(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023142433
(43)【公開日】2023-10-05
(54)【発明の名称】循環装置、循環装置の制御方法
(51)【国際特許分類】
H01L 21/304 20060101AFI20230928BHJP
【FI】
H01L21/304 648G
H01L21/304 643A
【審査請求】未請求
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2022049347
(22)【出願日】2022-03-25
(71)【出願人】
【識別番号】000207551
【氏名又は名称】株式会社SCREENホールディングス
(74)【代理人】
【識別番号】100088672
【弁理士】
【氏名又は名称】吉竹 英俊
(74)【代理人】
【識別番号】100088845
【弁理士】
【氏名又は名称】有田 貴弘
(72)【発明者】
【氏名】川口 竜彦
【テーマコード(参考)】
5F157
【Fターム(参考)】
5F157AA03
5F157AB14
5F157AB33
5F157AB46
5F157AB47
5F157AB62
5F157AB72
5F157AB90
5F157AB94
5F157BB23
5F157BB24
5F157BB37
5F157BB42
5F157BB43
5F157BB66
5F157BC53
5F157BG13
5F157CD32
5F157CD33
5F157CE32
5F157CE36
5F157CF02
5F157CF04
5F157CF20
5F157CF22
5F157CF34
5F157CF42
5F157CF44
5F157CF60
5F157CF70
5F157CF74
5F157CF90
5F157CF99
5F157DB45
(57)【要約】
【課題】処理液の温度および流速を、それぞれ所望の値へ早期に到達させることが、課題である。
【解決手段】液体の温度を上昇させるときに、ポンプの速度が第1所定速度に到達するまでポンプが第1加速度で加速されたのち、ポンプの速度が第1所定速度よりも高い第2所定速度に到達するまで、ポンプが第1加速度よりも低い第2加速度で加速される。
【選択図】
図12
【特許請求の範囲】
【請求項1】
外部経路に対して液体の供給および回収を行う循環装置を制御する方法であって、前記循環装置は:
前記液体を貯留の対象とする貯留槽;
前記貯留槽から前記液体が流入する第1流入端を有し、前記液体の前記供給に用いられる第1配管;
前記第1配管において設けられ、前記液体を加熱の対象とするヒータ;
前記第1配管において設けられ、前記第1流入端に接続される吸入口と、前記ヒータに接続される吐出口とを有し、前記液体を圧出の対象とするポンプ;および
前記貯留槽へ前記液体が流出される第2流出端を有し、前記液体の前記回収に用いられる第2配管
を備え、
前記方法は、
前記液体の温度を上昇させるときに、
前記ポンプの速度が第1所定速度に到達するまで前記ポンプを第1加速度で加速させたのち;
前記ポンプの速度が前記第1所定速度よりも高い第2所定速度に到達するまで、前記ポンプを前記第1加速度よりも低い第2加速度で加速させる、
循環装置の制御方法。
【請求項2】
前記液体の温度が第1所定温度未満のときに、前記ポンプの速度が前記第1所定速度に到達するまで前記ポンプを前記第1加速度で加速させる第1工程と、
前記液体の温度が前記第1所定温度未満のときに、前記ポンプの速度が前記第1所定速度に到達すると、前記ポンプの速度を前記第1所定速度に維持する第2工程と、
前記液体の温度が前記第1所定温度以上であって、前記第1所定温度よりも高い第2所定温度以下のときに、前記ポンプの速度が前記第2所定速度に到達するまで、前記ポンプを前記第2加速度で加速させる第3工程と、
前記液体の温度が前記第1所定温度以上であって、前記第2所定温度以下のときに、前記ポンプの速度が前記第2所定速度に到達すると、前記ポンプを前記第2所定速度に維持する第4工程
を備え、
前記ポンプの速度と前記液体の温度との間には、
前記液体の温度が前記第1所定温度に到達する以前に前記ポンプが前記第1所定速度に到達し;
前記液体の温度が前記第2所定温度に到達する以前に前記ポンプが前記第2所定速度に到達する
関係がある、請求項1に記載の循環装置の制御方法。
【請求項3】
前記液体は、前記液体の温度が前記第2所定温度に到達するまで、一定の昇温速度で加熱される、請求項2に記載の、循環装置の制御方法。
【請求項4】
前記循環装置は
前記第1配管において前記ヒータを介して前記ポンプに接続された開閉弁;および
前記ヒータと前記開閉弁との間で前記第1配管に接続される端と、前記貯留槽へ前記液体が流出される第3流出端とを有する第3配管
を更に備え、
前記第1工程および前記第2工程において、前記開閉弁を閉じ、
前記液体の温度が前記第2所定温度に到達した後、前記開閉弁を開く第5工程
を更に備える、請求項2または請求項3に記載の、循環装置の制御方法。
【請求項5】
前記ポンプは磁気浮上遠心ポンプである、請求項1から請求項4のいずれか一つに記載の、循環装置の制御方法。
【請求項6】
前記液体は硫酸もしくは硫酸の希釈液である、請求項1から請求項5のいずれか一つに記載の、循環装置の制御方法。
【請求項7】
外部経路に対して液体の供給および回収を行う循環装置であって:
前記液体を貯留の対象とする貯留槽;
前記貯留槽から前記液体が流入する第1流入端を有し、前記液体の前記供給に用いられる第1配管;
前記第1配管において設けられ、前記液体を加熱の対象とするヒータ;
前記第1配管において設けられ、前記第1流入端に接続される吸入口と、前記ヒータに接続される吐出口とを有し、前記液体を圧出の対象とするポンプ;
前記貯留槽へ前記液体が流出される第2流出端を有し、前記液体の前記回収に用いられる第2配管;および
制御部
を備え、
前記制御部は、
前記液体の温度を上昇させるときに、
前記ポンプの速度が第1所定速度に到達するまで前記ポンプを第1加速度で加速させたのち;
前記ポンプの速度が前記第1所定速度よりも高い第2所定速度に到達するまで、前記ポンプを前記第1加速度よりも低い第2加速度で加速させる、循環装置。
【請求項8】
前記制御部は、
前記液体の温度が第1所定温度未満のときに、前記ポンプの速度が前記第1所定速度に到達するまで、前記ポンプを前記第1加速度で加速させ、
前記液体の温度が前記第1所定温度未満のときに、前記ポンプの速度が前記第1所定速度に到達すると、前記ポンプの速度を前記第1所定速度に維持し、
前記液体の温度が前記第1所定温度以上であって、前記第1所定温度よりも高い第2所定温度以下のときに、前記ポンプの速度が前記第2所定速度に到達するまで、前記ポンプを前記第2加速度で加速させ、
前記液体の温度が前記第1所定温度以上であって、前記第2所定温度以下のときに、前記ポンプの速度が前記第2所定速度に到達すると、前記ポンプの速度を前記第2所定速度に維持し、
前記ポンプの速度と前記液体の温度との間には、
前記液体の温度が前記第1所定温度に到達する以前に前記ポンプが前記第1所定速度に到達し;
前記液体の温度が前記第2所定温度に到達する以前に前記ポンプが前記第2所定速度に到達する
関係がある、請求項7に記載の循環装置。
【請求項9】
前記制御部は、前記ヒータに、前記液体の温度が前記第2所定温度に到達するまで一定の昇温速度で前記液体を加熱させる、請求項8に記載の循環装置。
【請求項10】
前記第1配管において前記ヒータを介して前記ポンプに接続され、少なくとも開閉可能な開閉弁;および
前記ヒータと前記開閉弁との間で前記第1配管に接続される端と、前記貯留槽へ前記液体が流出される第3流出端とを有する第3配管
を更に備え、
前記制御部は、
前記液体の温度が前記第2所定温度に到達する以前において、前記開閉弁を閉じ、
前記液体の温度が前記第2所定温度に到達して以降から、前記開閉弁を開く、請求項8または請求項9のいずれか一つに記載の循環装置。
【請求項11】
前記ポンプは磁気浮上遠心ポンプである、請求項7から請求項10のいずれか一つに記載の循環装置。
【請求項12】
前記液体は硫酸もしくは硫酸の希釈液である、請求項7から請求項11のいずれか一つに記載の循環装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は循環装置およびその制御方法に関する。
【背景技術】
【0002】
半導体装置の製造工程では、半導体ウエハ等の基板の表面に対して、薬液を用いた処理が行われる。当該処理の例としては洗浄処理が挙げられ、当該薬液(以下、リンス液、有機溶剤も含めて「処理液」とも称される)の例として酸性の液体が挙げられる。
【0003】
例えば基板が1枚ずつ処理される枚葉式の基板処理装置においては、基板が略水平に保持されつつ回転し、回転する基板の表面に処理液が供給される。かかる処理はチャンバと通称される処理用の筐体において実行される。
【0004】
当該処理液は基板に供給された後、回収されて再利用される。具体的にはチャンバに対して処理液が供給され、処理に供された後の処理液は回収される。このような処理液の供給および回収はチャンバの外部に設けられる循環装置によって行われる。
【0005】
チャンバが複数設けられる場合、これらはそれぞれ処理ユニットに格納される。処理ユニットは略鉛直方向に積層され、タワーと通称される構成に含まれる。タワーは複数設けられる場合がある。
【0006】
循環装置からの処理液の供給、及び循環装置への処理液の回収は、タワーのそれぞれに対して行われる。そして複数のチャンバに対する処理液の供給および回収はタワー毎に行われる。
【0007】
循環装置は、タワーに対する処理液の供給および回収を行う循環処理(以下「外循環」と仮称される)の他、タワーを介さずに循環装置の内部において処理液を循環させる循環処理(以下「内循環」と仮称される)を行う。
【0008】
このようなタワーのそれぞれに対する外循環や、内循環については、例えば下記の特許文献1において言及がある。また処理液として硫酸が利用される場合については、例えば下記の特許文献2において言及がある。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2021-052038号公報
【特許文献2】特開2020-088208号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
外循環を行ってタワーへと処理液を供給する前に、内循環を行って処理液を所望の温度に上昇させ、所望の流速にすることは、処理液を利用した基板への処理に寄与する。
【0011】
内循環であっても外循環と同様に、処理液はポンプを用いて循環される。例えば当該ポンプは回転型のポンプであって、かかる循環が適切に実行される所定の回転速度でポンプが回転し、内循環が行われる。
【0012】
ポンプが所定の回転速度に到達していない状況(以下「低速」とも仮称される)から所定の回転速度に到達するまで、ポンプの回転は加速される。この加速が大きいと処理液にキャビテーションが発生しやすい。
【0013】
処理液の粘度が低いと、キャビテーションが発生する可能性は高い。キャビテーションが発生すると、処理において微粒子が発生、もしくは処理対象たる基板に微粒子が残留しやすく、いわゆるパーティクル特性が悪化する可能性が高まる。
【0014】
一般的に、液体の温度が高いほど液体の粘度は低い。よって処理液の温度が高いと、キャビテーションは発生しやすい。
【0015】
処理液を循環させるためにポンプの回転を加速するとき、当該加速に採用される加速度、つまりポンプの回転加速度は、処理液が所定の温度またはその近傍にあるときに適切な値にすることが考えられる。所定の温度またはその近傍にあるときの処理液においてキャビテーションが発生しにくい程度に回転加速度が抑制されていれば、それよりも低い温度の処理液においてもキャビテーションは発生しにくいと想定されるからである。
【0016】
しかし回転加速度が小さいほど、処理液の供給時において処理液に要求される流速に至る時間は長くなる。
【0017】
本開示は、上記課題に鑑みてなされ、処理液の温度および流速を、それぞれ所望の値へ早期に到達させる技術を提供することを目的とする。
【課題を解決するための手段】
【0018】
本開示にかかる循環装置の制御方法の第1の態様は、外部経路に対して液体の供給および回収を行う循環装置を制御する方法である。前記循環装置は:前記液体を貯留の対象とする貯留槽;前記貯留槽から前記液体が流入する第1流入端を有し、前記液体の前記供給に用いられる第1配管;前記第1配管において設けられ、前記液体を加熱の対象とするヒータ;前記第1配管において設けられ、前記第1流入端に接続される吸入口と、前記ヒータに接続される吐出口とを有し、前記液体を圧出の対象とするポンプ;および、前記貯留槽へ前記液体が流出される第2流出端を有し、前記液体の前記回収に用いられる第2配管を備える。
【0019】
前記方法は、前記液体の温度を上昇させるときに、前記ポンプの速度が第1所定速度に到達するまで前記ポンプを第1加速度で加速させたのち;前記ポンプの速度が前記第1所定速度よりも高い第2所定速度に到達するまで、前記ポンプを前記第1加速度よりも低い第2加速度で加速させる。
【0020】
本開示にかかる循環装置の制御方法の第2の態様は、本開示にかかる循環装置の制御方法の第1の態様である。当該第2の態様は、前記液体の温度が第1所定温度未満のときに、前記ポンプの速度が前記第1所定速度に到達するまで前記ポンプを前記第1加速度で加速させる第1工程と、前記液体の温度が前記第1所定温度未満のときに、前記ポンプの速度が前記第1所定速度に到達すると、前記ポンプの速度を前記第1所定速度に維持する第2工程と、前記液体の温度が前記第1所定温度以上であって、前記第1所定温度よりも高い第2所定温度以下のときに、前記ポンプの速度が前記第2所定速度に到達するまで、前記ポンプを前記第2加速度で加速させる第3工程と、前記液体の温度が前記第1所定温度以上であって、前記第2所定温度以下のときに、前記ポンプの速度が前記第2所定速度に到達すると、前記ポンプを前記第2所定速度に維持する第4工程とを備える。
【0021】
前記ポンプの速度と前記液体の温度との間には、前記液体の温度が前記第1所定温度に到達する以前に前記ポンプが前記第1所定速度に到達し;前記液体の温度が前記第2所定温度に到達する以前に前記ポンプが前記第2所定速度に到達する関係がある。
【0022】
本開示にかかる循環装置の制御方法の第3の態様は、本開示にかかる循環装置の制御方法の第2の態様であって、前記液体は、前記液体の温度が前記第2所定温度に到達するまで、一定の昇温速度で加熱される。
【0023】
本開示にかかる循環装置の制御方法の第4の態様は、本開示にかかる循環装置の制御方法の第2の態様または第3の態様であって、前記循環装置は前記第1配管において前記ヒータを介して前記ポンプに接続された開閉弁;および前記ヒータと前記開閉弁との間で前記第1配管に接続される端と、前記貯留槽へ前記液体が流出される第3流出端とを有する第3配管を更に備える。当該第4の態様は、前記第1工程および前記第2工程において、前記開閉弁を閉じ、前記液体の温度が前記第2所定温度に到達した後、前記開閉弁を開く第5工程を更に備える。
【0024】
本開示にかかる循環装置の第1の態様は、外部経路に対して液体の供給および回収を行う。当該循環装置は:前記液体を貯留の対象とする貯留槽;前記貯留槽から前記液体が流入する第1流入端を有し、前記液体の前記供給に用いられる第1配管;前記第1配管において設けられ、前記液体を加熱の対象とするヒータ;前記第1配管において設けられ、前記第1流入端に接続される吸入口と、前記ヒータに接続される吐出口とを有し、前記液体を圧出の対象とするポンプ;前記貯留槽へ前記液体が流出される第2流出端を有し、前記液体の前記回収に用いられる第2配管;および制御部を備える。
【0025】
前記制御部は、前記液体の温度を上昇させるときに、前記ポンプの速度が第1所定速度に到達するまで前記ポンプを第1加速度で加速させたのち;前記ポンプの速度が前記第1所定速度よりも高い第2所定速度に到達するまで、前記ポンプを前記第1加速度よりも低い第2加速度で加速させる。
【0026】
本開示にかかる循環装置の第2の態様は、本開示にかかる循環装置の第1の態様である。当該第2の態様において前記制御部は、前記液体の温度が第1所定温度未満のときに、前記ポンプの速度が前記第1所定速度に到達するまで、前記ポンプを前記第1加速度で加速させ、前記液体の温度が前記第1所定温度未満のときに、前記ポンプの速度が前記第1所定速度に到達すると、前記ポンプの速度を前記第1所定速度に維持し、前記液体の温度が前記第1所定温度以上であって、前記第1所定温度よりも高い第2所定温度以下のときに、前記ポンプの速度が前記第2所定速度に到達するまで、前記ポンプを前記第2加速度で加速させ、前記液体の温度が前記第1所定温度以上であって、前記第2所定温度以下のときに、前記ポンプの速度が前記第2所定速度に到達すると、前記ポンプの速度を前記第2所定速度に維持する。
【0027】
前記ポンプの速度と前記液体の温度との間には、前記液体の温度が前記第1所定温度に到達する以前に前記ポンプが前記第1所定速度に到達し;前記液体の温度が前記第2所定温度に到達する以前に前記ポンプが前記第2所定速度に到達する関係がある。
【0028】
本開示にかかる循環装置の第3の態様は、本開示にかかる循環装置の第2の態様であって、前記制御部は、前記ヒータに、前記液体の温度が前記第2所定温度に到達するまで一定の昇温速度で前記液体を加熱させる。
【0029】
本開示にかかる循環装置の第4の態様は、本開示にかかる循環装置の第2の態様または第3の態様であって、前記第1配管において前記ヒータを介して前記ポンプに接続され、少なくとも開閉可能な開閉弁;および前記ヒータと前記開閉弁との間で前記第1配管に接続される端と、前記貯留槽へ前記液体が流出される第3流出端とを有する第3配管を更に備える。前記制御部は、前記液体の温度が前記第2所定温度に到達する以前において、前記開閉弁を閉じ、前記液体の温度が前記第2所定温度に到達して以降から、前記開閉弁を開く。
【0030】
例えば前記ポンプは磁気浮上遠心ポンプである。例えば前記液体は硫酸もしくは硫酸の希釈液である。
【発明の効果】
【0031】
本開示にかかる制御装置の制御方法の第1の態様、および本開示にかかる制御装置の第1の態様によれば、液体のキャビテーションの発生を抑制しつつ、液体の流速が所望の値へ早期に到達する。
【0032】
本開示にかかる制御装置の制御方法の第2の態様、および本開示にかかる制御装置の第2の態様によれば、ポンプの速度の上昇を待つべく液体の加熱を停止する必要がない。
【0033】
本開示にかかる制御装置の制御方法の第3の態様、および本開示にかかる制御装置の第3の態様は、液体の温度を所望の温度に早く到達させることに寄与する。
【0034】
本開示にかかる制御装置の制御方法の第4の態様、および本開示にかかる制御装置の第4の態様によれば、液体の流速および温度が所望の値に到達した後、外部経路に液体が供給される。
【図面の簡単な説明】
【0035】
【
図1】基板処理装置を模式的に示す横断面図である。
【
図2】基板処理装置を模式的に示す縦断面図である。
【
図3】基板処理装置のIII-III線に沿った縦断面を模式的に示す縦断面図である。
【
図4】処理ブロックの左部を左方向に沿って見た構成の一例を模式的に示す側面図である。
【
図5】処理ブロックの右部を右方向に沿って見た構成の一例を模式的に示す側面図である。
【
図6】処理ユニットの構成を模式的に示す横断面図である。
【
図7】処理ユニットの構成を模式的に示す縦断面図である。
【
図8】基板処理装置の各構成の動作を制御するための機能的な構成を示すブロック図である。
【
図12】ポンプの回転速度の上昇およびヒータによる昇温を示すグラフである。
【
図13】本開示にかかる制御を例示するフローチャートである。
【発明を実施するための形態】
【0036】
以下、添付の図面を参照しながら、本開示の各実施形態が説明される。各実施形態に記載される構成要素はあくまでも例示であり、本開示の範囲が例示のみに限定される趣旨ではない。図面は、あくまでも模式的に示される。図面においては、容易に理解が可能となるように、必要に応じて各部の寸法および数が誇張または簡略化されて図示される場合がある。図面においては、同様な構成および機能を有する部分に対して同じ符号が付されており、重複した説明が適宜省略される。
【0037】
以下の説明では、各要素の位置関係を説明するために、右手系のXYZ直交座標系が採用される。具体的には、X軸およびY軸が水平方向に延びており、Z軸が鉛直方向(上下方向)に延びる場合が想定される。また、図面においては、矢印の先端が向く方が+(プラス)方向として、その逆方向が-(マイナス)方向として、それぞれ示される。具体的には、鉛直方向上向きが+Z方向であり、鉛直方向下向きが-Z方向である。
【0038】
本明細書では、相対的または絶対的な位置関係を示す表現(例えば「平行」「直交」「中心」)は、特に断らない限り、その位置関係を厳密に表すのみならず、公差も含む状態を表すとともに、同程度の機能が得られる範囲で相対的に角度または距離に関して変位された状態も表す。2つ以上のものが等しい状態であることを示す表現(例えば「同一」「等しい」「均質」)は、特に断らない限り、定量的に厳密に等しい状態を表すのみならず、公差もしくは同程度の機能が得られる差が存在する状態も表す。
【0039】
形状を示す表現(例えば「四角形状」または「円筒形状」等)は、特に断らない限り、幾何学的に厳密に形状を表すのみならず、同程度の効果が得られる範囲で、例えば凹凸または面取り等を有する形状も表す。
【0040】
1つの構成要素を「備える」「具える」「具備する」「含む」または「有する」という表現は、他の構成要素の存在を除外する排他的表現ではない。
【0041】
「連結」という表現は、特に断らない限り、2つの要素が接する状態のほか、2つの要素が他の要素を挟んで離れる状態も含む表現である。
【0042】
ある方向に「移動させる」とは、特に断らない限りにおいて、この方向と平行に移動させる場合のみならず、この方向の成分を持つ方向に移動させることを含む場合がある。
【0043】
<1.基板処理装置の構成>
図1は、基板処理装置790を模式的に示す横断面図である。
図2は、基板処理装置790の前後方向(±X方向)に沿った縦断面を模式的に示す縦断面図である。
【0044】
基板処理装置790は、本開示にかかる循環装置との間で供給および回収が行われる処理液を用いて基板(例えば、半導体ウエハ)Wを処理する。当該循環装置およびその制御方法については後に詳述される。循環装置と基板処理装置790とは纏まって、基板処理システムと把握されてもよい。
【0045】
基板Wには、例えば、略円盤状の薄い平板が適用される。
図1では、後述されるキャリアCに格納される基板Wの外縁、および後述される保持部711に保持される基板Wの外縁のいずれもが破線で示される。
【0046】
基板処理装置790は、例えば、インデクサ部792と、処理ブロック793と、を備える。処理ブロック793は、インデクサ部792に連結される。
【0047】
インデクサ部792と処理ブロック793とは、水平方向に並ぶ。インデクサ部792は、例えば、処理ブロック793に基板Wを供給する。処理ブロック793は、例えば、基板Wに処理を行う。インデクサ部792は、例えば、処理ブロック793から基板Wを回収する。
【0048】
本明細書では、便宜上、インデクサ部792と処理ブロック793が並ぶ水平方向が、±X方向(前後方向ともいう)に採用される。±X方向(前後方向)のうち、処理ブロック793からインデクサ部792に向かう方向が-X方向(前方向とも前方ともいう)に採用され、インデクサ部792から処理ブロック793に向かう方向が+X方向(後方向とも後方ともいう)にされる。
【0049】
±X方向(前後方向)と直交する水平方向が、±Y方向(幅方向ともいう)に採用される。±Y方向(幅方向)のうち、-X方向(前方向)を向いたときに右側に向かう方向が+Y方向(右方向とも右方ともいう)に採用され、-X方向(前方向)を向いたときに左側に向かう方向が-Y方向(左方向とも左方ともいう)に採用される。
【0050】
水平方向に対して垂直な方向が、±Z方向(上下方向ともいう)に採用される。±Z方向(上下方向)のうち、重力方向が-Z方向(下方向とも下方ともいう)に採用され、重力方向とは逆の方向が+Z方向(上方向とも上方ともいう)に採用される。前方、後方、右方および左方が特に区別されない場合には、これらはいずれも単に側方と称される。
【0051】
<1-1.インデクサ部の構成>
図1で示されるように、インデクサ部792は、複数(例えば、4つ)のキャリア載置部721と、搬送スペース722と、1つ以上(例えば1つ)の第1搬送機構(インデクサ機構ともいう)723と、を備える。
【0052】
複数のキャリア載置部721は幅方向(±Y方向)に並ぶ。各キャリア載置部721には、1つのキャリアCが載置される。キャリアCは、複数枚の基板Wを収容する。キャリアCには、例えば、FOUP(front opening unified pod)が適用される。
【0053】
搬送スペース722は、キャリア載置部721の後方(+X方向)に位置する。搬送スペース722は、幅方向(±Y方向)に延びる。第1搬送機構723は、搬送スペース722に位置する。
【0054】
第1搬送機構723は、キャリア載置部721の後方(+X方向)に位置する。第1搬送機構723は、基板Wを搬送する。第1搬送機構723は、キャリア載置部721に載置されたキャリアCにアクセスする。
【0055】
第1搬送機構723は、ハンド7231と、ハンド駆動部7232と、を備える。ハンド7231は、1枚の基板Wを水平姿勢で支持する。ハンド駆動部7232は、ハンド7231に連結されており、ハンド7231を移動させる。具体的には、ハンド駆動部7232は、ハンド7231を前後方向(±X方向)、幅方向(±Y方向)および上下方向(±Z方向)に移動させる。ハンド駆動部7232は、複数の電動モータを有する。
【0056】
図1および
図2で示されるように、ハンド駆動部7232は、例えば、レール7232aと、水平移動部7232bと、垂直移動部7232cと、回転部7232dと、進退移動部7232eとを備える。
【0057】
レール7232aは、例えば、搬送スペース722の底部に固定される。レール7232aは、幅方向(±Y方向)に延びる。
【0058】
水平移動部7232bは、レール7232aによって支持される。水平移動部7232bは、レール7232aに対して幅方向(±Y方向)に移動する。
【0059】
垂直移動部7232cは、水平移動部7232bによって支持される。垂直移動部7232cは、水平移動部7232bに対して上下方向に移動する。
【0060】
回転部7232dは、垂直移動部7232cによって支持される。回転部7232dは、垂直移動部7232cに対して回転する。回転部7232dは、回転軸線A1を中心として回転する。回転軸線A1は、上下方向に沿って延びる仮想線である。
【0061】
進退移動部7232eは、回転部7232dに対して移動する。進退移動部7232eは、回転部7232dの向きによって決まる水平方向に沿って往復移動する。進退移動部7232eは、ハンド7231に接続される。
【0062】
このようなハンド駆動部7232により、ハンド7231は、上下方向における平行移動と、任意の水平方向における平行移動と、回転軸線A1を中心とした回転移動とが、実現される。
【0063】
<1-2.処理ブロックの構成>
図3は、
図1の基板処理装置790のIII-III線に沿った縦断面を後方向(+X方向)に向いて見た一例を模式的に示す縦断面図である。
図4は、処理ブロック793の左方(-Y方向)の部分(左部ともいう)を左方向(-Y方向)に沿って見た構成の一例を模式的に示す側面図である。
図5は、処理ブロック793の右方(+Y方向)の部分(右部ともいう)を右方向(+Y方向)に沿って見た構成の一例を模式的に示す側面図である。
【0064】
例えば、
図1から
図5で示されるように、処理ブロック793は、2つの搬送スペース74A,74Bと、2つの第2搬送機構75A,75Bと、複数個(ここでは、24個)の処理ユニット76と、2つの基板載置部77A,77Bと、1つの隔壁73wと、水平排気系780とを備える。
【0065】
搬送スペース74Aは、幅方向(±Y方向)における処理ブロック793の中央部に位置する。搬送スペース74Aは、前後方向(±X方向)に延びる。搬送スペース74Aの前方の部分(前部ともいう)は、インデクサ部792の搬送スペース722と連結される。
【0066】
搬送スペース74Bは、搬送スペース74Aと略同一の形状を有する。具体的には、搬送スペース74Bは、幅方向(±Y方向)における処理ブロック793の中央部に位置する。搬送スペース74Bは、前後方向(±X方向)に延びる。搬送スペース74Bの前方の部分(前部ともいう)は、インデクサ部792の搬送スペース722と連結される。
【0067】
搬送スペース74Bは、搬送スペース74Aの下方に位置する。搬送スペース74Bは、平面視において、搬送スペース74Aと重なるように位置する。搬送スペース74A,74Bが互いに区別されない場合には、これらはいずれも単に搬送スペース74と称される。
【0068】
隔壁73wは、例えば水平な板形状を有する。隔壁73wが、搬送スペース74Aの下方であり且つ搬送スペース74Bの上方に位置する。隔壁73wは、搬送スペース74Aと搬送スペース74Bとを隔てる。
【0069】
基板載置部77Aは、搬送スペース74Aに位置する。基板載置部77Aは、搬送スペース74Aの前部に位置する。インデクサ部792の第1搬送機構723は、基板載置部77Aにもアクセスする。基板載置部77Aには、1枚または複数枚の基板Wが載置される。
【0070】
基板載置部77Bは、搬送スペース74Bに位置する。基板載置部77Bは、基板載置部77Aの下方に位置する。基板載置部77Bは、搬送スペース74Bの前部に位置する。基板載置部77Bは、平面視において、基板載置部77Aと重なるように位置する。基板載置部77Bは、平面視において、基板載置部77Aと同じ位置に位置する。
【0071】
インデクサ部792の第1搬送機構723は、基板載置部77Bにもアクセスする。基板載置部77Bには、1枚または複数枚の基板Wが載置される。基板載置部77A,77Bが互いに区別されない場合には、これらはいずれも単に基板載置部77と称される。
【0072】
第2搬送機構75Aは、搬送スペース74Aに位置する。第2搬送機構75Aは、基板Wを搬送する。第2搬送機構75Aは、基板載置部77Aにアクセスする。
【0073】
第2搬送機構75Bは、搬送スペース74Bに位置する。第2搬送機構75Bは、基板Wを搬送する。第2搬送機構75Bは、第2搬送機構75Aと同一の構造を有する。第2搬送機構75Bは、基板載置部77Bにアクセスする。第2搬送機構75A,75Bが互いに区別されない場合には、これらはいずれも単に第2搬送機構75と称される。
【0074】
第2搬送機構75の各々は、ハンド751とハンド駆動部752を備える。ハンド751は、1枚の基板Wを水平姿勢で支持する。ハンド駆動部752は、ハンド751に連結される。ハンド駆動部752は、ハンド751を前後方向(±X方向)、幅方向(±Y方向)および上下方向に移動させる。ハンド駆動部752は、複数の電動モータを備える。
【0075】
具体的には、ハンド駆動部752は、例えば、2つの支柱752aと、垂直移動部752bと、水平移動部752cと、回転部752dと、進退移動部752eとを備える。
【0076】
2つの支柱752aは、例えば、搬送スペース722の側部に固定される。2つの支柱752aは、前後方向(±X方向)に並ぶ。各支柱752aは、上下方向に延びる。
【0077】
垂直移動部752bは、2つの支柱752aによって支持される。垂直移動部752bは前後方向(±X方向)に延び、2つの支柱752aの間に架設される。垂直移動部752bは、2つの支柱752aに対して上下方向に移動する。
【0078】
水平移動部752cは、垂直移動部752bに支持される。水平移動部752cは、垂直移動部752bに対して前後方向(±X方向)に移動する。水平移動部752cは、2つの支柱752aの間において前後方向(±X方向)に移動する。
【0079】
回転部752dは、水平移動部752cに支持される。回転部752dは、水平移動部752cに対して回転する。回転部752dは、回転軸線A2を中心として回転する。回転軸線A2は、上下方向に沿って延びる仮想線である。
【0080】
進退移動部752eは、回転部752dに対して移動する。進退移動部752eは、回転部752dの向きによって決まる水平方向に往復移動する。進退移動部752eは、ハンド751に接続される。
【0081】
このようなハンド駆動部752により、ハンド751は、上下方向における平行移動と、任意の水平方向における平行移動と、回転軸線A2を中心とした回転移動とを実行する。
【0082】
24個の処理ユニット76のそれぞれは、第2搬送機構75によって搬送された基板Wに対して所定の処理を行う。
【0083】
処理ブロック793は、6つの処理ユニット76A、6つの処理ユニット76B、6つの処理ユニット76C、および6つの処理ユニット76Dを備える。処理ユニット76A,76B,76C,76Dが互いに区別されない場合には、これらはいずれも単に処理ユニット76と称される。
【0084】
6つの処理ユニット76Aは、上下方向に積層するように位置する。換言すれば、6つの処理ユニット76Aは、上下方向に1列に並ぶ。6つの処理ユニット76Bは、上下方向に積層するように位置する。換言すれば、6つの処理ユニット76Bは、上下方向に1列に並ぶ。6つの処理ユニット76Cは、上下方向に積層するように位置する。換言すれば、6つの処理ユニット76Cは、上下方向に1列に並ぶ。6つの処理ユニット76Dは、上下方向に積層するように位置する。換言すれば、6つの処理ユニット76Dは、上下方向に1列に並ぶ。
【0085】
6つの処理ユニット76A、6つの処理ユニット76B、6つの処理ユニット76C、および6つの処理ユニット76Dのそれぞれは、上述のタワー(ここでは4つのタワー)に含まれる。
【0086】
6つの処理ユニット76Aにおける6つの処理室761は、上下方向において積層される。6つの処理ユニット76Bにおける6つの処理室761は、上下方向において積層される。6つの処理ユニット76Cにおける6つの処理室761は、上下方向において積層される。6つの処理ユニット76Dにおける6つの処理室761は、上下方向において積層される。
【0087】
6つの処理ユニット76Aおよび6つの処理ユニット76Bは、搬送スペース74A,74Bの左方(-Y方向)に位置する。6つの処理ユニット76Aと6つの処理ユニット76Bとは、搬送スペース74A,74Bに沿って、前後方向(±X方向)に並ぶ。6つの処理ユニット76Bは、6つの処理ユニット76Aの後方(+X方向)に位置する。
【0088】
6つの処理ユニット76Cおよび6つの処理ユニット76Dは、搬送スペース74A,74Bの右方(+Y方向)に位置する。6つの処理ユニット76Cと6つの処理ユニット76Dとは、搬送スペース74A,74Bに沿って、前後方向(±X方向)に並ぶ。6つの処理ユニット76Dは、6つの処理ユニット76Cの後方(+X方向)に位置する。
【0089】
6つの処理ユニット76Aと6つの処理ユニット76Cとは、搬送スペース74A,74Bを挟んで対向する。6つの処理ユニット76Bと6つの処理ユニット76Dとは、搬送スペース74A,74Bを挟んで対向する。
【0090】
第2搬送機構75は、処理ユニット76の保持部711にアクセスする。隔壁73wの上方に位置する第2搬送機構75Aは、24個の処理ユニット76のうちの上側の12個(4個×上3段)の処理ユニット76に対して基板Wを搬送し、これらの上側の12個の処理ユニット76から基板Wを搬出する。隔壁73wの下方に位置する第2搬送機構75Bは、24個の処理ユニット76のうちの下側の12個(4個×下3段)の処理ユニット76に対して基板Wを搬送し、これらの下側の12個の処理ユニット76から基板Wを搬出する。
【0091】
<1-3.処理ユニットの構成>
図6は、処理ユニット76の構成を、処理ユニット76Aを例にとって模式的に示す横断面図である。各処理室761は、搬送スペース74に隣接する。
【0092】
図7は、処理ユニット76の概略的な構成を、処理ユニット76Cを例にとって模式的に示す縦断面図である。
【0093】
図6および
図7で示されるように、各処理ユニット76は、処理室761(チャンバとも処理筐体ともいう)と、供給管スペース762と、排気管スペース763とを備える。例えば、複数の処理ユニット76は、同じ構造を有する。
【0094】
<1-4.処理室の構成>
処理室761は、例えば、略箱形状を有する。処理室761は、例えば、平面視、正面視および側面視において、略矩形形状を有する。処理室761は、その内部に処理スペース761sを有する。処理ユニット76は、処理スペース761sにおいて基板Wを処理する。
図6では、保持部711に保持される基板Wの外縁が破線で示される。
【0095】
処理室761は、搬送スペース74側に基板搬送口761oを有する。基板搬送口761oは、処理室761の側壁に形成される。基板搬送口761oは、基板Wが通過可能なサイズを有する。第2搬送機構75は、基板搬送口761oを介して、処理室761の外部(具体的には搬送スペース74)と処理室761の内部(具体的には処理スペース761s)との間で、基板Wを移動させる。各処理ユニット76は、基板搬送口761oを開閉するシャッター(不図示)を有する。
【0096】
処理ユニット76の各々は、例えば、保持部711と、流体供給部712とを備える。
【0097】
保持部711は、処理室761の内部に位置する。保持部711は、基板Wを保持する。より具体的には、保持部711は、1枚の基板Wを水平姿勢で保持する。保持部711は、例えば、鉛直方向に沿った仮想的な回転軸線A3を中心として、この保持部711に保持された基板Wを回転させる部分(駆動部ともいう)を含む。
【0098】
保持部711には、スピンチャックが適用される。スピンチャックは、例えば、基板Wの中央部を通り且つ上下方向に沿って延びる回転軸線A3を中心として基板Wを回転させる。
【0099】
具体的には、スピンチャックは、チャックピン(チャック部材)711pと、スピンベース711bと、スピンベース711bの下面中央に結合された回転軸711sと、回転軸711sに回転力を与える駆動部としての電動モータ711mとを含む。
【0100】
回転軸711sは、回転軸線A3に沿って上下方向に延びる。例えば、回転軸711sは、中空軸である。
【0101】
回転軸711sの上端に、スピンベース711bが結合される。スピンベース711bは、水平方向に沿った円盤形状を有する。スピンベース711bは、平面視において、回転軸線A3を中心とする円形であり、基板Wの直径よりも大きな直径を有する。スピンベース711bの上面の周縁部に、複数個(例えば、6個)のチャックピン711pが周方向に間隔を空けて位置する。
【0102】
複数のチャックピン711pは、基板Wの周端に接触して基板Wを把持する閉状態と、基板Wの周端から退避した開状態と、の間で開閉可能である。複数のチャックピン711pは、例えば、開状態において、基板Wの周縁部の下面に接触して、基板Wを下方から支持する。
【0103】
チャックピン711pは、例えば、スピンベース711bに内蔵されたリンク機構と、スピンベース711b外に位置する駆動源とを含むユニットによって、開閉駆動を行う。駆動源は、例えば、ボールねじ機構と、このボールねじ機構に駆動力を与える電動モータと、を含む。
【0104】
処理ユニット76の各々は、例えば、ヒータユニット719を備える。ヒータユニット719は、スピンベース711bの上方に位置する。ヒータユニット719の下面には、回転軸線A3に沿って上下方向に延びる昇降軸719rが結合される。
【0105】
昇降軸719rは、スピンベース711bの中央部を上下方向に貫通する貫通孔と、回転軸711sの上下方向に貫通する中空部分と、に挿通される。
【0106】
昇降軸719rの下端は、回転軸711sの下端よりもさらに下方にまで延びる。昇降軸719rの下端には、昇降ユニット719mが結合される。昇降ユニット719mを作動させることにより、ヒータユニット719は、スピンベース711bの上面に近い下位置と、基板Wの下面を支持して基板Wをチャックピン711pから持ち上げる上位置と、の間で上下動する。
【0107】
昇降ユニット719mは、例えば、ボールねじ機構と、それに駆動力を与える電動モータとを含む。これにより、昇降ユニット719mは、下位置と上位置との間の任意の中間位置にヒータユニット719を配置することができる。
【0108】
例えば、ヒータユニット719の上面である加熱面719uを、基板Wの下面との間に所定の間隔を開けた離隔位置に配置した状態で、加熱面719uからの輻射熱によって基板Wを加熱することができる。例えば、ヒータユニット719で基板Wを持ち上げれば、加熱面719uを基板Wの下面に接触させた接触状態で、加熱面719uからの熱伝導により、基板Wがより大きな熱量で加熱される。
【0109】
ヒータユニット719は、円板状のホットプレートの形態を有する。ヒータユニット719は、プレート本体と、複数の支持ピンと、ヒータと、を含む。プレート本体の上面は、水平面に沿う平面である。プレート本体は、平面視において、基板Wと同様な円形形状と、基板Wの直径よりも僅かに小さい直径とを有する。
【0110】
プレート本体の外周端は、複数のチャックピン711pの内方に位置する。換言すれば、水平方向において、プレート本体が、複数のチャックピン711pによって囲まれる。これにより、ヒータユニット719が上下動するときに、ヒータユニット719は、チャックピン711pと干渉しない。
【0111】
複数の支持ピンのそれぞれは、例えば、プレート本体の上面から上方に僅かに突出するように位置する半球状のピンである。複数の支持ピンは、プレート本体の上面にほぼ均等に配置される。プレート本体の上面(加熱面719u)には、複数の支持ピンが存在していなくてもよい。
【0112】
例えば、複数の基板Wが支持ピンに接触して支持されるとき、基板Wの下面とプレート本体の上面(加熱面719u)とが微小間隔を開けて対向する。これにより、ヒータユニット719によって基板Wが効率的かつ均一に加熱され得る。
【0113】
ヒータには、例えば、プレート本体に内蔵される抵抗体が適用される。プレート本体の上面(加熱面719u)は、例えば、ヒータへの通電により、有機溶剤の沸点よりも高温となるように加熱され得る。ヒータへの給電線は、昇降軸719r内に通される。そして、給電線には、ヒータに電力を供給する通電ユニット719eが接続される。
【0114】
処理ユニット76の各々は、例えば、処理室761の内部において、保持部711を取り囲む筒状のカップ717を備える。
【0115】
流体供給部712は、例えば、保持部711に保持された基板Wに、複数種類の流体を供給する。複数種類の流体は、例えば、薬液、リンス液および有機溶剤等の処理液を含む。薬液は、例えば、エッチング液および洗浄液を含む。薬液には、例えば、酸性液(酸系の液体)およびアルカリ液(アルカリ系の液体)が適用される。
【0116】
酸性液は、例えば、フッ酸(フッ化水素酸)、塩酸過酸化水素水混合液(SC2)、硫酸、硫酸過酸化水素水(SPM)、フッ硝酸(フッ酸と硝酸との混合液)、および塩酸の少なくとも1つを含む。
【0117】
アルカリ液は、例えば、アンモニア過酸化水素水(SC1)、アンモニア水、フッ化アンモニウム溶液、および水酸化テトラメチルアンモニウム(TMAH)の少なくとも1つを含む。
【0118】
リンス液は、例えば、基板W上の薬液を洗い流すための液体である。リンス液には、例えば、脱イオン水(DIW)が適用される。
【0119】
有機溶剤は、例えば、基板W上のリンス液を排除するための液体である。有機溶剤には、例えば、イソプロピルアルコール(IPA)等が適用される。
【0120】
複数の流体は、例えば、不活性ガス等の気体を含む。不活性ガスには、例えば、窒素ガス等が適用される。
【0121】
流体供給部712は、例えば、それぞれが所定の流体を吐出する、第1移動ノズル71nと、第2移動ノズル72nと、第3移動ノズル73nとを含む。
【0122】
第1移動ノズル71nは、第1移動ユニット71Mによって、水平方向に移動される。第1移動ノズル71nは、水平方向への移動によって、保持部711に保持された基板Wの上面Waの回転中心に対向する位置(以下「第1吐出位置」とも称される)と、保持部711に保持された基板Wの上面Waに対向しない位置(以下「第1ホーム位置」とも称される)との間で移動され得る。
【0123】
第1吐出位置は、例えば、第1移動ノズル71nから吐出される第1処理液が基板Wの上面の回転中心に着液する位置であってもよい。第1ホーム位置は、平面視において、保持部711の外方の位置である。より具体的には、第1ホーム位置は、平面視において、カップ717の外方の位置であってもよい。
【0124】
第1移動ノズル71nは、第1移動ユニット71Mによる上下方向への移動によって、保持部711に保持された基板Wの上面Waに接近させてもよいし、保持部711に保持された基板Wの上面Waから上方に退避させてもよい。
【0125】
第1移動ユニット71Mは、例えば、上下方向に延びる第1回動軸71sと、第1回動軸71sに結合されて水平に延びる第1アーム71aと、第1アーム71aを駆動する第1アーム駆動機構71mとを含む。
【0126】
第1アーム駆動機構71mは、第1回動軸71sを上下方向に沿って延びる仮想的な回動軸線A4を中心として回動させることで第1アーム71aを揺動させる。第1移動ノズル71nは、第1アーム71aのうちの回動軸線A4から水平方向に離れた箇所に取り付けられる。
【0127】
第1アーム71aの揺動に応じて、
図6における二点鎖線の矢印で示されるように、第1移動ノズル71nが水平方向において円弧状の軌道に沿って移動する。第1アーム駆動機構71mは、例えば、第1回動軸71sを上下方向に沿って昇降させることで第1アーム71aを上下動させてもよい。
【0128】
第1移動ノズル71nは、保持部711に保持された基板Wの上面Waに第1の処理液(第1処理液ともいう)を供給する機能を有する。第1移動ノズル71nには、第1処理液を供給する管として機能する第1処理液供給管P1が結合される。
【0129】
第1処理液供給管P1には、第1処理液供給管P1の流路を開閉するバルブとして機能する第1処理液開閉弁V1が介装される。第1処理液供給管P1には、後述される処理液分配部701または処理液分配部702から第1処理液が供給される。ここでは、第1処理液には、硫酸(HSO)等の酸性液が適用される。第1移動ノズル71nは、第1処理液を吐出するストレートノズルであってもよいし、第1処理液と不活性ガスとを混合して吐出する二流体ノズルであってもよい。
【0130】
第2移動ノズル72nは、第2移動ユニット72Mによって、水平方向に移動される。第2移動ノズル72nは、水平方向への移動によって、保持部711に保持された基板Wの上面Waの回転中心に対向する位置(以下「第2吐出位置」とも称される)と、保持部711に保持された基板Wの上面Waに対向しない位置(以下「第2ホーム位置」とも称される)との間で移動され得る。
【0131】
第2吐出位置は、例えば、第2移動ノズル72nから吐出される第2処理液が基板Wの上面の回転中心に着液する位置であってもよい。第2ホーム位置は、平面視において、保持部711の外方の位置である。より具体的には、第2ホーム位置は、平面視において、カップ717の外方の位置であってもよい。
【0132】
第2移動ノズル72nは、第2移動ユニット72Mによる上下方向への移動によって、保持部711に保持された基板Wの上面Waに接近させてもよいし、保持部711に保持された基板Wの上面Waから上方に退避させてもよい。
【0133】
第2移動ユニット72Mは、例えば、上下方向に延びる第2回動軸72sと、第2回動軸72sに結合されて水平に延びる第2アーム72aと、第2アーム72aを駆動する第2アーム駆動機構72mとを含む。
【0134】
第2アーム駆動機構72mは、第2回動軸72sを上下方向に沿って延びる仮想的な回動軸線A5を中心として回動させることで第2アーム72aを揺動させる。第2移動ノズル72nは、第2アーム72aのうちの回動軸線A5から水平方向に離れた箇所に取り付けられる。
【0135】
第2アーム72aの揺動に応じて、
図6における二点鎖線の矢印で示されるように、第2移動ノズル72nが水平方向において円弧状の軌道に沿って移動する。第2アーム駆動機構72mは、例えば、第2回動軸72sを上下方向に沿って昇降させることで第2アーム72aを上下動させてもよい。
【0136】
第2移動ノズル72nは、保持部711に保持された基板Wの上面Waに第2の処理液(第2処理液ともいう)を供給する機能を有する。第2移動ノズル72nには、第2処理液を供給する管として機能する第2処理液供給管P2が結合される。
【0137】
第2処理液供給管P2には、第2処理液供給管P2の流路を開閉するバルブとして機能する第2処理液開閉弁V2が介装される。第2処理液供給管P2には、後述される処理液分配部701または処理液分配部702から第2処理液が供給される。ここでは、第2処理液には、アンモニア過酸化水素水(SC1)等のアルカリ液が適用される。第2移動ノズル72nは、第2処理液を吐出するストレートノズルであってもよいし、第2処理液と不活性ガスとを混合して吐出する二流体ノズルであってもよい。
【0138】
第3移動ノズル73nは、第3移動ユニット73Mによって、水平方向に移動される。第3移動ノズル73nは、水平方向への移動によって、保持部711に保持された基板Wの上面Waの回転中心に対向する位置(以下「第3吐出位置」とも称される)と、保持部711に保持された基板Wの上面Waに対向しない位置(以下「第3ホーム位置」とも称される)との間で移動され得る。
【0139】
第3吐出位置は、例えば、第3移動ノズル73nから吐出される第3処理液が基板Wの上面の回転中心に着液する位置であってもよい。第3ホーム位置は、平面視において、保持部711の外方の位置である。より具体的には、第3ホーム位置は、平面視において、カップ717の外方の位置であってもよい。
【0140】
第3移動ノズル73nは、第3移動ユニット73Mによる上下方向への移動によって、保持部711に保持された基板Wの上面Waに接近させてもよいし、保持部711に保持された基板Wの上面Waから上方に退避させてもよい。
【0141】
第3移動ユニット73Mは、例えば、上下方向に延びる第3回動軸73sと、第3回動軸73sに結合されて水平に延びる第3アーム73aと、第3アーム73aを駆動する第3アーム駆動機構73mとを含む。
【0142】
第3アーム駆動機構73mは、第3回動軸73sを上下方向に沿って延びる仮想的な回動軸線A6を中心として回動させることで第3アーム73aを揺動させる。第3移動ノズル73nは、第3アーム73aのうちの回動軸線A6から水平方向に離れた箇所に取り付けられる。
【0143】
第3アーム73aの揺動に応じて、
図6における二点鎖線の矢印で示されるように、第3移動ノズル73nが水平方向において円弧状の軌道に沿って移動する。第3アーム駆動機構73mは、第3回動軸73sを上下方向に沿って昇降させることで第3アーム73aを上下動させてもよい。
【0144】
第3移動ノズル73nは、保持部711に保持された基板Wの上面Waに第3の処理液(第3処理液ともいう)を供給する機能を有する。第3移動ノズル73nには、第3処理液を供給する管として機能する第3処理液供給管P3が結合される。
【0145】
第3処理液供給管P3には、第3処理液供給管P3の流路を開閉するバルブとして機能する第3処理液開閉弁V3が介装される。第3処理液供給管P3には、後述される処理液分配部701または処理液分配部702から第3処理液が供給される。ここでは、第3処理液には、脱イオン水(DIW)等のリンス液が適用される。第3移動ノズル73nは、第3処理液を吐出するストレートノズルであってもよいし、第3処理液と不活性ガスとを混合して吐出する二流体ノズルであってもよい。
【0146】
処理ユニット76は、例えば、給気部718としてのファンフィルタユニット(FFU)を備える。FFUは、基板処理装置790が設置されるクリーンルーム内の空気をさらに清浄化して処理室761内に供給することができる。
【0147】
FFUは、例えば、処理室761の天井壁に取り付けられる。FFUは、クリーンルーム内の空気を取り込んで処理室761内に送り出すためのファンおよびフィルタ(例えば、HEPAフィルタ)等を備えており、処理室761内に清浄空気のダウンフローを形成することができる。FFUから供給された清浄空気を処理室761内により均一に分散させるために、多数の吹出し孔を穿設したパンチングプレートが天井壁の直下に配置されてもよい。
【0148】
例えば、処理室761の側壁の一部であって処理室761の床壁の近傍には、基板処理装置790の外部(工場の排気設備等)に連通するように接続される排気口762oが設けられる。例えば、FFUから供給されて処理室761内を流下した清浄空気のうち、カップ717等の近傍を通過した空気は、排気口762oを介して基板処理装置790の外に排出される。例えば、処理室761内の上部に窒素ガス等の不活性ガスを導入する構成が加えられてもよい。
【0149】
<1-5.供給管スペースの構成>
図4および
図5で示されるように、4つの供給管スペース762が、上下方向に延びる。例えば、最下段(1段目)の処理ユニット76Aから最上段(6段目)の処理ユニット76Aにわたって、1つの供給管スペース762Aが上下方向に延びる。例えば、最下段(1段目)の処理ユニット76Bから最上段(6段目)の処理ユニット76Bにわたって、1つの供給管スペース762Bが上下方向に延びる。例えば、最下段(1段目)の処理ユニット76Cから最上段(6段目)の処理ユニット76Cにわたって、1つの供給管スペース762Cが上下方向に延びる。例えば、最下段(1段目)の処理ユニット76Dから最上段(6段目)の処理ユニット76Dにわたって、1つの供給管スペース762Dが上下方向に延びる。供給管スペース762A~62Dはこれらが互いに区別されない場合には、これらはいずれも単に供給管スペース762と称される。
【0150】
供給管スペース762は、処理室761に流体を供給するための配管が配置される領域である。供給管スペース762には、例えば、第1処理液供給管P1、第2処理液供給管P2、第3処理液供給管P3、第1処理液開閉弁V1、第2処理液開閉弁V2、第3処理液開閉弁V3が配される。第1処理液供給管P1、第2処理液供給管P2、第3処理液供給管P3は、供給管スペース762から処理室761内に引き出されて、第1移動ノズル71n、第2移動ノズル72n、第3移動ノズル73nに接続される。
【0151】
<1-6.排気管スペースの構成>
図4および
図5で示されるように、4つの排気管スペース763が、上下方向に延びる。例えば、最下段(1段目)の処理ユニット76Aから最上段(6段目)の処理ユニット76Aにわたって、1つの排気管スペース763Aが上下方向に延びる。例えば、最下段(1段目)の処理ユニット76Bから最上段(6段目)の処理ユニット76Bにわたって、1つの排気管スペース763Bが上下方向に延びる。例えば、最下段(1段目)の処理ユニット76Cから最上段(6段目)の処理ユニット76Cにわたって、1つの排気管スペース763Cが上下方向に延びる。例えば、最下段(1段目)の処理ユニット76Dから最上段(6段目)の処理ユニット76Dにわたって、1つの排気管スペース763Dが上下方向に延びる。排気管スペース763A~63Dが互いに区別されない場合には、これらはいずれも単に排気管スペース763と称される。
【0152】
各排気管スペース763は、処理室761から気体を排出するための配管が配置される領域である。
図4から
図7に示されるように、各排気管スペース763には、例えば、排気路切り替え機構770、第1垂直排気管771、第2垂直排気管772、第3垂直排気管773が配される。
【0153】
例えば、排気管スペース763Aには、最下段(1段目)の処理ユニット76Aの処理室761から最上段(6段目)の処理ユニット76Aの処理室761のそれぞれに対して、排気路切り替え機構770が配される。例えば、排気管スペース763Bには、最下段(1段目)の処理ユニット76Bの処理室761から最上段(6段目)の処理ユニット76Bの処理室761のそれぞれに対して、排気路切り替え機構770が配される。例えば、排気管スペース763Cには、最下段(1段目)の処理ユニット76Cの処理室761から最上段(6段目)の処理ユニット76Cの処理室761のそれぞれに対して、排気路切り替え機構770が配される。例えば、排気管スペース763Dには、最下段(1段目)の処理ユニット76Dの処理室761から最上段(6段目)の処理ユニット76Dの処理室761のそれぞれに対して、排気路切り替え機構770が配される。
【0154】
第1垂直排気管771、第2垂直排気管772、第3垂直排気管773の組は、例えば四つ存在する。第1垂直排気管771、第2垂直排気管772、第3垂直排気管773は、例えば、処理室761から排気路切り替え機構770を介して排出されてくる気体を、基板処理装置790の外部に排出するための配管である。
【0155】
排気管スペース763の各々において、例えば、第1垂直排気管771、第2垂直排気管772、第3垂直排気管773のそれぞれは、最下段(1段目)の処理室761の側方から最上段(6段目)の処理室761の側方に至るまで延びる。排気管スペース763の各々において、例えば、第1垂直排気管771、第2垂直排気管772、第3垂直排気管773は、幅方向(±Y方向)に並ぶ。排気管スペース763の各々において、第1垂直排気管771、第2垂直排気管772、第3垂直排気管773は、上下方向に積層された6段の処理ユニット76の処理室761のそれぞれから排気路切り替え機構770を介して流入する気体を排出する機能を有する。
【0156】
第1垂直排気管771が処理ユニット76A~76D同士の間で区別される場合には、第1垂直排気管771A~771Dと称される。第2垂直排気管772が処理ユニット76A~76D同士の間で区別される場合には、第2垂直排気管772A~772Dと称される。第3垂直排気管773が処理ユニット76A~76D同士の間で区別される場合には、第3垂直排気管773A~773Dと称される。
【0157】
第1組(1組目)の第1垂直排気管771A、第2垂直排気管772A、第3垂直排気管773Aは、6段の処理ユニット76Aのそれぞれに対して排気を行うように構成される。第2組(2組目)の第1垂直排気管771B、第2垂直排気管772B、第3垂直排気管773Bは、6段の処理ユニット76Bのそれぞれに対して排気を行うように構成される。第3組(3組目)の第1垂直排気管771C、第2垂直排気管772C、第3垂直排気管773Cは、6段の処理ユニット76Cのそれぞれに対して排気を行うように構成される。第4組(4組目)の第1垂直排気管771D、第2垂直排気管772D、第3垂直排気管773Dは、6段の処理ユニット76Dのそれぞれに対して排気を行うように構成される。
【0158】
排気路切り替え機構770は、処理室761から基板処理装置790の外部への気体の排気路を、第1垂直排気管771、第2垂直排気管772および第3垂直排気管773の何れか1つの垂直排気管を介した排気路に切り替えるための機構である。
【0159】
排気路切り替え機構770は、処理室761の各々の側方に配置される。排気路切り替え機構770は、例えば、処理室761の気体を排出するために排気口762oを介して処理室761と連通する。また、排気路切り替え機構770は、例えば、上下方向に延びる第1垂直排気管771、第2垂直排気管772、第3垂直排気管773と連通する。
【0160】
図6で示されるように、排気路切り替え機構770は、例えば、第1開閉部71dと第2開閉部72dとを有する。第1開閉部71dおよび第2開閉部72dは、例えば扉状の構造を有し、片開き戸のように動作する。
【0161】
第1開閉部71dおよび第2開閉部72dは、モータ等の駆動によって回動軸を中心として回動する。排気路切り替え機構770は、例えば、第1開閉部71dおよび第2開閉部72dの開閉によって、処理スペース761sから第1垂直排気管771内に気体を流入させる状態(第1状態ともいう)、処理スペース761sから第2垂直排気管772内に気体を流入させる状態(第2状態ともいう)、処理スペース761sから第3垂直排気管773に気体を流入させる状態(第3状態ともいう)の何れか1つの状態に設定される。
【0162】
例えば第1移動ノズル71nから第1薬液が吐出される期間において、排気路切り替え機構770は第1状態に設定される。例えば第2移動ノズル72nから第2薬液が吐出される期間において、排気路切り替え機構770は第2状態に設定される。例えば第3移動ノズル73nから第3薬液が吐出される期間において、排気路切り替え機構770は第3状態に設定される。
【0163】
<1-7.水平排気系の構成>
図3から
図5で示されるように、水平排気系780は、第1水平排気管781A、第2水平排気管782A、第3水平排気管783A、第1水平排気管781B、第2水平排気管782B、第3水平排気管783Bを備える。
【0164】
例えば、
図3、
図4で示されるように、第1水平排気管781A、第2水平排気管782A、第3水平排気管783Aは、最上段(6段目)の2つの処理ユニット76A,76Bの上方において、前後方向(±X方向)に延びるように位置する。第1水平排気管781A、第2水平排気管782A、第3水平排気管783Aは、例えば、幅方向(±Y方向)に並ぶ。
【0165】
例えば、第1水平排気管781Aには、処理ユニット76A用の第1垂直排気管771Aおよび処理ユニット76B用の第1垂直排気管771Bのそれぞれが連通するように接続される。第1水平排気管781Aは、第1垂直排気管771A,771Bから気体を排出する。
【0166】
例えば、第2水平排気管782Aには、処理ユニット76A用の第2垂直排気管772Aおよび処理ユニット76B用の第2垂直排気管772Bのそれぞれが連通するように接続される。第2水平排気管782Aは、第2垂直排気管772A,772Bから気体を排出する。
【0167】
例えば、第3水平排気管783Aには、処理ユニット76A用の第3垂直排気管773Aおよび処理ユニット76B用の第3垂直排気管773Bのそれぞれが連通するように接続される。第3水平排気管783Aは、第3垂直排気管773A,773Bから気体を排出する。
【0168】
例えば、
図3、
図5で示されるように、第1水平排気管781B、第2水平排気管782B、第3水平排気管783Bは、最上段(6段目)の2つの処理ユニット76C,76Dの上方において、前後方向(±X方向)に延びるように位置する。第1水平排気管781B、第2水平排気管782B、第3水平排気管783Bは、例えば、幅方向(±Y方向)に並ぶ。
【0169】
例えば、第1水平排気管781Bには、処理ユニット76C用の第1垂直排気管771Cおよび処理ユニット76D用の第1垂直排気管771Dのそれぞれが連通するように接続される。第1水平排気管781Bは、第1垂直排気管771C,771Dから気体を排出する。
【0170】
例えば、第2水平排気管782Bには、処理ユニット76C用の第2垂直排気管772Cおよび処理ユニット76D用の第2垂直排気管772Dのそれぞれが連通するように接続される。第2水平排気管782Bは、第2垂直排気管772C,772Dから気体を排出する。
【0171】
例えば、第3水平排気管783Bには、処理ユニット76C用の第3垂直排気管773Cおよび処理ユニット76D用の第3垂直排気管773Dのそれぞれが連通するように接続される。第3水平排気管783Bは、第3垂直排気管773C,773Dから気体を排出する。
【0172】
第1水平排気管781A、第2水平排気管782A、第3水平排気管783Aは、第1水平排気管781B、第2水平排気管782B、第3水平排気管783Bよりも長い。
【0173】
第1水平排気管781A、第2水平排気管782A、第3水平排気管783A、第1水平排気管781B、第2水平排気管782B、第3水平排気管783Bのそれぞれの内部を、気体が後方(+X方向)に向けて流れる。
【0174】
基板処理装置790は、例えば、4つの排気管スペース763および水平排気系780等を含む排気部768を有し、この排気部768によって、処理室761から基板処理装置790の外部(工場の排気設備等)に気体を排出することができる。
【0175】
基板処理装置790の後方(+X方向)には処理液格納部705が設けられる。処理液格納部705は処理液分配部701,702および処理液供給源703,704を格納する。例えば処理液供給源703は薬液を貯留し、処理液供給源704はリンス液を貯留する。
【0176】
処理液分配部701,702はいずれも処理液を、具体的には処理液供給源703から薬液を、処理液供給源704からリンス液を、それぞれ得る。処理液分配部701は処理液を処理ユニット76C,76Dへ分配する。処理液分配部702は処理液を処理ユニット76A,76Bへ分配する。
【0177】
処理液分配部701から処理ユニット76C,76Dへ処理液を供給する配管は、それぞれ供給管スペース762C,762Dにおいて設けられる。処理液分配部702から処理ユニット76A,76Bへ処理液を供給する配管は、それぞれ供給管スペース762A,762Bにおいて設けられる。
【0178】
<1-8.基板処理装置の制御系>
例えば、
図1で示されるように、基板処理装置790は、制御部79を備える。制御部79は、例えば、基板処理装置790の各構成の動作を制御するための部分である。
【0179】
図8は、基板処理装置790の各構成の動作を制御するための機能的な構成を示すブロック図である。制御部79は、第1搬送機構723、第2搬送機構75、複数の処理ユニット76および水平排気系780と、通信可能に接続される。
【0180】
より具体的には、制御部79は、例えば、複数の処理ユニット76および水平排気系780のうちの制御の対象となる各要素と通信可能に接続される。これにより、制御部79は、例えば、第1搬送機構723、第2搬送機構75、複数の処理ユニット76および水平排気系780の動作を制御することができる。
【0181】
図9は、制御部79の一構成例を示すブロック図である。制御部79は、例えば、一般的なコンピュータ等で実現される。制御部79は、例えば、バスライン79Buを介して接続された、通信部791、入力部797、出力部798、記憶部794、処理部795およびドライブ796を有する。
【0182】
通信部791は、例えば、第1搬送機構723、第2搬送機構75、複数の処理ユニット76および水平排気系780のそれぞれとの間における通信回線を介した信号の送受信を行う。通信部791は、例えば、基板処理装置790を管理するための管理用サーバからの信号を受信してもよい。
【0183】
入力部797は、例えば、オペレータの動作等に応じた信号を入力する。入力部797は、例えば、操作に応じた信号を入力可能なマウスおよびキーボード等の操作部、音声に応じた信号を入力可能なマイクおよび動きに応じた信号を入力可能な各種センサ等を含む。
【0184】
出力部798は、例えば、各種情報をオペレータが認識可能な態様で出力する。出力部798は、例えば、各種情報を可視的に出力する表示部および各種情報を可聴的に出力するスピーカ等を含む。表示部は、例えば、入力部797の少なくとも一部と一体化されたタッチパネルの形態を有していてもよい。
【0185】
記憶部794は、例えば、プログラムPg1および各種の情報を記憶する。記憶部794は、例えば、ハードディスクまたはフラッシュメモリ等の不揮発性の記憶媒体で構成される。記憶部794には、例えば、1つの記憶媒体を有する構成、2つ以上の記憶媒体を一体的に有する構成、および2つ以上の記憶媒体を2つ以上の部分に分けて有する構成の何れが適用されてもよい。記憶媒体は、例えば、第1搬送機構723、第2搬送機構75、複数の処理ユニット76および水平排気系780の動作条件に関する情報を記憶する。処理ユニット76の動作条件に関する情報は、例えば、基板Wを処理するための処理レシピ(プロセスレシピ)を含む。
【0186】
処理部795は、例えば、プロセッサとして働く演算処理部795aおよび演算処理の作業領域としてのメモリ795b等を含む。演算処理部795aには、例えば、中央演算装置(CPU)等の電子回路が適用され、メモリ795bには、例えば、RAM(Random Access Memory)等が適用される。処理部795は、例えば、記憶部794に記憶されたプログラムPg1を読み込んで実行することで、制御部79の機能を実現する。このため、制御部79では、例えば、プログラムPg1に記述された手順に従って処理部795が演算処理を行うことで、基板処理装置790の各部の動作を制御する各種の機能部が実現される。すなわち、基板処理装置790に含まれる制御部79によってプログラムPg1が実行されることで、基板処理装置790の機能および動作が実現され得る。制御部79で実現される一部あるいは全部の機能部は、例えば、専用の論理回路等でハードウエア的に実現されてもよい。
【0187】
ドライブ796は、例えば、可搬性の記憶媒体Sm1の脱着が可能な部分である。ドライブ796は、例えば、記憶媒体Sm1が装着される状態で、この記憶媒体Sm1と処理部795との間におけるデータの授受を行わせる。ドライブ796は、プログラムPg1が記憶された記憶媒体Sm1がドライブ796に装着された状態で、記憶媒体Sm1から記憶部794内にプログラムPg1を読み込ませて記憶させる。
【0188】
基板処理装置790の全体における動作の一例が説明される。基板処理装置790では、例えば、制御部79が、基板Wの搬送手順および処理条件等を記述したレシピにしたがって、基板処理装置790が備える各部を制御することで、以下に説明する一連の動作が実行される。
【0189】
未処理の基板Wを収容したキャリアCがキャリア載置部721上に載置されると、第1搬送機構723が、このキャリアCから未処理の基板Wを取り出す。第1搬送機構723は、基板載置部77に未処理の基板Wを搬送する。第2搬送機構75は、基板載置部77からレシピ等で指定された処理ユニット76に未処理の基板Wを搬送する。第1搬送機構723と第2搬送機構75との間における基板Wの受け渡しは、例えば、基板載置部77を介することなく、ハンド7231とハンド751との間で直接に行われてもよい。
【0190】
基板Wが搬入された処理ユニット76は、基板Wに対して、定められた一連の基板処理を実行する。この一連の基板処理では、例えば、保持部711に保持された基板Wの上面Waに対して、薬液の供給と、リンス液の供給とがこの記載の順に行われる。
【0191】
リンス液を用いた処理の後、有機溶剤の供給が行われてもよい。有機溶剤を用いた処理の後には、例えば、基板Wの上面Wa上から有機溶剤を除去して基板Wの上面Wa上を乾燥させる処理(乾燥処理とも称される)が行われる。乾燥処理では、例えば、保持部711に保持された基板Wが、駆動部としての電動モータ711mによって回転軸線A3を中心として回転される。
【0192】
処理ユニット76において基板Wに対する一連の基板処理が終了すると、第2搬送機構75は、処理済みの基板Wを処理ユニット76から取り出す。第2搬送機構75は、処理済みの基板Wを基板載置部77に搬送する。第1搬送機構723は、基板載置部77からキャリア載置部721上のキャリアCに基板Wを搬送する。
【0193】
基板処理装置790では、第1搬送機構723および第2搬送機構75がレシピにしたがって上述した搬送動作を反復して行うとともに、各処理ユニット76が処理レシピにしたがって基板Wに対する一連の基板処理を実行する。これによって、基板Wに対する一連の基板処理が次々と行われる。
【0194】
<2.循環装置の説明>
図10、
図11は循環装置100の構成を例示する配管図である。処理液分配部701,702のいずれにも、循環装置100が採用され得る。
図10には循環装置100の外部から循環装置100に接続される外部経路71,72も付記される。循環装置100は、外部経路71,72に対して処理液の供給および回収を行う。外部経路71,72はそれぞれ異なるタワーにおける処理液の経路であるということができる。
【0195】
循環装置100が処理液分配部701として採用される場合、例えば外部経路71は6個の処理ユニット76Cにおいて処理液が流れる配管であり、外部経路72は6個の処理ユニット76Dにおいて処理液が流れる配管である。
【0196】
例えば外部経路71と6個の処理ユニット76Cとは、配管71bを介して処理液の供給および回収が行われる。例えば外部経路72と6個の処理ユニット76Dとは、配管72bを介して処理液の供給および回収が行われる。配管71bは供給管スペース762Cに設けられ、配管72bは供給管スペース762Dに設けられる。
【0197】
循環装置100が処理液分配部702として採用される場合、例えば外部経路71は6個の処理ユニット76Aにおいて処理液が流れる配管であり、外部経路72は6個の処理ユニット76Bにおいて処理液が流れる配管である。
【0198】
例えば外部経路71と6個の処理ユニット76Aとは、配管71bを介して処理液の供給および回収が行われる。例えば外部経路72と6個の処理ユニット76Bとは、配管72bを介して処理液の供給および回収が行われる。配管71bは供給管スペース762Aに設けられ、配管72bは供給管スペース762Bに設けられる。
【0199】
循環装置100は、貯留槽Tを備える。貯留槽Tは液体Qを貯留の対象とする。液体Qは上述の処理液であり、例えば硫酸あるいはその希釈液(希硫酸)である。
【0200】
循環装置100は配管1を備える。配管1は流入端101を有し、外部経路71,72への液体Qの供給に用いられる。流入端101には貯留槽Tから液体Qが流入する。
【0201】
循環装置100は配管2を備える。配管2は流出端202を有し、外部経路71,72を介した液体Qの回収に用いられる。流出端202から貯留槽Tへ液体Qが流出する。
【0202】
循環装置100は弁13を備える。弁13は、配管1に設けられ、液体Qの外部経路71,72への供給を制御する。弁13には例えば開閉弁が採用される。
【0203】
配管1,2および弁13を経由して、貯留槽Tから液体Qが流出し、貯留槽Tへと液体Qが流入する循環は、「外循環」と称される。
【0204】
循環装置100はポンプ12を備える。ポンプ12は配管1において設けられる。ポンプ12は吸入口12aと吐出口12bとを有する。吸入口12aは流入端101に接続される。ポンプ12は液体Qを、吸入口12aから吐出口12bへ向けての圧出の対象とする。ポンプ12は例えば回転型であり、例えば磁気浮上遠心ポンプがポンプ12に採用される。磁気浮上遠心ポンプには、例えばレビトロニクス社のベアリングレスポンプが採用される。
【0205】
循環装置100はヒータ11を備える。ヒータ11は、配管1において吐出口12bに接続して設けられる。ヒータ11は、液体Qを加熱の対象とする。
【0206】
循環装置100は配管6を備える。配管6は循環装置100の外部から貯留槽Tへ貯留される液体Qの経路である。例えば循環装置100が処理液分配部701として採用される場合、処理液供給源703に配管6が接続される。例えば循環装置100が処理液分配部702として採用される場合、処理液供給源704に配管6が接続される。
【0207】
循環装置100は配管6に設けられる弁61を備える。弁61は貯留槽Tへの液体Qの流出を制御する。弁61には例えば開閉弁が採用される。
【0208】
循環装置100は配管3を備える。配管3は、ヒータ11に対してポンプ12とは反対側において配管1に接続される。配管3は流出端302を有する。流出端302から貯留槽Tへ液体Qが流出する。例えば配管3は端301を有し、端301が配管1に接続される。端301はヒータ11と、弁13との間に位置する。
【0209】
循環装置100は弁31,32を備える。弁31は、配管3に設けられ、流出端302から貯留槽Tへの液体Qの流出を制御する。弁31には例えば開閉弁が採用される。弁32は弁31に対して流出端302と反対側に設けられる。弁32はリリーフ弁である。
【0210】
配管1,3および弁31,32を経由して、貯留槽Tから液体Qが流出し、貯留槽Tへと液体Qが流入する循環は、「内循環」と称される。
【0211】
循環装置100はフィルタ16を備える。フィルタ16は、配管1において例えばヒータ11と、端301との間に設けられる。フィルタ16は液体Qの不純物を除去する機能を有する。
【0212】
循環装置100は流量計15を備える。流量計15は、例えば吐出口12bとヒータ11との間に設けられる。流量計15は配管1における液体Qの流量を測定する。
【0213】
循環装置100は温度計17を備える。温度計17は、例えばヒータ11とフィルタ16との間に設けられる。温度計17は配管1にある液体Qの温度を測定する。
【0214】
外部経路71には、配管1と配管71bとの間に弁71cが設けられる。外部経路72には、配管1と配管72bとの間に弁72cが設けられる。弁71c,72cには例えば開閉弁が採用される。
【0215】
外部経路71には、配管2と配管71bとの間に弁71eが設けられる。外部経路72には、配管2と配管72bとの間に弁72eが設けられる。弁71e,72eはリリーフ弁である。
【0216】
制御部5は弁13,31,71c,72cに対して、それぞれの開閉を制御する信号Svを出力する。
【0217】
制御部5はヒータ11およびポンプ12の動作を制御する。例えば制御部5は、制御信号Shをヒータ11に出力し、ヒータ11による液体Qの加熱を制御する。例えば制御部5は、制御信号Spをポンプ12に出力し、ポンプ12による液体Qの流速を制御する。
【0218】
制御部5は流量計15から、配管1を流れる液体Qの流量を示すデータFdを入力する。制御部5は温度計17から、配管1にある液体Qの温度(以下、単に「液温」とも称される)を示すデータTdを入力する。
【0219】
制御部5が例えばデータFdに基づいて制御信号Spを用いてポンプ12の駆動(例えば回転速度および回転加速度)を制御することや、制御部5がデータTdに基づいて制御信号Shを用いてヒータ11による液体Qの加熱(例えば液温の昇温速度)を制御することは、周知の技術を用いて実現される。よってかかるポンプ12やヒータ11の制御を実現する技術についての詳細は割愛される。
【0220】
制御部5は例えば制御部79の一部または全部によって実現され得る。制御部5を循環装置100の一部として把握することもできる。
【0221】
以下では弁の開閉の動作、液温(具体的には液体Qへの加熱)、ポンプ12の動作(具体的には回転加速度の制御)の三者の関連について説明される。以下の説明において、弁を示す記号を構成する一対の三角形には、弁が開いた状態にあるときに黒三角が、弁が閉じた状態にあるときに白三角が、それぞれ採用される。
【0222】
但し、リリーフ弁が採用される弁71e,72e,32において図示される白三角は、液体Qのリリーフを行っていない意味での閉状態を示す。よって以下の説明において、弁71eは外部経路71における液体Qの流れを阻害せず、弁72eは外部経路72における液体Qの流れを阻害せず、弁32は配管3における液体Qの流れを阻害しない。
【0223】
以下の説明では貯留槽Tへの液体Qの貯留についての説明は割愛される。このことから、弁61が閉状態にある状況が説明される。
【0224】
<2-1.外部経路へ処理液を供給する前の準備>
外部経路71,72へと処理液(ここでは液体Q)を供給する前に、内循環を行って処理液を所定の温度に上昇させておくことは、処理に利用される際の処理液の温度管理に寄与する。
図10は内循環の状況を示す。具体的には弁13,71c,72cが閉じられ、弁31が開く。
【0225】
内循環において液体Qは、貯留槽Tからポンプ12、流量計15、ヒータ11、フィルタ16、端301、弁32,31、流出端302をこの順に経由して、貯留槽Tへ戻る。
【0226】
<2-2.外部経路への処理液の供給>
弁13,71c,72cが開いて、外部経路71,72へ処理液(ここでは液体Q)が供給され、外循環が実行される(
図11参照)。
【0227】
外部経路71,72へ処理液が供給される場合、外循環のみならず、内循環も併用される。外循環が行われているときの内循環は、外部経路71,72に流れる処理液の流量の変動が、循環装置100における処理液の圧力に与える変動を、緩和する。
【0228】
<2-3.内循環時におけるポンプの回転速度の上昇およびヒータによる昇温>
図12はポンプ12の回転速度の上昇およびヒータ11による液体Qの昇温を示すグラフである。横軸には時間が、縦軸には、液体Qの液温CTと、ポンプ12の回転速度Rとが採用される。液体Qの流速は。回転速度Rとの間に正の相関関係があり、例えば回転速度Rの上昇に対して単調に上昇する。
【0229】
折れ線Ga,Gbは液温CTの経時変化を示す。折れ線Gc,Gdは回転速度Rの経時変化を示す。実線の折れ線Ga,Gcはこの実施形態で提案される技術が採用される一例(実施例)を示す。破線の折れ線Gb,Gdはこの実施例と比較される技術が採用される一例(比較例)を示す。折れ線Ga,Gbが重なる部分は実線で示される。
【0230】
実施例と比較例との比較のため、いずれも、時刻t0において液体Qの加熱が開始されて液温CTが上昇し始め、時刻t0においてポンプ12の駆動が開始されてポンプ12の回転速度Rが上昇し始める場合が想定される。
【0231】
<2-4.液温の温度範囲と回転速度の速度範囲との関係>
図12において、温度C9から温度C1までの温度範囲S1と、温度C1から温度C2までの温度範囲S2とが示される。温度C0は、例えば室温であり、温度範囲S1内にある。温度C9は例えば0℃である。温度C2は外部経路71,72へ供給される処理液に要望される所定温度であり、例えば100℃である。温度C1は例えば40℃である。
【0232】
温度範囲S2における回転加速度の上限α2は、キャビテーションを抑制する観点から、温度範囲S1におけるポンプの回転加速度αの上限α1よりも低く設定される。例えば上限α1は100rpm/sであり、上限α2は50rpm/sである。
【0233】
液体Qの粘度の観点から、温度範囲S2における回転速度Rには下限R1と上限R2とが設定される。例えば下限R1は3000rpmであり、上限R2は6000rpmである。時刻t0におけるポンプ12の回転速度Rは低速の値R0をとる。値R0は例えば零である。
【0234】
上限R2は粘度の観点の他、内循環における液体Qの流速に要求される観点にも基づいて設定される。例えば温度範囲S2の下限となる温度C1において採用される回転速度Rが循環装置100における圧力を過剰にしない範囲において、液体Qに要求される流速を得られる値に上限R2が設定される。
【0235】
<2-5.比較例>
比較例においては、折れ線Gbで示されるように、時刻t0から時刻t2の間に、液体Qが加熱されて液温CTが温度C0から温度C1まで上昇する。比較例においては、折れ線Gdで示されるように、時刻t0から時刻t3の間に、回転速度Rは値R0から下限R1まで上昇する。
【0236】
比較例では、液温が高く粘度が低い状況においてキャビテーションの発生を避けるために採用される小さい回転加速度が、液温CTが低く粘度が高い状況においても採用される。例えば回転加速度αには、液温CTによらず上限α2が採用される。
【0237】
時刻t2において液温CTは温度範囲S1から温度範囲S2へと遷移する。回転加速度αが小さいため、時刻t2においては回転速度Rはまだ下限R1に到達していない。よって時刻t2から時刻t3までは液温CTを維持すべく昇温速度βが低下し、理想的には昇温速度βが零である。
【0238】
時刻t3において回転速度Rが下限R1に到達すると、再び液体Qが昇温され、液温CTは時刻t7において温度C2に到達する。時刻t7以降は液温CTの昇温速度βが低下し、理想的には昇温速度βが零である。
【0239】
回転速度Rは時刻t3以降においても上昇を続け、時刻t5において上限R2に到達する。時刻t5以降は回転速度Rを上限R2に維持すべく回転加速度αを低下させ、理想的には回転加速度αが零である。
【0240】
このように比較例では、温度範囲S2における上限α2を、温度範囲S1における回転加速度αにも採用したため、回転速度Rが下限R1に到達するまでに必要な時間が長い。時刻t2から時刻t3の間は昇温に寄与していない。これを反映して液温CTが温度C2に到達する迄に必要な時間が長くなる。
【0241】
<2-6.実施例>
実施例においては、温度範囲S1において回転加速度αに上限α1が採用される。折れ線Gcで示されるように、回転速度Rは時刻t0から時刻t1の間に値R0から下限R1まで上昇する。
【0242】
実施例においては、折れ線Gaで示されるように液体Qが加熱されて液温CTが時刻t0から時刻t2の間に温度C0から温度C1まで上昇する。
【0243】
時刻t2において液温は温度範囲S1から温度範囲S2へと遷移する。回転加速度αが大きいため、折れ線Gcで示されるように時刻t1において回転速度Rは下限R1に到達している。時刻t1は時刻t2よりも早い(t1<t2)。
【0244】
時刻t1から時刻t2の間に、回転速度Rを下限R1に維持すべく、回転加速度αが低下し、理想的には回転加速度αが零となる。これにより循環装置100における過剰な圧力の発生(これは温度が高く液体Qの粘度が低い状況において液体Qの流速が高まることに起因する)が、抑制される。
【0245】
時刻t2において液温CTが温度C1に到達すると、キャビテーションの発生を避けるため、回転加速度αに上限α2が採用される。時刻t4において回転速度Rが上限R2に到達する。時刻t4以降は、回転速度Rを上限R2に維持すべく、回転加速度αが低下し、理想的には回転加速度αが零である。
【0246】
時刻t0から時刻t6まで液温CTは上昇し続け、時刻t6において温度C2に到達する。時刻t6以降は液温CTの昇温速度βが低下し、理想的には昇温速度βが零である。
【0247】
時刻t1が時刻t2よりも早いことを反映して、時刻t4は時刻t5よりも早く、時刻t6は時刻t7よりも早い。
【0248】
実施例では比較例のように時刻t2から時刻t3の間において液温CTを維持する必要が無い。液温CTが温度C2に到達するまで、昇温速度βには一定値β1が採用され得る。液温CTが温度C2に到達するまでに、昇温速度βが一旦低下する(比較例では昇温速度βが理想的には零となる)場合と比較して、昇温速度βに一定値β1が採用されることは、液温CTを所望の温度に早く到達させることに寄与する。
【0249】
このように実施例は比較例よりも早く、ポンプ12の回転速度Rによる液体Qの流速と、ヒータ11の加熱による液温CTとを、所望の値にする。上述の例では流速の所望の値は回転速度Rの上限R2に対応し、液温CTの所望の値は温度C2である。
【0250】
<2-7.本開示にかかる制御についての段階的な説明>
ポンプの回転加速度αと昇温速度βとについての本開示にかかる制御は、実施例を参照して以下のように説明される。
【0251】
[説明J1]液体Qの温度(液温CTに相当)を上昇させるときに、
ポンプ12の速度(回転速度Rに相当)が第1所定速度(下限R1に相当)に到達するまで(到達する時点が時刻t1に相当)ポンプ12を第1加速度(上限α1に相当)で加速させたのち;
ポンプ12の速度が第1所定速度よりも高い第2所定速度(上限R2に相当)に到達するまで(到達する時点が時刻t4に相当)、ポンプ12を第1加速度よりも低い第2加速度(上限α2に相当)で加速させる。
【0252】
このように、回転加速度αに複数段階の回転加速度(例えば上限α1,α2(<α1))が採用されることにより、液体Qのキャビテーションの発生を抑制しつつ、液体Qの流速および液温が所望の値へ早期に到達する。
【0253】
より詳細には、当該制御は実施例に即して以下のように説明される。
【0254】
[説明J2]
第1工程:液体Qの温度が第1所定温度(温度C1に相当)未満のときに、ポンプ12の速度が第1所定速度に到達するまで(到達する時点が時刻t1に相当)ポンプ12を第1加速度で加速させ、
第2工程:液体Qの温度が第1所定温度未満のときに、ポンプ12の速度が第1所定速度に到達すると、ポンプ12の速度を第1所定速度に維持し、
第3工程:液体Qの温度が第1所定温度以上であって、第1所定温度よりも高い第2所定温度(温度C2に相当)以下のときに(温度範囲S2に相当)、ポンプ12の速度が第2所定速度に到達するまで(到達する時点が時刻t4に相当)、ポンプ12を第2加速度で加速させ、
第4工程:液体Qの温度が第1所定温度以上であって、第2所定温度以下のときに、ポンプ12の速度が第2所定速度に到達すると、ポンプ12を第2所定速度に維持する。
【0255】
上述のとおり、t1<t2を考慮すると、当該制御は更に以下のように説明される。
【0256】
[説明J3]
液体Qの温度が第1所定温度に到達する以前(到達する時点が時刻t2に相当)にポンプ12が記第1所定速度に到達(到達する時点が時刻t1に相当)し;
液体Qの温度が第2所定温度に到達する以前(到達する時点が時刻t6に相当)にポンプ12が第2所定速度に到達する(到達する時点が時刻t4に相当)。
【0257】
従ってポンプ12の回転速度Rの上昇を待つべく、液体Qの加熱を停止させる必要がない。
【0258】
上述の動作が内循環で採用されることを考慮すると、当該制御は以下のようにも説明される。
【0259】
[説明J4]
第1工程から第4工程において開閉弁(弁13に相当)が閉じ、
第5工程:液体Qの温度が第2所定温度に到達した後(時刻t6以降に相当)、開閉弁が開く。
【0260】
このようにして液体Qの流速、液温CTが所望の値に到達した後、弁13を介して(より詳細には開いた弁71c,72cを介して)外部経路71,72に液体Qが供給される。
【0261】
<2-8.本開示にかかる制御についてのフローチャート>
図13は本開示にかかる制御を例示するフローチャートである。当該制御はポンプ12の回転加速度αと昇温速度βとを制御対象とするので、当該フローチャートは「加速度/昇温変更処理」と付記して示される。当該フローチャートは、時間を空けて、例えば回転加速度αと昇温速度βの制御に要求される時間を空けて、繰り返し実行される。
【0262】
ステップD1,D2は、液温CTについての判断を行う。ステップD3,D4は、回転速度Rについての判断を行う。ステップSA0,SA1,SA2は回転加速度αの設定を行う。ステップB0,B1は昇温速度βの設定を行う。
【0263】
ステップD2,D3,D4,SA0,SA1,SA2,B0,B1の実行に先立ち、ステップD1において液温CTが温度C1を超えるか否かが判断される。当該判断の結果が肯定的であれば液温CTは温度範囲S2にあると判断され、ステップD2が実行される。ステップD2以降の処理については後述される。
【0264】
ステップD1における判断の結果が否定的であれば液温CTは温度範囲S1にあると判断され(
図12の時刻t2以前に相当)、ステップD4が実行される。
【0265】
ステップD4は回転速度Rが下限R1未満であるか否かが判断される。ステップD4における判断の結果が肯定的であれば回転速度Rは下限R1に到達していないと判断され(
図12の時刻t1以前に相当)、ステップSA1が実行される。ステップSA1においては回転加速度αが上限α1に設定される(
図12の折れ線Gc参照)。ステップSA1の実行にはステップB1の実行が伴われる(
図12の折れ線Ga参照)。ステップB1においては昇温速度βが正の値、例えば一定値β1に設定される。ステップSA1,B1が実行された後、当該フローチャートは一旦終了し、上述の時間を空けて再開される。
【0266】
ステップD1,D4のいずれの判断結果も否定的である場合には、液温CTが温度範囲S1にありながら回転速度Rが下限R1に到達しているとき(
図12の時刻t1から時刻t2の間に相当)である。この場合、回転速度Rは下限R1を維持すべく(
図12の折れ線Gc参照)、回転加速度αが値α0(<α2)に設定される(ステップSA0)。典型的にはα0=0であるが、液体Qに対してポンプ12以外が液体Qへ与える影響を除外すべく、値α0は小さな正値をとってもよい。
【0267】
ステップSA0の実行にはステップB1の実行が伴われる(
図12の折れ線Ga参照)。ステップSA0,B1が実行された後、当該フローチャートは一旦終了し、上述の時間を空けて再開される。
【0268】
ステップD2においては、液温CTが温度C2より低いか否かが判断される。ステップD2における判断が否定的である場合は、液温CTが温度C2に到達している場合なので(
図12の時刻t6以降に相当)、この場合には昇温速度βが値β0(<β1)に設定される(ステップB0)。典型的にはβ0=0であるが、液体Qに対してヒータ11以外が液体Qへ与える影響を除外すべく、値β0は小さな正値をとってもよい。ステップB0が実行された後、当該フローチャートは一旦終了し、上述の時間を空けて再開される。
【0269】
ステップD2における判断の結果が肯定的であった場合、ステップD3が実行される。ステップD3においては回転速度Rが上限R2未満であるか否かが判断される。当該判断が肯定的である場合(時刻t2から時刻t4の間に相当)には、回転加速度αが値α2(<α1)に設定される(ステップSA2)。
【0270】
ステップSA2の実行にはステップB1の実行が伴われる(
図12の折れ線Ga参照)。ステップSA2,B1が実行された後、当該フローチャートは一旦終了し、上述の時間を空けて再開される。
【0271】
ステップD3における判断の結果が否定的である場合(時刻t4から時刻t6の間に相当)には、回転加速度αが値α0に設定される(ステップSA0)。
【0272】
ステップSA0の実行にはステップB1の実行が伴われる(
図12の折れ線Ga参照)。ステップSA0,B1が実行された後、当該フローチャートは一旦終了し、上述の時間を空けて再開される。
【0273】
ステップD1,D4,SA1は[説明J2]の第1工程に対応し、ステップD1,D4,SA0は[説明J2]の第2工程に対応し、ステップD1,D2,D3,SA2は[説明J2]の第3工程に対応し、ステップD1,D2,D3,SA0は[説明J2]の第4工程に対応する、と考えることができる。
【0274】
<3.変形>
上記実施形態において、例えば、ポンプ12に回転型以外の形式が採用されてもよい。この場合には、上述された回転速度R、回転加速度αは、それぞれポンプ12の速度、加速度、と読み替えられることにより、上述の説明が妥当する。
【0275】
上記各実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能である。
【符号の説明】
【0276】
1 配管(第1配管)
2 配管(第2配管)
3 配管(第3配管)
5 制御部
11 ヒータ
12 ポンプ
12a 吸入口
12b 吐出口
13 弁(開閉弁)
71,72 外部経路
100 循環装置
101 流入端(第1流入端)
202 流出端(第2流出端)
301 端
302 流出端(第3流出端)
C1 温度(第1所定温度)
C2 温度(第2所定温度)
CT 液温(液体の温度)
Q 液体
R1 下限(第1所定速度)
R2 上限(第2所定速度)
T 貯留槽
α1 上限(第1加速度)
α2 上限(第2加速度)
β1 一定値