IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本ポリエチレン株式会社の特許一覧

特開2023-144832アイオノマーを含む化粧シート用樹脂
<>
  • 特開-アイオノマーを含む化粧シート用樹脂 図1
  • 特開-アイオノマーを含む化粧シート用樹脂 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023144832
(43)【公開日】2023-10-11
(54)【発明の名称】アイオノマーを含む化粧シート用樹脂
(51)【国際特許分類】
   C08F 8/44 20060101AFI20231003BHJP
   C08F 4/70 20060101ALI20231003BHJP
   C08J 5/18 20060101ALI20231003BHJP
【FI】
C08F8/44
C08F4/70
C08J5/18 CES
【審査請求】未請求
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2022051992
(22)【出願日】2022-03-28
(71)【出願人】
【識別番号】303060664
【氏名又は名称】日本ポリエチレン株式会社
(74)【代理人】
【識別番号】110001508
【氏名又は名称】弁理士法人 津国
(72)【発明者】
【氏名】黒川 菜摘
【テーマコード(参考)】
4F071
4J100
4J128
【Fターム(参考)】
4F071AA15
4F071AA32X
4F071AA89
4F071AF02
4F071AF22
4F071AF30
4F071AF45
4F071AH19
4F071BC01
4J100AA02P
4J100AJ02Q
4J100AL03Q
4J100BA16H
4J100BA17H
4J100CA04
4J100CA31
4J100DA01
4J100DA04
4J100DA19
4J100DA24
4J100DA41
4J100DA49
4J100FA03
4J100FA08
4J100FA19
4J100FA28
4J100FA29
4J100FA30
4J100GC04
4J100GC25
4J100GD11
4J100HA15
4J100HA31
4J100HA61
4J100HB36
4J100HB37
4J100HC71
4J100HE05
4J100HE14
4J100HE17
4J100HE41
4J100HF01
4J100JA28
4J100JA57
4J100JA67
4J128AA01
4J128AB00
4J128AC48
4J128BA01A
4J128BB01A
4J128BC15A
4J128CB87A
4J128EA01
4J128EB02
4J128EB25
4J128EC02
4J128FA02
4J128FA07
4J128GA01
4J128GA06
4J128GA16
4J128GA18
4J128GA19
4J128GB01
(57)【要約】
【課題】 格段に優れた耐薬品性を有し、かつ耐薬品、耐摩耗性、耐熱性が良好なアイオノマーを用いた化粧シート用樹脂を提供する。
【解決手段】 エチレン及び/又は炭素数3~20のα-オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)を必須構成単位として含む共重合体(P)中の、カルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されてなり、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δが、50度~75度であることを特徴とするアイオノマーを含む化粧シート用樹脂である。
【選択図】 なし
【特許請求の範囲】
【請求項1】
エチレン及び/又は炭素数3~20のα-オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)を必須構成単位として含む共重合体(P)中の、カルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されてなり、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δが、50度~75度であることを特徴とするアイオノマーを含む化粧シート用樹脂。
【請求項2】
前記共重合体(P)の13C-NMRにより算出されるメチル分岐数が、炭素1,000個当たり50個以下であることを特徴とする、請求項1に記載の化粧シート用樹脂。
【請求項3】
前記共重合体(P)が、共重合体中に前記構造単位(B)を1~20mol%含むことを特徴とする、請求項1又は2に記載の化粧シート用樹脂。
【請求項4】
前記構造単位(A)が、エチレンに由来する構造単位であることを特徴とする、請求項1~3のいずれか1項に記載の化粧シート用樹脂。
【請求項5】
前記共重合体(P)が周期表第8~11族の遷移金属を含む遷移金属触媒を用いて製造されることを特徴とする、請求項1~4のいずれか1項に記載の化粧シート用樹脂。
【請求項6】
前記遷移金属触媒がリンスルホン酸又はリンフェノール配位子とニッケル又はパラジウムからなる遷移金属触媒であることを特徴とする、請求項5に記載の化粧シート用樹脂。
【請求項7】
前記共重合体(P)が結晶化度50%以下であることを特徴とする、請求項1~6のいずれか1項に記載の化粧シート用樹脂。
【請求項8】
前記共重合体(P)が結晶化度10%以上であることを特徴とする、請求項1~6のいずれか1項に記載の化粧シート用樹脂。
【請求項9】
請求項1~8のいずれか1項に記載の化粧シート用樹脂を含むことを特徴とする、化粧シート用樹脂組成物。
【請求項10】
請求項1~9のいずれか1項に記載の化粧シート用樹脂又は化粧シート用樹脂組成物を用いた化粧シート用樹脂層。
【請求項11】
基材層と、請求項10に記載の樹脂層とを少なくとも備える積層体から構成される化粧シート。
【請求項12】
化粧板基材と、請求項11に記載の化粧シートとを備える積層体から構成される化粧板。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐薬品性が良好な化粧シート用樹脂及び該化粧シート用樹脂を用いた化粧板に関するものであり、さらに詳しくは耐薬品性、耐熱性、耐摩耗性がバランスよく優れた化粧シートを提供することができる樹脂として好適なアイオノマーに関するものである。
【背景技術】
【0002】
近年、化粧シート用樹脂として、アイオノマーが広く用いられている。このアイオノマーは、例えばエチレンのようなオレフィンと、アクリル酸、メタクリル酸、或いはマレイン酸等のような不飽和カルボン酸からなるイオン性共重合体の酸性基のある部分を、ナトリウム、亜鉛などのような金属イオンによって中和したものである(特許文献1)。
【0003】
従来、建築物の内装材(建具、床、壁等)の表皮材、自動車の内外装や日用品の表皮材などには耐熱性及び耐傷性、耐薬品性が求められており、当該表皮材としてはアイオノマーを含むフィルムを用いることが知られている。詳細には、アイオノマーを含むフィルムを透明性樹脂層として有する化粧シートを表皮材として用いることが挙げられる。
【0004】
現在、市販されているアイオノマーとしては、Dupont社が開発したエチレン-メタクリル酸共重合体のナトリウム塩や亜鉛塩「Surlyn(登録商標)」、及び、三井・ダウポリケミカル社が販売している「ハイミラン(登録商標)」等が知られている。
【0005】
これら現在市販されているアイオノマーに用いられるベース樹脂のエチレン-不飽和カルボン酸共重合体には、いずれも、エチレンと不飽和カルボン酸等の極性基含有モノマーを、高圧ラジカル重合法により重合した極性基含有オレフィン共重合体が用いられている。この、高圧ラジカル重合法で製造される極性基含有オレフィン共重合体の分子構造は、図1に示すイメージ図のように、多くの長鎖分岐及び短鎖分岐を不規則に有する構造であり、耐薬品性や耐熱性、耐摩耗性が不十分であるという欠点がある。
【0006】
特許文献2では、耐熱性の向上を目的として、アイオノマーに電子線を照射することによりアイオノマーを架橋する手法が開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】米国特許第3264272号明細書
【特許文献2】特開2020-050724号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
これらの手法は、耐熱性に優れたアイオノマーが得られているが、実質的に検討されているのは耐熱性及び耐摩耗性のみであり、本来化粧シートに要求される耐薬品性に関する記載はない。また電子線架橋することでコストアップにつながる。上記の状況から、単独で耐薬品性に優れ、かつ耐摩耗性、耐熱性、耐薬品性がバランスよく優れるアイオノマー及びそれを用いた化粧シート用樹脂が望まれていた。
【0009】
本願は、かかる従来技術の状況に鑑み、格段に優れた耐薬品性を有し、かつ耐薬品、耐摩耗性、耐熱性が良好なアイオノマーを用いた化粧シート用樹脂を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題の解決のため本発明者らは、回転式レオメータで測定した複素弾性率の絶対値G*=0.1MPaにおける位相角δが50度~75度となるような直鎖構造を有した特定のアイオノマーにおいては、高圧ラジカル重合法で製造される極性基含有オレフィン共重合体をベース樹脂とした従来のアイオノマーよりも耐薬品性、耐摩耗性、耐熱性に優れることを見出し、化粧シート用樹脂に求められる物性が改善する効果を有することを見出した。
【0011】
すなわち、本発明は、エチレン及び/又は炭素数3~20のα-オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)を必須構成単位として含む共重合体(P)中の、カルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されてなり、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δが、50度~75度であることを特徴とするアイオノマーを含む、化粧シート用樹脂である。
また、本発明の一態様では、前記共重合体(P)の13C-NMRにより算出されるメチル分岐数が、炭素1,000個当たり50個以下である。
本発明の一態様では、前記共重合体(P)が、共重合体中に前記構造単位(B)を1~20mol%含む。
本発明の一態様では、前記構造単位(A)が、エチレンに由来する構造単位である。
本発明の一態様では、前記共重合体(P)が周期表第8~11族の遷移金属を含む遷移金属触媒を用いて製造されることを特徴とする。さらに本発明の一態様では、前記遷移金属触媒がリンスルホン酸又はリンフェノール配位子とニッケル又はパラジウムからなる遷移金属触媒であることを特徴とする。
本発明の一態様では、前記共重合体(P)が結晶化度50%以下、好ましくは結晶化度10%以下である。
さらに、本発明の一態様は、前記化粧シート用樹脂を含むことを特徴とする、化粧シート用樹脂組成物である。また本発明の一態様は、前記化粧シート用樹脂又は化粧シート用樹脂組成物を用いた化粧シート用樹脂層である。さらにまた本発明の一態様は、基材層と、前記樹脂層とを少なくとも備える積層体から構成される化粧シート、ならびに、化粧板基材と、前記化粧シートとを備える積層体から構成される化粧板である。
【発明の効果】
【0012】
本発明によれば実質的に直鎖状構造であるアイオノマーを用いることで、従来の多分岐状構造であるアイオノマーを用いる場合に比べ、格段に優れた耐薬品性を有し、かつ耐薬品性、耐摩耗性、耐熱性がバランスよく優れた化粧シート用樹脂を提供することができる。
【図面の簡単な説明】
【0013】
図1】高圧ラジカル法重合プロセスにより重合された多分岐状オレフィン共重合体の分子構造のイメージ図である。
図2】金属触媒を用いて重合された直鎖状オレフィン共重合体の分子構造のイメージ図である。
【発明を実施するための形態】
【0014】
本発明はエチレン及び/又は炭素数3~20のα-オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)を必須構成単位として含む共重合体(P)中の、カルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されてなり、回転式レオメータで測定した複素弾性率の絶対値G*=0.1MPaにおける位相角δが、50度~75度であることを特徴とするアイオノマーを含む、化粧シート用樹脂である。
【0015】
以下、本発明の化粧シート用樹脂及びそれに関わるアイオノマーについて、項目毎に詳細に説明する。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味する。また、本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。また、本明細書において、共重合体とは、少なくとも一種の単位(A)と、少なくとも一種の単位(B)とを含む、二元系以上の共重合体を意味する。
また、本明細書において、アイオノマーとは、前記構造単位(A)と、前記構造単位(B)の少なくとも一部が金属含有カルボン酸塩に変換されている構造単位(B’)とを含み、更に前記構造単位(B)を含んでいてもよい、2元系以上の共重合体のアイオノマーを意味する。
【0016】
1.アイオノマー
本発明のアイオノマーは、エチレン及び/又は炭素数3~20のα-オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)とを必須構成単位として含み、これらが実質的に直鎖状にランダム共重合した共重合体(P)をベース樹脂とし、該構造単位(B)のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族、又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されていることを特徴とする。
【0017】
(1)構造単位(A)
構造単位(A)はエチレンに由来する構造単位及び炭素数3~20のα-オレフィンに由来する構造単位からなる群より選ばれる少なくとも一種の構造単位である。
本発明に関わるα-オレフィンは構造式:CH=CHR18で表される、炭素数3~20のα-オレフィンである(R18は炭素数1~18の炭化水素基であり、直鎖構造であっても分岐を有していてもよい)。α-オレフィンの炭素数は、より好ましくは、3~12である。
【0018】
構造単位(A)の具体例として、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、及び4-メチル-1-ペンテン等が挙げられ、エチレンであってもよい。エチレンとしては、石油原料由来の他、植物原料由来等の非石油原料由来のエチレンを用いることができる。
また、構造単位(A)は、一種類であってもよいし、複数種であってもよい。
二種の組み合わせとしては、例えば、エチレン-プロピレン、エチレン-1-ブテン、エチレン-1-ヘキセン、エチレン-1-オクテン、プロピレン-1-ブテン、プロピレン-1-ヘキセン、及びプロピレン-1-オクテン等が挙げられる。
三種の組み合わせとしては、例えば、エチレン-プロピレン-1-ブテン、エチレン-プロピレン-1-ヘキセン、エチレン-プロピレン-1-オクテン、プロピレン-1-ブテン-ヘキセン、及びプロピレン-1-ブテン-1-オクテン等が挙げられる。
【0019】
本発明においては、構造単位(A)としては、好ましくは、エチレンを必須で含み、必要に応じて1種以上の炭素数3~20のα-オレフィンをさらに含んでもよい。
構造単位(A)中のエチレンは、構造単位(A)の全molに対して、50~100mol%であってもよく、70~100mol%であってもよく、90~100mol%であってもよい。
耐薬品性の点から前期構造単位(A)が、エチレンに由来する構造単位であってもよい。
【0020】
(2)構造単位(B)
構造単位(B)は、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位である。なお、構造単位(B)は、カルボキシ基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位と同じ構造であることを表し、後述の製造方法において述べるように、必ずしもカルボキシ基及び/又はジカルボン酸無水物基を有するモノマーを用いて製造されたものでなくてもよい。
【0021】
カルボキシル基を有するモノマーに由来する構造単位としては例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプタ-2-エン-5,6-ジカルボン酸などの不飽和カルボン酸が挙げられ、ジカルボン酸無水物基を有するモノマーに由来する構造単位としては例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、5-ノルボルネン-2,3-ジカルボン酸無水物、3,6-エポキシ-1,2,3,6-テトラヒドロフタル酸無水物、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸無水物、2,7-オクタジエン-1-イルコハク酸無水物などの不飽和ジカルボン酸無水物が挙げられる。
カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位として、工業的入手の容易さの点から好ましくは、アクリル酸、メタクリル酸、又は5-ノルボルネン-2,3-ジカルボン酸無水物に由来する構造単位が挙げられ、特にアクリル酸に由来する構造単位であってもよい。
また、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位は、一種類であってもよいし、複数種であってもよい。
【0022】
なお、ジカルボン酸無水物基は空気中の水分と反応して開環し、一部がジカルボン酸となる場合があるが、本発明の主旨を逸脱しない範囲においてならば、ジカルボン酸無水物基が開環していてもよい。
【0023】
(3)その他の構造単位(C)
本発明に関わる共重合体(P)は構造単位(A)及び、構造単位(B)で示される構造単位以外の構造単位(C)を含んでいてもよい。構造単位(C)を与えるモノマーは、構造単位(A)及び、構造単位(B)を与えるモノマーに包含されるものでなければ、任意のモノマーを使用できる。構造単位(C)を与えるモノマーは、分子構造中に炭素-炭素二重結合を1つ以上有する化合物であれば限定されないが、例えば下記一般式(1)で表される非環状モノマーや下記一般式(2)で表される環状モノマーなどが挙げられる。
【0024】
・非環状モノマー
【化1】

[一般式(1)中、T~Tはそれぞれ独立して、水素原子、炭素数1~20の炭化水素基、水酸基で置換された炭素数1~20の炭化水素基、炭素数1~20のアルコキシ基で置換された炭素数2~20の炭化水素基、炭素数2~20のエステル基で置換された炭素数3~20の炭化水素基、ハロゲン原子で置換された炭素数1~20の炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数2~20のエステル基、炭素数炭素数3~20のシリル基、ハロゲン原子、又は、シアノ基からなる群より選択される置換基であり、
は、水酸基で置換された炭素数1~20の炭化水素基、炭素数1~20のアルコキシ基で置換された炭素数2~20の炭化水素基、炭素数2~20のエステル基で置換された炭素数3~20の炭化水素基、ハロゲン原子で置換された炭素数1~20の炭化水素基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数2~20のエステル基、炭素数炭素数3~20のシリル基、ハロゲン原子、又は、シアノ基からなる群より選択される置換基である。]
【0025】
~Tに関する炭化水素基、置換アルコキシ基、置換エステル基、アルコキシ基、アリール基、エステル基、シリル基が有する炭素骨格は、分岐、環、及び/又は不飽和結合を有してもよい。
~Tに関する炭化水素基の炭素数は、下限値が1以上であればよく、上限値は20以下であればよく、10以下であってもよい。
~Tに関する置換アルコキシ基の炭素数は、下限値が1以上であればよく、上限値は20以下であればよく、10以下であってもよい。
~Tに関する置換エステル基の炭素数は、下限値が2以上であればよく、上限値は20以下であればよく、10以下であってもよい。
~Tに関するアルコキシ基の炭素数は、下限値が1以上であればよく、上限値は20以下であればよく、10以下であってもよい。
~Tに関するアリール基の炭素数は、下限値が6以上であればよく、上限値は20以下であればよく、11以下であってもよい。
~Tに関するエステル基の炭素数は、下限値が2以上であればよく、上限値は20以下であればよく、10以下であってもよい。
~Tに関するシリル基の炭素数は、下限値が3以上であればよく、上限値は18以下であればよく、12以下であってもよい。シリル基としては、トリメチルシリル基、トリエチルシリル基、トリn-プロピルシリル基、トリイソプロピルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、及びトリフェニルシリル基等が挙げられる。
【0026】
本発明のアイオノマーにおいては、製造の容易さの点から、T及びT2は水素原子であってもよく、Tは水素原子又はメチル基であってもよく、T~Tが、いずれも水素原子であってもよい。
また、耐薬品性の点から、Tは炭素数2~20のエステル基であってもよい。
【0027】
非環状モノマーとしては、具体的には、(メタ)アクリル酸エステル等を含むTが炭素数2~20のエステル基である場合等が挙げられる。
が炭素数2~20のエステル基である場合、非環状モノマーとしては、構造式:CH=C(R21)CO(R22)で表される化合物が挙げられる。ここで、R21は、水素原子又は炭素数1~10の炭化水素基であり、分岐、環、及び/又は不飽和結合を有してもよい。R22は、炭素数1~20の炭化水素基であり、分岐、環、及び/又は不飽和結合を有してもよい。さらに、R22内の任意の位置にヘテロ原子を含有してもよい。
構造式:CH=C(R21)CO(R22)で表される化合物として、R21が、水素原子又は炭素数1~5の炭化水素基である化合物が挙げられる。また、R21が水素原子であるアクリル酸エステル又はR21がメチル基であるメタクリル酸エステルが挙げられる。
構造式:CH=C(R21)CO(R22)で表される化合物の具体例としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル等が挙げられる。
具体的な化合物として、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル(nBA)、アクリル酸イソブチル(iBA)、アクリル酸t-ブチル(tBA)、及びアクリル酸2-エチルヘキシル等が挙げられ、特にアクリル酸n-ブチル(nBA)、アクリル酸イソブチル(iBA)、及びアクリル酸t-ブチル(tBA)であってもよい。
なお、非環状モノマーは、一種類であってもよいし、複数種であってもよい。
【0028】
・環状モノマー
【化2】

[一般式(2)中、R~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭素数1~20の炭化水素基からなる群より選ばれるものであり、R及びR10、並びに、R11及びR12は、各々一体化して2価の有機基を形成してもよく、R又はR10と、R11又はR12とは、互いに環を形成していてもよい。
また、nは、0又は正の整数を示し、nが2以上の場合には、R~Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。]
【0029】
環状モノマーとしては、ノルボルネン系オレフィン等が挙げられ、ノルボルネン、ビニルノルボルネン、エチリデンノルボルネン、ノルボルナジエン、テトラシクロドデセン、トリシクロ[4.3.0.12,5]、トリシクロ[4.3.0.12,5]デカ-3-エン、などの環状オレフィンの骨格を有する化合物等が挙げられ、2-ノルボルネン(NB)、及び、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン等であってもよい。
【0030】
(4)金属イオン
カルボン酸塩基の金属イオンとしては、周期表の第1族、第2族又は第12族からなる群より選ばれる二価の金属イオンが挙げられ、具体的には、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、及び、亜鉛(Zn)のイオン等が挙げられ、取扱い易さの観点から、特にナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、又は亜鉛(Zn)のイオンであってもよい。
カルボン酸塩基は、例えば、共重合体のエステル基を加水分解若しくは加熱分解させた後、又は、加水分解若しくは加熱分解させながら、上記金属イオンを含有する化合物と反応させることで、共重合体中のエステル基部分を金属含有カルボン酸塩に変換することで得られる。
なお、金属イオンは、一種類であってもよいし、複数種であってもよい。
【0031】
(5)共重合体(P)
本発明で用いるアイオノマーのベース樹脂となる共重合体(P)は、エチレン及び/又は炭素数3~20のα-オレフィンに由来する構造単位(A)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーに由来する構造単位(B)とを必須構成単位として、さらに場合により任意の構造単位(C)を含み、これら各構造単位が実質的に直鎖状に共重合、好ましくはランダム共重合していることを特徴とする。「実質的に直鎖状」とは、共重合体が分岐を有していないか又は分岐構造が現れる頻度が小さく、共重合体を直鎖状とみなしうる状態であることを指す。具体的には、共重合体の位相角δが50度以上である状態を指す。
【0032】
本発明に関わる共重合体は、構造単位(A)及び、構造単位(B)をそれぞれ1種類以上含有し、合計2種以上のモノマー単位を含むことが必要であり、その他の構造単位(C)を含んでいてもよい。
本発明に関わる共重合体の構造単位と構造単位量について説明する。
エチレン及び/又は炭素数3~20のα-オレフィン(A)、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマー(B)、及び任意のモノマー(C)それぞれ1分子に由来する構造を、共重合体中の1構造単位と定義する。
そして、共重合体中の構造単位全体を100mol%とした時に各構造単位の比率をmol%で表したものが構造単位量である。
【0033】
エチレン及び/又は炭素数3~20のα-オレフィン(A)の構造単位量:
本発明に関わる構造単位(A)の構造単位量は、下限が60.0mol%以上、好ましくは70.0mol%以上、より好ましくは80.0mol%以上、さらに好ましくは85.0mol%以上、さらにより好ましくは90.0mol%以上、特に好ましくは95.0mol%以上であり、上限が99.0mol%以下、好ましくは98.0mol%以下、より好ましくは97.0mol%以下、さらに好ましくは96.5mol%以下から選択される。
エチレン及び/又は炭素数3~20のα-オレフィン(A)に由来する構造単位量が60.0mol%よりも少なければ共重合体の靱性が劣り、99.0mol%よりも多ければ共重合体の結晶化度が高くなり、透明性が悪くなる場合がある。
【0034】
・カルボキシル基及び/又はジカルボン酸無水物基を有するモノマー(B)の構造単位量:
本発明に関わる構造単位(B)の構造単位量は、下限が1.0mol%以上、好ましくは2.0mol%以上であり、より好ましくは3.0mol%以上、さらに好ましくは3.5mol以上、上限が20.0mol%以下、好ましくは15.0mol%以下、より好ましくは10.0mol%以下、さらに好ましくは8.0mol%以下、特に好ましくは6.0mol%以下、最も好ましくは5.3mol%以下から選択される。
カルボキシル基及び/又はジカルボン酸無水物基を有するモノマー(B)に由来する構造単位量が1.0mol%よりも少なければ、共重合体の極性の高い異種材料との接着性が充分ではなく、20.0mol%より多ければ共重合体の充分な機械物性が得られない場合がある。
更に、用いられるカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーは単独でもよく、2種類以上を合わせて用いてもよい。
【0035】
・その他のモノマー(C)の構造単位量:
本発明に関わる構造単位(C)の構造単位量は、上限が20.0mol%以下、好ましくは15.0mol%以下、より好ましくは10.0mol%以下、さらに好ましくは5.0mol%以下、特に好ましくは3.0mol%以下から選択され、下限に関しては特に制限はなく、0mol%でも構わない。任意のモノマー(C)に由来する構造単位量が20.0mol%以下であると共重合体の充分な機械物性が得られやすい。
更に、用いられる任意のモノマー(C)は単独でもよく、2種類以上を合わせて用いてもよい。
【0036】
共重合体(P)の炭素1,000個当たりの分岐数:
本発明の共重合体においては、弾性率を高くし、充分な機械物性を得る点から、13C-NMRにより算出されるメチル分岐数が、炭素1,000個当たり、上限が50個以下であってもよく、5.0個以下であってもよく、1.0個以下であってもよく、0.5個以下であってもよく、下限は、特に限定されず、少なければ少ないほどよい。またエチル分岐数が炭素1,000個当たり、上限が3.0個以下であってもよく、2.0個以下であってもよく、1.0個以下であってもよく、0.5個以下であってもよく、下限は、特に限定されず、少なければ少ないほどよい。さらにブチル分岐数が炭素1,000個当たり、上限が7.0個以下であってもよく、5.0個以下であってもよく、3.0個以下であってもよく、0.5個以下であってもよく、下限は、特に限定されず、少なければ少ないほどよい。
【0037】
共重合体中のカルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマーに由来する構造単位量、及び分岐数の測定方法:
本発明の共重合体中のカルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマーに由来する構造単位量、及び炭素1,000個当たりの分岐数は13C-NMRスペクトルを用いて求められる。13C-NMRは以下の方法によって測定する。
試料200~300mgをo-ジクロロベンゼン(CCl)と重水素化臭化ベンゼン(CBr)の混合溶媒(CCl/CBr=2/1(体積比))2.4ml及び化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れて窒素置換した後封管し、加熱溶解して均一な溶液としてNMR測定試料とする。
NMR測定は10mmφのクライオプローブを装着したブルカー・ジャパン(株)のAV400M型NMR装置を用いて120℃で行う。
13C-NMRは、試料の温度120℃、パルス角を90°、パルス間隔を51.5秒、積算回数を512回以上、逆ゲートデカップリング法で測定する。
化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とする。
得られた13C-NMRにおいて、共重合体が有するモノマー又は分岐に特有のシグナルを同定し、その強度を比較することで、共重合体中の各モノマーの構造単位量、及び分岐数を解析することができる。モノマー又は分岐に特有のシグナルの位置は公知の資料を参照することもできるし、試料に応じて独自に同定することもできる。このような解析手法は、当業者にとって一般的に行いうるものである。
【0038】
・重量平均分子量(Mw)と分子量分布(Mw/Mn):
本発明に関わる共重合体の重量平均分子量(Mw)は、下限が通常1,000以上であり、好ましくは6,000以上であり、より好ましくは10,000以上であり、上限が通常2,000,000以下であり、好ましくは1,500,000以下であり、更に好ましくは1,000,000以下であり、特に好適なのは800,000以下であり、最も好ましくは100,000以下である。
Mwが1,000未満では共重合体の機械的強度や耐衝撃性などの物性が充分ではなく、Mwが2,000,000を超えると共重合体の溶融粘度が非常に高くなり、共重合体の成形加工が困難となる場合がある。
【0039】
本発明に関わる共重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、通常1.5~4.0、好ましくは1.6~3.5、より好ましくは1.7~3.7、更に好ましくは1.9~2.4の範囲である。Mw/Mnが1.5未満では共重合体の成形を始めとして各種加工性が充分でなく、4.0を超えると共重合体の機械物性が劣るものとなる場合がある。
本発明においては(Mw/Mn)を分子量分布パラメーターと表現することがある。
【0040】
本発明に関わる重量平均分子量(Mw)及び数平均分子量(Mn)はゲルパーミエイションクロマトグラフィー(GPC)によって求められる。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnを算出するものである。
【0041】
本発明に関わるGPCの測定方法の一例は以下の通りである。
(測定条件)
使用機種:ウォーターズ社製150C
検出器:FOXBORO社製MIRAN1A・IR検出器(測定波長:3.42μm)
測定温度:140℃
溶媒:オルトジクロロベンゼン(ODCB)
カラム:昭和電工社製AD806M/S(3本)
流速:1.0mL/分
注入量:0.2mL
(試料の調製)
試料はODCB(0.5mg/mLのBHT(2,6-ジ-t-ブチル-4-メチルフェノール)を含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させる。
(分子量(M)の算出)
標準ポリスチレン法により行い、保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは例えば、東ソー社製の、(F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000)の銘柄、昭和電工製単分散ポリスチレン(S-7300、S-3900、S-1950、S-1460、S-1010、S-565、S-152、S-66.0、S-28.5、S-5.05、の各0.07mg/ml溶液)などである。各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して較正曲線を作成する。較正曲線は最小二乗法で近似して得られる三次式、又は溶出時間と分子量の対数値を4次式で近似したものなどを用いる。分子量(M)への換算に使用する粘度式[η]=K×Mαは以下の数値を用いる。
ポリスチレン(PS):K=1.38×10-4、α=0.7
ポリエチレン(PE):K=3.92×10-4、α=0.733
ポリプロピレン(PP):K=1.03×10-4、α=0.78
【0042】
・融点(Tm、℃):
本発明に関わる共重合体の融点は、示差走査型熱量計(DSC)により測定した吸熱曲線の最大ピーク温度によって示される。最大ピーク温度とは、DSC測定において、縦軸に熱流(mW)、横軸に温度(℃)をとった際に得られる吸熱曲線に複数ピークが示された場合、そのうちベースラインからの高さが最大であるピークの温度の事を示し、ピークが1つだった場合には、そのピークの温度の事を示している。
融点は50℃~140℃であることが好ましく、60℃~138℃であることが更に好ましく、70℃~135℃が最も好ましい。この範囲より低ければ耐熱性が充分ではなく、この範囲より高い場合は接着性が劣るものとなる場合がある。
本発明において、融点は、例えば、エスアイアイ・ナノテクノロジー株式会社製のDSC(DSC7020)を使用し、試料約5.0mgをアルミパンに詰め、10℃/分で200℃まで昇温し、200℃で5分間等温保持後、10℃/分で20℃まで降温し、20℃で5分間等温保持後、再度、10℃/分で200℃まで昇温させる際の吸収曲線より求めることができる。
【0043】
・結晶化度(%):
本発明の共重合体においては、示差走査熱量測定(DSC)により観測される結晶化度は、特に限定されないが、0%を超えていることが好ましい。5%を超えていることがより好ましく、7%以上であることが更に好ましい。結晶化度が0%であると共重合体の靱性が充分とはならなくなる場合がある。結晶化度は透明性の指標でもあり、透明性がある方が好ましいが、結晶化度の上限は特に限定されない。
本発明において、結晶化度は、例えば、上記融点の測定と同じ手順でのDSC測定により得られる融解吸熱ピーク面積から融解熱(ΔH)を求め、その融解熱を高密度ポリエチレン(HDPE)の完全結晶の融解熱293J/gで除することにより求めることができる。
【0044】
・共重合体の分子構造:
本発明に関わる共重合体の分子鎖末端は、エチレン及び/又は炭素数3~20のα-オレフィンの構造単位(A)であってもよく、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)であってもよく、任意のモノマーの構造単位(C)であってもよい。
【0045】
また、本発明に関わる共重合体は、エチレン及び/又は炭素数3~20のα-オレフィンの構造単位(A)、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)、及び任意のモノマーの構造単位(C)のランダム共重合体、ブロック共重合体、並びにグラフト共重合体等が挙げられる。これらの中では、構造単位(B)を多く含むことが可能なランダム共重合体であってもよい。
一般的な三元系の共重合体の分子構造例(1)を下記に示す。
ランダム共重合体とは、下記に示した分子構造例(1)のエチレン及び/又は炭素数3~20のα-オレフィンの構造単位(A)とカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)と任意のモノマーの構造単位(C)とが、ある任意の分子鎖中の位置においてそれぞれの構造単位を見出す確率が、その隣接する構造単位の種類と無関係な共重合体である。
下記のように、共重合体の分子構造例(1)は、エチレン及び/又は炭素数3~20のα-オレフィンの構造単位(A)とカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)と任意のモノマーの構造単位(C)とが、ランダム共重合体を形成している。
【化3】
【0046】
なお、グラフト変性によってカルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)を導入した共重合体の分子構造例(2)も参考に掲載すると、エチレン及び/又は炭素数3~20のα-オレフィンの構造単位(A)及び任意のモノマーの構造単位(C)とが共重合された共重合体の一部が、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)にグラフト変性される。
【化4】
【0047】
また、共重合体におけるランダム共重合性は種々の方法により確認することが可能であるが、共重合体のコモノマー含量と融点との関係からランダム共重合性を判別する手法が特開2015-163691号公報及び特開2016-079408に詳しく述べられている。上記文献から共重合体の融点(Tm、℃)が-3.74×[Z]+130(ただし、[Z]はコモノマー含量/mol%)よりも高い場合はランダム性が低いと判断できる。
【0048】
ランダム共重合体である本発明に関わる共重合体は示差走査熱量測定(DSC)により観測される融点(Tm、℃)と、カルボキシル基及び/又はジカルボン酸無水物基を有するモノマーの構造単位(B)及び任意のモノマーの構造単位(C)の合計の含有量[Z](mol%)とが下記の式(I)を満たすことが好ましい。
50<Tm<-3.74×[Z]+130・・・(I)
共重合体の融点(Tm、℃)が-3.74×[Z]+130(℃)よりも高い場合はランダム共重合性が低い為、衝撃強度など機械物性が劣り、融点が50℃よりも低い場合は剛性が劣る場合がある。
【0049】
さらに本発明に関わる共重合体は、その分子構造を直鎖状とする観点から、遷移金属触媒の存在下で製造されたものであることが好ましい。
なお、高圧ラジカル重合法プロセスによる重合、金属触媒を用いた重合など、製造方法によって共重合体の分子構造は異なることが知られている。
この分子構造の違いは製造方法を選択する事によって制御が可能であるが、例えば、特開2010-150532号公報に記載されている様に、回転式レオメータで測定した複素弾性率によっても、その分子構造を推定する事ができる。
【0050】
・複素弾性率の絶対値G=0.1MPaにおける位相角δ:
本発明の共重合体においては、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δは、下限が50度以上であってもよく、51度以上であってもよく、54度以上であってもよく、56度以上であってもよく、58度以上であってもよく、上限が75度以下であってもよく、70度以下であってもよい。
より具体的には、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δ(G=0.1MPa)が50度以上である場合、共重合体の分子構造は直鎖状の構造であって、長鎖分岐を全く含まない構造か、機械的強度に影響を与えない程度の少量の長鎖分岐を含む構造を示す。
また、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δ(G=0.1MPa)が50度より低い場合、共重合体の分子構造は長鎖分岐を過多に含む構造を示し、機械的強度が劣るものとなる。
回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δは、分子量分布と長鎖分岐の両方の影響を受ける。しかし、Mw/Mn≦4、より好ましくはMw/Mn≦3である共重合体に限れば長鎖分岐の量の指標になり、その分子構造に含まれる長鎖分岐が多いほどδ(G=0.1MPa)値は小さくなる。なお、共重合体のMw/Mnが1.5以上であれば、当該分子構造が長鎖分岐を含まない構造である場合でもδ(G=0.1MPa)値が75度を上回ることはない。
【0051】
複素弾性率の測定方法は、以下の通りである。
試料を厚さ1.0mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持する。その後、試料を表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約1.0mmの試料からなるプレス板を作成した。試料からなるプレス板を直径25mm円形に加工したものをサンプルとし、動的粘弾性特性の測定装置としてRheometrics社製ARES型回転式レオメータを用い、窒素雰囲気下において以下の条件で動的粘弾性を測定する。
・プレート:φ25mm パラレルプレート
・温度:160℃
・歪み量:10%
・測定角周波数範囲:1.0×10-2~1.0×10 rad/s
・測定間隔:5点/decade
複素弾性率の絶対値G(Pa)の常用対数logGに対して位相角δをプロットし、logG=5.0に相当する点のδ(度)の値をδ(G=0.1MPa)とする。測定点の中にlogG=5.0に相当する点がないときは、logG=5.0前後の2点を用いて、logG=5.0におけるδ値を線形補間で求める。また、測定点がいずれもlogG<5であるときは、logG値が大きい方から3点の値を用いて2次曲線でlogG=5.0におけるδ値を補外して求める。
【0052】
・共重合体の製造について
本発明に関わる共重合体は、その分子構造を直鎖状とする観点から、遷移金属触媒の存在下で製造されたものであることが好ましい。
【0053】
・重合触媒
本発明に関わる共重合体の製造に用いる重合触媒の種類は、構造単位(A)、構造単位(B)、及び任意の構造単位(C)を共重合することが可能なものであれば特に限定されないが、例えば、キレート性配位子を有する第5~11族の遷移金属化合物が挙げられる。
好ましい遷移金属の具体例としては、バナジウム原子、ニオビウム原子、タンタル原子、クロム原子、モリブデン原子、タングステン原子、マンガン原子、鉄原子、白金原子、ルテニウム原子、コバルト原子、ロジウム原子、ニッケル原子、パラジウム原子、銅原子などが挙げられる。これらの中で好ましくは、第8~11族の遷移金属であり、さらに好ましくは第10族の遷移金属であり、特に好ましくはニッケル(Ni)、パラジウム(Pd)である。これらの金属は、単一であっても複数を併用してもよい。
キレート性配位子は、P、N、O、及びSからなる群より選択される少なくとも2個の原子を有しており、二座配位(bidentate)又は多座配位(multidentate)であるリガンドを含み、電子的に中性又は陰イオン性である。Brookhartらによる総説に、キレート性配位子の構造が例示されている(Chem.Rev.,2000,100,1169)。
キレート性配位子としては、好ましくは、二座アニオン性P、O配位子が挙げられる。二座アニオン性P、O配位子として例えば、リンスルホン酸、リンカルボン酸、リンフェノール、リンエノラートが挙げられる。キレート性配位子としては、他に、二座アニオン性N、O配位子が挙げられる。二座アニオン性N、O配位子として例えば、サリチルアルドイミナ-トやピリジンカルボン酸が挙げられる。キレート性配位子としては、他に、ジイミン配位子、ジフェノキサイド配位子、及びジアミド配位子等が挙げられる。
【0054】
キレート性配位子から得られる金属錯体の構造は、置換基を有してもよいアリールホスフィン化合物、アリールアルシン化合物又はアリールアンチモン化合物が配位した下記構造式(a)又は(b)で表される。
【化5】

【化6】

[構造式(a)、及び構造式(b)において、
Mは、元素の周期表の第5~11族のいずれかに属する遷移金属、即ち前述したような種々の遷移金属を表す。
は、酸素、硫黄、-SO-、又は-CO-を表す。
は、炭素又はケイ素を表す。
nは、0又は1の整数を表す。
は、リン、砒素又はアンチモンを表す。
53及びR54は、それぞれ独立に、水素又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
55は、それぞれ独立に、水素、ハロゲン、又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
56及びR57は、それぞれ独立に、水素、ハロゲン、炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基、OR52、CO52、COM’、C(O)N(R51、C(O)R52、SR52、SO52、SOR52、OSO52、P(O)(OR522-y(R51、CN、NHR52、N(R52、Si(OR513-x(R51、OSi(OR513-x(R51、NO、SOM’、POM’、P(O)(OR52M’又はエポキシ含有基を表す。
51は、水素又は炭素数1ないし20の炭化水素基を表す。
52は、炭素数1ないし20の炭化水素基を表す。
M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウム又はフォスフォニウムを表し、xは、0から3までの整数、yは、0から2までの整数を表す。
なお、R56とR57が互いに連結し、脂環式環、芳香族環、又は酸素、窒素、若しくは硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。この時、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
は、Mに配位したリガンドを表す。
また、R53とLが互いに結合して環を形成してもよい。]
【0055】
より好ましくは、下記構造式(c)で表される遷移金属錯体である。
【化7】

[構造式(c)において、
Mは、元素の周期表の第5~11族のいずれかに属する遷移金属、即ち前述したような種々の遷移金属を表す。
は、酸素、硫黄、-SO-、又は-CO-を表す。
は、炭素又はケイ素を表す。
nは、0又は1の整数を表す。
は、リン、砒素又はアンチモンを表す。
53及びR54は、それぞれ独立に、水素又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
55は、それぞれ独立に、水素、ハロゲン、又は炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基を表す。
58、R59、R60及びR61は、それぞれ独立に、水素、ハロゲン、炭素数1ないし30のヘテロ原子を含有してもよい炭化水素基、OR52、CO52、COM’、C(O)N(R51、C(O)R52、SR52、SO52、SOR52、OSO52、P(O)(OR522-y(R51、CN、NHR52、N(R52、Si(OR513-x(R51、OSi(OR513-x(R51、NO、SOM’、POM’、P(O)(OR52M’又はエポキシ含有基を表す。
51は、水素又は炭素数1ないし20の炭化水素基を表す。
52は、炭素数1ないし20の炭化水素基を表す。
M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウム又はフォスフォニウムを表し、xは、0から3までの整数、yは、0から2までの整数を表す。
なお、R58~R61から適宜選択された複数の基が互いに連結し、脂環式環、芳香族環、又は酸素、窒素、若しくは硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。この時、環員数は5~8であり、該環上に置換基を有していても、有していなくてもよい。
は、Mに配位したリガンドを表す。
また、R53とLが互いに結合して環を形成してもよい。]
【0056】
ここで、キレート性配位子を有する第5~11族の遷移金属化合物の触媒としては、代表的に、いわゆる、SHOP系触媒及びDrent系触媒等の触媒が知られている。
SHOP系触媒は、置換基を有してもよいアリール基を有するリン系リガンドがニッケル金属に配位した触媒である(例えば、WO2010-050256号公報を参照)。
また、Drent系触媒は、置換基を有してもよいアリール基を有するリン系リガンドがパラジウム金属に配位した触媒である(例えば、特開2010-202647号公報を参照)。
【0057】
・共重合体の重合方法:
本発明に関わる共重合体の重合方法は限定されない。
重合方法としては、媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、又は、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが挙げられる。
重合形式としては、バッチ重合、セミバッチ重合、又は連続重合のいずれの形式でもよい。
また、リビング重合を行ってもよいし、連鎖移動を併発しながら重合を行ってもよい。
更に、重合の際には、いわゆるchain shuttling agent(CSA)を併用し、chain shuttling反応や、coordinative chain transfer polymerization(CCTP)を行ってもよい。
具体的な製造プロセス及び条件については、例えば、特開2010-260913号公報、及び特開2010-202647号公報等に開示されている。
【0058】
・共重合体へのカルボキシル基及び/又はジカルボン酸無水物基の導入方法:
本発明に関わる共重合体へのカルボキシル基及び/又はジカルボン酸無水物基の導入方法は特に限定されない。
本発明の主旨を逸脱しない範囲においては種々の方法によりカルボキシル基及び/又はジカルボン酸無水物基を導入することができる。
カルボキシル基及び/又はジカルボン酸無水物基の導入方法は、例えば、カルボキシル基及び/又はジカルボン酸無水物基を有するコモノマーを直接共重合する方法や、他のモノマーを共重合した後、変性によりカルボキシル基及び/又はジカルボン酸無水物基を導入する方法などが挙げられる。
【0059】
変性によりカルボキシル基及び/又はジカルボン酸無水物基を導入する方法としては、例えばカルボン酸を導入する場合、アクリル酸エステルを共重合した後に加水分解し、カルボン酸に変化する方法やアクリル酸t-ブチルを共重合した後、加熱分解によりカルボン酸に変化させる方法等が挙げられる。
【0060】
上記、加水分解又は加熱分解する際に、反応を促進させる添加剤として、従来公知の酸・塩基触媒を使用してもよい。酸・塩基触媒としては特に制限されないが、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属やアルカリ土類金属の水酸化物、炭酸水素ナトリウムや炭酸ナトリウムなどのアルカリ金属、アルカリ土類金属の炭酸塩、モンモリロナイトなどの固体酸、塩酸、硝酸、硫酸などの無機酸、ギ酸、酢酸、安息香酸、クエン酸、パラトルエンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸などの有機酸などを適宜用いることが出来る。
反応促進効果、価格、装置腐食性等の観点から水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、パラトルエンスルホン酸、トリフルオロ酢酸が好ましく、パラトルエンスルホン酸、トリフルオロ酢酸がより好ましい。
【0061】
(6)アイオノマー
本発明に係るアイオノマーは、本発明の共重合体の構造単位(B)のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部が周期表1族、2族又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換されており、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δが、50度~75度であり、実質的に直鎖状構造を有するアイオノマーである。
【0062】
・アイオノマーの構造
本発明に関わるアイオノマーは本発明に関わる共重合体と同様に実質的に直鎖状構造を有することから、回転式レオメータで測定した複素弾性率の絶対値G=0.1MPaにおける位相角δが、50度~75度の範囲であることを特徴とする。前記位相角δ(G=0.1MPa)が50度より低い場合、アイオノマーの分子構造は長鎖分岐を過多に含む構造を示し、機械的強度が劣るものとなる。また、当該分子構造が長鎖分岐を含まない構造である場合でもδ(G=0.1MPa)値が75度を上回ることはない。
本発明のアイオノマーは、機械的強度を向上する点から、前記位相角δの下限が、51度以上であることが好ましく、54度以上であることがより好ましく、56度以上であることが更に好ましく、58度以上であることがより更に好ましく、上限は、特に限定されず、75度に近ければ近いほどよい。
【0063】
・金属イオン
本発明に関わるアイオノマーに含まれる金属イオンは、従来公知のアイオノマーに用いられる金属イオンを含むことができる。金属イオンとしては、周期表1族、2族又は12族の金属イオンであることが好ましく、Li、Na、K、Rb、Be2+、Mg2+、Ca2+、Sr2+、Ba2+、Ra2+、Zn2+からなる群から選ばれる少なくとも1種がより好ましい。特に好ましくは、Na、K、Mg2+、Ca2+、Ba2+及びZn2+、更に好ましくは、Na、Mg及びZn2+からなる群から選ばれる少なくとも1種が挙げられる。
これらの金属イオンを必要に応じて2種以上混合して含むことができる。
【0064】
・中和度(mol%)
金属イオンの含有量としては、ベースポリマーとしての共重合体中のカルボキシル基及び/又はジカルボン酸無水物基の少なくとも一部又は全部を中和する量を含むことが好ましく、好ましい中和度(平均中和度)としては、1~90mol%、より好ましくは5~85mol%、さらに好ましくは10~80mol%である。
なお、中和度は、共重合体中のカルボキシ基及び/又はジカルボン酸無水物基に含まれ得るカルボキシ基の合計mol量に対する、金属イオンの価数×mol量の合計mol量の割合から求めることができる。
ジカルボン酸無水物基はカルボン酸塩を形成する際に、開環してジカルボン酸となるため、ジカルボン酸無水物基1molにつき、2molのカルボキシ基を有するものとして前記カルボキシ基の合計mol量を求める。また、例えばZn2+等の二価の金属イオンは、1molにつき、2molのカルボキシ基と塩を形成できるものとして、2×mol量により中和度の分子の合計mol量を算出する。
中和度が高いと、アイオノマーの引張強度及び引張破壊応力が高く、引張破壊ひずみが小さくなるが、アイオノマーのメルトフローレート(MFR)が小さくなる傾向がある。一方、中和度が低いと、適度なMFRのアイオノマーが得られるが、引張弾性率及び引張破壊応力は低く、引張破壊ひずみが高くなる傾向がある。
中和度が1mol%より低いとアイオノマーの靭性(強度や耐衝撃性)が不十分となる場合があり、中和度が90mol%よりも高いと耐熱性が不十分となる場合がある。
【0065】
・アイオノマーの耐薬品性:
本発明のアイオノマーにおいては、アイオノマーの耐衝撃性が充分になる点から、JIS K7114(2001年)に記載の浸漬試験による質量増加率が低いことが好ましい。耐薬品性の評価基準となる質量増加率は、溶媒ごとに実用上の使用頻度や想定される用途が異なるため、溶媒ごとに勘案される。アンモニアは反応性があり分子量も小さいので、量に対するアイオノマーへの影響が他の溶媒より大きい。またエタノールは消毒に用いられることから実用上の使用頻度が高く接触する量が多くなるため、これらは他の溶媒よりも耐性が高いことすなわち質量増加率が低いことが好ましい。具体的には、トルエンの場合30%未満であることが好ましく、20%未満であることがより好ましく、15%未満であることが更により好ましい。アンモニアの場合10%未満であることが好ましく、5%未満であることがより好ましく、3.5%未満であることが更により好ましい。酢酸エチルの場合5%未満であることが好ましく、4.0%未満であることがより好ましく、3.5%未満以上であることが更により好ましい。エタノールの場合1.5%未満であることが好ましく、1.3%未満であることがより好ましく、1.0%未満であることが更により好ましい。FuelCの場合40%未満であることが好ましく、30%未満であることがより好ましく、25%未満以上であることが更により好ましい。
【0066】
・アイオノマーの耐摩耗性
本発明のアイオノマーにおいては、アイオノマーの耐摩耗性が充分になる点から、JIS K7204-1999に記載の摩耗損失量が、15mg未満であることが好ましく、7.0mg未満であることがより好ましく、5.0mg未満であることがさらにより好ましい。
【0067】
・アイオノマーの結晶化度(%):
本発明のアイオノマーにおいては、示差走査熱量測定(DSC)により観測される結晶化度は、アイオノマーの靱性が充分になる点から、下限が0%を超えることが好ましく、5%を超えることがより好ましく、7%以上であることが更に好ましく、アイオノマーの透明性の点から、上限が50%以下であることが好ましく、40%以下であることがより好ましく、35%以下であることが更に好ましい。なお、結晶化度は透明性の指標となり、アイオノマーの結晶化度が低くなればなるほど、その透明性が優れると判断することができる。
【0068】
本発明のアイオノマーは、耐薬品性、耐摩耗性、及び耐熱性に優れる点から、前記耐薬品性、前記耐摩耗性、及び前記耐熱性の少なくとも1種の特性を更に有することが好ましい。
【0069】
・アイオノマーの製造方法
本発明に関わるアイオノマーは、上述のとおりの共重合体へのカルボキシル基及び/又はジカルボン酸無水物基の導入方法によって得たエチレン及び/又は炭素数3~20のα-オレフィン/不飽和カルボン酸の共重合体を、周期表1族、2族又は12族から選ばれる少なくとも1種の金属イオンを含有する金属塩により処理し金属含有カルボン酸塩に変換する変換工程を経ることにより得てもよい。また、本発明に関わるアイオノマーはエチレン及び/又は炭素数3~20のα-オレフィン/不飽和カルボン酸エステル共重合体を加熱し、該共重合体中の少なくとも一部のエステル基を、周期表1族、2族又は12族から選ばれる少なくとも1種の金属イオンを含有する金属含有カルボン酸塩に変換する加熱変換工程を経ることにより得てもよい。
【0070】
重合体にカルボキシル基及び/又はジカルボン酸無水物基を導入してからアイオノマーを製造する場合、その製造方法は、例えば、以下のとおりである。すなわち、エチレン/(メタ)アクリル酸((M)AA)共重合体などの金属イオンを捕捉する物質と金属塩を場合により加熱して混練することで金属イオン供給源を作製し、ついでアイオノマーの前駆体樹脂に当該金属イオン供給源を所望の中和度となる量投入し、混練することで得ることができる。
【0071】
また、加熱変換工程においては、(i)エチレン及び/又は炭素数3~20のα-オレフィン/不飽和カルボン酸エステル共重合体を加熱し、加水分解又は加熱分解によりエチレン及び/又は炭素数3~20のα-オレフィン/不飽和カルボン酸共重合体にした後、周期表1族、2族又は12族の金属イオンを含有する化合物と反応させることで、該エチレン及び/又は炭素数3~20のα-オレフィン/不飽和カルボン酸共重合体中のカルボン酸を該金属含有カルボン酸塩に変換してもよく、また、(ii)エチレン及び/又は炭素数3~20のα-オレフィン/不飽和カルボン酸エステル共重合体を加熱し、該共重合体のエステル基を加水分解又は加熱分解させながら、周期表1族、2族又は12族の金属イオンを含有する化合物と反応させることで、前記エチレン及び/又は炭素数3~20のα-オレフィン/不飽和カルボン酸エステル共重合体中のエステル基部分を前記金属含有カルボン酸塩に変換してもよい。
【0072】
さらに金属イオンを含有する化合物は、周期表1族、2族又は12族の金属の酸化物、水酸化物、炭酸塩、重炭酸塩、酢酸塩、ギ酸塩などであってもよい。
金属イオンを含有する化合物は、粒状あるいは微粉状で反応系に供給してもよく、水や有機溶媒に溶解又は分散させた後、反応系に供給してもよく、エチレン/不飽和カルボン酸共重合体やオレフィン共重合体をベースポリマーとするマスターバッチを作製し、反応系に供給してもよい。反応を円滑に進行させるためにはマスターバッチを作製し、反応系に供給する方法が好ましい。
【0073】
さらにまた、金属イオンを含有する化合物との反応はベント押出機、バンバリーミキサー、ロールミルの如き種々の型の装置により、溶融混練することによって行ってもよく、反応はバッチ式でも連続法でもよい。反応によって副生する水及び炭酸ガスを脱気装置により排出することにより、円滑に反応を行うことができることからベント押出機のような脱気装置付きの押出機を用い連続的に行うことが好ましい。
金属イオンを含有する化合物との反応に際し、反応を促進させるために、少量の水を注入してもよい。
【0074】
エチレン及び/又は炭素数3~20のα-オレフィン/不飽和カルボン酸エステル共重合体を加熱する温度は、エステルがカルボン酸になる温度であればよく、加熱温度が低すぎる場合はエステルがカルボン酸に変換されず、高すぎる場合には脱カルボニル化や共重合体の分解が進む。従って、本発明の加熱温度は、好ましくは80℃~350℃、より好ましくは100℃~340℃、更に好ましくは150℃~330℃、更により好ましくは200℃~320℃の範囲で行われる。
【0075】
反応時間は加熱温度やエステル基部分の反応性等により変わるが、通常1分~50時間であり、より好ましくは2分~30時間であり、更に好ましくは2分~10時間であり、よりさらに好ましくは2分~3時間であり、特に好ましくは3分~2時間である。
【0076】
上記工程において、反応雰囲気下に特に制限はないが、一般に不活性ガス気流下で行われるほうが好ましい。不活性ガスの例としては、窒素、アルゴン、二酸化炭素雰囲気が使用できる。少量の酸素や空気の混入があってもよい。
【0077】
上記工程で用いる反応器としては、特に制限は無く、共重合体を実質的に均一に攪拌できる方法であれば何ら限定されない。攪拌器を装備したガラス容器やオートクレーブ(AC)を用いてもよいし、ブラベンダープラストグラフ、一軸あるいは二軸押出機、強力スクリュー型混練機、バンバリーミキサー、ニーダー、ロール等の従来知られているいかなる混練機も使用することができる。
【0078】
アイオノマーベース樹脂に対し金属イオンが導入され、アイオノマーとなったかどうかは、得られた樹脂のIRスペクトルを測定してカルボン酸(二量体)のカルボニル基に由来するピークの減少を調べることによって確認することができる。中和度も同じく、前述のモル比からの計算のほか、カルボン酸(二量体)のカルボニル基に由来するピークの減少と、カルボン酸塩基のカルボニル基に由来するピークの増加を調べることによって、確認することができる。
【0079】
・添加剤
本発明に関わるアイオノマーには、本発明の主旨を逸脱しない範囲において、従来公知の酸化防止剤、紫外線吸収剤、滑剤、帯電防止剤、着色剤、顔料、架橋剤、発泡剤、核剤、難燃剤、導電材、及び、充填材等の添加剤を配合してもよい。これらの添加剤は、化粧シートに用いられる材料を適宜選択することができ、化粧シート用樹脂組成物を構成する。
【0080】
・化粧シート
本発明の一態様は、基材シート層と、上記アイオノマーを含む樹脂又は樹脂組成物を用いた化粧シート用樹脂層(本発明の樹脂層)とを少なくとも備える積層体から構成される化粧シートである。本発明の樹脂層を備えることにより、化粧シートが良好な耐薬品性、耐摩耗性、耐熱性を備えることができる。化粧シートは、さらに、絵柄模様層、接着剤層、表面保護層、プライマー層等が積層されていてもよい。本発明の樹脂層は、通常は接着剤層と表面保護層の間に設けられる。
【0081】
<基材シート>
基材シートとしては、樹脂製フィルム、紙、樹脂含浸紙等の種々のものを例示することができる。熱可塑性樹脂により形成された樹脂製フィルムが好ましく用いられる。熱可塑性樹脂の具体的な例としては、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、アクリル酸エステル、メタアクリル酸エステル等のアクリル樹脂、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリカーボネート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体が挙げられる。
【0082】
基材シートには、必要に応じて、着色剤、充填剤、艶消し剤、発泡剤、難燃剤、滑剤、帯電防止剤、酸化防止剤、紫外線吸収剤、光安定化剤等の各種の添加剤が含まれていてもよい。また、基材シートは、必要に応じて、絵柄模様層を形成するインキの密着性を高めるために表面に公知の方法・条件に従ってコロナ放電処理を施してもよい。
基材シートの厚みは、最終製品の用途、使用方法等により適宜設定することができるが、一般には50~250μmの範囲であることが好ましい。
【0083】
<絵柄模様層>
絵柄層は、化粧シートに所望の絵柄、意匠を付与するものである。絵柄の種類は制限されず、木目模様、石目模様、砂目模様、タイル貼模様、煉瓦積模様、布目模様、皮絞模様、幾何学図形、文字、記号、抽象模様等など任意の模様を付すことができる。
絵柄層の形成方法は特に限定されない。例えば、染料、無機若しくは有機顔料、蛍光顔料等の公知の着色剤を結着材樹脂とともに溶剤中に溶解、又は分散媒中に分散して得られるインキを用いた印刷法により、基材シート表面に形成することができる。
【0084】
絵柄層の形成に用いる印刷法としては、例えば、インクジェット印刷法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、フレキソ印刷法、静電印刷法等が挙げられる。また、全面ベタ状の絵柄模様層を形成する場合には、例えば、グラビアコート法、グラビアリバースコート法、ロールコート法、ナイフコート法、エアーナイフコート法、ダイコート法、リップコート法、コンマコート法、キスコート法、フローコート法、ディップコート法等の各種コーティング法も挙げられる。これらの方法以外にも、例えば、手描き、墨流し、写真法、転写法、レーザービーム描画、電子ビーム描画、金属等の部分蒸着、エッチング等を用いることもでき、複数の画像形成方法を組み合わせて用いてもよい。
絵柄層の厚みは特に限定されず、製品特性に応じて適宜設定することができるが、塗工時の層厚は一般的に0.1~10μm程度である。
【0085】
<接着剤層>
接着剤層は、絵柄層と本発明の樹脂層との間に積層され、両者を接着する層である。接着剤層で使用する接着剤は、絵柄層又は本発明の樹脂層を構成する成分等に応じて適宜選択することができる。例えば、ポリウレタン系樹脂、ポリアクリル系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂等を含む各種接着剤を使用できる。接着力を発揮するための手段も問わない。反応硬化タイプのほか、ホットメルトタイプ、電離放射線硬化タイプ、紫外線硬化タイプ等の接着剤でもよい。また、必要に応じ、コロナ放電処理、プラズマ処理、脱脂処理、表面粗面化処理等の公知の易接着処理を接着面に施すこともできる。
接着剤層は透明な樹脂を用いることが好ましいが、絵柄層が視認できる限り、完全な透明ではなく半透明であってもよい。
【0086】
接着剤層は、例えば、接着剤を絵柄模様層の上に塗布後、一度乾燥し、それから、本発明の樹脂を積層することにより形成することができる。接着剤の塗布方法は特に限定されず、ロールコート等絵柄層の形成方法として挙げた方法が採用できる。
接着剤層の厚みは、透明性保護層、使用する接着剤の種類等によって異なるが、一般的には0.1~30μm程度である。
【0087】
<透明性表面保護層>
本発明の樹脂層の上に、透明性表面保護層を形成してもよい。透明性表面保護層を形成する樹脂の成分は特に制限されないが、電離放射線硬化型樹脂又は2液硬化型ウレタン系樹脂を含有することが好ましい。耐摩耗性、耐衝撃性、耐汚染性、耐擦傷性、耐候性等を高め易い特性を有する、電離放射線硬化型樹脂又は2液硬化型ウレタン系樹脂が好ましい。
【0088】
電離放射線硬化型樹脂としては、紫外線、電子線等の電離放射線の照射により重合架橋反応可能な樹脂が利用できる。例えば、分子中に(メタ)アクリロイル基、(メタ)アクリロイルオキシ基等のラジカル重合性不飽和基、エポキシ基等のカチオン重合性官能基等を有する化合物が挙げられる。具体例としては、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能モノマーの重合体、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート等の多官能モノマーの重合体、イソプレン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、メラミン(メタ)アクリレート、シリコーン(メタ)アクリレート等の(メタ)アクリレート変性樹脂が挙げられる。
【0089】
電離放射線硬化型樹脂を硬化させる方法は、当業者に公知の手法を用いることができる。通常は紫外線又は電子線を用いて硬化反応を行う。例えば、水銀灯、カーボンアーク灯、ブラックライト、メタルハライドランプ等の紫外線源、コッククロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、ダイナミトロン型、高周波型等の各種電子線加速器等の電子線源が使用できる。
【0090】
2液硬化型ウレタン系樹脂としては特に限定されないが、中でも主剤としてヒドロキシ基を有するポリオール成分と、イソシアネート成分とを含むものが使用できる。
【0091】
透明性表面保護層は、例えば、透明性樹脂層の上に電離放射線硬化型樹脂又は2液硬化型ウレタン系樹脂をグラビアコート、ロールコート等の公知の塗工法により塗工後、樹脂を硬化させることにより形成できる。透明性表面保護層の厚さは特に限定されず、最終製品の特性に応じて適宜設定できるが、通常0.1~50μm、好ましくは1~20μm程度である。
【0092】
<プライマー層>
表面保護層と本発明の樹脂層の中間に、プライマー層を積層してもよい。プライマー層は、両者の密着性を向上させる働きを有する。プライマー層は、主としてバインダー樹脂から構成され、必要に応じて、紫外線吸収剤、光安定剤等の添加剤を含有してもよい。
バインダー樹脂としては、ウレタン樹脂、アクリルポリオール樹脂、アクリル樹脂、エステル樹脂、アミド樹脂、スチレン樹脂、ウレタン-アクリル共重合体、塩化ビニル-酢酸ビニル共重合体、塩素化プロピレン樹脂、ニトロセルロース樹脂、酢酸セルロース樹脂等の樹脂が用いられる。これらを単独で、又は複数種を組み合わせて用いてもよい。プライマー層の厚みは、1μm以上10μm以下であることが好ましい。
【0093】
<<加工>>
化粧シートは、透明性表面保護層側をエンボス加工、抗ウイルス加工などで更に加工が施されていてもよい。エンボス加工は、化粧シートに木目模様等の所望のテクスチャーを付与するために行う。例えば、透明性保護層を加熱軟化させた後、所望の形の凹凸模様を有するエンボス板で加圧及び賦型し、冷却固定することによりテクスチャーを付与する。エンボス加工は、公知の枚葉又は輪転式エンボス機で行うことができる。
抗ウイルス加工は、抗ウイルス剤を化粧シートの最表面に積層される層に含ませることで行うことができる。抗ウイルス剤としては、ゼオライト、アパタイト、ジルコニアなどの物質に銀イオン、銅イオン、亜鉛イオンのいずれかの金属イオンを取り込んで形成した無機系抗ウイルス剤、2-(4-チアゾリル)-ベンゾイミダゾール、10,10-オキシビスフェノキサノジン、ピリジン-2-チオール-オキシド等の有機系抗ウイルス剤や樹脂にカチオンポリマーを練りこんだものが使用できる。抗ウイルス効果の点で銀を添加した無機系抗ウイルス剤が好ましい。
【0094】
・化粧板
本発明の一態様は、化粧板基材と、本発明の化粧シートとを備える積層体から構成される化粧板である。化粧板の基材は用途に応じて適宜選択される。例えば、木質繊維板、パーティクルボード、合板、コルクシート、コルク含有複合基材、熱可塑性樹脂板等が挙げられる。これらの化粧板基材は、単独又は2種以上を組み合わせて積層し、必要に応じ接着剤で接着したものを使用してもよい。また基材の形状も特に制限されず、各種素材の平板、曲面板等の板材、立体形状物品、シート等を任意の形状、厚みで用いることができる。
化粧シート及び化粧板基材を積層する積層方法は制限されず、当業者に公知の方法、例えば接着剤によりそれぞれを貼着する方法等を採用することができる。接着剤は、被着材の種類等に応じて公知の接着剤から適宜選択すればよい。
【実施例0095】
以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、実施例及び比較例における物性の測定と評価は、以下に示す方法によって実施した。
また、表中のno dataは未測定を意味し、not detectedは検出限界未満を意味する。
【0096】
<測定と評価>
(1)複素弾性率の絶対値G*=0.1MPaにおける位相角δ(G*=0.1MPa)の測定
1)試料の準備、測定
試料を厚さ1.0mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約1.0mmの試料からなるプレス板を作製した。試料からなるプレス板を直径25mm円形に加工したものをサンプルとし、動的粘弾性特性の測定装置としてRheometrics社製ARES型回転式レオメータを用い、窒素雰囲気下において以下の条件で動的粘弾性を測定した。
・プレート:φ25mm(直径) パラレルプレート
・温度:160℃
・歪み量:10%
・測定角周波数範囲:1.0×10-2~1.0×102 rad/s
・測定間隔:5点/decade
複素弾性率の絶対値G*(Pa)の常用対数logG*に対して位相角δをプロットし、logG*=5.0に相当する点のδ(度)の値をδ(G*=0.1MPa)とした。測定点の中にlogG*=5.0に相当する点がないときは、logG*=5.0前後の2点を用いて、logG*=5.0におけるδ値を線形補間で求めた。また、測定点がいずれもlogG*<5であるときは、logG*値が大きい方から3点の値を用いて2次曲線でlogG*=5.0におけるδ値を補外して求めた。
【0097】
(2)重量平均分子量(Mw)及び分子量分布パラメーター(Mw/Mn)の測定
重量平均分子量(Mw)はゲルパーミエイションクロマトグラフィー(GPC)によって求めた。また、分子量分布パラメーター(Mw/Mn)は、ゲルパーミエイションクロマトグラフィー(GPC)によって、更に数平均分子量(Mn)を求め、MwとMnの比、Mw/Mnによって算出した。
測定は下記の手順及び条件に従って行った。
【0098】
1)試料の前処理
試料にカルボン酸基が含まれる場合は、例えばジアゾメタンやトリメチルシリル(TMS)ジアゾメタンなどを用いたメチルエステル化などのエステル化処理を行い測定に用いた。また、試料にカルボン酸塩基が含まれる場合は酸処理を行い、カルボン酸塩基をカルボン酸基へと変性した後、上記のエステル化処理を行い測定に用いた。
【0099】
2)試料溶液の調製
4mLバイアル瓶に試料3mg及びo-ジクロロベンゼン3mLを秤り採り、スクリューキャップ及びテフロン(登録商標)製セプタムで蓋をした後、センシュー科学製SSC-7300型高温振とう機を用いて150℃で2時間振とうを行った。振とう終了後、不溶成分がないことを目視で確認した。
【0100】
3)測定
ウォーターズ社製Alliance GPCV2000型に昭和電工製高温GPCカラムShowdex HT-G×1本及び同HT-806M×2本を接続し、溶離液にo-ジクロロベンゼンを使用し、温度145℃、流量:1.0mL/分下にて測定を行った。
【0101】
4)較正曲線
カラムの較正は、昭和電工製単分散ポリスチレン(S-7300、S-3900、S-1950、S-1460、S-1010、S-565、S-152、S-66.0、S-28.5、S-5.05、の各0.07mg/ml溶液)、n-エイコサン及びn-テトラコンタンの測定を上記と同様の条件にて行い、溶出時間と分子量の対数値を4次式で近似した。なお、ポリスチレン分子量(MPS)とポリエチレン分子量(MPE)の換算には次式を用いた。
MPE=0.468×MPS
【0102】
(3)メルトフローレート(MFR)
MFRは、JIS K-7210(1999年)の表1-条件7に従い、温度190℃、荷重21.18N(=2.16kg)の条件で測定した。また表中の「<0.01」は試験条件下では樹脂が流れず測定不可であったことを意味する。
【0103】
(4)融点及び結晶化度
融点は、示差走査型熱量計(DSC)により測定した吸熱曲線のピーク温度によって示される。測定にはエスアイアイ・ナノテクノロジー株式会社製のDSC(DSC7020)を使用し、次の測定条件で実施した。
試料約5.0mgをアルミパンに詰め、10℃/分で200℃まで昇温し、200℃で5分間保持した後に10℃/分で30℃まで降温させた。30℃で5分間保持した後、再度、10℃/分で昇温させる際の吸収曲線のうち、最大ピーク温度を融点Tmとし、融解吸熱ピーク面積から融解熱(ΔH)を求め、その融解熱を高密度ポリエチレン(HDPE)の完全結晶の融解熱293J/gで除することにより、結晶化度(%)を求めた。
【0104】
(5)カルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマー由来の構造単位量と炭素1,000個当たりの分岐数の測定方法
本発明の共重合体中のカルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマーに由来する構造単位量、及び炭素1,000個当たりの分岐数は13C-NMRスペクトルを用いて求められる。13C-NMRは以下の方法によって測定した。
試料200~300mgをo-ジクロロベンゼン(CCl)と重水素化臭化ベンゼン(CBr)の混合溶媒(CCl/CBr=2/1(体積比))2.4ml及び化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れて窒素置換した後封管し、加熱溶解して均一な溶液としてNMR測定試料とした。
NMR測定は10mmφのクライオプローブを装着したブルカー・ジャパン(株)のAV400M型NMR装置を用いて120℃で行った。
13C-NMRは、試料の温度120℃、パルス角を90°、パルス間隔を51.5秒、積算回数を512回以上、逆ゲートデカップリング法で測定した。
化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とした。
【0105】
1)試料の前処理
試料にカルボン酸塩基が含まれる場合は酸処理を行うことにより、カルボン酸塩基をカルボキシ基へと変性した後に測定に用いた。また試料にカルボキシ基が含まれる場合は、例えばジアゾメタンやトリメチルシリル(TMS)ジアゾメタンなどを用いたメチルエステル化などのエステル化処理を適宜行ってもよい。
【0106】
2)カルボキシ基及び/又はジカルボン酸無水物基を有するモノマー、及び非環状モノマー由来の構造単位量の算出
<E/tBA>
tBAのt-ブチルアクリレート基の四級炭素シグナルは、13C-NMRスペクトルの79.6~78.8に検出される。これらのシグナル強度を用い、以下の式からコモノマー量を算出した。
tBA総量(mol%)=I(tBA)×100/〔I(tBA)+I(E)〕
ここで、I(tBA)、I(E)はそれぞれ、以下の式で示される量である。
I(tBA)=I79.6~78.8
I(E)=(I180.0~135.0+I120.0~5.0-I(tBA)×7)/2
【0107】
なお、各モノマーの構造単位量が不等号を含む「<0.1」で示されている場合、共重合体中の構成単位として存在しているが有効数字を考慮して0.1mol%未満の量であることを意味する。
【0108】
3)炭素1,000個当たりの分岐数の算出
共重合体には、主鎖に分岐が単独で存在する孤立型と、複合型(主鎖を介して分岐と分岐が対面した対面タイプ、分岐鎖中に分岐のあるbranched-branchタイプ、及び連鎖タイプ)が存在する。
以下は、エチル分岐の構造の例である。なお、対面タイプの例において、Rはアルキル基を表す。
【0109】
【化8】
【0110】
炭素1,000個当たりの分岐数は、以下の式のI(分岐)項に、下記のI(B1)、I(B2)、I(B4)のいずれかを代入し求める。B1はメチル分岐、B2はエチル分岐、B4はブチル分岐を表す。メチル分岐数はI(B1)を用い、エチル分岐数はI(B2)を用い、ブチル分岐数はI(B4)を用いて求める。
分岐数(個/炭素1,000個当たり)=I(分岐)×1000/I(total)
ここで、I(total)、I(B1)、I(B2)、I(B4)は以下の式で示される量である。
I(total)=I180.0~135.0+I120.0~5.0
I(B1)=(I20.0~19.8+I33.2~33.1+I37.5~37.3)/4
I(B2)=I8.6~7.6 +I11.8~10.5
I(B4)=I14.3~13.7 -I32.2~32.0
ここで、Iは積分強度を、Iの下つき添字の数値は化学シフトの範囲を示す。例えばI180.0~135.0は180.0ppmと135.0ppmの間に検出した13Cシグナルの積分強度を示す。
帰属は、非特許文献Macromolecules 1984, 17, 1756-1761、Macromolecules 1979,12,41を参考にした。
なお、各分岐数が不等号を含む「<0.1」で示されている場合、共重合体中の構成単位として存在しているが有効数字を考慮して0.1mol%未満の量であることを意味する。また、not detectedは検出限界未満を意味する。
【0111】
(6)赤外吸収スペクトル
試料を180℃にて3分間溶融し、圧縮成形して、厚さ50μm程度のフィルムを作製する。このフィルムをフーリエ変換赤外分光分析により分析して、赤外吸収スペクトルを得た。
製品名:FT/IR-6100 日本分光株式会社製
測定手法:透過法
検出器:TGS(Triglycine sulfate)
積算回数:16~512回
分解能:4.0cm-1
測定波長:5000~500cm-1
【0112】
(7)質量増加率の測定
1) 耐薬品性試験サンプル
試料を厚さ1.0mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、表面温度25℃のプレス機に移し替え、4.9MPaの圧力で3分間保持することで冷却し、厚さが約1.0mmの試料からなるプレス板を作製した。
2) 耐薬品試験条件
上記試験片を用い、JIS K 7114―2001に準拠し下記条件で質量変化率(%)を測定した。FuelCとは、イソオクタン/トルエン=1:1(重量比)のJIS燃料油Cである。
・浸漬時間:
トルエン、アンモニア水、酢酸エチル、エタノール 72時間
FuelC 168時間
・浸漬温度:
トルエン、アンモニア水、酢酸エチル、エタノール 23℃
FuelC 60℃
・容器:240mlガラス瓶
・浸漬溶媒量:200ml
質量増加率(%)は、次式を用いた。
・質量増加率(%)=(浸漬後サンプル重量m2-浸漬前サンプル重量m1)/浸漬前サンプル重量m1
【0113】
(8)摩耗量の測定
1)摩耗試験サンプルの作製方法
試料を、寸法:150mm×150mm、厚さ1mmの加熱プレス用モールドに入れ、表面温度180℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで試料を溶融すると共に試料中の残留気体を脱気し、更に4.9MPaで加圧し、3分間保持した。その後、4.9MPaの圧力をかけた状態で、10℃/分の速度で徐々に冷却し、温度が室温付近まで低下したところでモールドから成形板を取り出した。得られた成形板を温度23±2℃、湿度50±5℃の環境下で48時間以上、状態調節した。状態調節後のプレス板を直径約115mmの円形に切り抜き、中心に直径約6.5mmの穴をあけ、摩耗試験サンプルとした。
【0114】
2)摩耗試験条件
上記試験片を用い、JIS K 7204-1999に準拠し下記条件で摩耗損失量(mg)を測定した。
・装置:テーバー摩耗試験機(ロータリーアブレーションテスタ)_(株)東洋精機製作所製
・摩耗輪:CS-17
・回転数:60回転/min
・試験回数:1000回転
・荷重:4.9N
【0115】
<金属錯体の合成>
B-423/Ni錯体の合成
B-423/Ni錯体は、特許2019/156764号に記載された合成例1に従い、下記の2-ビス(2,6-ジメトキシフェニル)ホスファノ-6-(2,6-ジイソプロピルフェニル)フェノール配位子(B-423)を使用した。特許2019/156764号の実施例1に準じて、ビス(1,5-シクロオクタジエン)ニッケル(0)(Ni(COD)2と称する)を用いて、B-423とNi(COD)2とが1対1で反応したニッケル錯体(B-423/Ni)を合成した。
【化9】
【0116】
<(製造例1~製造例4):アイオノマーベース樹脂前駆体の製造>
遷移金属錯体(B-423/Ni錯体)を用いて、エチレン/アクリル酸tBu共重合体を製造した。特開2016-79408号公報に記載された製造例1又は製造例3を参考に共重合体の製造を行い、金属錯体種、金属錯体量、アルミニウム化合物(トリオクチルアルミニウム(TNOA))量、トルエン量、コモノマー種、コモノマー量、エチレン分圧、重合温度、重合時間など、適宜変更した製造条件及び製造結果を表1、得られた共重合体の物性を表2に示す。
【0117】
【表1】
【0118】
【表2】
【0119】
<(樹脂1~樹脂2):アイオノマーベース樹脂の製造>
容量500mlセパラブルフラスコに、得られた製造例1、2の共重合体を40gとパラトルエンスルホン酸一水和物を0.8g、トルエンを185ml投入し、105℃で4時間撹拌した。イオン交換水185mlを投入し撹拌、静置した後、水層を抜き出した。以後、抜き出した水層のpHが5以上となるまで、イオン交換水の投入と抜き出しを繰り返し行った。残った溶液から溶媒を減圧留去し、恒量になるまで乾燥を行なった。
得られた樹脂のIRスペクトルにおいて、tBu基に由来する850cm-1付近のピークの消失及び、エステルのカルボニル基に由来する1730cm-1付近のピークの減少と、カルボン酸(二量体)のカルボニル基に由来する1700cm-1付近のピークの増加を観測した。
これにより、t-Buエステルの分解及びカルボン酸の生成を確認し、アイオノマーベース樹脂1、2を得た。得られた樹脂の物性を表3に示す。
【0120】
【表3】
【0121】
〈実施例1~9:アイオノマーの製造〉
1)Naイオン供給源の作製
容量60mlの小型ミキサーを取り付けた東洋精機(株)製ラボプラストミル:ローラミキサR60型に、エチレン/メタクリル酸(MAA)共重合体(三井・ダウポリケミカル(株)製 銘柄:Nucrel N1050H)を22gと炭酸ナトリウムを18g投入し、180℃、40rpmで3分間混練することでNaイオン供給源を作製した。
【0122】
2)Znイオン供給源の作製
容量60mlの小型ミキサーを取り付けた東洋精機(株)製ラボプラストミル:ローラミキサR60型に、エチレン/メタクリル酸(MAA)共重合体(三井・ダウポリケミカル(株)製 銘柄:Nucrel N1050H)を21.8gと酸化亜鉛を18gとステアリン酸亜鉛を0.2g投入し、180℃、40rpmで3分間混練することでZnイオン供給源を作製した。
【0123】
3):アイオノマーの作製
容量60mlの小型ミキサーを取り付けた東洋精機(株)製ラボプラストミル:ローラミキサR60型に、樹脂1~樹脂6を40g投入し、160℃、40rpmで3分間混練し溶解させた。その後、Naイオン供給源、Znイオン供給源を所望の中和度となるように投入し、250℃、40rpmで5分間混練を行った。
得られた樹脂のIRスペクトルにおいて、カルボン酸(二量体)のカルボニル基に由来する1700cm-1付近のピークが減少し、カルボン酸塩基のカルボニル基に由来する1560cm-1付近のピークが増加していた。カルボン酸(二量体)のカルボニル基に由来する1700cm-1付近のピークの減少量から所望の中和度のアイオノマーが作製できていることを確認した。得られたアイオノマーの物性を表4,5に示す。
【0124】
【表4】
【0125】
【表5】
【0126】
(比較例1):アイオノマーベース樹脂E/AA
アイオノマーベース樹脂である樹脂1を中和度0%アイオノマーとして用いた。物性を表6、7に示す。
【0127】
(比較例2):アイオノマーベース樹脂E/AA
アイオノマーベース樹脂である樹脂2を中和度0%アイオノマーとして用いた。物性を表6、7に示す。
【0128】
(比較例3):E/MAAベース二元アイオノマー
エチレンとメタクリル酸とメタクリル酸Naの共重合体であって、高圧ラジカル法プロセスによって製造されたアイオノマー樹脂(三井・ダウポリケミカル(株)製 銘柄:HIMILAN HIM1605)を参考アイオノマーとして用いた。物性を表6、7に示す。
【0129】
(比較例4):E/MAAベース二元アイオノマー
エチレンとメタクリル酸とメタクリル酸Naの共重合体であって、高圧ラジカル法プロセスによって製造されたアイオノマー樹脂(三井・ダウポリケミカル(株)製 銘柄:HIMILAN HIM1707)を参考アイオノマーとして用いた。これらのアイオノマーは位相角δが46~47°であり、長鎖分岐を過多に含む構造である。物性を表6、7に示す。
【0130】
(比較例5):E/MAAベース二元アイオノマー
エチレンとメタクリル酸とメタクリル酸Zn共重合体であって、高圧ラジカル法プロセスによって製造されたアイオノマー樹脂(三井・ダウポリケミカル(株)製 銘柄:HIMILAN HIM1650)を参考アイオノマーとして用いた。物性を表6、7に示す。
【0131】
【表6】
【0132】
【表7】
【0133】
表5、7の評価基準について説明する。
1)耐薬品性
トルエンに関して、質量増加率が15%未満を〇、15%以上20%未満を△、20%以上を×とした。アンモニア水に関して、質量増加率が3.5%未満を〇、3.5%以上5%未満を△、5%以上を×とした。酢酸エチルに関して、質量増加率が4.5%未満を〇、4.5%以上6%未満を△、6%以上を×とした。エタノールに関して、質量増加率が1%未満を〇、1%以上1.5%未満を△、1.5%以上を×とした。FuelCに関して、質量増加率が25%未満を〇、25%以上40%未満を△、40%以上を×とした。
【0134】
2)耐摩耗性
摩耗損失量が5mg未満を〇、5mg以上10mg以下を△、10mg以上を×とした。
【0135】
3)耐熱性
融点が95℃以上を〇、93℃以上95℃未満を△、93℃未満を×とした。
【0136】
<実施例と比較例の結果の考察>
[本発明のアイオノマーと従来のアイオノマーの比較]
実施例1~9は、特定の遷移金属触媒により製造されたベース樹脂と金属イオン源とからなるアイオノマーであるため、その分子構造は実質的に直鎖状であり、位相角δ(G*=0.1MPa)は50°以上である。一方、比較例1,2はベース樹脂1又は2をそのまま用いており、その分子構造は実質的に直鎖状であり、位相角δ(G*=0.1MPa)は50°以上であるが、金属イオンの中和度は0%である。比較例3~5は市販のアイオノマーであり、高圧ラジカル法により製造されたベース樹脂と金属イオン源とからなるアイオノマーであるため、その分子構造は多くの長鎖分岐を有し、複素弾性率の絶対値G*=0.1MPaにおける位相角δ(位相角δ(G*=0.1MPa))は50°未満である。
実施例6と比較例5、実施例8と比較例3、実施例9と比較例4は、それぞれ、構造単位(B)の含有量と金属種、中和度はともに同程度であり直接比較・評価ができるため、以下に比較を説明する。
【0137】
実施例6、実施例8、実施例9のアイオノマーと比較例5、比較例3、比較例4のアイオノマーは、実施例6、実施例8、実施例9のほうが比較例5、比較例3、比較例4よりもFuelC浸漬の際の質量変化率が低く、摩耗量が格段に少ない上に融点も高い。そのため、実施例6、実施例8、実施例9のアイオノマーは比較例5、比較例3、比較例4のアイオノマーよりも耐薬品性、耐摩耗性、耐熱性に優れる。
このことは、位相角δ(G*=0.1MPa)が50°以上である本発明の直鎖状アイオノマーでは、従来の多分岐状アイオノマーよりも耐薬品性、耐摩耗性、及び耐熱性に優れることを示している。
【0138】
[本発明におけるアイオノマーの金属イオン種、中和度について]
比較例1は実施例1~6のベース樹脂、比較例2は実施例7~9のベース樹脂であり、金属イオンによる中和度0%の場合に相当する。中和度が0%ではない実施例1~9は、中和度が0%の比較例1、2よりも摩耗量が格段に少ない。このことは、実質的に直鎖状の構造を有する本願のアイオノマーならば、金属種に関わらず優れた耐薬品性、耐摩耗性、および耐熱性を有することを示している。
【0139】
[本発明におけるアイオノマーの組成、中和度、金属イオン種について]
実施例1~実施例9は、それぞれベース樹脂の組成、中和度、金属イオン種が異なるアイオノマーであるが、どれも比較例の従来アイオノマーと比べ、融点が高く、質量変化率、摩耗量は格段に少ない。
このことは、実質的に直鎖状の構造を有する本発明のアイオノマーならばベース樹脂の組成、中和度、金属イオン種によらず、相対的に耐薬品性、耐摩耗性、及び耐熱性に優れることを示している。
【0140】
本願のアイオノマーが従来のアイオノマーよりも耐摩耗性、耐薬品性が優れる理由は、おそらく分子構造の違いが大きく影響しているものと考えられる。本願のアイオノマーは図2に示すように実質的に直鎖状の分子構造を有しており、従来のアイオノマーは図1に示すように多くの長鎖分岐を有する多分岐状の分子構造を有している。直鎖状の分子構造に比べ多分岐状の分子構造の場合、分子中に多数の分子鎖末端を有することになる。摩耗試験は凹凸のある摩耗輪により表面を変形させ破壊する試験であるが、変形を加えられた際に破壊のきっかけとなるのが分子鎖末端であるため、この分子鎖末端の数が少ない直鎖状構造の方が分子鎖末端を多く有する多分岐状構造よりも耐摩耗性に優れると考えられる。
耐薬品性は溶媒の浸透しやすさによるので、多分岐状の構造により分子末端が多いと、分子が動きやすくなり、溶媒が浸透しやすくなる。このため、分子鎖末端の数が少ない直鎖状構造の方が分子末端を多く有する多分岐構造よりも耐薬品性、耐摩耗性が優れると考えられる。
図1
図2