は他の外部コンポーネントに(悪)影響を及ぼすことが回避される。ロッド508の外側において、ギャップ505は、粒子を収集し、該粒子の電荷をドレイン電極(不図示)へ排出する機能を有するポーチ(凹状部:pouch)を構成する。これは、それでなければマルチポール電極511を通って伝搬する荷電粒子ビームに(悪)影響を及ぼし得る電荷及び関連する漂遊電界の生成ないし増強(build-up)の回避に役立つ。
【0051】
更に、電気的マルチポール及びロッドの位置・形状を適切に選択し、マルチポール電極のすべてのロッドに適切な共通の供給電圧を印加することによって、ヨーク(複数)によって形成される2つのギャップ14a、14bに対応する磁気レンズ(複数)の一方又は両方の焦点距離の変化を達成することが可能になる。
【0052】
再び図1を参照すると、有利には、2つの磁気レンズが、粒子ビームの所謂クロスオーバーcvの実現のために使用され得る。図1では、点線(破線)の包絡線100は、光軸(c1)に沿ったビームサイズ(径)(横断面の直径)の進展(変化)を示す。既述のように、第1磁気レンズは、第1ギャップ14aのレベル(高さ)の所に形成され、この第1レンズはビームを合焦するために使用可能であり、そのため、ビームはクロスオーバーcvに、即ちビームの横幅が最小になる位置ないし領域に集束する。磁気レンズは、有利には、較正アパーチャ109の縦位置に、又はその近く(例えば10mm以下)に、位置付けられる位置にクロスオーバーcvを形成するよう構成される。その後、ビームは再び拡開し、第2ギャップ14bのレベル(高さ)に形成される第2磁気レンズを横断(通過)するが、第2磁気レンズは、好ましくは、(粒子ビームのソースに対して)ビームを再びテレセントリックにする効果(作用)を有する。従って、ビームは、PDシステム412においてビームを整形するアパーチャ(複数)の像を形成し、そのため、像はターゲット407に生成される。従って、2つのレンズの焦点距離の正確なマッチングがターゲットにおける像形成の成功のために確保されることが極めて望ましい。この意味で、ライナー106、112はシステムの補正機能のために極めて重要な要素である。較正アパーチャ109の位置(部位)におけるビームの合焦は、較正アパーチャ109をビームアラインメント処理のために格別に有用にするが、この場合、ビーム600はアパーチャ605にわたってスキャンされることができ、他方、対応する電流測定720(又は電荷蓄積の測定)は、ビームを光軸c1に対し芯合わせするためにビーム位置をモニタするのに役立つ。
【0053】
図7は、インレー703のための電圧供給装置701及び電流測定720を実行するモニタリング装置702の一例の概観を模式的に示す。ここで、マルチポール電極108、110は、適用例に依存して、(準)静的要素として又は動的要素として、即ち、時間的に変化する(時変)電圧を有するものとして、使用可能であることに注意すべきである。実際、上側マルチポール電極108は、較正アパーチャ605にわたるスキャニング中にビームを偏向する時変(time-varying)ダイポール(二極)構成で使用され得る。更に、下側のマルチポール電極110によって、運動するステージ405上のターゲット407に対しビームの位置を正しく保つことが可能になる。当業者であれば、ビーム制御要素(複数)の上記の使用は例示的な適用(応用)として言及されたものであり、本発明によって達成可能な機能に対する制限(限定)として言及されたものでないことは理解できるはずである。
【0054】
リングマグネット
【0055】
図8は、(例えば図1のリングマグネット101、102の1つとしての)本発明に応じたレンズの磁気回路のコンポーネントとしての使用に好適なリングマグネット80の一実施形態を示す。図8(A)はその模式的斜視図であり、図8(B)は縦軸c8に沿ったその模式的縦断面図であり、図8(C)は対応する模式的横断面図である;なお、その寸法は縮尺通りではない。リングマグネット80は、共通の縦軸c8に沿って同心に配置されるように積重ねられた複数のリングマグネット要素81から構成されている。リングマグネット要素81の各々は、図8(C)に破線の矢印(複数)で示されているような、半径方向に配向された(方向付けられた)磁化を有し、そのため、例えば、リングマグネット80の内部空間へ向かうよう形成される「ノース(north)」ポール(N極)Nを有し、他方、外側は磁化の「サウス(south)」ポール(S極)タイプSを表す。図示のようなラジアル磁化を有するリングマグネット要素は市販されており、焼結NdFeB、SmCo又はフェライトのようなフェロ磁性材料からなる。リングマグネット要素(複数)は接着又は圧着又は任意の他の適切な手段によって結合される。(1つの)リングマグネット80におけるリングマグネット要素81の個数は、これらの要素の寸法(とりわけ高さ(厚み))及びリングマグネット80の所望の寸法に依存して、任意の数、例えば1つ、2つ、3つ又は4つ以上であり得る。
【0056】
リングマグネット又はリングマグネット要素の各々は、図9図11に示されているような、各レベルにおいて複数の、例えば4つ又は8つの、リングセクタ((放射状に分割された)部分リング:ring-sector)コンポーネントの組み合わせによって実現(構成)されてもよい。なお、図9図11は、セクタ構造のリングマグネットを展開図で示し、夫々の磁化は、「サウス(S)」型磁極(S極)から「ノース(N)」型磁極(N極)へ指向する破線の矢印で示されている。とりわけ、図9は8個のリングセクタ(部分リング)98から構成されたリングマグネット90を示し;図10はリングの中心にある縦軸c9に対し半径方向に磁化された4個のリングセクタ94から構成されたリングマグネット91を示し;図11は、例えば夫々の(リングセクタの)中央部の対称線に沿って(に対して平行に)配向された、線形磁化を有する4個のリングセクタ95から構成されたリングマグネット99を示す。これらの実施形態では、リングセクタは、理想的なラジアル磁化のリングマグネットに近づけるために、半径方向(図9及び図10)に又は線形(図11)に磁化されている。なお、図9図11に示されたリングセクタ間のギャップはより良好な明確性のために図示されているに過ぎない;これらのギャップは、実際の一実施形態では、セクタ(部分円環)要素98、94、95の接着、圧着又は他の適切な結合法により結合されることにより、隣り合う部品同士が直接的に接触することによって閉鎖されるか又は最小化されるため、存在しない。
【0057】
上記の実施形態の全部又は一部は以下の付記として記載可能であるが、それらに限定されない。
[付記1]荷電粒子光学装置の荷電粒子ビームを修正するよう構成された電磁レンズ。
電磁レンズは、縦軸に沿って延伸しかつ荷電粒子ビームの通過を可能にする通路孔を備える。
電磁レンズは、少なくとも1つのリングマグネット及びヨークボディを含む磁気回路アセンブリと、スリーブインサートとを含む。
スリーブインサートは通路孔を包囲しかつ縦軸に沿って通路孔の第1端部と第2端部の間に延在する。スリーブインサートは少なくとも1つの導電性電極要素を含む。各電極要素は通路孔の内部に静電界を生成するよう電源(複数)を介して夫々の電気ポテンシャル(電圧)が印加されるよう構成されている。
ヨークボディはアウターヨークシェル及びインナーヨークシェルを含み、縦軸を中心とする周に配置されかつ透磁性材料を含む。インナーヨークシェルはスリーブインサートの少なくとも中央部分を包囲するよう配置され、アウターヨークシェルはインナーヨークシェル及びスリーブインサートを包囲する。
少なくとも1つのリングマグネットはインナーヨークシェルの周囲に配置されかつインナーヨークシェルとアウターヨークシェルの間に配置されている。少なくとも1つのリングマグネットはその2つの磁極の一方がインナーヨークシェルを及び他方がアウターヨークシェルを指向するよう磁気的に配向された永久磁石材料を含む。
磁気回路アセンブリにおいて、インナーヨークシェルと少なくとも1つのリングマグネットとアウターヨークシェルは閉磁気回路を形成し、該閉磁気回路は、アウターヨークシェルの夫々対応する部分を指向するインナーヨークシェルの軸方向端部に位置付けられ、(半径方向)内方に向かって通路孔内に到達しかつスリーブインサートの電極要素(複数)によって生成される静電界と空間的に重なり合う磁界を生成するよう構成された少なくとも2つのギャップを有する。
[付記2]上記の電磁レンズにおいて、
磁気回路は2つのギャップを有する。
2つのギャップはアウターヨークシェルの夫々対応する部分を指向するインナーヨークシェルの軸方向端部に夫々位置付けられている。
各ギャップは(半径方向)内方に向かって通路孔内に到達する定められた磁界を生成する。
スリーブインサートの電極要素(複数)の少なくとも1つによって生成される静電界は磁界と少なくとも部分的に重なり合うよう構成されている。
[付記3]上記の電磁レンズにおいて、
電磁レンズは縦軸に沿って全体的に回転対称的な形状を有する。
インナーヨークシェルとアウターヨークシェルは互いに対し同心をなしている。
[付記4]上記の電磁レンズにおいて、
インナーヨークシェルはスリーブインサートを受容する通路空間に沿ってその2つの軸方向端部の間に延在し、アウターヨークシェルはインナーヨークシェルの半径方向外方においてインナーヨークシェルを包囲し、かつ、インナーヨークシェルの2つの軸方向端部に夫々対応する各側部へ延伸する。
[付記5]上記の電磁レンズにおいて、
少なくとも1つのリングマグネットは実質的に半径方向に配向された磁化を有する。
[付記6]上記の電磁レンズにおいて、
少なくとも1つのリングマグネットは縦軸に沿って積み重ねられた2つ以上の層から構成される。
[付記7]上記の電磁レンズにおいて、
少なくとも1つのリングマグネットは縦軸の周りに周方向に沿って均等に配置された3つ以上のセクタ(sectors)から構成される。
好ましくは、(マグネット)セクタは、縦軸に対するセクタを形成する実質的にウェッジ(wedge)形状の要素である。
[付記8]上記の電磁レンズにおいて、
電極要素(複数)は、ギャップの1つ以上において、好ましくは各ギャップにおいて、通路孔の内部の磁界と連携して粒子光学レンズを形成するよう構成されている。
粒子光学レンズの焦点距離は電極要素(複数)に印加される電気ポテンシャル(電圧)を変更することによって調節可能である。
[付記9]上記の電磁レンズにおいて、
電極要素(複数)は少なくとも1つの単レンズを形成するよう構成されている。
[付記10]上記の電磁レンズにおいて、
電極要素の少なくとも1つは、縦軸の周りに周方向に沿って均等に配置された複数のサブ電極を含む静電マルチポール電極を含む。
[付記11]上記の電磁レンズにおいて、
電極要素(複数)は、縦軸の周りに、定められた直径を有する境界画定口を形成するビームアパーチャ要素を含む。境界画定口は縦軸に沿って伝搬する荷電粒子ビームの横方向幅を制限する。
[付記12]上記の電磁レンズにおいて、
ビームアパーチャ要素は、ビームアパーチャ要素において吸収される荷電粒子ビームの量を測定する電流測定装置に接続されている。
[付記13]上記の電磁レンズにおいて、
縦軸に沿ったビームの伝搬の方向に見てビームアパーチャ要素の前方に、縦軸の周りに周方向に沿って均等に配置された複数のサブ電極を含み、好ましくは縦軸に対するビームの横方向位置(径方向位置)を決定するよう構成された、静電マルチポール電極が配置されている。
[付記14]上記の電磁レンズにおいて、
スリーブインサートは、夫々限定された形状及び面積を有する導電性被膜として構成された電極要素(複数)が配されたセラミックボディを含む。
[付記15]
本発明に応じた電磁レンズを含む荷電粒子光学装置であって、当該装置の縦軸に沿って電磁レンズを貫通して伝搬する当該装置の荷電粒子ビームに影響を及ぼすよう構成された装置。
電磁レンズは当該装置の投射光学システムの部分を構成する。
好ましくは、当該装置は複数の粒子光学カラムを含むマルチカラムシステムであり、各粒子光学カラムは、夫々の粒子ビームを使用し、かつ、夫々の電磁レンズを含む夫々の投射光学システムを含む。
【0058】
本発明の全開示(特許請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択(「非選択」を含む。)が可能である。すなわち、本発明は、特許請求の範囲及び図面を含む全開示、本発明の技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
【0059】
更に、特許請求の範囲に付記した図面参照符号は専ら発明の理解を助けるためのものであり、本発明を実施形態及び図示の実施例に限定することは意図していない。
【0060】
更に、上記の各文献の全内容は引照を以って本書に繰り込みここに記載されているものとする。
図1
図2
図3
図3A
図4
図5
図5A
図6
図7
図8
図9
図10
図11
【外国語明細書】