IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 太陽誘電株式会社の特許一覧

特開2023-143031セラミック電子部品およびその製造方法
<>
  • 特開-セラミック電子部品およびその製造方法 図1
  • 特開-セラミック電子部品およびその製造方法 図2
  • 特開-セラミック電子部品およびその製造方法 図3
  • 特開-セラミック電子部品およびその製造方法 図4
  • 特開-セラミック電子部品およびその製造方法 図5
  • 特開-セラミック電子部品およびその製造方法 図6
  • 特開-セラミック電子部品およびその製造方法 図7
  • 特開-セラミック電子部品およびその製造方法 図8
  • 特開-セラミック電子部品およびその製造方法 図9
  • 特開-セラミック電子部品およびその製造方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023143031
(43)【公開日】2023-10-06
(54)【発明の名称】セラミック電子部品およびその製造方法
(51)【国際特許分類】
   H01G 4/30 20060101AFI20230928BHJP
【FI】
H01G4/30 201G
H01G4/30 201F
H01G4/30 311E
H01G4/30 516
H01G4/30 513
H01G4/30 517
【審査請求】未請求
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2022050219
(22)【出願日】2022-03-25
(71)【出願人】
【識別番号】000204284
【氏名又は名称】太陽誘電株式会社
(74)【代理人】
【識別番号】100087480
【弁理士】
【氏名又は名称】片山 修平
(72)【発明者】
【氏名】西浦 慎
(72)【発明者】
【氏名】中村 智彰
【テーマコード(参考)】
5E001
5E082
【Fターム(参考)】
5E001AB03
5E001AC09
5E001AE01
5E001AE02
5E001AE03
5E001AE04
5E001AF06
5E001AH01
5E001AH07
5E001AJ03
5E082AA01
5E082AB03
5E082BC19
5E082EE04
5E082EE23
5E082EE35
5E082EE37
5E082FF05
5E082FG04
5E082FG26
5E082FG46
5E082GG10
5E082GG11
5E082GG12
5E082GG28
5E082JJ03
5E082JJ12
5E082JJ23
5E082PP09
(57)【要約】
【課題】 耐湿信頼性を向上させることができるセラミック電子部品およびその製造方法を提供する。
【解決手段】 セラミック電子部品は、複数の誘電体層と、前記複数の誘電体層を介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極層と、を有する素体と、前記複数の内部電極層が延伸される方向の端である前記素体の端面に設けられ、前記複数の内部電極層の前記一端と各々接する、Cuを主成分とする下地層と、前記下地層上に形成されたNiめっき層と、前記下地層の前記Niめっき層側の表面、または前記下地層と前記Niめっき層との間に配置された金属層の前記Niめっき層側の表面に配置された金属酸化物粒子を備え、前記金属酸化物粒子は、前記下地層の表面に配置される場合にはCu以外の金属の酸化物であり、前記金属層の表面に配置される場合には前記金属層の主成分金属以外の金属の酸化物である。
【選択図】 図4
【特許請求の範囲】
【請求項1】
複数の誘電体層と、前記複数の誘電体層を介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極層と、を有する素体と、
前記複数の内部電極層が延伸される方向の端である前記素体の端面に設けられ、前記複数の内部電極層の前記一端と各々接する、Cuを主成分とする下地層と、
前記下地層上に形成されたNiめっき層と、
前記下地層の前記Niめっき層側の表面、または前記下地層と前記Niめっき層との間に配置された金属層の前記Niめっき層側の表面に配置された金属酸化物粒子を備え、
前記金属酸化物粒子は、前記下地層の表面に配置される場合にはCu以外の金属の酸化物であり、前記金属層の表面に配置される場合には前記金属層の主成分金属以外の金属の酸化物である、セラミック電子部品。
【請求項2】
前記金属酸化物粒子は、アルミナ粒子またはジルコニア粒子である、請求項1に記載のセラミック電子部品。
【請求項3】
複数の誘電体層と、前記複数の誘電体層を介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極層と、を有する素体と、
前記複数の内部電極層が延伸される方向の端である前記素体の端面に設けられ、前記複数の内部電極層の前記一端と各々接する、Cuを主成分とする下地層と、
前記下地層上に形成されたNiめっき層と、
前記下地層の前記Niめっき層側の表面、または前記下地層と前記Niめっき層との間に配置された金属層の前記Niめっき層側の表面に配置された金属酸化物粒子を備え、
前記金属酸化物粒子は、アルミナ粒子またはジルコニア粒子である、セラミック電子部品。
【請求項4】
前記金属酸化物粒子の平均粒径は、0.1μm以上8.0μm以下である、請求項1から請求項3のいずれか一項に記載のセラミック電子部品。
【請求項5】
前記金属酸化物粒子は、前記下地層の前記Niめっき層側の表面に配置されている、請求項1から請求項4のいずれか一項に記載のセラミック電子部品。
【請求項6】
複数の誘電体層と、前記複数の誘電体層を介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極層と、を有する素体と、
前記複数の内部電極層が延伸される方向の端である前記素体の端面に設けられ、前記複数の内部電極層の前記一端と各々接する下地層と、
前記下地層上に形成されたNiめっき層と、
前記下地層の前記Niめっき層側の表面、または前記下地層と前記Niめっき層との間に配置された金属層の前記Niめっき層側の表面に配置された金属酸化物粒子を備え、
前記金属酸化物粒子は、前記下地層の表面に配置される場合にはCu以外の金属の酸化物であり、前記金属層の表面に配置される場合には前記金属層の主成分金属以外の金属の酸化物であり、
前記金属酸化物粒子の平均粒径は、0.1μm以上8.0μm以下である、セラミック電子部品。
【請求項7】
前記下地層と前記Niめっき層との間にCuめっき層を備え、
前記金属酸化物粒子は、前記Cuめっき層の前記Niめっき層側の表面に配置されている、請求項6に記載のセラミック電子部品。
【請求項8】
前記下地層は、Niの焼結体である、請求項6または請求項7に記載のセラミック電子部品。
【請求項9】
前記金属酸化物粒子は、アルミナ粒子またはジルコニア粒子である、請求項6から請求項8のいずれか一項に記載のセラミック電子部品。
【請求項10】
前記下地層の前記Niめっき層側の表面、または前記下地層と前記Niめっき層との間に配置された金属層の前記Niめっき層側の表面に空隙が形成されており、
前記金属酸化物粒子は、前記空隙に配置されている、請求項1から請求項9のいずれか一項に記載のセラミック電子部品。
【請求項11】
複数の誘電体層と、前記複数の誘電体層を介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極層と、を有する素体を準備する工程と、
前記複数の内部電極層が延伸される方向の端である前記素体の端面において、前記複数の内部電極層の前記一端と各々接する、Cuを主成分とする下地層を焼き付ける工程と、
前記下地層の表面または、前記下地層上に形成された金属層の表面に、金属酸化物粒子を配置し、その後にNiめっき層を形成する工程と、を含み、
前記金属酸化物粒子は、前記下地層の表面に配置される場合にはCu以外の金属の酸化物であり、前記金属層の表面に配置される場合には前記金属層の主成分金属以外の金属の酸化物である、セラミック電子部品の製造方法。
【請求項12】
複数の誘電体グリーンシートと、前記複数の誘電体グリーンシートを介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極パターンと、を有するセラミック積層体を準備する工程と、
前記複数の内部電極パターンが延伸される方向の端である前記セラミック積層体の端面に設けられ、前記複数の内部電極パターンの前記一端と各々接する、Cuを主成分とする導電ペーストを塗布する工程と、
前記セラミック積層体と前記導電ペーストとを同時に焼成することにより、前記導電ペーストから下地層を形成する工程と、
前記下地層の表面または、前記下地層上に形成された金属層の表面に、金属酸化物粒子を配置し、その後にNiめっき層を形成する工程と、を含み、
前記金属酸化物粒子は、前記下地層の表面に配置される場合にはCu以外の金属の酸化物であり、前記金属層の表面に配置される場合には前記金属層の主成分金属以外の金属の酸化物であり、
前記金属酸化物粒子の平均粒径は、0.1μm以上8.0μm以下である、セラミック電子部品の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、セラミック電子部品およびその製造方法に関する。
【背景技術】
【0002】
近年、積層セラミックコンデンサなどのセラミック電子部品は、車載用などにその用途を広げると共に、さらに高い信頼性レベルが要求されている。そこで、耐湿信頼性の高い積層セラミックコンデンサが開示されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2020-72246号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、下地層上にNiめっき層を形成するためのめっき工程において、セラミック電子部品の素体内部まで水素が拡散し、耐湿信頼性が低下するおそれがある。
【0005】
本発明は、上記課題に鑑みなされたものであり、耐湿信頼性を向上させることができるセラミック電子部品およびその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明に係るセラミック電子部品は、複数の誘電体層と、前記複数の誘電体層を介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極層と、を有する素体と、前記複数の内部電極層が延伸される方向の端である前記素体の端面に設けられ、前記複数の内部電極層の前記一端と各々接する、Cuを主成分とする下地層と、前記下地層上に形成されたNiめっき層と、前記下地層の前記Niめっき層側の表面、または前記下地層と前記Niめっき層との間に配置された金属層の前記Niめっき層側の表面に配置された金属酸化物粒子を備え、前記金属酸化物粒子は、前記下地層の表面に配置される場合にはCu以外の金属の酸化物であり、前記金属層の表面に配置される場合には前記金属層の主成分金属以外の金属の酸化物である。
【0007】
上記セラミック電子部品において、前記金属酸化物粒子は、アルミナ粒子またはジルコニア粒子であってもよい。
【0008】
本発明に係る他のセラミック電子部品は、複数の誘電体層と、前記複数の誘電体層を介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極層と、を有する素体と、前記複数の内部電極層が延伸される方向の端である前記素体の端面に設けられ、前記複数の内部電極層の前記一端と各々接する、Cuを主成分とする下地層と、前記下地層上に形成されたNiめっき層と、前記下地層の前記Niめっき層側の表面、または前記下地層と前記Niめっき層との間に配置された金属層の前記Niめっき層側の表面に配置された金属酸化物粒子を備え、前記金属酸化物粒子は、アルミナ粒子またはジルコニア粒子である。
【0009】
上記セラミック電子部品において、前記金属酸化物粒子の平均粒径は、0.1μm以上8.0μm以下であってもよい。
【0010】
上記セラミック電子部品において、前記金属酸化物粒子は、前記下地層の前記Niめっき層側の表面に配置されていてもよい。
【0011】
本発明に係る他のセラミック電子部品は、複数の誘電体層と、前記複数の誘電体層を介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極層と、を有する素体と、前記複数の内部電極層が延伸される方向の端である前記素体の端面に設けられ、前記複数の内部電極層の前記一端と各々接する下地層と、前記下地層上に形成されたNiめっき層と、前記下地層の前記Niめっき層側の表面、または前記下地層と前記Niめっき層との間に配置された金属層の前記Niめっき層側の表面に配置された金属酸化物粒子を備え、前記金属酸化物粒子は、前記下地層の表面に配置される場合にはCu以外の金属の酸化物であり、前記金属層の表面に配置される場合には前記金属層の主成分金属以外の金属の酸化物であり、前記金属酸化物粒子の平均粒径は、0.1μm以上8.0μm以下である。
【0012】
上記セラミック電子部品において、前記下地層と前記Niめっき層との間にCuめっき層を備え、前記金属酸化物粒子は、前記Cuめっき層の前記Niめっき層側の表面に配置されていてもよい。
【0013】
上記セラミック電子部品において、前記下地層は、Niの焼結体であってもよい。
【0014】
上記セラミック電子部品において、前記金属酸化物粒子は、アルミナ粒子またはジルコニア粒子であってもよい。
【0015】
上記セラミック電子部品において、前記下地層の前記Niめっき層側の表面、または前記下地層と前記Niめっき層との間に配置された金属層の前記Niめっき層側の表面に空隙が形成されており、前記金属酸化物粒子は、前記空隙に配置されていてもよい。
【0016】
本発明に係るセラミック電子部品の製造方法は、複数の誘電体層と、前記複数の誘電体層を介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極層と、を有する素体を準備する工程と、前記複数の内部電極層が延伸される方向の端である前記素体の端面において、前記複数の内部電極層の前記一端と各々接する、Cuを主成分とする下地層を焼き付ける工程と、前記下地層の表面または、前記下地層上に形成された金属層の表面に、金属酸化物粒子を配置し、その後にNiめっき層を形成する工程と、を含み、前記金属酸化物粒子は、前記下地層の表面に配置される場合にはCu以外の金属の酸化物であり、前記金属層の表面に配置される場合には前記金属層の主成分金属以外の金属の酸化物である。
【0017】
本発明に係るセラミック電子部品の他の製造方法は、複数の誘電体グリーンシートと、前記複数の誘電体グリーンシートを介して積層され、互いに対向して一端が露出するように設けられる複数の内部電極パターンと、を有するセラミック積層体を準備する工程と、前記複数の内部電極パターンが延伸される方向の端である前記セラミック積層体の端面に設けられ、前記複数の内部電極パターンの前記一端と各々接する、Cuを主成分とする導電ペーストを塗布する工程と、前記セラミック積層体と前記導電ペーストとを同時に焼成することにより、前記導電ペーストから下地層を形成する工程と、前記下地層の表面または、前記下地層上に形成された金属層の表面に、金属酸化物粒子を配置し、その後にNiめっき層を形成する工程と、を含み、前記金属酸化物粒子は、前記下地層の表面に配置される場合にはCu以外の金属の酸化物であり、前記金属層の表面に配置される場合には前記金属層の主成分金属以外の金属の酸化物であり、前記金属酸化物粒子の平均粒径は、0.1μm以上8.0μm以下である。
【発明の効果】
【0018】
本発明によれば、耐湿信頼性を向上させることができるセラミック電子部品およびその製造方法を提供することができる。
【図面の簡単な説明】
【0019】
図1】積層セラミックコンデンサの部分断面斜視図である。
図2図1のA-A線断面図である。
図3図1のB-B線断面図である。
図4】(a)および(b)は外部電極付近の拡大断面図である。
図5】外部電極付近の拡大断面図である。
図6】積層セラミックコンデンサの製造方法のフローを例示する図である。
図7】(a)および(b)は積層工程を例示する図である。
図8】(a)および(b)は外部電極付近の拡大断面図である。
図9】外部電極付近の拡大断面図である。
図10】積層セラミックコンデンサの製造方法のフローを例示する図である。
【発明を実施するための形態】
【0020】
以下、図面を参照しつつ、各実施形態について説明する。
【0021】
(第1実施形態)
まず、セラミック電子部品の一例である積層セラミックコンデンサの概要について説明する。図1は、第1実施形態に係る積層セラミックコンデンサ100の部分断面斜視図である。図1で例示するように、積層セラミックコンデンサ100は、直方体形状を有する素体10と、素体10のいずれかの対向する2端面に設けられた外部電極20a,20bとを備える。当該2端面は、内部電極層12が延伸される方向の端の面である。なお、素体10の当該2端面以外の4面のうち、積層方向の上面および下面以外の2面を側面と称する。外部電極20a,20bは、素体10の積層方向の上面、下面および2側面に延在している。ただし、外部電極20a,20bは、互いに離間している。
【0022】
素体10は、誘電体として機能するセラミック材料を含む誘電体層11と、卑金属材料を含む内部電極層12とが、交互に積層された構成を有する。各内部電極層12の一端は、素体10の外部電極20aが設けられた端面と、外部電極20bが設けられた端面とに、交互に露出している。それにより、各内部電極層12は、外部電極20aと外部電極20bとに、交互に導通している。その結果、積層セラミックコンデンサ100は、複数の誘電体層11が内部電極層12を介して積層された構成を有する。また、誘電体層11と内部電極層12との積層体において、積層方向の最外層には内部電極層12が配置され、当該積層体の上面および下面は、カバー層13によって覆われている。カバー層13は、セラミック材料を主成分とする。例えば、カバー層13の材料は、誘電体層11とセラミック材料の主成分が同じである。
【0023】
積層セラミックコンデンサ100のサイズは、例えば、長さ0.25mm、幅0.125mm、高さ0.125mmであり、または長さ0.4mm、幅0.2mm、高さ0.2mm、または長さ0.6mm、幅0.3mm、高さ0.3mmであり、または長さ1.0mm、幅0.5mm、高さ0.5mmであり、または長さ1.6mm、幅0.8mm、高さ0.8mmであり、または長さ3.2mm、幅1.6mm、高さ1.6mmであり、または長さ4.5mm、幅3.2mm、高さ2.5mmであるが、これらのサイズに限定されるものではない。
【0024】
内部電極層12は、ニッケル(Ni),銅(Cu),スズ(Sn)等の卑金属を主成分とする。内部電極層12として、白金(Pt),パラジウム(Pd),銀(Ag),金(Au)などの貴金属やこれらを含む合金を用いてもよい。内部電極層12は、セラミック粒子を共材として含んでいてもよい。
【0025】
誘電体層11は、例えば、一般式ABOで表されるペロブスカイト構造を有するセラミック材料を主相とする。なお、当該ペロブスカイト構造は、化学量論組成から外れたABO3-αを含む。例えば、当該セラミック材料として、BaTiO(チタン酸バリウム),CaZrO(ジルコン酸カルシウム),CaTiO(チタン酸カルシウム),SrTiO(チタン酸ストロンチウム),MgTiO(チタン酸マグネシウム),ペロブスカイト構造を形成するBa1-x-yCaSrTi1-zZr(0≦x≦1,0≦y≦1,0≦z≦1)等のうち少なくとも1つから選択して用いることができる。Ba1-x-yCaSrTi1-zZrは、チタン酸バリウムストロンチウム、チタン酸バリウムカルシウム、ジルコン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸カルシウムおよびチタン酸ジルコン酸バリウムカルシウムなどである。
【0026】
誘電体層11には、添加物が添加されていてもよい。誘電体層11への添加物として、マグネシウム(Mg)、マンガン(Mn)、モリブデン(Mo)、バナジウム(V)、クロム(Cr)、希土類元素(イットリウム(Y)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホロミウム(Ho)、エルビウム(Er)、ツリウム(Tm)およびイッテルビウム(Yb))の酸化物、または、コバルト(Co)、ニッケル(Ni)、リチウム(Li)、ホウ素(B)、ナトリウム(Na)、カリウム(K)もしくはケイ素(Si)を含む酸化物、または、コバルト、ニッケル、リチウム、ホウ素、ナトリウム、カリウムもしくはケイ素を含むガラスが挙げられる。
【0027】
図2で例示するように、外部電極20aに接続された内部電極層12と外部電極20bに接続された内部電極層12とが対向する領域は、積層セラミックコンデンサ100において静電容量を生じる領域である。そこで、当該静電容量を生じる領域を、容量部14と称する。すなわち、容量部14は、異なる外部電極に接続された隣接する内部電極層12同士が対向する領域である。
【0028】
外部電極20aに接続された内部電極層12同士が、外部電極20bに接続された内部電極層12を介さずに対向する領域を、エンドマージン15と称する。また、外部電極20bに接続された内部電極層12同士が、外部電極20aに接続された内部電極層12を介さずに対向する領域も、エンドマージン15である。すなわち、エンドマージン15は、同じ外部電極に接続された内部電極層12が異なる外部電極に接続された内部電極層12を介さずに対向する領域である。エンドマージン15は、静電容量を生じない領域である。エンドマージン15は、容量部14の誘電体層11と同じ組成であってもよく、異なる組成であってもよい。
【0029】
図3で例示するように、素体10において、素体10の2側面から内部電極層12に至るまでの領域をサイドマージン16と称する。すなわち、サイドマージン16は、上記積層構造において積層された複数の内部電極層12が2側面側に延びた端部を覆うように設けられた領域である。サイドマージン16も、静電容量を生じない領域である。サイドマージン16は、容量部14の誘電体層11と同じ組成であってもよく、異なる組成であってもよい。
【0030】
図4(a)は、外部電極20a付近の拡大断面図である。図4(a)では、ハッチを省略している。図4(a)で例示するように、外部電極20aは、下地層21上に、めっき層22が設けられた構造を有している。めっき層22は、Cu,Ni,Al,Zn,Snなどの金属またはこれらの2以上の合金を主成分とする。めっき層22は、単一金属成分のめっき層でもよく、互いに異なる金属成分の複数のめっき層であってもよい。めっき層22は、少なくともNiめっき層を含み、Niめっき層と下地層21との間に、Ni以外の金属を主成分とする金属層が形成されていてもよい。例えば、めっき層22は、下地層21側から順に、Niめっき層23およびSnめっき層24が順に形成された構造を有する。なお、図4(a)では、外部電極20aについて例示しているが、外部電極20bも同様の積層構造を有する。
【0031】
下地層21は、Cuを主成分とする焼結体であって、焼成後の素体10に対して焼き付けによって後付けされる。下地層21は、焼き付けの温度を下げるために、ガラス成分を含んでいる。ガラス成分は、例えば、Ba、Ca、Zn、Al、Si、Mg、またはBなどの酸化物である。下地層21のNiめっき層23側の表面に、金属酸化物粒子30が分散して配置されている。金属酸化物粒子30は、下地層21の主成分金属とは異なる金属の酸化物であって、結晶性セラミックである。したがって、金属酸化物粒子30は、ガラス成分とは異なる。例えば、金属酸化物粒子30は、下地層21のNiめっき層23側の滑らかな表面に配置されていてもよいが、図4(b)で例示するように、下地層21のNiめっき層23側の表面に形成された凹凸によって形成される空隙40内に配置されていてもよい。このとき、金属酸化物粒子30は、空隙40内を満たすように配置されていてもよいし、空隙40内の一部に配置されていてもよい。
【0032】
下地層21のNiめっき層23側の表面に金属酸化物粒子30が配置されることによって、Niめっき層23を形成する際に発生する水素を金属酸化物粒子30に吸着させることができる。それにより、素体10への水素吸蔵を抑制することができる。その結果、積層セラミックコンデンサ100の耐湿信頼性が向上する。なお、金属酸化物粒子30は、ガラスよりも耐薬品性が高いため、めっき工程が実施されてもエッチングされずに残存する傾向にある。
【0033】
また、金属酸化物粒子30は下地層21の表面に配置されるため、下地層21による金属酸化物粒子30の拘束が抑制され、金属酸化物粒子30が応力に対する緩衝作用を発揮する。素体10の端面よりも素体10の角部や上面、下面、2側面における金属酸化物粒子30の量を多くすることによって、素体10の角部や上面、下面、2側面において下地層21とめっき層22との間で剥離が生じやすくなり、積層セラミックコンデンサ100の基板への実装時に素体10に加わる応力を緩和することができるようになる。
【0034】
金属酸化物粒子30は、例えば、アルミナ粒子、ジルコニア粒子などであるが、特に限定されるものではない。金属酸化物粒子30の平均粒径は、例えば、0.1μm以上、8.0μm以下である。金属酸化物粒子30としてアルミナ粒子を用いる場合には、例えば、金属酸化物粒子30の平均粒径は、0.1μm以上8.0μm以下であり、好ましくは0.25μm以上1.5μm以下である。アルミナ粒子として、一般に市販されるものから粒径範囲を選んで使用することができる。金属酸化物粒子30としてジルコニア粒子を用いる場合には、例えば、金属酸化物粒子30の平均粒径は、0.15μm以上4.5μm以下であり、好ましくは0.20μm以上4.0μm以下である。
【0035】
なお、積層セラミックコンデンサ100において、金属酸化物粒子30の平均粒径は、5000~20000倍の断面SEM写真で、30個の酸化物粒子の定方向径(フェレー径)を測定し、平均値をとることで測定することができる。
【0036】
下地層21の厚みは、例えば、1μm以上100μm以下であり、2.5μm以上75μm以下であり、5μm以上50μm以下である。Niめっき層23の厚みは、例えば、0.1μm以上10μm以下であり、0.2μm以上5μm以下であり、0.5μm以上2.5μm以下である。Snめっき層24の厚みは、例えば、0.5μm以上20μm以下であり、1μm以上10μm以下であり、0.5μm以上5μm以下である。
【0037】
下地層21の面積を100%と仮定する場合に、金属酸化物粒子30の面積比率は、0.01%以上20%以下であり、0.1%以上10%以下であり、0.5%以上5%以下である。面積比率は、例えば、図4(a)の断面写真から下地層21および金属酸化物粒子30の領域面積を画像処理ソフトウェアにより求めることで、算出することができる。なお、下地層21の端面ごと、側面ごとに面積比率を確認するときは、端面または側面それぞれの全領域を分母として算出することができる。
【0038】
図4(a)の例では、下地層21上にNiめっき層23が形成されているが、それに限られない。例えば、図5で例示するように、下地層21上に、他のめっき層25が形成されていてもよい。この場合において、金属酸化物粒子30は、下地層21のNiめっき層23側の表面に配置されていてもよく、めっき層25のNiめっき層23側の表面に配置されていてもよい。例えば、めっき層25がCuを主成分とし、金属酸化物粒子30はめっき層25の主成分金属とは異なる金属の酸化物であってもよい。また、例えば下地層21上に、めっき層ではなく、導電性樹脂層が存在していてもよい。
【0039】
続いて、積層セラミックコンデンサ100の製造方法について説明する。図6は、積層セラミックコンデンサ100の製造方法のフローを例示する図である。
【0040】
(原料粉末作製工程)
まず、誘電体層11を形成するための誘電体材料を用意する。誘電体層11の主成分セラミックの粉末は、構成成分の材料を合成することで得ることができる。誘電体層11の主成分セラミックの合成方法としては、従来種々の方法が知られており、例えば固相法、ゾル-ゲル法、水熱法等が知られている。本実施形態においては、これらのいずれも採用することができる。
【0041】
得られたセラミック粉末に、目的に応じて所定の添加化合物を添加する。添加化合物としては、マグネシウム(Mg)、マンガン(Mn)、モリブデン(Mo)、バナジウム(V)、クロム(Cr)、希土類元素(イットリウム(Y)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホロミウム(Ho)、エルビウム(Er)、ツリウム(Tm)およびイッテルビウム(Yb))の酸化物、または、コバルト(Co)、ニッケル(Ni)、リチウム(Li)、ホウ素(B)、ナトリウム(Na)、カリウム(K)もしくはケイ素(Si)を含む酸化物、または、コバルト、ニッケル、リチウム、ホウ素、ナトリウム、カリウムもしくはケイ素を含むガラスが挙げられる。これらのうち、主としてSiOが焼結助剤として機能する。
【0042】
例えば、セラミック原料粉末に添加化合物を含む化合物を湿式混合し、乾燥および粉砕してセラミック材料を調製する。例えば、上記のようにして得られたセラミック材料について、必要に応じて粉砕処理して粒径を調節し、あるいは分級処理と組み合わせることで粒径を整えてもよい。以上の工程により、原料粉末が得られる。
【0043】
(塗工工程)
次に、得られた原料粉末に、ポリビニルブチラール(PVB)樹脂等のバインダと、エタノール、トルエン等の有機溶剤と、可塑剤とを加えて湿式混合する。得られたスラリを使用して、例えばダイコータ法やドクターブレード法により、基材51上に誘電体グリーンシート52を塗工して乾燥させる。基材51は、例えば、PET(ポリエチレンテレフタレート)フィルムである。
【0044】
(内部電極形成工程)
次に、図7(a)で例示するように、誘電体グリーンシート52上に、内部電極パターン53を成膜する。図7(a)では、一例として、誘電体グリーンシート52上に4層の内部電極パターン53が所定の間隔を空けて成膜されている。内部電極パターン53が成膜された誘電体グリーンシート52を、積層単位とする。
【0045】
内部電極パターン53には、内部電極層12の主成分金属の金属ペーストを用いる。成膜の手法は、印刷、スパッタ、蒸着などであってもよい。
【0046】
(圧着工程)
次に、誘電体グリーンシート52を基材51から剥がしつつ、図7(b)で例示するように、積層単位を積層する。その後、積層単位が積層されることで得られた積層体の上下にカバーシート54を所定数(例えば2~10層)だけ積層して熱圧着させ、所定チップ寸法にカットする。図7(b)の例では、点線に沿ってカットする。カバーシート54は、誘電体グリーンシート52と同じ成分であってもよく、添加物が異なっていてもよい。
【0047】
(焼成工程)
このようにして得られたセラミック積層体を、N雰囲気で脱バインダ処理した後に、酸素分圧10-5~10-8atmの還元雰囲気中で1100℃~1300℃で10分~2時間焼成する。このようにして、素体10を焼成することができる。
【0048】
(再酸化処理工程)
その後、Nガス雰囲気中において600℃~1000℃で再酸化処理を行ってもよい。
【0049】
(焼き付け工程)
次に、素体10の両端面に、下地層21となる金属ペーストをディップ法などで塗布する。金属ペーストには、ガラスを含ませる。例えば、金属ペーストは、素体10において、内部電極層12が露出する2端面以外の4面の少なくともいずれかまで延在するように塗布する。その後、金属ペーストを、例えば700℃~900℃程度で焼き付けることで、下地層21を形成する。
【0050】
(酸化物粒子配置工程)
次に、下地層21が形成された素体10を、非酸化性雰囲気下で昇温後、この温度を維持したまま酸化性雰囲気に曝した後、非酸化性雰囲気に戻して冷却する。例えば、N雰囲気下で500℃程度まで昇温後、この温度を維持したまま雰囲気を大気とする。この状態を2分ほど保持した後、N雰囲気に戻して冷却する。このような酸化処理により、下地層21の表面が高温下で急速に酸化される。次に、希硫酸溶液で当該表面を酸処理して当該表面の酸化物を除去する。酸化物は、下地層21の表面だけでなく厚さ方向にも金属銅と混在する形で形成されているので、このような金属銅と酸化銅とが混在した部分から酸化銅が除去された領域が断面からみたときに空隙40となる。この空隙40に、金属酸化物粒子30をまぶすことによって配置する。
【0051】
なお、空隙40を形成せずに金属酸化物粒子30を配置してもよい。この場合には、酸化処理および酸処理を省略し、下地層21の表面に金属酸化物粒子30をまぶすことで配置してもよい。
(めっき処理工程)
その後、めっき処理により、下地層21上に、めっき層22を形成する。図4(a)の構成の場合には、めっき処理によって、Niめっき層23およびSnめっき層24を順に形成する。
【0052】
本実施形態に係る製造方法によれば、下地層21のNiめっき層23側の表面に金属酸化物粒子30が配置されることによって、Niめっき層23を形成する際に発生する水素を金属酸化物粒子30に吸着させることができる。それにより、素体10への水素吸蔵を抑制することができる。その結果、積層セラミックコンデンサ100の耐湿信頼性が向上する。
【0053】
図5の構成の場合には、下地層21の表面にめっき処理によってめっき層25を形成した後に、めっき層25の表面に金属酸化物粒子30を配置すればよい。この場合、酸化処理および酸処理によってめっき層25の表面に空隙40を形成した後に金属酸化物粒子30を配置してもよい。
【0054】
(第2実施形態)
次に、第2実施形態について説明する。第1実施形態と異なる点について説明する。図8(a)は、外部電極20a付近の拡大断面図である。図8(a)では、ハッチを省略している。図8(a)で例示するように、外部電極20aは、下地層21a上に、めっき層22が設けられた構造を有している。めっき層22は、Cu,Ni,Al,Zn,Snなどの金属またはこれらの2以上の合金を主成分とする。めっき層22は、単一金属成分のめっき層でもよく、互いに異なる金属成分の複数のめっき層であってもよい。めっき層22は、少なくともNiめっき層を含み、Niめっき層と下地層21aとの間に、Ni以外の金属を主成分とする金属層が形成されていてもよい。例えば、めっき層22は、下地層21a側から順に、Niめっき層23およびSnめっき層24が順に形成された構造を有する。なお、図8(a)では、外部電極20aについて例示しているが、外部電極20bも同様の積層構造を有する。
【0055】
下地層21aは、Niなどを主成分とする焼結体であって、素体10を焼成する際に同時に焼成される。下地層21aは、素体10の焼結挙動との差異を小さくするために、セラミック粒子を共材として含んでいてもよい。共材は、例えば、誘電体層11の主成分セラミックと同組成を有している。共材の平均粒径は、例えば、0.5μm以上8μm以下である。下地層21aのNiめっき層23側の表面に、金属酸化物粒子30が分散して配置されている。金属酸化物粒子30は、下地層21aの主成分金属とは異なる金属の酸化物であって、結晶性セラミックである。例えば、金属酸化物粒子30は、下地層21aのNiめっき層23側の滑らかな表面に配置されていてもよいが、図8(b)で例示するように、下地層21aのNiめっき層23側の表面に形成された凹凸によって形成される空隙40内に配置されていてもよい。
【0056】
金属酸化物粒子30は、共材とは異なる組成を有している。また、金属酸化物粒子30は、0.1μm以上8.0μm以下の平均粒径を有している。したがって、金属酸化物粒子30は、共材とは区別される。なお、共材の平均粒径は、金属酸化物粒子30の平均粒径と同様の手法により測定することができる。
【0057】
下地層21aのNiめっき層23側の表面に金属酸化物粒子30が配置されることによって、Niめっき層23を形成する際に発生する水素を金属酸化物粒子30に吸着させることができる。それにより、素体10への水素吸蔵を抑制することができる。その結果、積層セラミックコンデンサ100の耐湿信頼性が向上する。なお、金属酸化物粒子30は、ガラスよりも耐薬品性が高いため、めっき工程が実施されてもエッチングされずに残存する傾向にある。
【0058】
また、金属酸化物粒子30は下地層21aの表面に配置されるため、下地層21aによる金属酸化物粒子30の拘束が抑制され、金属酸化物粒子30が応力に対する緩衝作用を発揮する。素体10の端面よりも素体10の角部や上面、下面、2側面における金属酸化物粒子30の量を多くすることによって、素体10の角部や上面、下面、2側面において下地層21aとめっき層22との間で剥離が生じやすくなり、積層セラミックコンデンサ100の基板への実装時に素体10に加わる応力を緩和することができるようになる。
【0059】
金属酸化物粒子30は、例えば、アルミナ粒子、ジルコニア粒子などであるが、特に限定されるものではない。金属酸化物粒子30としてアルミナ粒子を用いる場合には、例えば、金属酸化物粒子30の平均粒径は、0.1μm以上8.0μm以下であり、好ましくは0.25μm以上1.5μm以下である。アルミナ粒子として、例えば、一般に市販されるものから粒径範囲を選んで用いることができる。金属酸化物粒子30としてジルコニア粒子を用いる場合には、例えば、金属酸化物粒子30の平均粒径は、0.15μm以上4.5μm以下であり、好ましくは0.20μm以上4.0μm以下である。
【0060】
下地層21aの厚みは、例えば、1μm以上100μm以下であり、2.5μm以上75μm以下であり、5μm以上50μm以下である。Niめっき層23の厚みは、例えば、0.1μm以上10μm以下であり、0.2μm以上5μm以下であり、0.5μm以上2.5μm以下である。Snめっき層24の厚みは、例えば、0.5μm以上20μm以下であり、1μm以上10μm以下であり、0.5μm以上5μm以下である。
【0061】
下地層21aの面積を100%と仮定する場合に、金属酸化物粒子30の面積比率は、0.01%以上20%以下であり、0.1%以上10%以下であり、0.5%以上5%以下である。
【0062】
図8(a)の例では、下地層21a上にNiめっき層23が形成されているが、それに限られない。例えば、図9で例示するように、下地層21a上に、他のめっき層26が形成されていてもよい。この場合において、金属酸化物粒子30は、下地層21aのNiめっき層23側の表面に配置されていてもよく、めっき層26のNiめっき層23側の表面に配置されていてもよい。例えば、めっき層26がCuを主成分とし、金属酸化物粒子30は、めっき層26の主成分金属とは異なる金属の酸化物であってもよい。
【0063】
続いて、本実施形態に係る製造方法について説明する。図10は、本実施形態に係る製造方法のフローを例示する図である。原料粉末作製工程、塗工工程、内部電極形成工程、圧着工程までは第1実施形態と同様である。
【0064】
(塗布工程)
このようにして得られたセラミック積層体を、N雰囲気で脱バインダ処理した後に、下地層21aとなる外部電極用ペーストをディップ法などで塗布する。外部電極用ペーストには、下地層21aの主成分金属の粉末と、共材とを含ませる。例えば、外部電極用ペーストは、積層体において、内部電極パターン53が露出する2端面に塗布する。外部電極用ペーストは、積層体において、上面、下面、および2側面にまで延在させてもよい。
【0065】
(焼成工程)
このようにして得られたセラミック積層体を、酸素分圧10-5~10-8atmの還元雰囲気中で1100℃~1300℃で10分~2時間焼成する。このようにして、素体10と下地層21aとを同時に焼成することができる。
【0066】
(再酸化処理工程)
その後、Nガス雰囲気中において600℃~1000℃で再酸化処理を行ってもよい。
【0067】
(酸化物粒子配置工程)
次に、下地層21aが形成された素体10を、非酸化性雰囲気下で昇温後、この温度を維持したまま酸化性雰囲気に曝した後、非酸化性雰囲気に戻して冷却する。例えば、N雰囲気下で500℃程度まで昇温後、この温度を維持したまま雰囲気を大気とする。この状態を2分ほど保持した後、N雰囲気に戻して冷却する。このような酸化処理により、下地層21aの表面が高温下で急速に酸化される。次に、希硫酸溶液で当該表面を酸処理して当該表面の酸化物を除去する。酸化物は、下地層21aの表面だけでなく厚さ方向にも金属銅と混在する形で形成されているので、このような金属銅と酸化銅とが混在した部分から酸化銅が除去された領域が断面からみたときに空隙40となる。この空隙40に、金属酸化物粒子30をまぶすことによって配置する。
【0068】
なお、空隙40を形成せずに金属酸化物粒子30を配置してもよい。この場合には、酸化処理および酸処理を省略し、下地層21aの表面に金属酸化物粒子30をまぶすことで配置してもよい。
(めっき処理工程)
その後、めっき処理により、下地層21a上に、めっき層22を形成する。図8の構成の場合には、めっき処理によって、Niめっき層23およびSnめっき層24を順に形成する。
【0069】
本実施形態に係る製造方法によれば、下地層21aのNiめっき層23側の表面に金属酸化物粒子30が配置されることによって、Niめっき層23を形成する際に発生する水素を金属酸化物粒子30に吸着させることができる。それにより、素体10への水素吸蔵を抑制することができる。その結果、積層セラミックコンデンサ100の耐湿信頼性が向上する。
【0070】
図9の構成の場合には、下地層21aの表面にめっき処理によってめっき層26を形成した後に、めっき層26の表面に金属酸化物粒子30を配置すればよい。この場合、酸化処理および酸処理によってめっき層26の表面に空隙40を形成した後に金属酸化物粒子30を配置してもよい。
【0071】
なお、上記各実施形態は、セラミック電子部品の一例として積層セラミックコンデンサについて説明したが、それに限られない。例えば、上記各実施形態の構成は、バリスタやサーミスタなどの、他の積層セラミック電子部品に適用することもできる。
【実施例0072】
以下、実施形態に係る積層セラミックコンデンサを作製し、特性について調べた。
【0073】
(実施例1)
誘電体グリーンシート上に、Niの内部電極ペーストを印刷して内部電極パターンを形成した。得られた積層単位を積層して圧着した。圧着後に所定形状にカットしてセラミック積層体を得た。セラミック積層体において内部電極パターンが露出している2端面に、Niの金属ペーストをディップで形成した後、還元雰囲気で焼成した。Niの金属ペーストの焼成によって、Niの下地層を得た。なお、下地層にはチタン酸バリウムを共材として含ませた。焼成後の共材の平均粒径は、3μmであった。
【0074】
Niの下地層上に、Cuめっき層を形成した。その後、サンプルをN雰囲気下で500℃まで昇温して500℃で維持したまま雰囲気を大気とした。この状態を2分間保持した後、N雰囲気に戻して冷却した。このような処理により、Cuめっき層の表面側は高温下で急速に酸化された。次に、Cuめっき層の表面を希硫酸溶液で処理して酸化物を除去した。その後、Cuめっき層の表面にアルミナ粒子をまぶして付着させた。この場合のアルミナ粒子として、平均粒径が1.1μmのものを用いた。その後、Niめっきを行ない、さらにSnめっきを行なった。
【0075】
(実施例2)
実施例2では、Cuめっき層の表面に対する酸化処理および希硫酸溶液での処理を省略した。その他の条件は、実施例1と同様とした。
【0076】
(実施例3)
実施例3では、Cuめっき層の表面に対する酸化処理および希硫酸溶液での処理を省略した。また、Cuめっき層の表面にジルコニア粒子をまぶして付着させた。この場合のジルコニア粒子として、平均粒径が30μmのものを用いた。その他の条件は、実施例1と同様とした。
【0077】
(比較例)
比較例では、Cuめっき層の表面にアルミナ粒子を付着させなかった。その他の条件は、実施例1と同様とした。
【0078】
(分析)
実施例1~3および比較例のそれぞれについて、150℃、40V/μmという高温高電界の加速寿命試験(HALT)を実施した。100個のサンプルが全数故障するまで試験し、その平均時間を寿命値(MTTF)とした。その結果を表1に示す。表1に示すように、実施例1~3では、MTTFが400min以上となり、耐湿信頼性が向上したことがわかる。これは、Cuめっき層の表面に形成した酸化物粒子に水素が吸着し、素体への水素吸蔵を抑制できたからであると考えられる。これに対して、比較例では、MTTFが300min未満となり、十分な耐湿信頼性が得られなかったことがわかる。これは、Cuめっき層の表面に酸化物粒子を形成しなかったことで、素体への水素吸蔵を抑制できなかったからであると考えられる。
【表1】
【0079】
以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【符号の説明】
【0080】
10 素体
11 誘電体層
12 内部電極層
13 カバー層
14 容量部
15 エンドマージン
16 サイドマージン
20a,20b 外部電極
21,21a 下地層
22 めっき層
23 Niめっき層
24 Snめっき層
25 めっき層
26 めっき層
30 金属酸化物粒子
40 空隙
51 基材
52 誘電体グリーンシート
53 内部電極パターン
100 積層セラミックコンデンサ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10