(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023014165
(43)【公開日】2023-01-26
(54)【発明の名称】マイクロ流体デバイス用の培養ステーション
(51)【国際特許分類】
C12M 1/00 20060101AFI20230119BHJP
C12N 1/00 20060101ALI20230119BHJP
G01N 37/00 20060101ALI20230119BHJP
【FI】
C12M1/00 C
C12N1/00 A
G01N37/00 101
【審査請求】有
【請求項の数】24
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022188128
(22)【出願日】2022-11-25
(62)【分割の表示】P 2020201015の分割
【原出願日】2016-04-21
(31)【優先権主張番号】62/178,960
(32)【優先日】2015-04-22
(33)【優先権主張国・地域又は機関】US
(71)【出願人】
【識別番号】514304762
【氏名又は名称】バークレー ライツ,インコーポレイテッド
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ブレインリンガー,キース,ジェイ.
(72)【発明者】
【氏名】ニューストローム,ラッセル,エー.
(72)【発明者】
【氏名】ネビル,ジェイ.,タナー
(72)【発明者】
【氏名】マッキュアン,ジェイソン,エム.
(72)【発明者】
【氏名】ワイスバッハ,デイビット,エー.
(57)【要約】
【課題】マイクロ流体デバイス内で生体細胞を培養するためのステーションを提供する。
【解決手段】ステーションは、1つ又は複数の熱伝導性載置インターフェースであって、各載置インターフェースは、載置インターフェース上に着脱可能に載置されたマイクロ流体デバイスを有するように構成されている、1つ又は複数の熱伝導性載置インターフェースと、1つ又は複数の載置インターフェース上に着脱可能に載置されたマイクロ流体デバイスの温度を制御するように構成された熱調整システムと、流動培養培地を、1つ又は複数の載置インターフェース上に着脱可能に載置されたマイクロ流体デバイスに制御可能且つ選択的に分配するように構成された培地灌流システムと、を含む。
【選択図】
図5
【特許請求の範囲】
【請求項1】
マイクロ流体デバイス内で生体細胞を培養するための培養ステーションであって、
載置インターフェース上に着脱可能に載置されたマイクロ流体デバイスを有するように構成されている、1つ又は複数の熱伝導性載置インターフェースと、
前記1つ又は複数の載置インターフェース上に着脱可能に載置されたマイクロ流体デバイスの温度を制御するように構成された熱調整システムと、
流動培養培地を、前記1つ又は複数の載置インターフェース上に着脱可能に載置されたマイクロ流体デバイスに制御可能且つ選択的に分配するように構成された培地灌流システムと、
を含む、培養ステーション。
【請求項2】
複数の載置インターフェースを含む、請求項1に記載の培養ステーション。
【請求項3】
少なくとも3つの載置インターフェースを含む、請求項2に記載の培養ステーション。
【請求項4】
前記培地灌流システムは、
培養培地源に流体的に接続された入力及び出力と、を有するポンプと、
前記ポンプの出力を1つ又は複数の灌流ラインと流体的に接続している灌流ネットワークであって、各灌流ラインは、各載置インターフェース上に載置されたマイクロ流体デバイスの流体進入ポートに流体的に接続されるように構成されている、灌流ネットワークと、
前記ポンプ及び前記灌流ネットワークを選択的に動作させることによって制御された流量で制御された時間にわたり、前記培養培地源からの培養培地を前記1つ又は複数の灌流ラインのうちの1つに選択的に流すように構成されている制御システムと、
を含む、請求項1~3のいずれか一項に記載の培養ステーション。
【請求項5】
前記制御システムは、オンオフデューティサイクル及び流量に従い、培養培地の断続的な流れを対応する灌流ライン内に提供するようにプログラムされている又は構成されている、請求項4に記載の培養ステーション。
【請求項6】
前記オンオフデューティサイクル及び/又は流量は、ユーザインターフェースを介して受信した入力に少なくとも一部基づく、請求項5に記載の培養ステーション。
【請求項7】
前記制御システムは、培養培地の流れを一度に1つ以下の灌流ライン内に提供するようにプログラムされている又は構成されている、請求項4~6のいずれか一項に記載の培養ステーション。
【請求項8】
前記制御システムは、培養培地の流れを同時に2つ以上の灌流ライン内に提供するようにプログラムされている又は構成されている、請求項4~6のいずれか一項に記載の培養ステーション。
【請求項9】
1つ又は複数のマイクロ流体デバイスカバーを更に含み、各マイクロ流体デバイスカバーは、各載置インターフェース上に載置されたマイクロ流体デバイスを少なくとも部分的に密閉するように構成されている、請求項1~8のいずれか一項に記載の培養ステーション。
【請求項10】
1つ又は複数のマイクロ流体デバイスカバーを更に含み、各マイクロ流体デバイスカバーは、各載置インターフェース上に載置されたマイクロ流体デバイスを少なくとも部分的に密閉するように構成されており、
前記1つ又は複数の灌流ラインのそれぞれは、各載置インターフェースと対応付けられたマイクロ流体デバイスカバーに結合された遠位端を有し、前記デバイスカバーの構成と併せて、前記灌流ラインの前記遠位端が、前記載置インターフェース上に載置され且つ前記マイクロ流体デバイスカバーによって密閉されたマイクロ流体デバイスの流体進入ポートに流体的に接続されてもよいように構成されている、
請求項4~8のいずれか一項に記載の培養ステーション。
【請求項11】
前記マイクロ流体デバイスカバーは、前記灌流ラインを前記マイクロ流体デバイスに流体的に接続するために、それぞれ、前記灌流ラインの前記遠位端と、前記マイクロ流体デバイスの前記流体進入ポートとの間に圧力嵌合、摩擦嵌合、又は別の種類の流体密接続を形成するように構成された1つ又は複数の特徴を含む、請求項10に記載の培養ステーション。
【請求項12】
前記1つ又は複数の載置インターフェースのうちのそれぞれ1つと対応付けられた各廃棄物ラインを更に含み、各廃棄物ラインは、前記各載置インターフェース上に載置されたマイクロ流体デバイスの流体放出ポートに流体的に接続されるように構成されている、請求項1~11のいずれか一項に記載の培養ステーション。
【請求項13】
前記1つ又は複数の載置インターフェースのうちのそれぞれ1つと対応付けられた各廃棄物ラインを更に含み、
各廃棄物ラインは、前記各載置インターフェースと対応付けられたマイクロ流体デバイスカバーに結合された近位端を有し、
前記廃棄物ラインは、前記マイクロ流体デバイスカバーの構成と併せて、前記廃棄物ラインの前記近位端が、前記載置インターフェース上に載置され且つ前記マイクロ流体デバイスカバーによって密閉されたマイクロ流体デバイスの流体放出ポートに流体的に接続されてもよいように構成されている、請求項9~11のいずれか一項に記載の培養ステーション。
【請求項14】
前記マイクロ流体デバイスカバーは1つ又は複数の特徴を含み、前記1つ又は複数の特徴は、前記廃棄物ラインを前記マイクロ流体デバイスに流体的に接続するために、それぞれ、前記廃棄物ラインの前記近位端と、前記マイクロ流体デバイスの前記流体放出ポートとの間に圧力嵌合、摩擦嵌合、又は別の種類の流体密接続を形成するように構成されている、請求項13に記載の培養ステーション。
【請求項15】
前記熱調整システムは1つ又は複数のプリント回路基板(PCB)を含み、前記1つ又は複数のプリント回路基板(PCB)は、前記1つ又は複数の載置インターフェースの温度を監視及び調整するように構成されている、請求項1~14のいずれか一項に記載の培養ステーション。
【請求項16】
前記1つ又は複数のプリント回路基板(PCB)のそれぞれは、前記1つ又は複数の載置インターフェースの各1つと対応付けられている、請求項15に記載の培養ステーション。
【請求項17】
前記熱調整システムは、前記1つ又は複数の載置インターフェースに熱的に結合された1つ又は複数の抵抗加熱器を含む、請求項1~14のいずれか一項に記載の培養ステーション。
【請求項18】
前記1つ又は複数の抵抗加熱器のそれぞれは、前記1つ又は複数の載置インターフェースの各1つに熱的に結合されている、請求項17に記載の培養ステーション。
【請求項19】
前記1つ又は複数の抵抗加熱器のそれぞれはプリント回路基板(PCB)を含む、請求項17又は18に記載の培養ステーション。
【請求項20】
各PCBは、各載置インターフェースの温度を、前記各載置インターフェース上に載置されたマイクロ流体デバイスを含め、監視及び調整するように構成されている、請求項19に記載の培養ステーション。
【請求項21】
前記1つ又は複数の載置インターフェースのそれぞれは略平坦な金属基板を含み、前記略平坦な金属基板は上面を有し、前記上面は、前記1つ又は複数の載置インターフェースに載置されたマイクロ流体デバイスの略平坦な金属底面と熱的に結合するように構成されている、請求項1~20のいずれか一項に記載の培養ステーション。
【請求項22】
前記略平坦な金属基板は底面を有し、前記底面は、前記熱調整システムの抵抗加熱器と熱的に結合するように構成されている、請求項21に記載の培養ステーション。
【請求項23】
前記略平坦な金属基板は銅合金ブロックを含む、請求項21又は22に記載の培養ステーション。
【請求項24】
前記熱調整システムは1つ又は複数の温度センサを含み、各温度センサは、各載置インターフェースの各基板の温度を監視するように構成されている、請求項21~23のいずれか一項に記載の培養ステーション。
【請求項25】
各温度センサは、前記各載置インターフェース基板に結合されている及び/又は前記各載置インターフェース基板内に埋設されている、請求項24に記載の培養ステーション。
【請求項26】
前記熱調整システムは、載置インターフェース上に載置された各マイクロ流体デバイスに結合されている及び/又は載置インターフェース上に載置された各マイクロ流体デバイス内に埋設されている1つ又は複数の温度センサから温度データを取得するように構成されている、請求項21~23のいずれか一項に記載の培養ステーション。
【請求項27】
1つ又は複数の調節可能なクランプを更に含み、各クランプは、前記1つ又は複数の載置インターフェースのうちの各1つに隣接して配置されており、マイクロ流体デバイスを前記各載置インターフェースに固定するように構成されている、請求項1~26のいずれか一項に記載の培養ステーション。
【請求項28】
1つ又は複数の調節可能なクランプを更に含み、各クランプは、前記1つ又は複数の載置インターフェースのうちの各1つに隣接して配置されており、前記マイクロ流体デバイスカバーが、前記マイクロ流体デバイスカバーによって少なくとも部分的に密閉されたマイクロ流体デバイスを前記各載置面に固定するように、前記載置インターフェースと対応付けられたマイクロ流体デバイスカバーに対し力を加えるように構成されている、請求項9~14のいずれか一項に記載の培養ステーション。
【請求項29】
1つ又は複数の圧縮ばねを更に含み、各圧縮ばねは、前記1つ又は複数の載置インターフェースのうちの各1つと対応付けられており、前記マイクロ流体デバイスカバーが、前記マイクロ流体デバイスカバーによって少なくとも部分的に密閉されたマイクロ流体デバイスを前記各載置面に固定するように、前記載置インターフェースと対応付けられたマイクロ流体デバイスカバーに対し力を加えるように構成されている、請求項9~14のいずれか一項に記載の培養ステーション。
【請求項30】
前記培養ステーションは、前記1つ又は複数の載置インターフェースのうちの1つに載置されているマイクロ流体デバイスの各灌流及び/又は温度履歴をメモリに記録するように構成されている、請求項1~29のいずれか一項に記載の培養ステーション。
【請求項31】
前記メモリは前記各マイクロ流体デバイスに組み込まれている又は接続されている、請求項30に記載の培養ステーション。
【請求項32】
前記1つ又は複数の載置インターフェースが前記培養ステーションに作用する重力に垂直な面に対して傾斜したときに示すように構成されている水準器を更に含む、請求項1~31のいずれか一項に記載の培養ステーション。
【請求項33】
前記水準器は、前記1つ又は複数の載置インターフェースが法平面に対して既定の角度で傾斜したときに示す、請求項32に記載の培養ステーション。
【請求項34】
前記既定の傾斜角度は約1°から約5°の範囲内である、請求項33に記載の培養ステーション。
【請求項35】
撮像及び/又は検出装置を更に含み、前記撮像及び/又は検出装置は、当該培養ステーションに結合されている又は当該培養ステーションと動作的に対応付けられており、前記1つ又は複数の載置インターフェースのうちの1つに載置されているマイクロ流体デバイス内の生物学的活動を表示する及び/又は撮像する及び/又は検出するように構成されている、請求項1~34のいずれか一項に記載の培養ステーション。
【請求項36】
マイクロ流体デバイス内で生体細胞を培養するための方法であって、
マイクロ流体デバイスを培養ステーションの載置インターフェースに載置することであって、前記マイクロ流体デバイスは、フロー領域と、複数の成長チャンバと、を含むマイクロ流体回路を画定し、前記マイクロ流体デバイスは、前記マイクロ流体回路の第1端部領域と流体連通する流体進入ポートと、前記マイクロ流体回路の第2端部領域と流体連通する流体放出ポートと、を含む、ことと、
前記載置インターフェースと対応付けられた灌流ラインを前記流体進入ポートに流体的に接続することによって、前記灌流ラインを前記マイクロ流体回路の前記第1端部領域と流体的に接続することと、
前記載置インターフェースと対応付けられた廃棄物ラインを前記流体放出ポートに流体的に接続することによって、前記廃棄物ラインを前記マイクロ流体回路の前記第2端部領域と流体的に接続することと、
培養培地を、それぞれ、前記灌流ライン、前記流体進入ポート、前記マイクロ流体回路の前記フロー領域、及び前記流体放出ポート内に、前記複数の成長チャンバ内に隔離された1つ又は複数の生体細胞を灌流するのに十分な流量で流すことと、
を含む、方法。
【請求項37】
前記培養培地を流すことには、培養培地の断続的な流れを前記マイクロ流体回路の前記フロー領域内に提供することを含む、請求項36に記載の方法。
【請求項38】
前記培養培地は、所定の及び/又はオペレータが選択したオンオフデューティサイクルに従い、前記マイクロ流体回路の前記フロー領域内に流される、請求項37に記載の方法。
【請求項39】
前記マイクロ流体回路の前記フロー領域内の前記培養培地の流れは定期的に約10秒から約120秒間発生する、請求項37又は38に記載の方法。
【請求項40】
前記マイクロ流体回路の前記フロー領域内の前記培養培地の流れは定期的に約30秒から約30分間停止する、請求項37~39のいずれか一項に記載の方法。
【請求項41】
前記オンオフデューティサイクルは約5分から約30分の合計継続時間を有する、請求項38に記載の方法。
【請求項42】
前記培養培地は、所定の及び/又はオペレータが選択した流量に従い、前記マイクロ流体回路の前記フロー領域内に流される、請求項36~41のいずれか一項に記載の方法。
【請求項43】
前記流量は、約0.01マイクロリットル/秒から約5.0マイクロリットル/秒である、請求項42に記載の方法。
【請求項44】
前記マイクロ流体回路の前記フロー領域は2つ又は複数の流路を含む、請求項36~43のいずれか一項に記載の方法。
【請求項45】
前記培養培地は、前記2つ又は複数の流路のそれぞれに、約0.005マイクロリットル/秒から約2.5マイクロリットル/秒の平均流量で流される、請求項44に記載の方法。
【請求項46】
前記培養培地を流すことには、培養培地の連続的な流れを前記マイクロ流体回路に提供することを含む、請求項36に記載の方法。
【請求項47】
前記載置インターフェースに熱的に結合された少なくとも1つの加熱素子を使用して前記マイクロ流体デバイスの温度を制御することを更に含む、請求項36~46のいずれか一項に記載の方法。
【請求項48】
前記マイクロ流体デバイスの前記温度は約25℃から約38℃に維持される、請求項47に記載の方法。
【請求項49】
前記加熱素子は、前記載置インターフェースに埋設されている又は前記載置インターフェースに結合されている温度センサによって出力された信号に基づき作動される、請求項47又は48に記載の方法。
【請求項50】
前記マイクロ流体デバイスが前記載置インターフェースに載置されている間に、前記マイクロ流体デバイスの灌流及び/又は温度履歴を記録することを更に含む、請求項36~49のいずれか一項に記載の方法。
【請求項51】
前記灌流及び/又は温度履歴は、マイクロ流体デバイスに組み込まれた又はマイクロ流体デバイスに結合されたメモリに記録される、請求項50に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の分野
本開示は、全般的に、マイクロ流体デバイスを使用した生体細胞の処理及び培養に関する。
【背景技術】
【0002】
背景
マイクロ流体分野が進歩し続けるにつれて、マイクロ流体デバイスは生体細胞などの微小物体を処理及び操作するための便利なプラットフォームとなっている。そうではあっても、特に生物科学に適用されるマイクロ流体デバイスの全潜在能力は未だ実現されてはいない。例えば、マイクロ流体デバイスは生体細胞の分析に適用されてはいるものの、こうした細胞の培養は組織培養プレート内で引き続き実施されており、時間を浪費するとともに、比較的大量の高価な細胞培養培地、使い捨てプラスチック皿、マイクロタイタープレート等を必要とする。
【発明の概要】
【課題を解決するための手段】
【0003】
概要
本明細書中に開示される例示的実施形態によれば、マイクロ流体デバイス内で生体細胞を培養するためのステーションが提供される。ステーションは、1つ又は複数の熱伝導性載置インターフェース(例えば、1つ、2つ、3つ、4つ、5つ、6つ、又はこれより多い載置インターフェース)を含み、各載置インターフェースは、載置インターフェース上に着脱可能に載置されたマイクロ流体デバイスを有するように構成されている。ステーションは、1つ又は複数の載置インターフェースそれぞれの上に着脱可能に載置されたマイクロ流体デバイスの温度を制御するように構成された熱調整システムと、流動培養培地を、1つ又は複数の載置インターフェースそれぞれの上に着脱可能に載置されたマイクロ流体デバイスに制御可能且つ選択的に分配するように構成された培地灌流システムと、を更に含む。
【0004】
種々の実施形態では、培地灌流システムは、培養培地源に流体的に接続された入力と、出力と、を有するポンプを含み、出力は入力と同一であっても異なっていてもよい。培地(又は他の流体若しくはガス)の灌流は、ポンプの出力を1つ又は複数の灌流ラインと流体的に接続している灌流ネットワークによって実施することができ、各灌流ラインは、1つ又は複数の載置インターフェースの各1つと対応付けられている。灌流ラインは、各載置インターフェース上に載置されたマイクロ流体デバイスの流体進入ポートに流体的に接続されるように構成することができる。制御システムは、ポンプ及び灌流ネットワークを選択的に動作し、それにより、制御された流量で制御された時間にわたり、培養培地源からの培養培地を対応する灌流ラインに選択的に流すように構成されている。種々の実施形態では、制御システムは、オンオフデューティサイクル及び流量(これらは任意選択的に、少なくとも一部、ユーザインターフェースを介して受信した入力を基にしてもよい)に従い、培養培地の断続的な流れを対応する灌流ライン内に提供するようにプログラムされている(若しくはプログラムされていてもよい)又はそれ以外で構成されている(若しくは構成されていてもよい)。いくつかの実施形態では、制御システムは、培養培地の流れを一度に1つ以下の灌流ライン内に提供するようにプログラムされている(若しくはプログラムされていてもよい)又はそれ以外で構成されている(若しくは構成されていてもよい)。他の実施形態では、制御システムは、培養培地の流れを同時に2つ以上の灌流ライン内に提供するようにプログラムされている(若しくはプログラムされていてもよい)又はそれ以外で構成されている(若しくは構成されていてもよい)。
【0005】
種々の実施形態では、培養ステーションは各載置インターフェースと対応付けられた各マイクロ流体デバイスカバーを更に含み、デバイスカバーは、各載置インターフェース上に載置されたマイクロ流体デバイスを部分的に又は完全に密閉するように構成されている。各載置インターフェースと対応付けられた灌流ラインは、デバイスカバーに結合された遠位端を有することができ、デバイスカバーがマイクロ流体デバイスを密閉している(例えば、マイクロ流体デバイス上に配置されている)とき、デバイスカバーの構成と併せて、灌流ラインの遠位端はマイクロ流体デバイスの流体進入ポートに流体的に接続され得るように構成されている。例えば、デバイスカバーは、灌流ラインをマイクロ流体デバイスに流体的に接続するために、灌流ラインの遠位端とマイクロ流体デバイスの流体進入ポートとの間に圧力嵌合、摩擦嵌合、又は別の種類の流体密接続を形成するように構成された1つ又は複数の特徴を含み得る。
【0006】
1つ又は複数の廃棄物ラインが、また、1つ又は複数の載置インターフェースの各1つと対応付けられていてもよい。例えば、各廃棄物ラインは、1つ又は複数のデバイスカバーそれぞれに結合することができ、各廃棄物ラインは、各デバイスカバーに結合された近位端を有し、デバイスカバーがマイクロ流体デバイスを密閉している(例えば、マイクロ流体デバイス上に配置されている)とき、カバーの構成と併せて、廃棄物ラインの近位端はマイクロ流体デバイスの流体放出ポートに流体的に接続され得るように構成されている。デバイスカバーは、廃棄物ラインをマイクロ流体デバイスに流体的に接続するために、廃棄物ラインの近位端と、マイクロ流体デバイスの流体放出ポートとの間に圧力嵌合、摩擦嵌合、又は別の種類の流体密接続を形成するように構成された1つ又は複数の特徴を含み得る。
【0007】
種々の実施形態では、各載置インターフェースは略平坦な金属基板を含み得る。略平坦な金属基板は、各載置インターフェース上に載置されたマイクロ流体デバイスの略平坦な金属底面と熱的に結合するように構成された上面を有する。基板は底面を更に含むことができ、底面は、抵抗加熱器、ペルチェ熱電デバイス等などの加熱素子と熱的に結合するように構成されている。基板は、黄銅又は青銅などの銅合金を含み得る。
【0008】
熱調整システムは1つ又は複数の温度センサを含み得る。このようなセンサは、各載置インターフェース基板に結合され得る及び/又は各載置インターフェース基板内に埋設され得る。あるいは又は加えて、熱調整システムは、載置インターフェース上に載置された各マイクロ流体デバイスに結合されている及び/又は載置インターフェース上に載置された各マイクロ流体デバイス内に埋設されている1つ又は複数の温度センサから温度データを受信するように構成することができる。一実施形態では、熱調整システムは、1つ又は複数の載置インターフェースに熱的に結合された1つ又は複数の抵抗加熱器を含むことができ、任意選択的に、1つ又は複数の抵抗加熱器のそれぞれは、1つ又は複数の載置インターフェースの各1つ又はその金属基板に熱的に結合されている。別の実施形態では、熱調整システムは、1つ又は複数のペルチェ熱電加熱/冷却デバイスを含むことができ、任意選択的に、1つ又は複数のペルチェデバイスのそれぞれは、1つ又は複数の載置インターフェースの各1つ又はその金属基板に熱的に結合されている。
【0009】
熱調整システムは1つ又は複数のプリント回路基板(PCB)を含むことができ、1つ又は複数のプリント回路基板(PCB)は、1つ又は複数の載置インターフェースの温度を監視及び調整するように構成されている。したがって、1つ又は複数のPCBは、1つ又は複数の温度センサ(載置インターフェース及び/又は載置インターフェース上に載置されたマイクロ流体デバイスに結合されている及び/又は載置されているかどうかを問わず)から温度データを取得することができ、このようなデータを使用して、1つ又は複数の載置インターフェース及び/又は1つ又は複数の載置インターフェース上に載置されたマイクロ流体デバイスの温度を調整することができる。1つ又は複数のPCBは、抵抗加熱器(例えば、電流が通過すると加熱される、PCBの表面上の金属リード)を含むことができる、又は抵抗加熱器若しくはペルチェデバイスなどの加熱素子に結合することができる。1つ又は複数のプリント回路基板(PCB)のそれぞれは、1つ又は複数の載置インターフェースの各1つと対応付けることができる。したがって、1つ又は複数の載置インターフェースのそれぞれは、温度に関して、独立して監視及び調整することができる。
【0010】
種々の実施形態では、各調節可能なクランプが各載置インターフェースに設けられ、マイクロ流体デバイスを各載置インターフェースに固定するように構成されている。例えば、載置インターフェースにデバイスカバーが設けられる実施形態では、クランプは、デバイスカバーが、デバイスカバーによって少なくとも部分的に密閉された(例えば、デバイスカバーの下に配置された)マイクロ流体デバイスを各載置面に固定するように、載置インターフェースと対応付けられた各デバイスカバーに対し力を加えるように構成されてもよい。他の実施形態では、1つ又は複数の圧縮ばねが各載置インターフェースに設けられ、デバイスカバーが、デバイスカバーによって少なくとも部分的に密閉されたマイクロ流体デバイスを各載置面に固定するように、載置インターフェースと対応付けられた各デバイスカバーに対し力を加えるように構成されている。
【0011】
種々の実施形態では、培養ステーションは、1つ又は複数の載置インターフェースのための支持物を更に含む。支持物は画定された軸線の周りを回転し、それにより、1つ又は複数の載置インターフェースが、培養ステーションに作用する重力に垂直な面に対し傾斜することを可能にするように構成されている。このような実施形態では、培養ステーションは水準器を更に含むことができる。水準器は、1つ又は複数の載置インターフェースが法平面に対して既定の角度で傾斜したときに示すことができる。したがって、載置インターフェース上に載置されたマイクロ流体デバイスを所望の角度で保持することを可能にする。例えば、既定の傾斜角度は、約0.5°~約135°の範囲内(例えば、約1°、2°、3°、4°、5°、10°、15°、20°、25°、30°、35°、40°、45°、50°、55°、60°、65°、70°、75°、80°、85°、90°、95°、100°、105°、110°、115°、120°、125°、130°又は135°)であり得る。
【0012】
種々の実施形態では、培養ステーションは、更に、1つ又は複数の載置インターフェースに載置されているマイクロ流体デバイスの各灌流及び/又は温度履歴をメモリに記録するように構成されている。非限定的な例として、メモリは、各マイクロ流体デバイスに組み込むことができる又は各マイクロ流体デバイスと結合させることができる。培養ステーションは、撮像及び/又は検出装置を更に備えてもよく、撮像及び/又は検出装置は、培養ステーションに結合されている又は培養ステーションと動作的に対応付けられており、載置インターフェースに載置されているマイクロ流体デバイス内の生物学的活動を表示する及び/又は撮像する及び/又は検出するように構成されている。
【0013】
開示される実施形態の別の態様によれば、マイクロ流体デバイス内で生体細胞を培養するための例示的な方法は、(i)マイクロ流体デバイスを培養ステーションの載置インターフェースに載置することであって、マイクロ流体デバイスは、フロー領域と、複数の成長チャンバと、を含むマイクロ流体回路を画定し、マイクロ流体デバイスは、マイクロ流体回路の第1端部領域と流体連通する流体進入ポートと、マイクロ流体回路の第2端部領域と流体連通する流体放出ポートと、を含む、ことと、(ii)載置インターフェースと対応付けられた灌流ラインを流体進入ポートに流体的に接続し、それによって、灌流ラインをマイクロ流体回路の第1端部領域と流体的に接続することと、(iii)載置インターフェースと対応付けられた廃棄物ラインを流体放出ポートに流体的に接続し、それによって、廃棄物ラインをマイクロ流体回路の第2端部領域と流体的に接続することと、(iv)培養培地を、それぞれ、灌流ライン、流体進入ポート、マイクロ流体回路のフロー領域、及び流体放出ポート内に、複数の成長チャンバ内に隔離された1つ又は複数の生体細胞を灌流するのに適切な流量で流すことと、を含む。
【0014】
種々の実施形態では、培養培地の断続的な流れがマイクロ流体回路のフロー領域内に提供される。例として、培養培地は、所定の及び/又はオペレータが選択したオンオフデューティサイクルに従い、マイクロ流体回路のフロー領域内に流すことができる。オンオフデューティサイクルは(限定されるものではないが)、約5分~約30分(例えば、約5分~約10分、約6分~約15分、約7分~約20分、約8分~約25分、約15分~約20、25又は30分、約17.5分~約20、25又は30分)継続してもよい。いくつかの実施形態では、培養培地は定期的に流され、その各時間は(限定はしないが、例えば)約10秒~約120秒(例えば、約20秒~約100秒又は約30秒~約80秒)である。いくつかの実施形態では、マイクロ流体回路のフロー領域内の培養培地の流れは定期的に(限定はしないが、例えば)約5秒~約60分(例えば、約30秒~約1、2、3、4、5又は30分、約1分~約2、3、4、5、6又は35分、約2分~約4、5、6、7、8又は40分、約3分~約6、7、8、9、10又は45分、約4分~約8、9、10、11、12又は50分、約5分~約10、15、20、25、30又は60分、約10分~約20、30、40、50又は60分等)停止される。培養培地は、所定の及び/又はオペレータが選択した流量に従い、マイクロ流体回路のフロー領域内に流すことができる。非限定的な例として、一実施形態では、流量は約0.01マイクロリットル/秒~約5.0マイクロリットル/秒である。種々の実施形態では、マイクロ流体回路のフロー領域は2つ以上の流路を含み、培養培地は、2つ以上の流路のそれぞれに、(同じく、限定はしないが、例えば)約0.005マイクロリットル/秒~約2.5マイクロリットル/秒の平均流量で流される。別の実施形態では、培養培地の連続的な流れがマイクロ流体回路内に提供される。
【0015】
種々の実施形態では、当該方法は、載置インターフェースに熱的に結合された少なくとも1つの加熱素子(例えば、抵抗加熱器、ペルチェ熱電デバイス等)を使用してマイクロ流体デバイスの温度を制御することを更に含む。例えば、加熱素子は、載置インターフェースに埋設されている又は載置インターフェースに結合されている温度センサによって出力された信号に基づき作動され得る。
【0016】
種々の実施形態では、当該方法は、マイクロ流体デバイスが載置インターフェースに載置されている間に、マイクロ流体デバイスの灌流及び/又は温度履歴を記録することを更に含む。非限定的な例として、灌流及び/又は温度履歴は、マイクロ流体デバイスに組み込まれた又はマイクロ流体デバイスに結合されたメモリに記録することができる。
【0017】
開示される発明の実施形態の他の及び更なる態様並びに特徴は、添付の図に鑑み、以下の詳細な説明から明らかとなろう。
【図面の簡単な説明】
【0018】
【
図1A】生体細胞を培養するためのマイクロ流体デバイスを含むシステムの例示的実施形態の斜視図である。
【
図1D】誘電泳動(DEP:dielectrophoresis)構成を有するマイクロ流体デバイスの一実施形態の側部断面図である。
【
図1E】
図1Dのマイクロ流体デバイスの一実施形態の上部断面図である。
【
図2】流路から隔離領域までの接続領域の長さが流路内を流れる培地の侵入深さを超える、
図1Aのマイクロ流体デバイスで使用され得る成長チャンバの一例を示す。
【
図3】流路内を流れる培地の侵入深さよりも長い、流路から隔離領域までの接続領域を含む、
図1Aのマイクロ流体デバイスで使用され得る成長チャンバの別の例である。
【
図4A】マイクロ流体デバイス内で使用される成長チャンバの更なる例を含む、マイクロ流体デバイスの別の実施形態を示す。
【
図4B】マイクロ流体デバイス内で使用される成長チャンバの更なる例を含む、マイクロ流体デバイスの別の実施形態を示す。
【
図4C】マイクロ流体デバイス内で使用される成長チャンバの更なる例を含む、マイクロ流体デバイスの別の実施形態を示す。
【
図5】一実施形態による、並列配置で示される一対の培養ステーションの斜視図であり、培養ステーションのそれぞれは、1つの熱的に調整されたマイクロ流体デバイス載置インターフェースを有する。
【
図6】
図5の培養ステーションのうちの1つの載置インターフェースの斜視図であり、その載置面を覆うマイクロ流体デバイスカバーを示す。
【
図7】載置インターフェース表面を見せるためにマイクロ流体デバイスカバーが取り外された、
図6に示される載置インターフェースの斜視図である。
【
図8】各マイクロ流体デバイスと、その上に載置されたマイクロ流体デバイスカバーと、を示す、
図6に示される載置インターフェースの斜視図である。
【
図9】熱調整システムの構成要素を示す、
図6に示される載置インターフェースの側面図である。
【
図10】6つの熱的に調整された載置インターフェースを有する支持物(又はトレー)と、それぞれが3つのマイクロ流体デバイスに寄与するように構成された2つのポンプを有する培地灌流システムと、を含む、マイクロ流体デバイス内で生体細胞を培養するための培養ステーションの別の実施形態の斜視図である。
【
図11】各マイクロ流体デバイスカバーと、その各載置インターフェースと対応付けられたクランプと、を示す、
図10に示される支持物及び対応する載置インターフェースの一部分の斜視図である。
【
図12】載置インターフェース表面を見せるためにマイクロ流体デバイスカバーが取り外され、クランプが上げられた、
図10に示される支持物の載置インターフェースのうちの1つの斜視図である。
【
図13】
図10の培養ステーションにおいて使用するための、5つの熱的に調整された載置インターフェースを有する別の支持物(又はトレー)の斜視図である。
【
図14】載置インターフェース上に載置されたマイクロ流体デバイスを密閉するマイクロ流体デバイスカバーを示す、
図13に示されるトレーの載置インターフェースの斜視図である。
【
図15】載置インターフェース上に載置されたマイクロ流体デバイスを示すためにマイクロ流体デバイスカバーが取り外された
図14の載置インターフェースの斜視図である。
【発明を実施するための形態】
【0019】
詳細な説明
本明細書は、本発明の例示的実施形態及び用途を記載する。しかしながら、本発明は、これら例示的実施形態及び用途、又は例示的実施形態及び用途が動作する若しくは本明細書中に記載される手法に限定されるものではない。更に、図は、簡略図又は部分図を示す場合があり、図中の要素の寸法は明確にするために誇張されている又は正確な縮尺ではない場合がある。加えて、本明細書中で「上にある(on)」、「に取り付けられる(attached to)」又は「に結合される(coupled to)」という用語が使用される場合、1つの要素(例えば、材料、層、基板等)が別の要素「上にある」、別の要素「に取り付けられる」又は別の要素「に結合される」ことが可能であり、この1つの要素が他の要素の直に上にあるか、直に取り付けられるか、直に結合されるか、又は1つの要素と他の要素との間に1つ又は複数の介在要素があるかどうかについては問わない。また、方向(例えば、上方(above)、下方(below)、上部(top)、底部(bottom)、側部(side)、上(up)、下(down)、下(under)、上(over)、上方(upper)、下方(lower)、水平(horizontal)、垂直(vertical)、「x」、「y」、「z」等)が与えられる場合、これらは相対であり、単に例として且つ説明及び記載を簡略にするために提供するものであり、限定として提供するものではない。加えて、要素のリストを参照する場合(例えば、要素a、b、c)、このような参照は、列挙された要素のうちの任意の1つのみ、列挙された要素の全てに満たない任意の組み合わせ、及び/又は列挙された要素の全ての組み合わせを含むものとする。
【0020】
明細書における段落の分割は単に検討を容易にするためであり、記載される要素の任意の組み合わせを制限するものではない。
【0021】
本明細書で使用する場合、「実質的に(substantially)」は、意図した目的のために機能するのに十分であること意味する。したがって、用語「実質的に」は、絶対的な又は完全な状態、寸法、測定値、結果等からのわずかな差異を可能にし、この差異は、例えば、当業者には想定されるが全体的な性能には大きく影響しない。数値若しくはパラメータ、又は数値として表現できる特性に関して使用される場合、「実質的に」は10パーセント以内を意味する。用語「いくつか(ones)」は、1つより多いことを意味する。
【0022】
本明細書で使用する場合、用語「微小物体(micro-object)」は、マイクロ粒子、マイクロビーズ(例えば、ポリスチレンビーズ、Luminex(商標)ビーズ等)、磁気ビーズ、常磁性ビーズ、マイクロロッド、マイクロワイヤ、量子ドット等などの無生物微小物体;細胞(例えば、胚、卵母細胞、精子、組織から分離された細胞、血液細胞、マクロファージ、NK細胞、T細胞、B細胞、樹状細胞(DC)等などの免疫学的細胞、ハイブリドーマ、培養細胞、組織から分離された細胞、CHO細胞などの細胞株による細胞、癌細胞、循環腫瘍細胞(CTC)、感染細胞、トランスフェクト及び/又は変換細胞、レポーター細胞等)、リポソーム(例えば、合成又は膜標本から得られた)、脂質ナノラフト等などの生体微小物体;又は無生物微小物体と生体微小物体との組み合わせ(例えば、細胞に付着させたマイクロビーズ、リポソームで被覆されたマイクロビーズ、リポソームで被覆された磁気ビーズ等)の1つ又は複数を包含し得る。脂質ナノラフトについては、Ritchie et al.(2009)"Reconstitution of Membrane Proteins in Phospholipid Bilayer Nanodiscs," Methods Enzymol.,464:211-231に記載されている。
【0023】
本明細書で使用する場合、用語「細胞(cell)」は生体細胞を意味し、植物細胞、動物細胞(例えば、哺乳動物の細胞)、細菌細胞、真菌細胞等であり得る。哺乳動物の細胞は、例えば、ヒト、マウス、ラット、ウマ、ヤギ、ヒツジ、雌ウシ、霊長類等からのものであり得る。
【0024】
本明細書で使用する場合、用語「細胞を維持する(maintaining (a) cell(s))」は、流体成分と気体成分の両方を含む環境と、任意選択的に、細胞を生存可能な及び/又は増殖している状態で維持するために必要な条件を提供する表面と、を提供することを意味する。
【0025】
流体培地の「成分(component)」は、溶媒分子、イオン、小分子、抗生物質、ヌクレオチド及びヌクレオシド、核酸、アミノ酸、ペプチド、タンパク質、糖、炭水化物、脂質、脂肪酸、コレステロール、代謝産物等を含む、培地中に存在する任意の化学的又は生化学的分子である。
【0026】
本明細書では、流体培地に関して使用する場合、「拡散する(diffuse)」及び「拡散(diffusion)」は、濃度勾配に沿った流体培地の成分の熱力学的な移動を意味する。
【0027】
「培地の流れ(flow of a medium)」という語句は、主に拡散以外の何らかの機構による流体培地の大量の移動を意味する。例えば、培地の流れには、1つの箇所と別の箇所との間の差圧による、1つの箇所から別の箇所への流体培地の移動を伴う場合がある。このような流れには、連続的、パルス状、周期的、ランダム、断続的、若しくは往復的な液体の流れ、又はこれらの任意の組み合わせを含み得る。1つの流体培地が別の流体培地中に流れると培地の乱流及び混合が生じる場合がある。
【0028】
「実質的に流れがない(substantially no flow)」という語句は、時間において平均した、物質(例えば、目的分析物)の成分の、流体培地への又は流体培地内における拡散速度を下回る流体培地の流速を意味する。このような物質の成分の拡散速度は、例えば、温度、成分のサイズ、及び成分と流体培地との間の相互作用の強度に依存する場合がある。
【0029】
本明細書では、マイクロ流体デバイス内の異なる領域に関して使用する場合、「流体的に接続される(fluidically connected)」という語句は、異なる領域に流体培地などの流体が実質的に充填されているとき、各領域内の流体が接続されて単一体の流体を形成することを意味する。これは、異なる領域内の流体(又は流体培地)が必ずしも同一の組成であることを意味するものではない。むしろ、マイクロ流体デバイスの異なる流体的に接続された領域内の流体は、異なる組成(例えば、タンパク質、炭水化物、イオン又はその他の分子などの、異なる濃度の溶質)を有することができ、これら流体は、溶質がそのそれぞれの濃度勾配及び/又は流体の流れに沿ってデバイス内を移動する際には流動的である。
【0030】
いくつかの実施形態では、マイクロ流体デバイスは、「掃引(swept)」領域及び「非掃引(unswept)」領域を含むことができる。流体接続が、拡散は可能にするが、掃引領域と非掃引領域との間には培地の流れが実質的にないように構築されることを条件として、非掃引領域は掃引領域に流体的に接続することができる。マイクロ流体デバイスは、したがって、非掃引領域を掃引領域内の培地の流れから実質的に隔離する一方で、実質的に掃引領域と非掃引領域との間の拡散的な流体連通のみを可能にするように構築することができる。
【0031】
本明細書で使用する場合、「マイクロ流体路(microfluidic channel)」又は「流路(flow channel)」は、水平寸法と垂直寸法の両方よりも大幅に長い長さを有するマイクロ流体デバイスのフロー領域を意味する。例えば、流路は、水平寸法又は垂直寸法のいずれかの長さの少なくとも5倍、例えば、この長さの少なくとも10倍、この長さの少なくとも25倍、この長さの少なくとも100倍、この長さの少なくとも200倍、この長さの少なくとも300倍、この長さの少なくとも400倍、この長さの少なくとも500倍、又はこれを超える長さとすることができる。いくつかの実施形態では、流路の長さは、約20,000ミクロン~約100,000ミクロンの範囲内であり、これらの間のあらゆる範囲を含む。いくつかの実施形態では、水平寸法は、約100ミクロン~約300ミクロン(例えば、約200ミクロン)の範囲内であり、垂直寸法は、約25ミクロン~約150ミクロン、例えば、約30~約100ミクロン、又は約40~約60ミクロンの範囲内である。流路は、マイクロ流体デバイス内に種々の異なる空間的構成を有してもよく、したがって、完全に線形の要素には限定されないことに留意されたい。例えば、流路は、以下の構成、すなわち、湾曲、屈曲、螺旋、上方への傾斜、下方への傾斜、分岐(例えば、複数の異なる流れ経路)、及びこれらの任意の組み合わせを有する1つ又は複数の区分であってもよい又はこのような1つ又は複数の区分を含んでもよい。加えて、流路は、その経路に沿って異なる断面積を有し、拡張及び狭窄して流路内に所望の流体の流れを提供してもよい。
【0032】
ある実施形態では、マイクロ流体デバイスの流路は掃引領域(上で定義した)の一例であり、マイクロ流体デバイスの隔離領域(以下で更に詳細に記載する)は非掃引領域の一例である。
【0033】
特定の生体物質(例えば、抗体などのタンパク質)を生成する生体微小物体(例えば、生体細胞)の能力を、このようなマイクロ流体デバイスにおいて検定することができる。例えば、目的分析物の生成に関して検定する生体微小物体(例えば、細胞)を含むサンプル物質をマイクロ流体デバイスの掃引領域に装填することができる。生体微小物体(例えば、ヒト細胞などの哺乳動物の細胞)のいくつかを特定の特徴に関して選択し、非掃引領域内に配置することができる。その後、残りのサンプル物質を掃引領域外に流し、検定物質を掃引領域内に流すことができる。選択された生体微小物体は非掃引領域内にあるため、選択された生体微小物体は、残りのサンプル物質の流出又は検定物質の流入による影響を実質的に受けない。選択された生体微小物体が目的分析物を生成するのを可能にすることができ、目的分析物は非掃引領域から掃引領域へと拡散することができる。掃引領域では、目的分析物が検定物質と反応して局所的な検出可能反応を生じさせることができ、これらの反応はそれぞれ、特定の非掃引領域に相関させることができる。検出された反応と対応付けられた任意の非掃引領域を分析し、非掃引領域内に生体微小物体がもしあれば、そのどれが目的分析物を十分に生成するかを判定することができる。
【0034】
マイクロ流体デバイスを含むシステム。
図1A~
図1Cは、本明細書中に記載される方法において使用してもよいマイクロ流体デバイス100を有するシステムの一例を示す。示されるように、マイクロ流体デバイス100は、複数の相互接続された流体回路要素を含むマイクロ流体回路132を密閉している。
図1A~
図1Cに示される例では、マイクロ流体回路132は流路134を含み、流路134に、成長チャンバ136、138、140が流体的に接続されている。図示されている実施形態においては1つの流路134及び3つの成長チャンバ136、138、140が示されるものの、別の実施形態では、それぞれ、1つより多い流路134と、3つより多い又は少ない成長チャンバ136、138、140とがあってもよいことは理解すべきである。マイクロ流体回路132は、また、流体チャンバ、リザーバ等などの更なる又は異なる流体回路要素を含み得る。
【0035】
マイクロ流体デバイス100は、1つ又は複数の流体培地を含み得るマイクロ流体回路132を密閉する筐体102を含む。デバイス100は異なる手法で物理的に構築することができるが、
図1A~
図1Cに示される実施形態では、筐体102は、支持構造体104(例えば、基部)と、マイクロ流体回路構造体112と、カバー122と、を含む。支持構造体104と、マイクロ流体回路構造体112と、カバー122とは互いに取り付けることができる。例えば、マイクロ流体回路構造体112は支持構造体104上に配置することができ、カバー122はマイクロ流体回路構造体112上に配置することができる。支持構造体104及びカバー122によって、マイクロ流体回路構造体112はマイクロ流体回路132を画定することができる。図においてマイクロ流体回路132の内部表面は参照符号106として示される。
【0036】
図1A及び
図1Bに示されるように、支持構造体104は底部に、カバー122はデバイス100の上部にあり得る。あるいは、支持構造体104及びカバー122は他の配向とすることができる。例えば、支持構造体104は上部に、カバー122はデバイス100の底部にあり得る。構成を問わず、1つ又は複数の流体アクセス(すなわち、進入及び放出)ポート124が設けられ、各流体アクセスポート124は通路126を含み、通路126はマイクロ流体回路132と連通し、流体物質が筐体102に流れ込む又は筐体102から流れ出すことを可能にする。流体通路126は、バルブ、ゲート、貫通穴等を含んでもよい。図示される実施形態においては2つの流体アクセスポート124が示されるものの、デバイス100の別の実施形態は、マイクロ流体回路132への流体物質の進入及びマイクロ流体回路132からの流体物質の放出を提供する1つのみ又は2つを超える流体アクセスポート124を有することができることは理解すべきである。
【0037】
マイクロ流体回路構造体112は、マイクロ流体回路132の回路要素、又は筐体102内に位置する他の種類の回路を画定する又は収容することができる。
図1A~
図1Cに示される実施形態では、マイクロ流体回路構造体112は、フレーム114と、マイクロ流体回路材料116と、を含む。
【0038】
支持構造体104は、基板又は複数の相互連結した基板を含み得る。例えば、支持構造体104は、1つ又は複数の相互連結した半導体基板、プリント回路基板(PCB)等、及びこれらの組み合わせ(例えば、PCB上に搭載された半導体基板)を含み得る。フレーム114はマイクロ流体回路材料116を部分的に又は完全に囲むことができる。フレーム114は、例えば、マイクロ流体回路材料116を実質的に取り囲む比較的剛性の構造であり得る。例えば、フレーム114は金属材料を含み得る。
【0039】
マイクロ流体回路材料116にキャビティ等のパターンを描き、マイクロ流体回路要素及びマイクロ流体回路132の相互接続部を画定することができる。マイクロ流体回路材料116は、可撓性材料(例えば、ゴム、プラスチック、エラストマー、シリコーン又はポリジメチルシロキサン(「PDMS」)などのオルガノシリコーンポリマー等)を含み得る。これらはガス透過性であり得る。マイクロ流体回路材料116を構成し得る材料の他の例としては、成形ガラス、シリコーン(例えば、フォトパターニング可能なシリコーン)、フォトレジスト(例えば、SU8などのエポキシ系フォトレジスト)などのエッチング可能材料等が挙げられる。いくつかの実施形態では、このような材料、したがって、マイクロ流体回路材料116は、剛性であり得る及び/又は実質的にガス不透過性であり得る。使用される材料(単数又は複数)を問わず、マイクロ流体回路材料116は、フレーム114内の支持構造体104上に配置される。
【0040】
カバー122は、フレーム114及び/又はマイクロ流体回路材料116の一体部品であり得る。あるいは、カバー122は、構造的に異なる要素であり得る(
図1A及び
図1Bに示されるように)。カバー122は、フレーム114及び/又はマイクロ流体回路材料116と同一又は異なる材料を含み得る。同様に、支持構造体104は、示されるようにフレーム114又はマイクロ流体回路材料116とは別個の構造体とすることも、フレーム114又はマイクロ流体回路材料116の一体部品とすることもできる。同様に、フレーム114とマイクロ流体回路材料116とは、
図1A~
図1Cに示すように別個の構造体とすることも、同じ構造体の一体部分とすることもできる。いくつかの実施形態では、カバー又は蓋122は剛性材料から作製される。剛性材料はガラス等であってもよい。いくつかの実施形態では、剛性材料は導電性(例えば、ITOコーティングされたガラス)であってもよい、及び/又は細胞の付着、生存度及び/若しくは成長を支持するように改質してもよい。改質には、合成又は天然ポリマーのコーティングを含んでもよい。いくつかの実施形態では、
図1A~
図1Cの各成長チャンバ136、138、140、又は
図2、
図3及び
図4に示される、以下に記載される実施形態の等価物上に配置されるカバー若しくは蓋122の一部分は、PDMSを含むがこれに限定されない変形可能な材料から作製される。したがって、カバー又は蓋122は剛性部分と変形可能な部分の両方を有する複合構造体であってもよい。いくつかの実施形態では、カバー122及び/又は支持構造体104は光に対し透明である。
【0041】
カバー122は、また、PDMSを含むがこれに限定されない、ガス透過性の少なくとも1つの材料を含んでもよい。
【0042】
他のシステム構成要素。
図1Aは、マイクロ流体デバイス100とともに利用することができる制御/監視システム170の簡略ブロック図表示も示し、これらはともに、生体細胞培養のためのシステムを提供する。(概略的に)示されるように、制御/監視システム170は、制御モジュール172と、制御/監視機器180と、を含む。制御モジュール172は、デバイス100を直接及び/又は制御/監視機器180を介して制御並びに監視するように構成され得る。
【0043】
制御モジュール172は、コントローラ174と、メモリ176と、を含む。コントローラ174は、例えば、デジタルプロセッサ、コンピュータ等とすることができ、メモリ176は、例えば、データ及びマシン実行可能命令を非一時的データ又は信号として記憶するための非一時的デジタルメモリ(例えば、ソフトウェア、ファームウェア、マイクロコード等)であり得る。コントローラ174は、メモリ176に記憶されたこのようなマシン実行可能命令に従い動作するように構成することができる。あるいは又は加えて、コントローラ174は、有線で接続されるデジタル回路及び/又はアナログ回路を含み得る。制御モジュール172は、したがって、本明細書中に記載される方法で有用な任意のプロセス、本明細書中に記載されるこのようなプロセスの工程、機能、動作等を(自動的に又はユーザによる入力を基に、のいずれかにおいて)実施するように構成することができる。
【0044】
制御/監視機器180は、マイクロ流体デバイス100及びマイクロ流体デバイス100において実施されるプロセスを制御又は監視するためのいくつかの異なる種類のデバイスのいずれかを含み得る。例えば、制御/監視機器180は、マイクロ流体デバイス100に電力を供給するための電源(図示せず)と、流体培地をマイクロ流体デバイス100に供給するための又は培地をマイクロ流体デバイス100から除去するための流体培地源(図示せず)と、非限定的な例として、マイクロ流体回路132における微小物体(図示せず)の選択及び移動を制御するためのセレクタ制御モジュール(以下で記載される)などの輸送モジュール(motive module)と、非限定的な例として、マイクロ流体回路132内部の(例えば、微小物体の)画像を捕捉するための検出器(以下で記載される)などの画像捕捉機構と、非限定的な例として、エネルギーをマイクロ流体回路132内に誘導し、反応を刺激するための、以下で記載される、
図1Dに示される実施形態の光源320などの刺激機構と、その他を含み得る。
【0045】
より具体的には、画像捕捉検出器は、各フロー領域及び/又は成長チャンバを占める流体培地中に含まれる微小物体を含む、
図1A~
図1C、
図2及び
図3に示される実施形態の流路134、
図4A~
図4Cに示される実施形態の流路434、及び
図1D~
図1Eに示される実施形態のフロー領域240を含むがこれらに限定されないフロー領域、並びに/又は各示されるマイクロ流体デバイス100、300及び400の成長チャンバにおけるイベントを検出するための1つ又は複数の画像捕捉デバイス及び/又は機構を含み得る。例えば、検出器は、流体培地中の微小物体(図示せず)の1つ又は複数の放射特性(例えば、蛍光又は発光による)を検出することができる光検出器を含み得る。このような検出器は、例えば、培地中の1つ又は複数の微小物体(図示せず)が電磁放射を放射していることを検出する、及び/又は放射の波長、輝度、強度等を概算するように構成することができる。検出器は、可視波長光、赤外波長光、又は紫外波長光下で画像を捕捉してもよい。好適な光検出器の例としては、光電子倍増管検出器及びアバランシェ光検出器が挙げられるが、これに限定されない。
【0046】
検出器が含み得る好適な撮像デバイスの例としては、デジタルカメラ、又は電荷結合デバイス及び相補性金属酸化膜半導体(CMOS)イメージャなどの光センサが挙げられる。画像はこのようなデバイスによって捕捉され、分析され得る(例えば、制御モジュール172及び/又は人間のオペレータによって)。
【0047】
フローコントローラは、示される各マイクロ流体デバイス100、300及び400のフロー領域/流路/掃引領域内の流体培地の流れを制御するように構成することができる。例えば、フローコントローラは、流れの方向及び/又は速度を制御することができる。フローコントローラのこのようなフロー制御要素の非限定的な例としては、ポンプ及び流体アクチュエータが挙げられる。いくつかの実施形態では、フローコントローラは、例えば、フロー領域/流路/掃引領域内の培地の流れの速度及び/又はpHを検出するための1つ又は複数のセンサなどの更なる要素を含み得る。
【0048】
制御モジュール172は、セレクタ制御モジュール、検出器及び/又はフローコントローラから信号を受信し、これらを制御するように構成することができる。
【0049】
特に
図1Dに示される実施形態を参照すると、光源320によって、照明及び/又は蛍光励起に有用な光をマイクロ流体回路132に案内してもよい。あるいは又は加えて、光源は、エネルギーをマイクロ流体回路132内に誘導し、反応を刺激してもよく、これには、DEP構成のマイクロ流体デバイスが微小物体を選択し、移動するために必要な活性化エネルギーを提供することを含む。光源は、高圧水銀ランプ、キセノンアークランプ、ダイオード、レーザ等などの、マイクロ流体回路132に光エネルギーを投射することができる任意の適切な光源であってもよい。ダイオードはLEDであってもよい。1つの非限定的な例では、LEDは、広域スペクトル「白色」光LED(例えば、PrizmatixによるUHP-T-LED-White)であってもよい。光源は、プロジェクタ、又はデジタルマイクロミラーデバイス(DMD)、MSA(マイクロアレイシステム)若しくはレーザなどの立体照明を発生させるための他のデバイスを含んでもよい。
【0050】
生体細胞を含む微小物体を選択し、移動するための輸送モジュール。上述のように、制御/監視機器180は、マイクロ流体回路132内の微小物体(図示せず)を選択し、移動するための輸送モジュールを含み得る。種々の輸送機構を用いることができる。例えば、誘電泳動(DEP)機構を用いて、マイクロ流体回路内の微小物体(図示せず)を選択し、移動することができる。
図1A~
図1Cのマイクロ流体デバイス100の支持構造体104及び/又はカバー122は、マイクロ流体回路132内の流体培地(図示せず)中の微小物体(図示せず)に対しDEP力を選択的に誘発し、それにより、個々の微小物体を選択、捕捉及び/又は移動するためのDEP構成を含み得る。制御/監視機器180は、このようなDEP構成のための1つ又は複数の制御モジュールを含み得る。あるいは、細胞を含む微小物体は、マイクロ流体回路内を移動させてもよい、又は重力、磁気力、流体流等を使用してマイクロ流体回路から排出してもよい。
【0051】
支持構造体104とカバー122とを含むDEP構成を有するマイクロ流体デバイスの一例は、
図1D及び
図1Eに示されるマイクロ流体デバイス300である。簡略化のために、
図1D及び
図1Eは、マイクロ流体デバイス300のフロー領域240の一部分の側部断面図及び上部断面図を示すが、マイクロ流体デバイス300は、また、マイクロ流体デバイス100及び400に関して本明細書中に記載されるものなどの、1つ又は複数の成長チャンバと、1つ又は複数の更なるフロー領域/流路と、を含んでよく、マイクロ流体デバイス300のこのような領域のいずれかにDEP構成を組み込んでもよいことは理解すべきである。更に、上又は下で記載されるマイクロ流体システム構成要素のいずれかをマイクロ流体デバイス300に組み込んでもよい及び/又はマイクロ流体デバイス300と併せて使用してもよいことは理解すべきである。例えば、
図1A~
図1Cのマイクロ流体デバイス100とともに上で記載した制御/監視機器180を含む制御モジュール172は、画像捕捉検出器、フローコントローラ、及びセレクタ制御モジュールのうちの1つ又は複数を含むマイクロ流体デバイス300においても使用してよい。
【0052】
図1Dに見られるように、マイクロ流体デバイス300は、第1の電極304と、第1の電極304から離間している第2の電極310と、電極310上を覆う電極作動基板308と、を含む。各第1の電極304及び電極作動基板308はフロー領域240の対向表面を画定し、フロー領域240内に収容されている培地202が、電極304と電極作動基板308との間に抵抗流れ経路を提供する。第1の電極304と第2の電極310とに接続され、フロー領域240におけるDEP力の生成に必要なバイアス電圧を電極間に生成するように構成された電源312もまた示される。電源312は、例えば、交流(AC)電源であり得る。
【0053】
ある実施形態では、
図1D及び
図1Eに示されるマイクロ流体デバイス300は、光電子ピンセット(OET:opto-electronic tweezer)構成などの光学的に作動されるDEP構成を有することができる。このような実施形態では、光源320からの光322のパターンの変化(セレクタ制御モジュールによって制御してもよい)を使用して、フロー領域240の内部表面242上の目標位置314に対し「DEP電極」のパターンの変化を選択的に作動させることができる。以後、フロー領域240の内部表面242上の目標領域314は「DEP電極領域」と呼ぶ。
【0054】
図1Eに示される例では、内部表面242上に向けられた光パターン322'が、クロスハッチが施されたDEP電極領域314aを、示される四角形パターンで照明する。その他のDEP電極領域314は照明されず、以下、「暗」DEP電極領域314と呼ぶ。DEP電極作動基板308内の(すなわち、内部表面242上の各暗電極領域314から第2の電極310まで)電気インピーダンスは、培地202内の(すなわち、第1の電極304からフロー領域240内の培地202を横断し、内部表面242上の暗DEP電極領域314まで)電気インピーダンスよりも大きい。しかしながら、DEP電極領域314aを照明することで、電極作動基板308内(すなわち、内部表面242上の照明されるDEP電極領域314aから第2の電極310まで)のインピーダンスを、培地202内の(すなわち、第1の電極304からフロー領域240内の培地202を横切り、内部表面242上の照明されるDEP電極領域314aまで)インピーダンス未満に低下させる。
【0055】
電源312が作動すると、電源312は各照明されたDEP電極領域314aと隣接する暗DEP電極領域314との間の培地202中に電場勾配を生成し、これにより更に、流体培地202中の近傍の微小物体(図示せず)を引き付ける又は反発させる局所DEP力を生成する。このようにして、フロー領域240内の微小物体を操作する、すなわち移動させるために、光源320からマイクロ流体デバイス300に投射される光パターン322を変化させることによって、培地202中の微小物体を引きつける又は反発させるDEP電極を選択的に作動させること及び作動を停止させることができる。光源320は、例えば、レーザ又はプロジェクタなどの他の種類の立体照明源とすることができる。近傍の微小物体をDEP力が引きつける又は反発させるかどうかは、電源312の周波数並びに培地202及び/又は微小物体(図示せず)の誘電特性などであるがこれらに限定されないパラメータに依存し得る。
【0056】
図1Eに示される照明されるDEP電極領域314aの四角形パターン322'は単なる一例である。任意の数のパターン又は構成のDEP電極領域314を、源320からデバイス300に投射される対応する光322のパターンによって選択的に照明することができ、照明されるDEP電極領域322'のパターンは、流体培地202中の微小物体を操作するために光パターン322を変化させることによって繰り返し変化させることができる。
【0057】
いくつかの実施形態では、電極作動基板308は光伝導材料とすることができ、内部表面242の残部はフィーチャなし(featureless)とすることができる。例えば、光伝導材料はアモルファスシリコンから作製することができるとともに、厚さ約500nm~厚さ約2μm(例えば実質的に厚さ1ミクロン)を有する層を形成することができる。このような実施形態では、DEP電極領域314は、光パターン322(例えば、
図1Eに示される光パターン322')に従い、フロー領域240の内部表面242上のどこにでも且つあらゆるパターンで作製することができる。照明されるDEP電極領域314aの数及びパターンは、したがって、固定されておらず、各々の投射される光パターン322に対応する。電極作動基板308を構成し得る光伝導材料の一例として非ドープアモルファスシリコン材料が使用される例が米国特許第7,612,355号に示されている。
【0058】
他の実施形態では、電極作動基板308は、例えば半導体分野で周知の半導体集積回路を形成する、複数のドープ層と、電気絶縁層と、導電層と、を含む基板を含み得る。例えば、電極作動基板308は、フォトトランジスタのアレイを含み得る。このような実施形態では、電気回路要素が、フロー領域240の内部表面242のDEP電極領域314と、第2の電極310との間に、各々の光パターン322によって選択的に作動することができる電気接続部を形成することができる。作動されていないとき、各電気接続部内(すなわち、内部表面242上の対応するDEP電極領域314から電気接続部を通り、第2の電極310まで)の電気インピーダンスは、培地202内(すなわち、第1の電極304から培地202を通り、内部表面242上の対応するDEP電極領域314まで)のインピーダンスを大きくすることができる。しかしながら、光パターン322の光によって作動されると、照明される電気接続部しかし(though)(すなわち、各照明されるDEP電極領域314aから電気接続部を通り、第2の電極310まで)電気インピーダンスを、培地202中(すなわち、第1の電極304から培地202を通り、対応する照明されるDEP電極領域314aまで)の電気インピーダンス未満の量に低下させ、それにより、上述のように対応するDEP電極領域314のDEP電極を作動させることができる。培地202中の微小物体(図示せず)を引きつける又は反発させるDEP電極は、したがって、フロー領域240の内部表面242の多くの異なるDEP電極領域314において、光パターン322によって選択的に作動させること及び作動を停止させることができる。電極作動基板308のこのような構成の非限定的な例としては、米国特許第7,956,339号の
図21及び
図22に示されるフォトトランジスタベースのデバイス300が挙げられる。
【0059】
他の実施形態では、電極作動基板308は、光作動式であってもよい複数の電極を含む基板を含み得る。電極作動基板308のこのような構成の非限定的な例としては、米国特許出願公開第2014/0124370号に示され且つ記載されている光作動式デバイス200、400、500及び600が挙げられる。更に別の実施形態では、米国特許第6,942,776号に記載されているように、支持構造体104及び/又はカバー122のDEP構成はマイクロ流体デバイスの内部表面のDEP電極の光作動に依存せず、少なくとも1つの電極を含む表面に対向して配置される選択的にアドレス指定可能且つ及び励起可能な電極を使用する。
【0060】
DEPで構成されたデバイスのいくつかの実施形態では、全体として
図1Dに示されるように、第1の電極304はハウジング102の第1の壁302(又はカバー)の一部とすることができ、電極作動基板308及び第2の電極310はハウジング102の第2の壁306(又は底部)の一部とすることができる。示されるように、フロー領域240は第1の壁302と第2の壁306との間にあり得る。しかしながら、前述は一例にすぎない。別の実施形態では、第1の電極304は第2の壁306の一部とすることができ、電極作動基板308及び/又は第2の電極310の1つ若しくは両方は第1の壁302の一部とすることができる。あるいは、更に、光源320はハウジング102の下に配置することができる。ある実施形態では、第1の電極304は酸化インジウムスズ(ITO)電極であってもよいが、他の材料も使用してよい。
【0061】
図1D~
図1Eのマイクロ流体デバイス300の光学作動式DEP構成において使用される場合、セレクタ制御モジュールは、したがって、1つ又は複数の連続的な光パターン322をデバイス300に投射し、フロー領域240の内部表面242のDEP電極領域314にある対応する1つ又は複数のDEP電極を連続パターンで作動し、微小物体を取り囲み、「捕捉する」ことによって、フロー領域240内の培地202中の微小物体(図示せず)を選択することができる。セレクタ制御モジュールは、その後、光パターン322をデバイス300に対して移動させることによって(又はデバイス300(したがって、デバイス300中に捕捉された微小物体)を光源320及び/又は光パターン322に対して移動させることができる)フロー領域240内の捕捉された微小物体を移動させることができる。マイクロ流体デバイス300の電気作動式DEP構成を特徴とする実施形態では、セレクタ制御モジュールは、フロー領域240内の培地202中の微小物体(図示せず)を、フロー領域240の内部表面242のDEP電極領域314にあるDEP電極の部分集合を電気的に作動し、微小物体を取り囲み、「捕捉する」パターンを形成することによって選択することができる。セレクタ制御モジュールは、その後、フロー領域240内の捕捉された微小物体を、電気的に作動されるDEP電極の部分集合を変化させることによって移動させることができる。
【0062】
成長チャンバ構成。デバイス100の成長チャンバ136、138及び140の非限定的な例が
図1A~
図1Cに示される。特に
図1Cを参照すると、各成長チャンバ136、138、140は、隔離領域144と、隔離領域144を流路134に流体的に接続している接続領域142と、を画定する隔離構造146を含む。接続領域142はそれぞれ、流路134に至る近位開口部152と、各隔離領域144に至る遠位開口部154と、を有する。接続領域142は、流路134内を最高速度(V
max)で流れる流体培地(図示せず)の流れの最大侵入深さが意図せずに隔離領域144内に及ばないように構成されることが好ましい。各成長チャンバ136、138、140の隔離領域144内に配置される微小物体(図示せず)又は他の材料(図示せず)は、したがって、流路134内の培地(図示せず)の流れから隔離され得るとともに、流路134内の培地(図示せず)の流れによって実質的に影響され得ない。したがって、流路134は掃引領域の一例であり得る。成長チャンバ136、138、140の隔離領域は非掃引領域の例であり得る。上に示したように、各流路134及び成長チャンバ136、138、140は、1つ又は複数の流体培地(図示せず)を含むように構成されている。
図1A~
図1Cに示される実施形態では、流体アクセスポート124が流路134に流体的に接続されており、流体培地(図示せず)をマイクロ流体回路132に導入すること又はマイクロ流体回路132から除去することを可能にする。マイクロ流体回路132が流体培地を含むと、マイクロ流体回路132内の特定の流体培地の流れを流路134内で選択的に発生させることができる。例えば、培地の流れを、出口として機能する別の流体アクセスポート124への入口として機能する1つの流体アクセスポート124から生成することができる。
図1Cでは、D
sは、流路134に至る各開口部152間の距離を示す。
【0063】
図2は、
図1A~
図1Cのデバイス100の成長チャンバ136の一例の詳細図を示す。成長チャンバ138、140は同様に構成することができる。成長チャンバ136内に配置された微小物体222の例もまた示される。
【0064】
周知のように、成長チャンバ136の近位開口部152を過ぎたマイクロ流体流路134内の流体培地202の流れ(方向矢印212によって示される)によって、成長チャンバ136に入る及び/又は成長チャンバ136から出る培地202の二次的な流れ(方向矢印214によって示される)を引き起こすことができる。流路134内の流れ212の速度が最高(Vmax)である場合、成長チャンバ136の隔離領域144内の微小物体222を二次的な流れ214から隔離するために、近位開口部152から遠位開口部154までの接続領域142の長さLconは、接続領域142に入る二次的な流れ214の最大侵入深さDpを超えることが好ましい。流路134内の流れ212が最高速度Vmaxを超えない限りは、流れ212及び結果的に生じる二次的な流れ214は各流路134及び接続領域142に限定され、成長チャンバ136の隔離領域144には入らない。したがって、流路134内の流れ212は、成長チャンバ136の隔離領域144から微小物体222を引き込むことはない。
【0065】
更に、流れ212は、流路134内にある可能性があるその他粒子(例えば、マイクロ粒子及び/又はナノ粒子)を成長チャンバ136の隔離領域144内に移動させない。したがって、最大侵入深さDpを超える接続領域142の長さLconを有することで、流路134から又は別の成長チャンバ138、140からのその他粒子による成長チャンバ136の汚染を防止することができる。
【0066】
流路134及び成長チャンバ136、138、140の接続領域142は流路134内の培地202の流れ212による影響を受ける可能性があるため、流路134及び接続領域142はマイクロ流体回路132の掃引(又は流れ)領域と考えることができる。成長チャンバ136、138、140の隔離領域144は、その一方で、非掃引(又は非流れ)領域と考えることができる。例えば、流路134から接続領域142を通り、隔離領域144内の第2の培地204に入る実質的に第1の培地202の成分の拡散のみによって、流路134内の第1の培地202中の成分(図示せず)が隔離領域144内の第2の培地204と混合する可能性がある。同様に、隔離領域144から接続領域142を通り、流路134内の第1の培地202に入る実質的に第2の培地204の成分の拡散のみによって、隔離領域144内の第2の培地204(図示せず)の成分が流路134内の第1の培地202と混合する可能性がある。第1の培地202は第2の培地204と同一培地又は異なる培地であり得ることは認識するべきである。更に、第1の培地202及び第2の培地204は同じものから出発し、その後、例えば、隔離領域144内の1つ又は複数の細胞による第2の培地のコンディショニングによって、又は流路134内を流れる培地を変更することによって異なるものになり得る。
【0067】
流路134内の流れ212によって発生する二次的な流れ214の最大侵入深さDpはいくつかのパラメータに依存し得る。このようなパラメータの例としては、流路134の形状(例えば、流路は、培地を接続領域142に誘導すること、培地を接続領域142から分流させること、又は単に接続領域142を過ぎて流すことができる);近位開口部152における流路134の幅Wch(又は断面積);近位開口部152における接続領域142の幅Wcon(又は断面積);流路134内の流れ212の最高速度Vmax;第1の培地202及び/又は第2の培地204の粘性、等が挙げられる(がこれらに限定されない)。
【0068】
いくつかの実施形態では、流路134及び/又は成長チャンバ136、138、140の寸法は、流路134内の流れ212に対して以下のように配向される:流路幅Wch(又は流路134の断面積)は流れ212に実質的に垂直であり得る;近位開口部152における接続領域142の幅Wcon(又は断面積)は流れ212に実質的に平行であり得る;及び接続領域の長さLconは流れ212に実質的に垂直であり得る。前述のものは単なる例であり、流路134及び成長チャンバ136、138、140の寸法は互いに対し付加的な及び/又は更に別の配向であり得る。
【0069】
図2に示されるように、接続領域142の幅W
conは近位開口部152から遠位開口部154まで均一であり得る。遠位開口部154における接続領域142の幅W
conは、したがって、近位開口部152における接続領域142の幅W
conに対応する、以下に示す範囲のいずれかであり得る。あるいは、遠位開口部154における接続領域142の幅W
conは、近位開口部152における接続領域142の幅W
conよりも大きく(例えば、
図3の実施形態に示すように)又は小さく(例えば、
図4A~
図4Cの実施形態に示すように)され得る。
【0070】
また、
図2に示されるように、遠位開口部154における隔離領域144の幅は、近位開口部152における接続領域142の幅W
conと実質的に同じであり得る。遠位開口部154における隔離領域144の幅は、したがって、近位開口部152における接続領域142の幅W
conに対応する、以下に示す範囲のいずれかであり得る。あるいは、遠位開口部154における隔離領域144の幅は、近位開口部152における接続領域142の幅W
conよりも大きく(例えば、
図3に示すように)又は小さく(図示せず)され得る。
【0071】
いくつかの実施形態では、流路134内の流れ212の最高速度Vmaxは、中に流路が配置された各マイクロ流体デバイス(例えば、デバイス100)の構造破壊を引き起こすことなく流路134が維持することができる最高速度と実質的に同じである。概して、流路が維持することができる最高速度は、マイクロ流体デバイスの構造的完全性及び流路の断面積を含む種々の要素に依存する。本明細書中に開示及び記載される例示的なマイクロ流体デバイスにおいては、約3,500~10,000平方ミクロンの断面積を有する流路内の最高流速Vmaxは、約1.5~15マイクロリットル/秒である。あるいは、流路内の流れの最高速度Vmaxは、隔離領域が流路内の流れから確実に隔離されるように設定することができる。特に、成長チャンバの接続領域の近位開口部の幅Wconに基づき、Vmaxは、接続領域への二次的な流れの侵入深さDpが確実にLcon未満であるように設定することができる。例えば、約40~50ミクロンの幅Wcon及び約50~100ミクロンのLconを有する近位開口部を持つ接続領域を有する成長チャンバにおいては、Vmaxは、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4若しくは2.5マイクロリットル/秒に、又はほぼこれらの数値に設定することができる。
【0072】
いくつかの実施形態では、接続領域142の長さLconと、対応する、成長チャンバ136、138、140の隔離領域144の長さとの合計は、隔離領域144内に含まれる第2の培地204の成分の、流路134内を流れる又は流路134内に含まれる第1の培地202への比較的急速な拡散のために、十分に短くすることができる。例えば、いくつかの実施形態では、(1)接続領域142の長さLconと、(2)成長チャンバ136、138、140の隔離領域144内にある生体微小物体と、接続領域の遠位開口部154との間の距離との合計は、以下の範囲のうちの1つであり得る:約40ミクロン~500ミクロン、50ミクロン~450ミクロン、60ミクロン~400ミクロン、70ミクロン~350ミクロン、80ミクロン~300ミクロン、90ミクロン~250ミクロン、100ミクロン~200ミクロン、又は前述の終点のうちの1つを含む任意の範囲。分子(例えば、抗体などの対象分析物)の拡散速度は、培地の温度、粘性、及び分子の拡散係数D0を含む(がこれらに限定されない)いくつかの要素に依存する。例えば、約20℃の水溶液中のIgG抗体のD0は、約4.4×10-7cm2/秒である一方、細胞培養培地の動粘度は約9×10-4m2/秒である。したがって、細胞培養培地中の抗体は約20℃で約0.5ミクロン/秒の拡散速度を有し得る。したがって、いくつかの実施形態では、隔離領域144内にある生体微小物体から流路134への拡散の時間は約10分以下(例えば、約9、8、7、6、5分以下)であり得る。拡散の時間は拡散速度に影響するパラメータを変更することによって操作することができる。例えば、培地の温度を(例えば、約37℃などの生理的温度に)上昇又は(例えば、約15℃、10℃又は4℃に)低下させ、それにより、拡散速度をそれぞれ上昇又は低下させることができる。あるいは又は加えて、培地中の溶質の濃度を増加又は低下させることができる。
【0073】
図2に示される成長チャンバ136の物理的構成は一例にすぎず、成長チャンバの多くの他の構成及び変形形態が可能である。例えば、隔離領域144は複数の微小物体222を含むような大きさとして示されているが、隔離領域144は、約1つ、2つ、3つ、4つ、5つ、又は同様の比較的少数の微小物体222のみを含むような大きさにすることができる。したがって、隔離領域144の体積は、例えば、少なくとも約3×10
3、6×10
3、9×10
3、1×10
4、2×10
4、4×10
4、8×10
4、1×10
5、2×10
5、4×10
5、8×10
5、1×10
6、2×10
6、4×10
6、6×10
6立方ミクロン、又はこれより大きい数とすることができる。
【0074】
別の例として、
図2では、成長チャンバ136は、流路134から略垂直に延出し、したがって、流路134と概して約90°の角度を成すものとして示される。あるいは、成長チャンバ136は、流路134から、例えば約30°~約150°の任意の角度などの他の角度で延出することができる。
【0075】
更に別の例として、
図2では、接続領域142及び隔離領域144は実質的に矩形構成を有するものとして示されるが、接続領域142及び隔離領域144の1つ又は両方は、楕円形、三角形、円形、砂時計形等を含む(がこれらに限定されない)異なる構成を有することができる。
【0076】
更に別の例として、
図2では、接続領域142及び隔離領域144は、実質的に均一な幅を有するものとして示される。つまり、接続領域142の幅W
conは、近位開口部152から遠位開口部154までの長さL
con全体に沿って均一であるとして示される。隔離領域144の対応する幅は同様に均一であり、接続領域142の幅W
con及び隔離領域144の対応する幅は等しいものとして示される。しかしながら、別の実施形態では、前述のいずれも異なり得る。例えば、接続領域142の幅W
conは、近位開口部152から遠位開口部154までの長さL
conに沿って、例えば、台形、又は砂時計形の状態で変化することができ、隔離領域144の幅もまた、長さL
conに沿って、例えば、三角形又はフラスコの状態で変化することができ、接続領域142の幅W
conは隔離領域144の幅と異なり得る。
【0077】
図3は、前述の変形形態のいくつかの例を説明する成長チャンバ336の別の実施形態を示す。別の成長チャンバ336はマイクロ流体デバイス100のチャンバ136の代わりとして記載されているが、成長チャンバ336を、本明細書中に開示される又は記載されるマイクロ流体デバイス実施形態のいずれかの成長チャンバのいずれかの代わりに用いることができることは理解すべきである。更に、所与のマイクロ流体デバイス内に1つの成長チャンバ336又は複数の成長チャンバ336が設けられてもよい。
【0078】
成長チャンバ336は、接続領域342と、隔離領域344を含む隔離構造346と、を含む。接続領域342は、流路134に至る近位開口部352と、隔離領域344に至る遠位開口部354と、を有する。
図3に示される実施形態では、接続領域342は、その幅W
conが接続領域L
conの長さに沿って近位開口部352から遠位開口部354まで増加するように拡張する。しかしながら、接続領域342、隔離構造346、及び隔離領域344は、異なる形状を有すること以外、上記の、
図2に示される成長チャンバ136の接続領域142、隔離構造146、及び隔離領域144とほぼ同様に機能する。
【0079】
例えば、流路134及び成長チャンバ336は、二次的な流れ214の最大侵入深さD
pが接続領域342内に及ぶが、隔離領域344内には及ばないように構成することができる。全体として
図2に示される接続領域142に関して上述したように、接続領域の長さL
con342は、したがって、最大侵入深さD
pを超えることができる。また、上述したように、隔離領域344内の微小物体222は、流路134内の流れ212の速度が最高流速V
maxを超えない限り、隔離領域344内に留まる。流路134及び接続領域342は、したがって、掃引(又は流れ)領域の例であり、隔離領域344は非掃引(又は非流れ)領域の一例である。
【0080】
図4A~
図4Cは、マイクロ流体回路432及び流路434を含むマイクロ流体デバイス400の別の例示的実施形態を示し、
図1A~
図1Cの各マイクロ流体デバイス100、回路132及び流路134の変形形態である。マイクロ流体デバイス400は、また、上記の成長チャンバ136、138、140及び336の更なる変形形態である複数の成長チャンバ436を有する。特に、
図4A~
図4Cに示されるデバイス400の成長チャンバ436を、上記の、デバイス100及び300の成長チャンバ136、138、140、336のいずれかの代わりに用いることができることは理解すべきである。同様に、マイクロ流体デバイス400はマイクロ流体デバイス100の別の変形形態であり、また、上記のマイクロ流体デバイス300、及び本明細書中に記載される他のマイクロ流体システム構成要素のいずれかと同一又は異なるDEP構成を有してもよい。
【0081】
図4A~
図4Cのマイクロ流体デバイス400は、支持構造体(
図4A~
図4Cでは図示しないが、
図1A~
図1Cに示されるデバイス100の支持構造体104と同一であり得る又はほぼ類似し得る)と、マイクロ流体回路構造体412と、カバー(
図4A~
図4Cでは図示しないが、
図1A~
図1Cに示されるデバイス100のカバー122と同一であり得る又はほぼ類似し得る)と、を含む。マイクロ流体回路構造体412は、フレーム414と、マイクロ流体回路材料416と、を含み、これらは、
図1A~
図1Cに示されるデバイス100のフレーム114及びマイクロ流体回路材料116と同一であり得る又はほぼ類似し得る。
図4Aに示すように、マイクロ流体回路材料416によって画定されるマイクロ流体回路432は、複数の成長チャンバ436が流体的に接続される複数の流路434(2つが示されているが、2つより多くすることができる)を含むことができる。
【0082】
各成長チャンバ436は、隔離構造446と、隔離構造446内の隔離領域444と、接続領域442と、を含むことができる。流路434における近位開口部472から隔離構造446における遠位開口部474まで、接続領域442は流路434を隔離領域444に流体的に接続している。概して、
図2の上記説明によれば、流路434内の第1の流体培地402の流れ482によって、流路434から成長チャンバ436の各接続領域442に入る及び/又は成長チャンバ436の各接続領域442から出る第1の培地402の二次的な流れ484を生成することができる。
【0083】
図4Bに示されるように、各成長チャンバ436の接続領域442は、概して、流路434に至る近位開口部472と隔離構造446に至る遠位開口部474との間に延在する領域を含む。接続領域442の長さL
conは二次的な流れ484の最大侵入深さD
pよりも長くすることができ、この場合、二次的な流れ484は隔離領域444に向かって方向を変えられることなく接続領域442内に及ぶ(
図4Aに示すように)。あるいは、
図4Cに示されるにおいて、接続領域442は最大侵入深さD
p未満の長さL
conを有することができ、この場合、二次的な流れ484は接続領域442内に及び、隔離領域444に向かって方向を変えられる。この後者の状況では、接続領域442の長さL
c1とL
c2との合計は最大侵入深さD
pを超えるため、二次的な流れ484は隔離領域444内に及ばない。接続領域442の長さL
conが侵入深さD
pを超えるかどうか、又は接続領域442の長さL
c1とL
c2との合計が侵入深さD
pを超えるかを問わず、最高速度V
maxを超えない流路434内の第1の培地402の流れ482よって、侵入深さD
pを有する二次的な流れが生成され、成長チャンバ436の隔離領域444内の微小物体(図示しないが、
図2に示される微小物体222と同一であり得る又はほぼ類似し得る)が流路434内の第1の培地402の流れ482によって隔離領域444から引き出されない。それだけでなく、流路434内の流れ482はその他物質(図示せず)を流路434から成長チャンバ436の隔離領域444へと引き込まない。したがって、拡散が、流路434内の第1の培地402中の成分を流路434から成長チャンバ436の隔離領域444内の第2の培地404へと移動させることができる唯一の機構である。同様に、拡散は、成長チャンバ436の隔離領域444内の第2の培地404中の成分を隔離領域444から流路434内の第1の培地402へと移動させることができる唯一の機構である。第1の培地402は第2の培地404と同一の培地であり得る、又は第1の培地402は第2の培地404と異なる培地であり得る。あるいは、第1の培地402及び第2の培地404は同じものから出発し、その後、例えば、隔離領域444内の1つ又は複数の細胞による第2の培地のコンディショニングによって、又は流路434を流れる培地を変更することによって異なるものになり得る。
【0084】
図4Bに示されるように、流路434の流路434の幅W
ch(すなわち、
図4Aに矢印482で示される、流路内の流体培地の流れの方向を横断方向に取った)は、近位開口部472の幅W
con1に実質的に垂直とすることができ、したがって、遠位開口部474の幅W
con2に実質的に平行であり得る。しかしながら、近位開口部472の幅W
con1と遠位開口部474の幅W
con2は互いに実質的に垂直である必要はない。例えば、近位開口部472の幅W
con1が配向される軸線(図示せず)と、遠位開口部474の幅W
con2が配向される別の軸線との間の角度は、垂直以外、したがって90°以外であり得る。別の角度の例は以下の範囲のいずれかの角度を含む:約30°~約90°、約45°~約90°、約60°~約90°等。
【0085】
成長チャンバ136、138、140、336又は436の種々の実施形態では、成長チャンバの隔離領域は、約1×103、5×102、4×102、3×102、2×102、1×102、50、25、15又は10個以下の培養下の細胞を支持するように構成された体積を有してもよい。他の実施形態では、成長チャンバの隔離領域は、約1×103、1×104、又は1×105個の細胞までを支持し、これを含む体積を有する。
【0086】
成長チャンバ136、138、140、336又は436の種々の実施形態では、近位開口部152における流路134の幅Wch(成長チャンバ136、138又は14)、近位開口部352における流路134の幅Wch(成長チャンバ336)、又は近位開口部472における流路434の幅Wch(成長チャンバ436)は、以下の範囲のいずれかであり得る:約50~1000ミクロン、50~500ミクロン、50~400ミクロン、50~300ミクロン、50~250ミクロン、50~200ミクロン、50~150ミクロン、50~100ミクロン、70~500ミクロン、70~400ミクロン、70~300ミクロン、70~250ミクロン、70~200ミクロン、70~150ミクロン、90~400ミクロン、90~300ミクロン、90~250ミクロン、90~200ミクロン、90~150ミクロン、100~300ミクロン、100~250ミクロン、100~200ミクロン、100~150ミクロン、及び100~120ミクロン。前述のものは単なる例であり、流路134又は434の幅Wchは、他の範囲(例えば、上記終点のいずれかによって画定される範囲)内であり得る。
【0087】
成長チャンバ136、138、140、336又は436の種々の実施形態では、近位開口部152における流路134(成長チャンバ136、138、又は140)の高さHch、近位開口部352における流路134(成長チャンバ336)の高さHch、又は近位開口部472における流路434(成長チャンバ436)の高さHchは、以下の範囲のいずれかであり得る:約20~100ミクロン、20~90ミクロン、20~80ミクロン、20~70ミクロン、20~60ミクロン、20~50ミクロン、30~100ミクロン、30~90ミクロン、30~80ミクロン、30~70ミクロン、30~60ミクロン、30~50ミクロン、40~100ミクロン、40~90ミクロン、40~80ミクロン、40~70ミクロン、40~60ミクロン、又は40~50ミクロン。前述のものは単なる例であり、流路134又は434の高さHchは他の範囲(例えば、上記終点のいずれかによって画定される範囲)内であり得る。
【0088】
成長チャンバ136、138、140、336又は436の種々の実施形態では、近位開口部152における流路134(成長チャンバ136、138、又は140)の断面積、近位開口部352における流路134(成長チャンバ336)の断面積、又は近位開口部472における流路434(成長チャンバ436)の断面積は、以下の範囲のいずれかであり得る:約500~50,000平方ミクロン、500~40,000平方ミクロン、500~30,000平方ミクロン、500~25,000平方ミクロン、500~20,000平方ミクロン、500~15,000平方ミクロン、500~10,000平方ミクロン、500~7,500平方ミクロン、500~5,000平方ミクロン、1,000~25,000平方ミクロン、1,000~20,000平方ミクロン、1,000~15,000平方ミクロン、1,000~10,000平方ミクロン、1,000~7,500平方ミクロン、1,000~5,000平方ミクロン、2,000~20,000平方ミクロン、2,000~15,000平方ミクロン、2,000~10,000平方ミクロン、2,000~7,500平方ミクロン、2,000~6,000平方ミクロン、3,000~20,000平方ミクロン、3,000~15,000平方ミクロン、3,000~10,000平方ミクロン、3,000~7,500平方ミクロン、又は3,000~6,000平方ミクロン。前述のものは単なる例であり、近位開口部152における流路134の断面積、近位開口部352における流路134の断面積、又は近位開口部472における流路434の断面積は他の範囲(例えば、上記終点のいずれかによって画定される範囲)内であり得る。
【0089】
成長チャンバ136、138、140、336又は436の種々の実施形態では、接続領域Lconの長さは、以下の範囲のいずれかであり得る:約1~200ミクロン、5~150ミクロン、10~100ミクロン、15~80ミクロン、20~60ミクロン、20~500ミクロン、40~400ミクロン、60~300ミクロン、80~200ミクロン、及び100~150ミクロン。前述のものは単なる例であり、接続領域142(成長チャンバ136、138、又は140)の長さLcon、接続領域342(成長チャンバ336)の長さLcon、又は接続領域442(成長チャンバ436)の長さLconは、前述の例とは異なる範囲内にあり得る(例えば、上記終点のいずれかによって画定される範囲)。
【0090】
成長チャンバ136、138、140、336又は436の種々の実施形態では、近位開口部152における接続領域142(成長チャンバ136、138又は140)の幅Wcon、近位開口部352における接続領域342(成長チャンバ336)の幅Wcon、又は近位開口部472における接続領域442(成長チャンバ436)の幅Wconは、以下の範囲のいずれかであり得る:約20~500ミクロン、20~400ミクロン、20~300ミクロン、20~200ミクロン、20~150ミクロン、20~100ミクロン、20~80ミクロン、20~60ミクロン、30~400ミクロン、30~300ミクロン、30~200ミクロン、30~150ミクロン、30~100ミクロン、30~80ミクロン、30~60ミクロン、40~300ミクロン、40~200ミクロン、40~150ミクロン、40~100ミクロン、40~80ミクロン、40~60ミクロン、50~250ミクロン、50~200ミクロン、50~150ミクロン、50~100ミクロン、50~80ミクロン、60~200ミクロン、60~150ミクロン、60~100ミクロン、60~80ミクロン、70~150ミクロン、70~100ミクロン、及び80~100ミクロン。前述のものは単なる例であり、近位開口部152における接続領域142の幅Wcon、近位開口部352における接続領域342幅Wcon、又は近位開口部472における接続領域442幅Wconは、前述の例とは異なり得る(例えば、上記終点のいずれかによって画定される範囲)。
【0091】
成長チャンバ136、138、140、336又は436の種々の実施形態では、近位開口部152(成長チャンバ136、138、又は140)における接続領域142の幅Wcon、近位開口部352における接続領域342(成長チャンバ336)の幅Wcon、又は近位開口部472における接続領域442(成長チャンバ436)の幅Wconは、以下の範囲のいずれかであり得る:約2~35ミクロン、2~25ミクロン、2~20ミクロン、2~15ミクロン、2~10ミクロン、2~7ミクロン、2~5ミクロン、2~3ミクロン、3~25ミクロン、3~20ミクロン、3~15ミクロン、3~10ミクロン、3~7ミクロン、3~5ミクロン、3~4ミクロン、4~20ミクロン、4~15ミクロン、4~10ミクロン、4~7ミクロン、4~5ミクロン、5~15ミクロン、5~10ミクロン、5~7ミクロン、6~15ミクロン、6~10ミクロン、6~7ミクロン、7~15ミクロン、7~10ミクロン、8~15ミクロン、及び8~10ミクロン。前述のものは単なる例であり、近位開口部152における接続領域142の幅Wcon、近位開口部352における接続領域342の幅Wcon、又は近位開口部472における接続領域442の幅Wconは、前述の例とは異なり得る(例えば、上記終点のいずれかによって画定される範囲)。
【0092】
成長チャンバ136、138、140、336又は436の種々の実施形態では、近位開口部152(成長チャンバ136、138、又は140)における接続領域142の長さLcon対接続領域142の幅Wconの比率、近位開口部352(成長チャンバ336)における接続領域342の長さLcon対接続領域342の幅Wconの比率、又は近位開口部472(成長チャンバ436)における接続領域442の長さLcon対接続領域442の幅Wconの比率は、以下の比率のいずれか以上であり得る:約0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、6.0、7.0、8.0、9.0、10.0、又はこれより大きい。前述のものは単なる例であり、近位開口部152における接続領域142の長さLcon対接続領域142の幅Wconの比率、近位開口部372における接続領域342の長さLcon対接続領域342の幅Wconの比率、又は近位開口部472における接続領域442の長さLcon対接続領域442の幅Wconの比率は前述の例とは異なり得る。
【0093】
成長チャンバ136、138、140、336又は436を有するマイクロ流体デバイスの種々の実施形態では、Vmaxは、約0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、又は2.5マイクロリットル/秒、又はこれを超える値(例えば、約3.0、4.0、5.0マイクロリットル/秒、又はこれを超える値)に設定され得る。
【0094】
成長チャンバ136、138、140、336又は436を有するマイクロ流体デバイスの種々の実施形態では、隔離領域144(成長チャンバ136、138、又は140)、隔離領域344(成長チャンバ336)又は隔離領域444(成長チャンバ436)の体積は、例えば、少なくとも約3×103、6×103、9×103、1×104、2×104、4×104、8×104、1×105、2×105、4×105、8×105、1×106、2×106、4×106、6×106立方ミクロン、又はこれを超える値であり得る。
【0095】
いくつかの実施形態では、マイクロ流体デバイスは成長チャンバ136、138、140、336又は436を有し、約1×102個以下の生体細胞が維持されてもよく、成長チャンバの体積は約2×106立方ミクロン以下であってもよい。
【0096】
いくつかの実施形態では、マイクロ流体デバイスは成長チャンバ136、138、140、336又は436を有し、約1×102個以下の生体細胞が維持されてもよく、成長チャンバの体積は約4×105立方ミクロン以下であってもよい。
【0097】
更に他の実施形態では、マイクロ流体デバイスは成長チャンバ136、138、140、336又は436を有し、約50個以下の生体細胞が維持されてもよく、成長チャンバの体積は約4×105立方ミクロン以下であってもよい。
【0098】
種々の実施形態では、マイクロ流体デバイスは、本明細書中に記載される実施形態のいずれかの通りに構成された成長チャンバを有し、マイクロ流体デバイスは、約100~約500個の成長チャンバ、約200~約1000個の成長チャンバ、約500~約1500個の成長チャンバ、約1000~約2000個の成長チャンバ、又は約1000~約3500個の成長チャンバを有する。
【0099】
他のいくつかの実施形態では、マイクロ流体デバイスは、本明細書中に記載される実施形態のいずれかのように構成された成長チャンバを有し、マイクロ流体デバイスは、約1500~約3000個の成長チャンバ、約2000~約3500個の成長チャンバ、約2000~約4000個の成長チャンバ、約2500~約4000個の成長チャンバ、又は約3000~約4500個の成長チャンバを有する。
【0100】
いくつかの実施形態では、マイクロ流体デバイスは、本明細書中に記載される実施形態のいずれかのように構成された成長チャンバを有し、マイクロ流体デバイスは、約3000~約4500個の成長チャンバ、約3500~約5000個の成長チャンバ、約4000~約5500個のチャンバ、約4500~約6000個の成長チャンバ、又は約5000~約6500個のチャンバを有する。
【0101】
更なる実施形態では、マイクロ流体デバイスは、本明細書中に記載される実施形態のいずれかの通りに構成された成長チャンバを有し、マイクロ流体デバイスは、約6000~約7500個の成長チャンバ、約7000~約8500個の成長チャンバ、約8000~約9500個の成長チャンバ、約9000~約10,500個の成長チャンバ、約10,000~約11,500個の成長チャンバ、約11,000~約12,500個の成長チャンバ、約12,000~約13,500個の成長チャンバ、約13,000~約14,500個の成長チャンバ、約14,000~約15,500個の成長チャンバ、約15,000~約16,500個の成長チャンバ、約16,000~約17,500個の成長チャンバ、約17,000~約18,500個の成長チャンバを有する。
【0102】
種々の実施形態では、マイクロ流体デバイスは、本明細書中に記載される実施形態のいずれかの通りに構成された成長チャンバを有し、マイクロ流体デバイスは、約18,000~約19,500個の成長チャンバ、約18,500~約20,000個の成長チャンバ、約19,000~約20,500個の成長チャンバ、約19,500~約21,000個の成長チャンバ、又は約20,000~約21,500個の成長チャンバを有する。
【0103】
成長チャンバの他の特性。デバイス100(
図1A~
図1C)の各成長チャンバ136、138、140を画定し、デバイス400(
図4A~
図4C)の成長チャンバ436の隔離構造446を形成するマイクロ流体回路材料116(
図1A~
図1C)のバリア及びマイクロ流体回路材料416(
図4A~
図4C)のバリアを物理的バリアとして上では示し、記載したが、その代わりに、バリアは、光パターン322の光によって作動されるDEP力を含む「仮想」バリアとして作製することができることを理解すべきである。
【0104】
他のいくつかの実施形態では、各成長チャンバ136、138、140、336及び436は、(例えば、検出器、及び/又は光源320を誘導するセレクタ制御モジュールによる)照明から保護することができる、又は短時間にわたって選択的に照明されるのみとすることができる。成長チャンバ内に収容された細胞及び他の生体微小物体は、したがって、成長チャンバ136、138、140、336及び436内に移動した後、更なる(すなわち、有害であるおそれがある)照明から保護され得る。
【0105】
流体培地。流路及び1つ又は複数の成長チャンバを有するマイクロ流体デバイスについての前述の説明に関して、流体培地(例えば、第1の培地及び/又は第2の培地)は、生体微小物体を実質的に検定可能な状態で維持することが可能な任意の流体であり得る。検定可能な状態は、生体微小物体と、実施される検定とに依存する。例えば、生体微小物体が目的タンパク質の分泌に関して検定される細胞である場合、細胞は、細胞が生存可能であり且つタンパク質を発現及び分泌することが可能であることを条件として実質的に検定可能である。あるいは、流体培地は、細胞を増殖すること又は細胞が尚増殖する(すなわち、有糸分裂細胞の分裂により数が増加する)ことができるような状態に細胞を維持することが可能な任意の流体であり得る。多くの異なる種類の流体培地、特に細胞培養培地は当該技術分野において周知であり、どれが好適な培地であるかは、通常、培養される細胞の種類に依存する。ある実施形態では、細胞培養培地は、ウシ胎仔血清(FBS)又は子ウシ血清などの哺乳動物の血清を含む。他の実施形態では、細胞培養培地は、血清を含まなくてもよい。いずれの場合でも、細胞培養培地には、ビタミン、ミネラル及び/又は抗生物質などの種々の栄養素を補ってもよい。
【0106】
培養ステーション。
図5は、上記のマイクロ流体デバイス(例えば、
図1A~
図1Cのデバイス100)内で生体細胞を培養するために使用される、並列構成で配置された一対の例示的な培養ステーション1001及び1002を示す。説明及び開示を簡単にするため、培養ステーション1001/1002の特徴、構成要素及び構成には、本文書の他の段落で開示される又は記載される対応する特徴、構成要素及び構成と同じ参照符号が付与される。各培養ステーション1001/1002は、熱的に調整された載置インターフェース1100を含み、熱的に調整された載置インターフェース1100はその上に着脱可能に載置されたマイクロ流体デバイス100を有するように構成されている。説明のため、培養ステーション1001のデバイス載置インターフェース1100はその上に載置されたマイクロ流体デバイス100を有する一方で、培養ステーション1002のデバイス載置インターフェース1100はその上に載置されたマイクロ流体デバイス100を有しない。各培養ステーション1001/1002は、各培養ステーション1001/1002の載置インターフェース1100上に着脱可能に載置されたマイクロ流体デバイス100の温度を正確に制御するように構成された熱調整システム1200(一部図示される)を含む。各培養ステーション1001/1002は、対応する載置インターフェース1100上に確実に載置されたマイクロ流体デバイス100に流動培養培地を制御可能且つ選択的に分配するように構成された培地灌流システム1300を更に含む。
【0107】
各培地灌流システム1300は、培養培地源1320に流体的に接続された入力を有するポンプ1310と、ポンプ1310の出力を灌流ライン1334と選択的に且つ流体的に接続している多位置バルブ1330と、を含む。灌流ライン1334は各載置インターフェース1100と対応付けられており、各載置インターフェース1100上に載置されたマイクロ流体デバイス100の流体進入ポート124(
図5に示されるマイクロ流体デバイス100の進入ポート124は以下で記載されるマイクロ流体デバイスカバーによって隠れている)に流体的に接続されるように構成されている。制御システム(図示せず)は、ポンプ1310及び多位置バルブ1330を選択的に動作し、それにより、制御された流量で制御された時間にわたり、選択的に、培養培地を培養培地源1320から灌流ライン1334に流すように構成されている。より具体的には、制御システムは、以下に更に記載するように、オンオフデューティサイクル及び流量に従い、灌流ライン1334を通じて培養培地の断続的な流れを提供するように、好ましくはプログラムされている、又はオペレータの入力を通じてプログラムされてもよい。オンオフデューティサイクル及び/又は流量は、少なくとも一部、ユーザインターフェース(図示せず)を介して受信した入力を基にしてもよい。
【0108】
図6を更に参照すると、マイクロ流体デバイス載置インターフェース1100は、載置インターフェース1100上に載置されたマイクロ流体デバイスを少なくとも部分的に密閉するように構成されたマイクロ流体デバイスカバー1110(
図6の1110a)を含み得る。載置インターフェース上のマイクロ流体デバイスを密閉することによって、マイクロ流体デバイスカバー1110は、載置インターフェース1100上のマイクロ流体デバイスの適切な位置決めを容易にすることができる及び/又はマイクロ流体デバイスが載置インターフェース1100に対して確実に保持されるようにすることができる。
図5、
図6及び
図8で示されるマイクロ流体デバイスカバー1110aは(それぞれ、対応するねじの対によって)その対応する載置インターフェース1100に固定されている。
図5及び
図8では、培養ステーション1001の載置インターフェース1100のマイクロ流体デバイスカバー1110aはマイクロ流体デバイス100を密閉している。示されるように、遠位端コネクタ1134はマイクロ流体デバイスカバー1110aに結合することができ、マイクロ流体デバイスカバー1110aとともに、灌流ライン1334を受け入れ、マイクロ流体デバイスカバー1110aによって密閉された(例えば、適切に配置され、確実に保持された)、載置されたマイクロ流体デバイス100の流体進入ポート124に流体的に接続するように構成されている。例として、マイクロ流体デバイスカバー1110a及び/又は遠位端コネクタ1134は、灌流ライン1334をデバイス100のマイクロ流体回路132に流体的に接続するために、灌流ラインの遠位端1334とマイクロ流体デバイス100の各流体進入ポート124との間に圧力嵌合、摩擦嵌合、又は別の種類の流体密接続を形成するように構成された1つ又は複数の特徴を含んでもよい。
【0109】
廃棄物ライン1344もまた、載置インターフェース1100と対応付けることができる。例えば、
図5及び
図6に示すように、廃棄物ライン1344を、マイクロ流体デバイスカバー1110aに結合された近位端コネクタ1144を介して、マイクロ流体デバイスカバー1110aに接続することができる。近位端コネクタ1144は、マイクロ流体デバイス100がマイクロ流体デバイスカバー1110aによって密閉されている(例えば、適切に配置され、確実に保持されている)とき、マイクロ流体デバイスカバー1110aの構成と併せて、廃棄物ライン1344の近位端がマイクロ流体デバイス100の流体放出ポート124(
図5ではマイクロ流体デバイスカバー1110aによって隠れている)に流体的に接続されるように構成することができる。例として、各マイクロ流体デバイスカバー1110aは、廃棄物ライン1344をマイクロ流体デバイス100のマイクロ流体回路132に流体的に接続するために、廃棄物ライン1344の近位端とマイクロ流体デバイス100の流体放出ポート124との間に圧力嵌合、摩擦嵌合、又は別の種類の流体密接続を形成するように構成された1つ又は複数の特徴を含んでもよい。廃棄物ライン1344の遠位端は廃棄物コンテナ1600に接続することができる及び/又は流体的に結合することができる。
図5に示されるように、培養ステーション1001と培養ステーション1002は共通の廃棄物コンテナ1600を共用している。しかしながら、各培養ステーション1001/1002は独自の廃棄物コンテナ1600を有してもよいことは理解すべきである。
【0110】
更に
図7を参照すると、載置インターフェース1100は金属基板1150を含み得る。金属基板1150は、載置インターフェース1100上に載置されたマイクロ流体デバイス100の略平坦な金属底面(図示せず)と熱的に結合するように構成された略平坦な上面を含んでもよい。フレーム1102が基板1150の表面の近位側に取り付けられ又は配置されて、マイクロ流体デバイス100の載置領域を画定することができる。金属基板1150は、銅などの高度の熱伝導率を有する金属を含み得る。ある実施形態では、金属は黄銅又は青銅などの銅合金であり得る。
【0111】
図8に最も良く見えるように、マイクロ流体デバイスカバー1110aは窓1104を含み得る。窓1104は、(
図7のフレーム1102内の)載置インターフェース基板1150上に載置されているとともにマイクロ流体デバイスカバー1110aによって確実に密閉されているマイクロ流体デバイス100の撮像を可能にするためのものである。
図5~
図8に示すように、載置インターフェース1100は、蓋1500を更に含むことができる。蓋1500は、マイクロ流体デバイスカバー1110aの窓1104を通じたマイクロ流体デバイス100の撮像が行われていないとき、載置インターフェース1100のマイクロ流体デバイスカバー1110a上(例えば、窓1104上)に配置されていてもよい。示されるように、蓋1500は、光がマイクロ流体デバイスカバー1110aの窓1104を直接通過し、マイクロ流体デバイス100に入ることを実質的に妨げるような形状及び大きさとされ得る。マイクロ流体デバイス100の表面に入射する光の量を更に低減するために、蓋1500は不透明及び/又は光反射材料で構成することができる。
【0112】
更に
図9を参照すると、各熱調整システム1200は、1つ又は複数の加熱素子(図示せず)を含み得る。各加熱素子は、抵抗加熱器、ペルチェ熱電デバイス等とすることができ、載置インターフェース1100上に確実に載置されたマイクロ流体デバイス100の温度を制御するために、載置インターフェース1100の金属基板1150に熱的に結合することができる。加熱素子は、載置インターフェース1100の基板1150の下にある構造体1230(又はその一部)内に密閉することができる。このような構造体1230は、金属であり得る及び/又は熱を放散するように構成され得る。例えば、構造体1230は、金属冷却羽根(
図6~
図8の、隣接する培養ステーション上で最も良く見られる)を含み得る。あるいは又は加えて、熱調整システム1200は、加熱素子の温度の調整を補助し、それにより、載置インターフェース1100の基板1150及び載置インターフェース1100上に載置された任意のマイクロ流体デバイス100の温度を調整するための、ファン(
図9に示される)又は液体冷却式冷却ブロック(図示せず)などの熱放散デバイス1240を含むことができる。
【0113】
熱調整システム1200は、1つ又は複数の温度センサ1210と、任意選択的に、温度モニタ1250(図示せず)と、を更に含むことができる。温度モニタ1250は、載置インターフェース1100又は載置インターフェース1100上に載置されたマイクロ流体デバイス100の温度を表示するように構成されている。温度センサ1210は、例えば、サーミスタであり得る。1つ又は複数の温度センサ1210は、マイクロ流体デバイス100が確実に載置された載置インターフェース1100の温度を監視することによってマイクロ流体デバイス100の温度を間接的に監視することができる。したがって、例えば、温度センサ1210は載置インターフェース1100の金属基板1150に埋設され得る又は熱的に結合され得る。あるいは、温度センサ1210は、例えば、マイクロ流体デバイス100の表面と熱的に結合することによってマイクロ流体デバイス100の温度を直接監視することができる。
図6及び
図7に示すように、温度センサ1210は、載置インターフェース1100の基板1150内の開口部(又は穴)を通じてマイクロ流体デバイス100の底面に直接接触することができる。前述の例のいずれかと組み合わせてもよい更に別の代替形態のように、培養ステーション1001/1002は、内蔵温度センサ(例えば、サーミスタ)を含むマイクロ流体デバイス100とともに動作することができ、熱調整システム1200はマイクロ流体デバイス100から温度データを取得することができる。熱調整システム1200は、したがって、載置インターフェース1100上に載置されたマイクロ流体デバイス100の温度を測定することができる。載置インターフェース1100及び/又はマイクロ流体デバイス100の温度がどう測定されるかを問わず、温度データは、熱放散デバイス1240を含むシステムのために1つ又は複数の加熱素子により生成される熱、このような熱の放散の速度を調整するために、熱調整システム1200によって使用され得る。
【0114】
図10は、参照符号1000によって示される、マイクロ流体デバイス100(例えば、
図1A~
図1Cのデバイス100)内で生体細胞を培養するための培養ステーションの別の実施形態を示す。この実施形態では、載置インターフェース1100よりも少数のポンプ1310があり、したがって、ポンプ1310を、複数の載置インターフェース1100(及び載置インターフェース1100上に載置されたマイクロ流体デバイス100)に培養培地を提供するように構成することが必要である。
図10に示すように、培養ステーション1000は1つ又は複数の支持物1140(
図10では1140aの符号が付されている)を含み得る。1つ又は複数の支持物1140はそれぞれ、複数(例えば、2、3、4、5、6、7、8、9、10又はこれより多い)の熱的に調整されたマイクロ流体デバイス載置インターフェース1100を有し、各載置インターフェース1100は、その上に着脱可能に載置されたマイクロ流体デバイス100を有するように構成されている。支持物1140aは、例えば、トレーであり得る。
【0115】
図10に示される培養ステーション1000などの培養ステーションは、熱調整システム1200(図示せず)を更に含むことができる。熱調整システム1200は、各載置インターフェース1100及び載置インターフェース1100上に着脱可能に載置された任意のマイクロ流体デバイス100の温度を正確に制御するように構成されている。熱調整システム1200は、2つ以上の載置インターフェース1100によって共用されてもよい1つの加熱素子を含むことができる。あるいは、熱調整システム1200は、それぞれが載置インターフェース1100の部分集合に熱的に結合された2つ以上の加熱素子を含んでもよい(例えば、熱調整システム1200は、各載置インターフェース1100のための各加熱素子を含むことができ、それにより、各載置インターフェース1100の温度の独立制御を可能にする)。上述のように、各加熱素子は、抵抗加熱器、ペルチェ熱電デバイス等であってもよく、支持物1140aの少なくとも1つの載置インターフェース1100を熱的に結合することができる。例えば、各加熱素子は培養ステーション1000の少なくとも1つの載置インターフェース1100(例えば、2つ以上又は全ての載置インターフェース1100)に熱的に結合することができる。加熱素子(単数又は複数)は、載置インターフェース1100の各基板1150との接触により載置インターフェースに熱的に結合することができる。熱調整システム1200は、また、支持物1140aに結合された及び/又は支持物1140a内に埋設された少なくとも1つの温度センサ1210を含むことができる。
図5の培養ステーション1001/1002に関連して上で記載したように、熱調整システム1200は、その代わりに(又はそれに加えて)、マイクロ流体デバイス100に結合された及び/又はマイクロ流体デバイス100内に埋設されたセンサから温度データを受信することができる。温度データ源を問わず、熱調整システム1200はこのようなデータを使用して、加熱素子(単数又は複数)によって生成される熱の量を調整する(例えば、増加又は減少する)ことができる及び/又は冷却デバイス(例えば、ファン又は液体冷却式冷却ブロック)を調整することができる。
【0116】
図10に示される培養ステーション1000などの培養ステーションは、また、培地灌流システム1300を含むことができる。培地灌流システム1300は、支持物1140aの載置インターフェース1100のうちの1つに確実に載置されたマイクロ流体デバイス100に流動培養培地1320を制御可能且つ選択的に分配するように構成されている。培地灌流システム1300は、1つ又は複数の(例えば、一対の)ポンプ1310を含むことができ、各ポンプ1310は、培養培地源1320に流体的に接続された入力を有する。各多位置バルブ1330は各ポンプ1310の出力を、載置インターフェース1100と対応付けられた複数の灌流ライン1334と選択的且つ流体的に接続している。例えば、
図10の左側に示されるように、各ポンプ1310は、3つの各載置インターフェース1100と対応付けられた灌流ライン1334に流体的に接続することができる。より明確にするために灌流ライン1334(及び廃棄物ライン1344)は
図10の右側から省略されているが、
図10に示される培養ステーション1000の右側部分及び左側部分の両方に対し一組の灌流ライン1334(及び廃棄物ライン1344)が、通常、予想されることは理解すべきである。加えて、
図10には3つの灌流ライン1334が示されるものの、異なる数(例えば、2つ、4つ、5つ、6つ等)があり得る。したがって、培地灌流システム1300は、培養ステーション1000の全ての載置インターフェース1100(及びこのような載置インターフェース1100上に載置されたマイクロ流体チップ100)(又は各支持物1140と対応付けられた全ての載置インターフェース1100)に培養培地を提供する1つのポンプ1310を含むことができる。各灌流ライン1334は、各載置インターフェース1100上に載置されたマイクロ流体デバイス100の流体進入ポート124に流体的に接続されるように構成されている(
図10に示されるデバイス100の進入ポート124は以下で記載されるデバイスカバーによって隠れている)。制御システム(図示せず)は、各ポンプ1310及びバルブ1330を選択的に動作し、それにより、制御された流量で制御された時間にわたり、選択的に、培養培地を培養培地源1320から対応する灌流ライン1334に流すように構成されている。より具体的には、制御システムは、オンオフデューティサイクル及び流量に従い、対応する灌流ライン1334を通じて培養培地の断続的な流れを提供するように、好ましくはプログラムされている又はオペレータの入力を通じてプログラムされてもよい。オンオフデューティサイクル及び/又は流量は、少なくとも一部、ユーザインターフェース(図示せず)を介して受信した入力を基にしてもよい。制御システムは、培養培地の流れを1つ以下の灌流ライン1334を通じて一度に提供するようにプログラムされている若しくはプログラムされてもよい、又はそれ以外で構成されている若しくは構成されてもよい。更に以下で記載されるように、例えば、制御システムは、培養培地の流れを灌流ライン1334のそれぞれに連続して提供することができる。制御システムは、その代わりに、培養培地の流れを2つ以上の灌流ライン1334を通じて同時に提供するようにプログラムされてもよい又はそれ以外で構成されてもよい。
【0117】
種々の実施形態では、例示的な培養ステーション(例えば、培養ステーション1000/1001/1002)の載置インターフェース1100上に載置されたマイクロ流体デバイス100のマイクロ流体回路132のフロー領域への培養培地の流れは、定期的に約10秒~約120秒間発生することが好ましい。以下の範囲を含む他の「流れオン」の時間も使用してよい:約10秒~約20秒、約10秒~約30秒、約10秒~約40秒、約20秒~約30秒、約20秒~約40秒、約20秒~約50秒、約30秒~約40秒、約30秒~約50秒、約30秒~約60秒、約45秒~約60秒、約45秒~約75秒、約45秒~約90秒、約60秒~約75秒、約60秒~約90秒、約60秒~約105秒、約75秒~約90秒、約75秒~約105秒、約75秒~約120秒、約90秒~約120秒、約90秒~約150秒、約90秒~約180秒、約2分~約3分、約2分~約5分、約2分~約8分、約5分~約8分、約5分~約10分、約5分~約15分、約10分~約15分、約10分~約20分、約10分~約30分、約20分~約30分、約20分~約40分、約20分~約50分、約30分~約40分、約30分~約50分、約30分~約60分、約45分~約60分、約45分~約75分、約45分~約90分、約60分~約75分、約60分~約90分、約60分~約105分、約75分~約90分、約75分~約105分、約75分~約120分、約90分~約120分、約90分~約150分、約90分~約180分、約120分~約180分、及び約120分~約240分。
【0118】
他の実施形態では、例示的な培養eステーション(例えば、培養ステーション1000/1001/1002)の載置インターフェース1100上に載置されたマイクロ流体デバイス100のマイクロ流体回路132のフロー領域への培養培地の流れは、約5秒~約60分間定期的に停止される。他の可能な「流れオフ」範囲には以下を含む:約5分~約10分、約5分~約20分、約5分~約30分、約10分~約20分、約10分~約30分、約10分~約40分、約20分~約30分、約20分~約40分、約20分~約50分、約30分~約40分、約30分~約50分、約30分~約60分、約45分~約60分、約45分~約75分、約45分~約90分、約60分~約75分、約60分~約90分、約60分~約105分、約75分~約90分、約75分~約105分、約75分~約120分、約90分~約120分、約90分~約150分、約90分~約180分、約120分~約180分、約120分~約240分、及び約120分~約360分。
【0119】
いくつかの実施形態では、培地灌流システム1300の制御システムは、複数工程プロセスを実施するようにプログラムすることができ、複数工程プロセスには、第1の時間にわたって、培養培地を、載置インターフェース1100上に確実に載置された第1のマイクロ流体デバイス100に提供する(又は「灌流する」)一方で、培養培地を、同様にそれぞれ載置インターフェース1100上に確実に載置された第2及び第3のマイクロ流体デバイス100には提供しない工程と;第2の時間(第1の時間に等しい時間であり得る)にわたって、第2のマイクロ流体デバイス100を灌流する一方で、培養培地を、第1及び第3のマイクロ流体デバイス100には提供しない工程と;第3の時間(第1及び/又は第2の時間に等しい時間であり得る)にわたって、第3のマイクロ流体デバイス100を灌流する一方で、培養培地を、第1及び第2のマイクロ流体デバイス100には提供しない工程と;前述の工程セットをn回繰り返す工程であって、nは0又は正整数に等しい、工程と、を含む。最初の3工程が実施されるそれぞれの回は、「サイクル」又は「デューティサイクル」と考えることができ、この最中、第1、第2及び第3のマイクロ流体デバイス100のそれぞれが「流れオン」の期間と「流れオフ」の期間を経る。第1、第2及び第3の時間のそれぞれが全て60秒に等しい場合、各マイクロ流体デバイス100は3分の継続時間にわたって33%のデューティサイクルを経る。培地灌流システム1300の1つのポンプ1310によって灌流されるマイクロ流体の数が増加するにつれて、デューティサイクルは減少し、継続時間は増加する。いくつかの実施形態では、オンオフデューティサイクルは、約3分~約60分(例えば、約3分~約6分、約4分~約8分、約5分~約10分、約6分~約12分、約7分~約14分、約8分~約16分、約9分~約18分、約10分~約20分、約15分~約20、25若しくは30分、又は約30分~約40、50若しくは60分)の合計継続時間を有してもよい。別の実施形態では、オンオフデューティサイクルは、約5分~約4時間のいずれに変更することもできる。いくつかの実施形態では、前述のプロセスは、n=0、1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50又はこれを超える繰り返しにおいて実施することができる。したがって、プロセスの合計継続時間は、各デューティサイクルの合計継続時間によっては数時間又は数日かかる場合がある。更に、プロセスは、一旦完了すると、新たなデューティサイクルを即座に開始することができる。例えば、最初のデューティサイクルは比較的遅い速度の灌流(例えば、約0.001マイクロリットル/秒~約0.01マイクロリットル/秒)を含むことができ、2番目のデューティサイクルは比較的速い速度の灌流(例えば、約0.1マイクロリットル/秒超を含むことができる)。このような交互のデューティサイクルが繰り返し実施され得る(例えば、サイクル1に続きサイクル2、その後、これを繰り返す)。
【0120】
培養培地は、所定の及び/又はオペレータが選択した流量に従い、マイクロ流体デバイス100のフロー領域内に流され得る。流量は、約0.01マイクロリットル/秒~約5.0マイクロリットル/秒である。他の可能な範囲としては、約0.001マイクロリットル/秒~約1.0マイクロリットル/秒、約0.005マイクロリットル/秒~約1.0マイクロリットル/秒、約0.01マイクロリットル/秒~約1.0マイクロリットル/秒、約0.02マイクロリットル/秒~約2.0マイクロリットル/秒、約0.05マイクロリットル/秒~約1.0マイクロリットル/秒、約0.08マイクロリットル/秒~約1.0マイクロリットル/秒、約0.1マイクロリットル/秒~約1.0マイクロリットル/秒、約0.1マイクロリットル/秒~約2.0マイクロリットル/秒、約0.2マイクロリットル/秒~約2.0マイクロリットル/秒、約0.5マイクロリットル/秒~約2.0マイクロリットル/秒、約0.8マイクロリットル/秒~約2.0マイクロリットル/秒、約1.0マイクロリットル/秒~約2.0マイクロリットル/秒、約1.0マイクロリットル/秒~約5.0、約1.5マイクロリットル/秒~約5.0マイクロリットル/秒、約2.0マイクロリットル/秒~約5.0マイクロリットル/秒、約2.5マイクロリットル/秒~約5.0マイクロリットル/秒、約2.5マイクロリットル/秒~約10.0マイクロリットル/秒、約3.0マイクロリットル/秒~約10.0マイクロリットル/秒、約4.0マイクロリットル/秒~約10.0マイクロリットル/秒、約5.0マイクロリットル/秒~約10.0マイクロリットル/秒、約7.5マイクロリットル/秒~約10.0マイクロリットル/秒、約7.5マイクロリットル/秒~約12.5マイクロリットル/秒、約7.5マイクロリットル/秒~約15.0マイクロリットル/秒、約10.0マイクロリットル/秒~約15.0マイクロリットル/秒、約10.0マイクロリットル/秒~約20.0マイクロリットル/秒、約10.0マイクロリットル/秒~約25.0マイクロリットル/秒、約15.0マイクロリットル/秒~約20.0マイクロリットル/秒、約15.0マイクロリットル/秒~約25.0マイクロリットル/秒、約15.0マイクロリットル/秒~約30.0マイクロリットル/秒、約20.0マイクロリットル/秒~約30.0マイクロリットル/秒、約20.0マイクロリットル/秒~約40.0マイクロリットル/秒、約20.0マイクロリットル/秒~約50.0マイクロリットル/秒マイクロリットル/秒が挙げられる。
【0121】
上述のように、マイクロ流体デバイス100内のマイクロ流体回路のフロー領域は2つ以上の流路を含むことができる。したがって、各個々の流路を通る培地の流量は、マイクロ流体デバイス全体を通る培地の流量の約1/mであることが予想される。式中、m=マイクロ流体デバイス100内の流路の数である。ある実施形態では、培養培地は、2つ以上の流路のそれぞれに、平均流量約0.005マイクロリットル/秒~約2.5マイクロリットル/秒で流され得る。更なる範囲が可能であり、例えば、本明細書中に開示される範囲の終点に1/mを掛けることで容易に算出することができる。
【0122】
図10及び
図11に示される培養ステーションの実施形態を参照すると、各マイクロ流体デバイス載置インターフェース1100は、マイクロ流体デバイスカバー1110(1110bとして示される)を含み得る。マイクロ流体デバイスカバー1110は、支持物1140aの各載置インターフェース1100上に載置されたマイクロ流体デバイス100を少なくとも部分的に密閉するように構成されている。マイクロ流体デバイスカバー1110bは(例えば、示されるようにそれぞれ、各クランプ1170によって)各載置インターフェース1100に固定されており、それぞれ、各マイクロ流体デバイス100を密閉することができる。載置インターフェース1100と対応付けられた対応する灌流ライン1334の遠位端コネクタ1134はマイクロ流体デバイスカバー1110bに結合することができ、マイクロ流体デバイスカバー1110bは、マイクロ流体デバイス100が各マイクロ流体デバイスカバー1110bによって密閉される(例えば、適切に配置され、確実に保持される)と、対応する灌流ライン1334が、載置されたマイクロ流体デバイス100の流体進入ポート124に流体的に接続されるように構成することができる。例として、灌流ライン1334をデバイス100のマイクロ流体回路132に流体的に接続するために、各マイクロ流体デバイスカバー1110bは、対応する灌流ライン1334の遠位端とマイクロ流体デバイス100の各流体進入ポート124との間に圧力嵌合、摩擦嵌合、又は別の種類の流体密接続を形成するように構成された1つ又は複数の特徴を含んでもよい。
図10~
図12及び
図14のマイクロ流体デバイスカバー1110bは窓を有さず、したがって、
図8に示すように、窓1104を含むデバイスカバー1110aの代わりに使用してもよい代替的なカバーである。しかしながら、
図10~
図12及び
図14のマイクロ流体デバイスカバー1110bは、(例えば、培養中にマイクロ流体デバイス100の撮像が所望される場合)窓を含むように容易に設計することができる。
【0123】
各廃棄物ライン1344は各載置インターフェース1100と対応付けることができる。例えば、各廃棄物ライン1344は近位端コネクタ1144を介して各マイクロ流体デバイスカバー1110bに接続することができる。したがって、廃棄物ライン1344は、マイクロ流体デバイス100がマイクロ流体デバイスカバー1110bによって密閉される(例えば、クランプ1170などによって適切に配置され、確実に保持される)と、マイクロ流体デバイスカバー1110bの構成と併せて、廃棄物ライン1440の近位端がマイクロ流体デバイス100の流体放出ポート124に流体的に接続されるように構成することができる(
図11ではカバー1110bによって隠れている)。例として、廃棄物ライン1344をデバイス100のマイクロ流体回路132に流体的に接続するために、各マイクロ流体デバイスカバー1110bは、各廃棄物ライン1344の遠位端とマイクロ流体デバイス100の各流体放出ポート124との間に圧力嵌合、摩擦嵌合、又は別の種類の流体密接続を形成するように構成された1つ又は複数の特徴を含んでもよい。各廃棄物ラインの遠位端は廃棄物コンテナ1600に接続することができる及び/又は廃棄物コンテナ1600に流体的に結合することができる。
【0124】
更に
図12を参照すると、各載置インターフェース1100は金属基板1150を含み得る。金属基板1150は、各載置インターフェース1100上に載置されたマイクロ流体デバイス100の略平坦な金属底面(図示せず)と熱的に結合するように構成された略平坦な上面を有してもよい。支持物1140aは、各金属基板1150を露出する複数の窓1160a(例えば、
図10に示すように6つの窓1160a。しかし、この数は6つより少なくても多くてもよい)を有する上面1142aを含み得る。加えて、トレー1140aの上面1142aは、開口部1165a(
図11)を形成するような形状及び大きさにされ得る。開口部1165aは、(例えば、指を開口部1165a内に配置することによる)ユーザによる載置インターフェース1100へのマイクロ流体デバイス100の配置及び/又は載置インターフェース1100からのマイクロ流体デバイス100の取り出しを容易にするように構成されている。示されるように、支持物1140aの上面1142a内の開口部1165aは、各窓1160a内に互いに対し対角線上に配置することができる。
【0125】
図11~
図15を更に参照すると、各載置インターフェース1100はアライメントピン1154を含み得る。アライメントピン1154は、載置インターフェース1100の各窓1160a内におけるマイクロ流体デバイス100及び/又はマイクロ流体デバイスカバー1110bの適切な配向及び配置においてユーザを補助するように構成されている。アライメントピン1154は、基板1150上の、通常、窓1160a/1160bの隅に配置することができる。各対応するデバイスカバー1110bは、各アライメントピン1154に接触する、係合する及び/又は面するように構成されたテーパ状の端隅部(
図11及び
図14においてより見える)、ループ、フック等などの配向要素1111を更に含むことができ、載置インターフェース1100の各窓1160a/1160b内のデバイスカバー1110bの適切な配向及び配置においてユーザを更に補助することができる。
【0126】
各載置インターフェース1100は、追加のアライメント機能を更に含み得る。載置インターフェース1100をはっきりと露出させるためにマイクロ流体デバイスカバー1110bが取り外されている
図12及び
図15に示すように、1つ又は複数の係合ピン1152(例えば、2つが示されているが、この数は2を超えることも2未満とすることもできる)を使用して、載置インターフェース1100の各窓1160a/1160b内におけるマイクロ流体デバイス100及び/又はデバイスカバー1110bの適切な配置を更に補助することができる。示され得るように、係合ピン1152は、金属基板1150上の、各窓1160a/1160bの対向する隅に配置することができる(すなわち、互いに対し対角線上に配置される)。係合ピン1152は、マイクロ流体デバイスカバー1110b(
図14)内の係合開口部1112の各対と、及びマイクロ流体デバイス100(
図15)の係合開口部113の各対と接触し、係合するように構成されている。
図11及び
図13により良く示されるように、係合開口部1112の対は、各マイクロ流体デバイスカバー1110bの対向する隅に配置されている(又は互いに対し対角線上に配置されている)。
図15により良く示されるように、マイクロ流体デバイス100の係合開口部113の対は、デバイス100の対向する隅に配置されている(又は互いに対し対角線上に配置されている)。
【0127】
当業者であれば、載置インターフェース1100のアライメントピン1154及び/又は係合ピン1152、マイクロ流体デバイスカバー1110bの配向要素1111及び係合開口部1112、マイクロ流体デバイス100の並びに係合開口部113の種々の配置及び構成を使用して、マイクロ流体デバイス100及び/又はマイクロ流体デバイスカバー1110bの適切なアライメントを容易にするという目的を達成できることを理解しよう。例として、アライメントピン1154及び係合ピン1152は、それぞれ、対応する配向要素1111並びに係合開口部1112及び113と接触し、係合するように適合された、円形、楕円形、矩形、円筒形(示されるような)、又は多面形、又は不規則形状を含むがこれらに限定されない種々の形状並びに/又は角度を有することができる。
【0128】
図13は、例示的な培養ステーション(例えば、培養ステーション1000)において使用することができる別の支持物1140(
図10の支持物1140aと区別するために1140bの符号が付されている)を示す。支持物は、5つの熱的に調整された載置インターフェース1100を含み、
図10に示される培養ステーション1000の支持物1140aの代わりに用いることができる。支持物1140bは1つのポンプ1310又は複数のポンプ1310(例えば、
図10に示すように2つ)を有する培地灌流システム1300において使用してもよいことは理解されよう。更に、培養ステーション1000は2つ以上の支持物1140a/1140bを含むことができ、そのそれぞれは、各ポンプ1310と対応付けられてもよい。トレー1140bは、各金属基板1150を露出させる5つの窓1160bを有する上面1142bを含む。説明のために、
図13は、その対応する基板1150を露出している5つの窓1160bのうちの4つを示し、(右側の)第5の窓1160bの基板1150及び各マイクロ流体デバイス100はマイクロ流体デバイスカバー1110bによってカバーされている。トレー1140bの上面1142bは、各開口部1165bを形成するための形状及び大きさにされている。各開口部1165bは、(例えば、指を開口部1165b内に配置することによる)ユーザによるマイクロ流体デバイス100の配置及び/又は取り出しを容易にするように構成されている。トレー1140bの上面1142bの開口部1165bは、
図13~
図15に示すように、各窓1160b内において互いに対し並列であることを含む、種々の相対的な配向で配置することができる。
【0129】
使用する際、
図13の熱的に調整された載置インターフェース1110は、各載置されたマイクロ流体デバイス100を固定するように構成された対応するマイクロ流体デバイスカバー1110bを含むことは理解されよう。
図10~
図15に示すように、マイクロ流体デバイスカバー1110bの固定機構はクランプ1170であり得る。しかしながら、任意選択的に、圧縮ばねと併せて、例えば、ねじ(培養ステーション1001/1002のマイクロ流体デバイスカバー1110aに関連して記載したように)を含む任意の適切な固定機構をクランプ1170の代わりに使用することができる。
【0130】
図14は、マイクロ流体デバイスカバー1110bを示す、
図13に示されるトレー1140bの熱的に調整された載置インターフェース1100のうちの1つを示す。各マイクロ流体デバイスカバー1110bは、トレー1140bの各載置インターフェース1100上に載置されたマイクロ流体デバイス100を少なくとも部分的に密閉するように構成されている。デバイスカバー1110bは、トレー1140bの上面1142bによって形成された各窓1160b内に配置されている。この実施形態では、デバイスカバー1110bは、(例えば、指を開口部1165b内に配置することによる)ユーザによるデバイスカバー1110b及びマイクロ流体デバイス100の配置及び/又は取り出しを可能にするために、固定されない(すなわち、各クランプ1170は係合されない)。
【0131】
図15は、載置インターフェース1100上に載置されたマイクロ流体デバイス100を示すためにマイクロ流体デバイスカバー1110bを載置インターフェース1100から取り外した
図14の載置インターフェース1100を示す。マイクロ流体デバイスカバー1110bを取り外すことによって、各載置インターフェース1100上に載置されたマイクロ流体デバイス100が露出し、更に、係合ピン1152を露出する。トレー1140aの上面1142aは、各開口部1165bを形成するための形状及び大きさにされている。各開口部1165bは、(例えば、指を開口部1165b内に配置することによる)各窓1160bへのマイクロ流体デバイス100の配置及び/又は各窓1160bからのマイクロ流体デバイス100の取り出しを可能にするように構成されている。
【0132】
本発明の各培養ステーション1000は、加えて、1つ又は複数の載置インターフェース1100に載置されたマイクロ流体デバイス100の各灌流及び/又は温度履歴をメモリに記録するように構成され得る。例えば、培養ステーションはプロセッサ及びメモリを含んでもよく、プロセッサ及びメモリのいずれか又は両方をプリント回路基板に組み込んでもよい。あるいは、メモリはマイクロ流体デバイス100に組み込んでもよい又は他の手法で結合してもよい。培養ステーション1000は、付加的に(任意選択的に)、撮像及び/又は検出装置(図示せず)を含んでもよい。撮像及び/又は検出装置は、培養ステーションに結合されている又は培養ステーション1000と動作的に対応付けられており、マイクロ流体デバイス100内の微小物体を表示する及び/若しくは撮像する、並びに/又は載置インターフェース1100のうちの1つに載置されたマイクロ流体デバイス100内の生物学的活動を検出するように構成されている。得られたデータは処理されてもよい並びに/又は上述したように、培養ステーション1000及び/若しくはマイクロ流体デバイス100内に配置されたメモリに記憶されてもよい。
【0133】
培養ステーション1000などの例示的な培養ステーションは、また、載置インターフェース1100上に載置されたマイクロ流体デバイス100を培養のために最適に配置することができるように、載置インターフェース1100が軸線上で傾斜することを可能にするように構成することができる。いくつかの実施形態では、マイクロ流体デバイス100は、例えば、培養ステーション1000に作用する重力に垂直な面に対して約1°~約10°(例えば、約1°~約5°又は約1°~約2°)傾斜させることができる。あるいは、載置インターフェース1100は、少なくとも約45°、60°、75°、90°又はこれを更に超える角度(例えば、少なくとも約105°、120°又は135°)まで傾斜するように構成することができる。いくつかの実施形態では、複数の載置インターフェース1100を共通の軸線上で同時に傾斜させることができる。例えば、
図10~
図15のいずれかの支持物1140a/1140bは、支持物1140a/1140b上の各載置インターフェースが同時に傾斜するように、軸線(例えば、長軸線)の周りを回転するように構成することができる。載置インターフェース1100が個々に又は群として傾斜するかを問わず、傾斜した載置インターフェースを特定の位置に(例えば、垂直に配置された載置インターフェース1100上に載置されたマイクロ流体デバイス100とともに)ロックすることが望ましい場合がある。したがって、載置インターフェース1100又は支持物1140a/1140bは、載置インターフェース1100を傾斜位置に保持するためのロック要素を含み得る。載置インターフェース1100を特定の傾斜角度に位置決めするのを容易にするために、水準器を、載置インターフェース1100又は載置インターフェース1100を含む支持物1140a/1140bの表面1142a/1142b上に載置することができる。例えば、水準器は、載置インターフェース1100又は支持物1140a/1140bが既定の角度に傾斜したときのみに「水平になる」(すなわち、培養ステーション1000に作用する重力に垂直な面に平行する)ように載置することができる。
【0134】
実施形態を示し、記載してきたが、本明細書中に開示される発明の概念の範囲から逸脱することなく種々の修正を施してもよい。本発明(単数又は複数)は、したがって、以下の特許請求の範囲に定義される場合の除き、限定されるべきではない。
【手続補正書】
【提出日】2022-12-22
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
マイクロ流体デバイスに含まれる生体細胞を培養するための培養ステーションであって、
複数の載置インターフェースであって、それぞれが、熱伝導性であり、当該載置インターフェース上に着脱可能にマイクロ流体デバイスを載置されるような寸法を有して構成されている、複数の載置インターフェースと、
複数の取り付け機構であって、それぞれが、前記載置インターフェースの対応する1つと関連付けられており、それぞれが、マイクロ流体デバイスカバーを備え、前記マイクロ流体デバイスカバーが、前記対応する載置インターフェース上の1つのマイクロ流体デバイスを少なくとも部分的に囲み、固定する、複数の取り付け機構と、
複数の加熱素子を備える熱調整システムであって、それぞれの加熱素子が、前記載置インターフェースの対応する1つに熱的に結合し、前記載置インターフェースの対応する1つの温度を制御するよう構成されている、熱調整システムと、
複数のポンプと複数の灌流ラインを備える培地灌流システムであって、それぞれのポンプが、前記載置インターフェースの対応する1つと関連付けられており、それぞれのポンプが、培養培地源に流体的に接続された入力と、出力を有し、それぞれの灌流ラインが、前記載置インターフェースの対応する1つと、前記ポンプの対応する1つと関連付けられており、それぞれの灌流ラインの近位端が、前記対応するポンプの前記出力に流体的に接続されており、それぞれの灌流ラインの遠位端が、前記対応する載置インターフェースに関連付けられた前記マイクロ流体デバイスカバーに結合されており、前記対応する載置インターフェース上に載置されたマイクロ流体デバイスの流体進入ポートに流体的に接続されるよう構成されている、培地灌流システムと、
を備え、
前記培地灌流システムが、前記複数の灌流ラインを介して、流動培養培地を選択的に分配するよう構成されている、
培養ステーション。
【請求項2】
少なくとも4つの載置インターフェースを含む、請求項1に記載の培養ステーション。
【請求項3】
前記培地灌流システムが、プログラム可能な制御システムをさらに備え、
前記制御システムが、コントローラーとメモリを備え、
前記制御システムが、前記複数のポンプを選択的に動作させることによって、制御された流量で制御された時間にわたり、前記培養培地を前記複数の灌流ラインに選択的に流すように構成されている、
請求項1に記載の培養ステーション。
【請求項4】
前記プログラム可能な制御システムが、前記複数のポンプを選択的に動作させるように構成されており、それにより、ユーザインターフェースを介して受信した入力に少なくとも部分的に基づくオンオフデューティサイクル及び/又は流量に従い、前記灌流ラインにわたる、前記培養培地の断続的な流れを選択的に生じさせる、
請求項3に記載の培養ステーション。
【請求項5】
複数の廃棄物ラインをさらに備え、
それぞれの廃棄物ラインが、前記載置インターフェースの対応する1つと関連付けられており、
それぞれの廃棄物ラインが、前記対応する載置インターフェースに関連付けられた前記マイクロ流体デバイスカバーに結合された近位端を有し、
前記マイクロ流体デバイスカバーの構成と連携して、前記廃棄物ラインの前記近位端が、前記対応する載置インターフェース上に載置された前記マイクロ流体デバイスの流体放出ポートに流体的に接続できるように構成されている、
請求項1に記載の培養ステーション。
【請求項6】
それぞれのマイクロ流体デバイスカバーが1つ又は複数の特徴を含み、前記1つ又は複数の特徴が、前記それぞれの灌流ラインの前記近位端と、前記マイクロ流体デバイスの前記流体進入ポートと、の間に、圧力嵌合、摩擦嵌合、又は別の種類の流体密接続を形成するように構成されている、請求項1に記載の培養ステーション。
【請求項7】
それぞれのマイクロ流体デバイスカバーが1つ又は複数の特徴を含み、前記1つ又は複数の特徴が、前記それぞれの廃棄物ラインの前記近位端と、前記マイクロ流体デバイスの前記流体放出ポートと、の間に、圧力嵌合、摩擦嵌合、又は別の種類の流体密接続を形成するように構成されている、請求項5に記載の培養ステーション。
【請求項8】
前記熱調整システムのそれぞれの加熱素子が、抵抗加熱器を備える、請求項1から7のいずれか1項に記載の培養ステーション。
【請求項9】
それぞれの載置インターフェースが略平坦な金属基板を備える、請求項1から7のいずれか1項に記載の培養ステーション。
【請求項10】
前記略平坦な金属基板が底面を有し、前記底面が、前記熱調整システムのそれぞれの加熱素子と熱的に結合するように構成されている、請求項9に記載の培養ステーション。
【請求項11】
前記熱調整システムが複数の温度センサをさらに備え、それぞれの温度センサが、前記載置インターフェースの対応する1つのそれぞれの略平坦な金属基板に結合されている、及び/又は埋設されており、前記金属基板の温度を監視するように構成されている、請求項9に記載の培養ステーション。
【請求項12】
前記熱調整システムが、前記温度センサの1又は複数から温度データを取得するように構成されている、請求項11に記載の培養ステーション。
【請求項13】
それぞれの取り付け機構が調節可能なクランプをさらに備え、前記クランプが、前記マイクロ流体デバイスカバーに対し力を加えるように配置され構成されており、それにより、前記マイクロ流体デバイスカバーを、前記対応する載置インターフェースに固定する、請求項1から7のいずれか1項に記載の培養ステーション。
【請求項14】
それぞれの取り付け機構が圧縮ばねをさらに備え、前記圧縮ばねが、前記マイクロ流体デバイスカバーに対し力を加えるように配置され構成されており、それにより、前記マイクロ流体デバイスカバーを、前記対応する載置インターフェースに固定する、請求項1から7のいずれか1項に記載の培養ステーション。
【請求項15】
前記培養ステーションが、前記載置インターフェースのうちの1つに載置されているマイクロ流体デバイスのそれぞれの灌流及び/又は温度履歴をメモリに記録するように構成されている、請求項1から7のいずれか1項に記載の培養ステーション。
【請求項16】
前記メモリが、前記マイクロ流体デバイスに組み込まれているか、又は前記マイクロ流体デバイスに結合している、請求項15に記載の培養ステーション。
【請求項17】
前記載置インターフェースの1つ又は複数が、前記培養ステーションに作用する重力に垂直な面に対して傾斜しているか否かを示すように構成されている水準器をさらに備える、請求項1から7のいずれか1項に記載の培養ステーション。
【請求項18】
前記水準器が、前記1つ又は複数の載置インターフェースのいずれかが、前記垂直な面に対して約45°から約135°の範囲内で傾斜しているか否かを示すように構成されている、請求項17に記載の培養ステーション。
【請求項19】
撮像及び/又は検出装置をさらに備え、
前記撮像及び/又は検出装置が、当該培養ステーションに結合されているか、又は当該培養ステーションと動作的に関連付けられており、前記載置インターフェースのうちの1つに載置されているマイクロ流体デバイス内の生物学的活動を見る及び/又は撮像する及び/又は検出するように構成されており、
前記撮像及び/又は検出装置が、光検出器、光電子倍増管検出器、アバランシェ光検出器、デジタルカメラ、光センサ、電荷結合デバイス、及び/又は相補性金属酸化膜半導体(CMOS)イメージャの少なくとも1つを備える、
請求項1から7のいずれか1項に記載の培養ステーション。
【請求項20】
それぞれの載置インターフェースが、少なくとも1つのアライメントピンを備え、
前記アライメントピンが、前記マイクロ流体デバイス及び/又は前記マイクロ流体デバイスカバーの配向及び配置を容易にするよう構成されており、
それぞれの載置インターフェースが、その上に前記少なくとも1つのアライメントピンが配置される表面を備える、
請求項1に記載の培養ステーション。
【請求項21】
それぞれの載置インターフェースが、基板と、窓と、を備え、
前記窓が前記基板の表面を露出させ、
前記基板の前記表面が、その上に前記少なくとも1つのアライメントピンが配置される前記表面であり、
前記少なくとも1つのアライメントピンが、前記窓の隅の近傍に配置される、
請求項20に記載の培養ステーション。
【請求項22】
それぞれのマイクロ流体デバイスカバーが、テーパ状の端隅部を備え、
前記テーパ状の端隅部が、前記アライメントピンを係合し、前記マイクロ流体デバイスカバーの配向及び配置を容易にするよう構成されている、
請求項21に記載の培養ステーション。
【請求項23】
それぞれの載置インターフェースが、それぞれの載置インターフェースの前記表面上に配置された少なくとも1つの係合ピンをさらに備え、
前記少なくとも1つの係合ピンが、マイクロ流体デバイスの係合開口部と係合するように構成されている、
請求項20に記載の培養ステーション。
【請求項24】
それぞれの載置インターフェースが、当該培養ステーションに作用する重力に垂直な面に対して少なくとも45°まで傾斜されることができる、請求項1に記載の培養ステーション。
【外国語明細書】