(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023146004
(43)【公開日】2023-10-12
(54)【発明の名称】熱損失係数推定システム、熱損失係数推定方法、及びプログラム
(51)【国際特許分類】
G01N 25/18 20060101AFI20231004BHJP
E04B 1/76 20060101ALI20231004BHJP
【FI】
G01N25/18 B
E04B1/76 ESW
【審査請求】有
【請求項の数】5
【出願形態】OL
(21)【出願番号】P 2022052964
(22)【出願日】2022-03-29
(11)【特許番号】
(45)【特許公報発行日】2023-04-25
(71)【出願人】
【識別番号】300049176
【氏名又は名称】株式会社インテグラル
(74)【代理人】
【識別番号】100132300
【弁理士】
【氏名又は名称】加藤 浩一
(72)【発明者】
【氏名】吉原 潤
(72)【発明者】
【氏名】柳澤 泰男
【テーマコード(参考)】
2E001
2G040
【Fターム(参考)】
2E001DD01
2E001DD02
2E001FA24
2G040AA01
2G040AB08
2G040BA16
2G040CA02
2G040CB03
2G040CB05
2G040HA01
2G040HA05
2G040HA16
2G040HA18
2G040ZA05
(57)【要約】
【課題】建物の実態を反映したQ値の推定を行うことが可能な熱損失係数推定システムを提供することにある。
【解決手段】実測外気温データ、気象データ、及び建物の形状等に関する情報を含むその他のデータを用いて室温の予測を行うシミュレーションを、気密性能を表す指標の値(C値)を変化させながら実行して、得られた予測室温データと実測室温データとの一致度が最も高いC値を選択し、こうして選択されたC値に基づいてQ値を推定する。
【選択図】
図4
【特許請求の範囲】
【請求項1】
建物の部屋の温度を複数の測定タイミングで測定して得られた実測室温データを受信する実測室温データ受信手段と、
部屋の気密性能を表す指標値を含むデータを用いて、前記建物の部屋の室温を予測するシミュレーションを実行し、前記複数の測定タイミングに対応する予測室温データを取得するシミュレーション実行手段と、
前記指標値を変化させて、前記シミュレーションを繰り返し実行するよう制御するシミュレーション実行制御手段と、
前記繰り返し実行される前記シミュレーションの結果得られる予測室温データのそれぞれを前記実測室温データと比較し、最も一致度が高い予測室温データを選択する予測室温データ選択手段と、
前記選択された予測室温データが得られた際のシミュレーションに用いられた前記指標値である最適値に基づいて、前記建物の熱損失係数を推定する熱損失係数推定手段とを有する熱損失係数推定システム。
【請求項2】
前記熱損失係数推定手段は、前記最適値と所定のデータに基づいて算出した換気量を用いて、前記建物の熱損失係数を推定することを特徴とする、請求項1に記載の熱損失係数推定システム。
【請求項3】
前記シミュレーション実行制御手段は、前記指標値と、前記所定のデータとは異なるデータに基づいて算出した換気量を用いて前記シミュレーションを実行するよう制御することを特徴とする、請求項2に記載の熱損失係数推定システム。
【請求項4】
建物の部屋の温度を複数の測定タイミングで測定して得られた実測室温データを受信する実測室温データ受信ステップと、
部屋の気密性能を表す指標値を含むデータを用いて、前記建物の部屋の室温を予測するシミュレーションを実行し、前記複数の測定タイミングに対応する予測室温データを取得するシミュレーション実行ステップと、
前記指標値を変化させて、前記シミュレーションを繰り返し実行するよう制御するシミュレーション実行制御ステップと、
前記繰り返し実行される前記シミュレーションの結果得られる予測室温データのそれぞれを前記実測室温データと比較し、最も一致度が高い予測室温データを選択する予測室温データ選択ステップと、
前記選択された予測室温データが得られた際のシミュレーションに用いられた前記指標値である最適値に基づいて、前記建物の熱損失係数を推定する熱損失係数推定ステップとを有する熱損失係数推定方法。
【請求項5】
コンピュータを、
建物の部屋の温度を複数の測定タイミングで測定して得られた実測室温データを受信する実測室温データ受信手段、
部屋の気密性能を表す指標値を含むデータを用いて、前記建物の部屋の室温を予測するシミュレーションを実行し、前記複数の測定タイミングに対応する予測室温データを取得するシミュレーション実行手段、
前記指標値を変化させて、前記シミュレーションを繰り返し実行するよう制御するシミュレーション実行制御手段、
前記繰り返し実行される前記シミュレーションの結果得られる予測室温データのそれぞれを前記実測室温データと比較し、最も一致度が高い予測室温データを選択する予測室温データ選択手段、及び、
前記選択された予測室温データが得られた際のシミュレーションに用いられた前記指標値である最適値に基づいて、前記建物の熱損失係数を推定する熱損失係数推定手段として動作させるプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、建物の熱損失係数を効果的に推定する熱損失係数推定システムに関する。
【背景技術】
【0002】
近年においては、既存住宅のストックが増加する傾向にあり、その流通や断熱改善後の評価のために、熱損失係数(Q値)等の指標を用いた温熱環境の評価が、より重要になってきている。
【0003】
ここで、Q値は、建物の温熱環境を表す数値であって、建物の断熱性能(U値)と気密性能(換気回数)を考慮した指標である。すなわち、断熱性能による熱の逃げやすさと、気密性能による熱の逃げやすさを合計したものであり、建物の断熱性能と気密性能を総合的に表す指標である。
【0004】
より具体的には、Q値は、以下の数式(1)で表される。
Q値=(各部位の熱損失量+換気による熱損失量)/延床面積 ・・・(1)
【0005】
そしてQ値を求める一般的な方法は、建物の仕様に基づいて算出を行うことである。また、特許文献1のように、熱移動モデルを用いてQ値を推定するものもある。
【0006】
さらに、特許文献2には、ヒーターで室温を均一にすることによってQ値を推定する方法が提案されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2013-221772号公報
【特許文献2】特開2010-79580号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上述の一般的な方法によってQ値を求めた場合、建物の仕様に基づいて算出を行った結果が、必ずしもその住宅の実態を反映していないことが多い。例えば、断熱性能に関しては、通常、設計図書を元に入力を行うが、実際は、経年劣化や施工不良など、設計図書とは異なる仕様となっており、断熱性能が設計図書における仕様より低下している場合がある。
【0009】
また、気密性能に関しては、通常、固定的な換気回数(例えば、住宅の居室では、0.5回/h以上)を設定するが、実際は、住宅を建築する際の施工の精度により左右される隙間等の面積に依存し、固定的な一律の換気回数にはなっていない。こうした隙間等を把握するためには、一般的に、大掛かりな設備を用いた計測を行う必要がある。
【0010】
また、上述した特許文献1のようなQ値の推定方法で利用する熱移動モデルは、部屋ごとに躯体と室空気を一体として簡易的に扱い、部屋は、それらを合計した熱容量と均一の温度を持つ1つの塊として推定を行うため、温度と熱容量の関係が概算的であり、推定されたQ値が、現在の建物の実情に合っていない場合がある。
【0011】
また、特許文献2のようなQ値の推定方法では、熱エネルギーを放出するヒーター、ヒーターの熱を撹拌する撹拌部、ヒーターの熱を制御する熱制御部、撹拌部の電力を測定して記憶する電力データ記憶部を導入する必要があり、大掛かりな設備・作業が必要となる。
【0012】
したがって、本発明の目的は、建物の実態を反映したQ値の推定を行うことが可能な熱損失係数推定システムを提供することにある。
【0013】
また、本発明の目的は、温度測定や現地調査といった、簡単な作業により、建物の実態を反映したQ値の推定を行うことが可能な熱損失係数推定システムを提供することにある。
【課題を解決するための手段】
【0014】
本発明は、以下のような熱損失係数推定システム、熱損失係数推定方法、及びプログラムを提供する。
【0015】
本発明の第1の実施態様に係る発明は、下記の構成を有する。
建物の部屋の温度を複数の測定タイミング(例えば、1時間ごとのタイミング)で測定して得られた実測室温データ(例えば、実測室温データ51)を受信する実測室温データ受信手段(例えば、実測室温データ受信部151)と、
部屋の気密性能を表す指標値(例えば、C値52a)を含むデータ(例えば、シミュレーション用データ52)を用いて、前記建物の部屋の室温を予測するシミュレーションを実行し、前記複数の測定タイミングに対応する予測室温データ(例えば、予測室温データ55)を取得するシミュレーション実行手段(例えば、シミュレーション実行部154)と、
前記指標値を変化させて、前記シミュレーションを繰り返し実行するよう制御するシミュレーション実行制御手段(例えば、シミュレーション実行制御部155)と、
前記繰り返し実行される前記シミュレーションの結果得られる予測室温データのそれぞれを前記実測室温データと比較し、最も一致度が高い予測室温データを選択する予測室温データ選択手段(予測室温データ選択部156)と、
前記選択された予測室温データが得られた際のシミュレーションに用いられた前記指標値である最適値(例えば、最適C値56)に基づいて、前記建物の熱損失係数を推定する熱損失係数推定手段(例えば、熱損失係数推定部158)とを有する熱損失係数推定システム(熱損失係数推定システム1)。
【0016】
このような本発明の構成によって、温度測定や現地調査といった、簡単な作業により、建物の実態を反映したQ値の推定を行うことができ、結果として、精度の高いQ値を得ることができる。
【0017】
本発明の第2の実施態様に係る発明は、第1の実施態様において下記の構成を有する。
前記熱損失係数推定手段は、前記最適値と所定のデータ(例えば、換気量算出用データ(標準条件)53b)に基づいて算出した換気量を用いて、前記建物の熱損失係数を推定するように構成される。
【0018】
このような本発明の構成によって、Q値の推定に、標準的な条件に応じた換気量が用いられるため、実測室温データを取得した当時の内外温度差や風速の影響を排除し、建物に固有のQ値を推定することができる。
【0019】
本発明の第3の実施態様に係る発明は、第2の実施態様において下記の構成を有する。
前記シミュレーション実行制御手段は、前記指標値と、前記所定のデータとは異なるデータ(例えば、換気量算出用データ(実測条件)53a)に基づいて算出した換気量を用いて前記シミュレーションを実行するよう制御するように構成される。
【0020】
このような本発明の構成によって、シミュレーションによる室温の予測では、実測値に基づいた条件で換気量が用いられるため、より実情に即した室温の予測が可能となる。
【0021】
本発明の第4の実施態様に係る発明は、下記の構成を有する。
建物の部屋の温度を複数の測定タイミングで測定して得られた実測室温データを受信する実測室温データ受信ステップと、
部屋の気密性能を表す指標値を含むデータを用いて、前記建物の部屋の室温を予測するシミュレーションを実行し、前記複数の測定タイミングに対応する予測室温データを取得するシミュレーション実行ステップと、
前記指標値を変化させて、前記シミュレーションを繰り返し実行するよう制御するシミュレーション実行制御ステップと、
前記繰り返し実行される前記シミュレーションの結果得られる予測室温データのそれぞれを前記実測室温データと比較し、最も一致度が高い予測室温データを選択する予測室温データ選択ステップと、
前記選択された予測室温データが得られた際のシミュレーションに用いられた前記指標値である最適値に基づいて、前記建物の熱損失係数を推定する熱損失係数推定ステップとを有する熱損失係数推定方法。
【0022】
このような本発明の構成によって、温度測定や現地調査といった、簡単な作業により、建物の実態を反映したQ値の推定を行うことができ、結果として、精度の高いQ値を得ることができる。
【0023】
本発明の第5の実施態様に係る発明は、下記の構成を有する。
コンピュータを、
建物の部屋の温度を複数の測定タイミングで測定して得られた実測室温データを受信する実測室温データ受信手段、
部屋の気密性能を表す指標値を含むデータを用いて、前記建物の部屋の室温を予測するシミュレーションを実行し、前記複数の測定タイミングに対応する予測室温データを取得するシミュレーション実行手段、
前記指標値を変化させて、前記シミュレーションを繰り返し実行するよう制御するシミュレーション実行制御手段、
前記繰り返し実行される前記シミュレーションの結果得られる予測室温データのそれぞれを前記実測室温データと比較し、最も一致度が高い予測室温データを選択する予測室温データ選択手段、及び、
前記選択された予測室温データが得られた際のシミュレーションに用いられた前記指標値である最適値に基づいて、前記建物の熱損失係数を推定する熱損失係数推定手段として動作させるプログラム。
【0024】
このような本発明の構成によって、温度測定や現地調査といった、簡単な作業により、建物の実態を反映したQ値の推定を行うことができ、結果として、精度の高いQ値を得ることができる。
【0025】
本発明の第6の実施態様に係る発明は、第1の実施態様において下記の構成を有する。
前記熱損失係数推定手段は、前記最適値と、前記実測室温データを用いることなく求められたデータとに基づいて算出した換気量を用いて、前記建物の熱損失係数を推定するように構成される。
【0026】
このような本発明の構成によって、Q値の推定に、標準的な条件に応じた換気量が用いられるため、実測室温データを取得した当時の内外温度差や風速の影響を排除し、建物に固有のQ値を推定することができる。
【0027】
本発明の第7の実施態様に係る発明は、第1の実施態様において下記の構成を有する。
前記シミュレーション実行制御手段は、前記指標値と、前記実測室温データを用いて求められたパラメータとに基づいて算出した換気量を用いて前記シミュレーションを実行するよう制御するように構成される。
【0028】
このような本発明の構成によって、シミュレーションによる室温の予測では、実測値に基づいた条件で換気量が用いられるため、より実情に即した室温の予測が可能となる。
【発明の効果】
【0029】
本発明に係る熱損失係数推定システムによって、建物の実態を反映したQ値の推定を行うことができる。また、この結果、精度の高いQ値を得ることができる。
【0030】
また、本発明に係る熱損失係数推定システムによって、温度測定や現地調査といった、簡単な作業により、建物の実態を反映したQ値の推定を行うことができる。
【図面の簡単な説明】
【0031】
【
図1】本発明に係る熱損失係数推定システムの概要を説明するための概略図である。
【
図2】本発明に係る熱損失係数推定システムのユーザ端末を構成するコンピュータのハードウエア構成の例を示す略線図である。
【
図3】本発明に係る熱損失係数推定システムのユーザ端末に関する機能ブロック図である。
【
図4】本発明に係る熱損失係数推定システムにおける処理とデータの関係を示す概略図である。
【
図5】本発明に係る熱損失係数推定システムにおいて利用するシミュレーションやQ値の推定で用いられる方程式の一例を示す図である。
【
図6】本発明に係る熱損失係数推定システムにおける処理の流れを説明するためのフローチャートである。
【
図7】本発明に係る熱損失係数推定システムにおいて、シミュレーションによって得られた部屋の予測室温データと、部屋の温度を測定して得られた実測室温データを時系列に示すグラフである。
【発明を実施するための形態】
【0032】
最初に、本発明の一実施形態に係る熱損失係数推定システムの概要を、
図1を参照して説明する。本発明の一実施形態に係る熱損失係数推定システム1は、ここでは、ユーザ端末10を用いたスタンドアロンシステムとして示されているが、例えば、同じサイトに設置された複数のコンピュータをネットワークで接続して構成したり、異なるサイトに分散配置された複数のコンピュータをインターネット経由で接続して構成するなど、様々な構成をとることができる。
【0033】
図1に示すユーザ端末10は、建物の所定の部屋を複数の測定タイミングで測定して得られた実測室温データ51、建物の部屋の温度をシミュレーションを実行して予測する場合に用いられるシミュレーション用データ52、及び、シミュレーションに用いる換気量や、Q値を推定するための換気量を算出するための換気量算出用データ53を入力し、これらのデータを用いて推定されたQ値54を出力する。
【0034】
図2は、
図1に示すユーザ端末10のハードウエア構成を示す図である。ユーザ端末10は、CPU(Central Processing Unit)101、メモリ102、音声出力装置103、ディスプレイコントローラ104、ディスプレイ105、入力機器インタフェース106、キーボード107、マウス108、外部記憶装置109、外部記録媒体インタフェース110、及びこれらの構成要素を互いに接続するバス111を含んでいる。また、ユーザ端末10は、他のコンピュータとデータの送受信を行う必要がある場合は、例えばインターネットのようなネットワーク140を経由して他のコンピュータと接続するためのネットワークインタフェース120を含むように構成される。
【0035】
CPU101は、ユーザ端末10の各構成要素の動作を制御し、OSの制御下で、所定の処理を実行する。本実施形態では、例えば、シミュレーションの実行やQ値の推定等の処理を実行する。
【0036】
メモリ102は、不揮発性メモリであって、マスクROM(Read Only Memory)やフラッシュメモリを含むROM、及び揮発性メモリであるRAM(Random Access Memory)から構成される。マスクROMには、ユーザ端末10の起動時に実行されるプログラム等が格納される。フラッシュメモリやRAMには、CPU101で実行されるプログラムや、それらのプログラムが実行中に作成・使用するデータが一時的に格納される。
【0037】
音声出力装置103は、例えば、スピーカ等の機器であり、OSの下で動作するアプリケーションから音声データを受け取り、音声を出力する。
【0038】
ディスプレイコントローラ104は、CPU101が発行する描画命令を実際に処理するための専用コントローラである。ディスプレイコントローラ104で処理された描画データは、例えば、一旦グラフィックメモリに書き込まれ、その後、ディスプレイ105に出力される。ディスプレイ105は、例えば、LCD(Liquid Crystal Display)等で構成される表示装置である。本実施形態では、この表示装置に、例えば、推定されたQ値等が表示されうる。
【0039】
入力機器インタフェース106は、キーボード107やマウス108といった入力装置から入力された信号を受信して、その信号パターンに応じて所定の指令をCPU101に送信する。なお、ディスプレイ105がタッチパネルで構成される場合、入力機器インタフェース106は、ユーザによるディスプレイのタッチを検知し、当該タッチの検知信号をCPU101に送信する。本実施形態では、この入力装置をユーザが操作することにより、例えば、実測室温データ51、シミュレーション用データ52、及び換気量算出用データ53等を入力することができ、これらのデータは、後述する外部記憶装置109などに記憶される。
【0040】
外部記憶装置109は、例えば、ハードディスクドライブ(HDD)のような記憶装置であり、この装置内には上述した本発明に係るプログラムやデータが記録され、実行時に、必要に応じてそこからメモリ102のフラッシュメモリやRAMにロードされる。
【0041】
外部記録媒体インタフェース110は、可搬型の外部記録媒体130にアクセスして、そこに記録されているデータを読み取り、読み取ったデータを外部記憶装置109やメモリ102に転送する。外部記録媒体インタフェース110には、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの記録面にアクセスする駆動装置や、USBメモリやUSBケーブルで接続された機器に記憶されたデータにアクセスするUSBインタフェースが含まれる。本実施形態では、CDやUSBメモリのような可搬型の外部記録媒体130を介して、例えば、実測室温データ51、シミュレーション用データ52、及び換気量算出用データ53等を入力することもでき、これらのデータは、外部記憶装置109などに記憶される。
【0042】
ネットワークインタフェース120は、ネットワーク140に接続し、ネットワーク140を介したデータ送受信を制御する。
【0043】
外部記録媒体130には、本発明に係る各機能を実現するためのプログラムを記録することが可能である。外部記録媒体130に記録されているデータは、外部記録媒体インタフェース110を介して読み取られた後、外部記憶装置109に格納され、プログラムであれば、実行時にメモリ102のRAMにロードされる。
【0044】
また、本発明に係る各機能を実現するためのプログラムは、上述のネットワークインタフェース120、及びインターネットのようなネットワークを介して他のコンピュータから提供されてもよい。
【0045】
図3は、ユーザ端末10によって実行される機能を表す機能ブロック図である。ユーザ端末10は、実測室温データ受信部151、シミュレーション用データ受信部152、換気量算出用データ受信部153、シミュレーション実行部154、シミュレーション実行制御部155、予測室温データ選択部156、換気量算出部157、熱損失係数推定部158、表示制御部159、及び入力制御部160を含む。また、ユーザ端末10が、
図2に示したネットワークインタフェース120を介してネットワーク140に接続する場合は、ネットワーク140への接続とネットワーク140を介したデータ送受信を制御するネットワークインタフェース部(不図示)を含む。
【0046】
また、ユーザ端末10は、記憶装置170(
図2の外部記憶装置109に対応)に、実測室温データ51、シミュレーション用データ52、換気量算出用データ53、及び予測室温データ55を記憶する。
【0047】
ここで、実測室温データ受信部151は、入力制御部160の制御のもと、キーボードやマウスを用いてユーザから入力された実測室温データを受信し、記憶装置170に、実測室温データ51として記憶する。また、実測室温データを、ネットワークインタフェース部を介してネットワーク140から受信するようにしてもよいし、USBメモリのような外部記録媒体130から受信するようにしてもよい。実測室温データ51は、診断対象の建物の部屋について、複数の測定タイミングで室温を測定した結果得られたデータ群である。
【0048】
シミュレーション用データ受信部152は、入力制御部160の制御のもと、キーボード107やマウス108を用いてユーザから入力されたシミュレーション用データを受信し、記憶装置170に、シミュレーション用データ52として記憶する。また、シミュレーション用データを、ネットワークインタフェース部を介してネットワーク140から受信するようにしてもよいし、USBメモリのような外部記録媒体130から受信するようにしてもよい。また、シミュレーション用データのうち、気象庁から取得した気象データに関しては、必要に応じて、シミュレーション用データ受信部152に含まれる気象データ変換部によって、シミュレーションに利用可能となるような変換処理が行われる。
【0049】
換気量算出用データ受信部153は、入力制御部160の制御のもと、キーボード107やマウス108を用いてユーザから入力された換気量算出用データを受信し、記憶装置170に、換気量算出用データ53として記憶する。また、換気量算出用データを、ネットワークインタフェース部を介してネットワーク140から受信するようにしてもよいし、USBメモリのような外部記録媒体130から受信するようにしてもよい。
【0050】
シミュレーション実行部154は、シミュレーション実行制御部155によって指定されたシミュレーション用データ52に基づいて、建物の室温を予測し、その結果を、記憶装置170に、予測室温データ55として記憶する。予測室温データ55は、診断対象の建物の部屋について、実測室温データ51の測定タイミングにそれぞれ対応したタイミングで室温を予測した結果得られたデータ群である。
【0051】
シミュレーション実行制御部155は、シミュレーション用データ52として記憶されているデータから、複数のC値52a(気密性能を表す指標値であって、延床面積当たりの相当開口面積[cm2/m2])を取り出し、それぞれのC値52aごとにシミュレーションを繰り返し実行するよう制御する。このシミュレーションの結果、記憶装置170には、それぞれのC値52aに対応する予測室温データ55が記憶される。
【0052】
予測室温データ選択部156は、それぞれのC値52aに関するシミュレーションが実行された後、記憶装置170に記憶されている、それぞれのC値52aに対応する予測室温データ55と実測室温データ51を各タイミングで比較し、実測室温データ51に最も近い(一致度が高い)予測室温データ55に対応する最適C値56を決定する。
【0053】
換気量算出部157は、シミュレーション実行制御部155が、シミュレーション実行部154にシミュレーション用データ52を渡して実行を指示する場合に、当該実行時に設定されたC値52aに基づいて、対応する換気量を算出する。このときの換気量の算出には、実測した環境条件に基づいた実測条件が用いられる。また、換気量算出部157は、予測室温データ選択部156で最適C値56が決定された場合に、その決定された最適C値56に基づいて、対応する換気量を算出する。このときの換気量の算出には、標準的・平均的な環境条件に基づいた標準条件が用いられる。
【0054】
熱損失係数推定部158は、予測室温データ選択部156で決定された最適C値56に基づいて(すなわち、換気量算出部157において、標準条件を用いて算出された換気量に基づいて)、熱損失係数(Q値)を推定し出力する(例えば、ディスプレイ105に表示する)。
【0055】
表示制御部159は、実測室温データ51、シミュレーション用データ52、換気量算出用データ53を入力するための入力画面をディスプレイ105に表示したり、推定されたQ値をディスプレイ105に表示したりするよう制御する。
【0056】
入力制御部160は、ユーザ端末10のディスプレイ105に表示された画面においてキーボード107やマウス108の操作に応じて入力を行うよう制御する。
【0057】
次に、
図4、及び
図5(A)を参照して、本発明に係る熱損失係数推定システム1における処理を、データの入出力の関係とともに説明する。
【0058】
[建物内外における気温の測定]
本実施形態では、建物の部屋の室温を測定して得られた実測室温データ51を受信し、さらに、その建物の外部の外気温を測定して得られた実測外気温データ52bを受信する。
【0059】
本実施形態では、上述の実測室温データ51と、シミュレーションの結果得られる予測室温データ55との比較を行って最適な気密性能(最適C値56)を決定する際に、その決定が高い精度で行われるように、下記の測定条件(1)、(2)を設定する。
【0060】
測定条件(1)
以下のように、気密性能の影響が大きく出る測定条件を設定する。
・気密性能、すなわち換気量の違いによる室温への影響は建物内外の温度差に依存して大きくなり、時間の経過とともに室温が低下して温度差が小さくなっていくため、建物内外の温度差が大きくなるような状態を設定して気密性能の影響による温度の変化が観測しやすいようにする。
・具体的には、例えば、冬期において、夜に十分な暖房を行って室温を一定に保った後に暖房を停止し、明け方までの室温が低下する過程を測定する。このとき、測定のタイミングは、例えば、1時間ごとや、10分ごとなど、様々なインターバルを設定することができる。
・暖房には壁掛けエアコン、または、ファンヒーターを用い、室内空気を加熱する。
【0061】
測定条件(2)
以下のように、室温の変化の要因として、なるべく気密性能以外のものを除外する。
・日射による室温の変動が大きいため、日射の影響を除外するように、日没後の夜間を測定の対象とする。
・暖房室と隣室や廊下等の間での熱の移動を制限するため、測定の際には、暖房室のドアを閉めておく。
【0062】
なお、本実施形態では、シミュレーションにおいては、室内空気の温度が均一であるというモデルで計算を行い、室内の温度ムラは考慮しない。そのために、例えば、部屋の平均室温を測定できるように、部屋の高さ中央付近で室温を測定するか、または、複数の箇所で室温を測定し、それらの室温の平均温度をとるようにする。
【0063】
[実測室温データを用いた気密性能の推定]
本実施形態では、
図4に示すシミュレーション用データ52(すなわち、建物の気密性能を表す指標値であるC値52a、実測外気温データ52b、気象データ52c、及び実測を行った建物の各種条件を含むその他パラメータ52d)を設定して室温のシミュレーションを行い、そのシミュレーションの結果得られた予測室温データ55と、実測室温データ51との比較を行う。このとき、C値52aを可変のパラメータとし、例えば、一定の変化幅で数値を変えながら、繰返しシミュレーションを行う。
【0064】
それぞれのシミュレーションでは、対応するC値52aに基づいて算出された換気量が用いられる。複数のC値52aを用いて上記のシミュレーションを行った結果、予測室温データ55が複数得られるが、これらの予測室温データ55と実測室温データ51とをそれぞれ各タイミングで比較し、最もよく整合する(一致度が高い)ときのC値を最適C値56として求める。
【0065】
[シミュレーションの仕様とシミュレーション用データ]
本実施形態では、室温を予測するシミュレーションとして、非定常動的熱負荷計算プログラムを用いる。このプログラムは、建物を多数室で扱い、各室や各部位の熱容量を考慮し、各種要因による熱の出入りを考慮して各室の室温を計算できるものである。このシミュレーションの計算モデルは、建築環境工学の一般的なものである。なお、この例では、上記のように、既知の非定常動的熱負荷計算プログラムを用いてシミュレーションを行うこととしたが、それ以外の計算モデルやプログラムを用いてシミュレーションを行ってもよい。
【0066】
本実施形態におけるシミュレーションの計算モデルでは、室温の熱収支の関係は概略、
図5(A)に示す数式(2)で表される。すなわち、熱容量と時間デルタtの間の室温の変化を乗じた値は、室内表面からの対流、換気、内部発熱、及び暖冷房の合計と等しい。なお、「熱容量」は、室内空気、及び家財の熱容量であり、ここでは、家財について標準的な値を「大」、「中」、「小」の3段階で設定し、そのなかから選択するものとする。「室内表面からの対流」は、室内表面のそれぞれについて、室内表面からの対流により流入した熱を計算し合計したものである。
【0067】
「換気」は、空気流入経路のそれぞれにいついて、当該空気流入経路から流入した熱を計算し合計したものを意味するが、本実施形態では、シミュレーションで設定されたC値52aにより求められた換気量を使用して求めた値とする。なお、ここでは、機械換気による24時間換気は使用しないものとし、隙間による自然換気を想定している。また、建物全体で同等の気密性能であると仮定する。
【0068】
「内部発熱」は、人体、照明、家電といった、室内発熱の対流成分であり、これについては、標準的なスケジュール(例えば、人の所在、照明・家電の使用についてのスケジュール)にしたがって動的に設定する。また、ヒアリングが可能であれば、そのヒアリング結果に基づいて、スケジュールに従った発熱を設定することもできる。「暖冷房」は、例えば、エアコンやファンヒーターといった暖房による顕熱負荷である。
【0069】
また、本実施形態におけるシミュレーションの計算モデルは、室内表面での熱収支を表すモデルを含んでおり、このモデルでは、「室内表面から壁体内部への熱流」は、「対流による熱流」と、「放射による熱流」を合計したものである。なお、「対流による熱流」は、室内表面温度と室温との差に、室内表面の対流熱伝達率を乗じたものである。
【0070】
さらに、本実施形態におけるシミュレーションの計算モデルは、室外表面での熱収支を表すモデルを含んでおり、このモデルでは、「室外表面から壁体内部への熱流」は、「対流・放射による熱流」と「日射による熱流」を加算し、「夜間放射による熱流」を減じたものである。なお、「対流・放射による熱流」は、外気温に基づいて求められるが、本実施形態では、実測外気温データ52bを用いる。また、「日射による熱流」は、「室外表面への入射日射量」に基づいて求められ、この「室外表面への入射日射量」は、気象データ52c等から求めた「直達日射」、「天空日射」、「反射日射」の各日射量から求められる。
【0071】
上述した「室外表面から壁体内部への熱流」は、壁体の伝熱によって、室温に影響を与えるが、このような影響は、壁体の熱伝導率や壁体の厚さを用いて熱伝導方程式により把握することができる。
【0072】
また、本実施形態におけるシミュレーションの計算モデルは、窓の熱収支を表すモデルを含んでおり、このモデルでは、「窓の取得熱」は、「熱貫流量」、「吸収日射熱取得」、及び「透過日射による熱取得」を加算したものである。なお、「熱貫流量」は、窓外部の環境温度と室温の差に基づいて求められるが、窓外部の環境温度として、実測外気温データ52bを用いることができる。また、「吸収日射熱取得」、及び「透過日射による熱取得」は、室外表面への入射日射量、及び窓の遮蔽物等に基づいて求められる。
【0073】
本実施形態では、シミュレーションを行う際、上記のように、C値52aや実測外気温データ52bを用いているが、これ以外のシミュレーション用データ52を用いてシミュレーションを行う。
【0074】
例えば、診断対象の建物の位置に関する気象データ52cを用いる。気象データ52cは、例えば、日射量、風向風速といったデータである。ただし、本実施形態では、これらのデータをシミュレーションで使用するために、必要に応じて、所定の気象データ変換処理を実行する。
【0075】
シミュレーション用データ52のその他パラメータ52dは、例えば、診断対象の建物の間取り、形状、寸法、方位、敷地の周辺環境(隣棟等の日射障害物など)である。これらの情報は、例えば、設計図書に基づいて熱損失係数推定システム1に入力する。また、ヒアリング等を行って、実情、または、より実情に近い情報を熱損失係数推定システム1に入力することができる。
【0076】
その他パラメータ52dとして、さらに、診断対象の建物の部位の仕様(材料の厚さや熱的物性値(熱伝導率、容積比率、日射反射率、放射率)等)や開口の仕様を、設計図書に基づいて熱損失係数推定システム1に入力する。また、現地調査等を行って、より精度の高い情報を熱損失係数推定システム1に入力することもできる。
【0077】
[気象データ変換処理]
上記のように、
図4に示すシミュレーション用データ52のうち、気象データ52cは、シミュレーションで使用するために、所定の気象データ変換処理が実行される。
【0078】
本実施形態における、非定常動的熱負荷計算プログラムを用いたシミュレーションでは、気象データとして、外気温、夜間放射量、直達日射量、天空日射量、及び風向・風速が必要になる。ここで、外気温は実測した現地の外気温(
図4に示す実測外気温データ52b)を用いる。
【0079】
夜間放射量、直達日射量、天空日射量については、気象庁が公開している建物の近隣の気象観測点における当日の計測データに基づいて求める。例えば、夜間放射量は、外気温(実測外気温データ52b)、及び気象データ52cの日照時間、相対湿度、及び降水量から推定する。
【0080】
また、直達日射量と天空日射量は、外気温(実測外気温データ52b)、及び気象データ52cの日照時間、相対湿度、及び降水量から推定された全天日射量に対して直散分離を行うことによって算出する。
【0081】
シミュレーション用データ52のうち、実測外気温データ52b、及び気象データ52cから上記のように変換されたデータは、時間の経過に伴って変化する時系列データである。これらの時系列データをパラメータとして入力し実行されるシミュレーションの結果(予測室温データ55)も、時間の経過に伴って変化することになる。
【0082】
[換気量の算出]
本実施形態では、気密性能を表す指標(C値)を換気量、または換気回数に変換する場合に、2通りの方法を用いる。
【0083】
第1の方法は、
図4に示すC値52aから換気量を算出する場合に、換気量算出用データ(実測条件)53aを用いて行う場合である。
【0084】
既往の研究では、C値に応じた自然換気による換気量を簡易的に推定する手法があり、第1の方法では、この手法に基づいて、以下の数式(3)で示されるように、換気量を、建物の内外温度差に比例する成分と外部風速の二乗に比例する成分の合計と、C値とを乗算して求める。
換気量[m3/h]=C値×(係数1×内外温度差+係数2×風圧係数差×外部風速2)
・・・(3)
【0085】
ここで、換気量算出用データ(実測条件)53aは、「係数1×内外温度差+係数2×風圧係数差×外部風速
2」の部分である。また、内外温度差は、実測室温データ51と実測外気温データ52bを参照し、その温度差として求められ、風圧係数差は、上記の通り、建物周辺の環境(例えば、市街地か、ひらけているか等)と風速から求めることができ、外部風速は、例えば、気象データ52cの風速から求めることができる(
図4の点線矢印参照)。なお、気象データ52cの風向・風速は、気象庁が公開している建設地近隣の気象観測点における当日の計測データである。
【0086】
このように、1回のシミュレーションでは、設定された1つのC値52aが用いられるが、そのC値52aに基づいて求められ、当該シミュレーションに入力される換気量は、内外温度差等に応じて、時々刻々と変化することになる。
【0087】
第2の方法は、
図4に示す最適C値56から換気量を算出する場合に、換気量算出用データ(標準条件)53bを用いて行う場合である。
【0088】
最適C値56から換気量を算出する場合に、上述した第1の方法と同じ方法を用いることも可能であるが、そのようにして求めた換気量は、室温の測定を行った当時の内外温度差や風向・風速の影響を受けて変動する値であり、建物の固有の性能を必ずしも表してはいない。そこで、ここでは、以下の数式(4)で示されるように、換気量の算出を行う。
換気量[m3/h]=最適C値×(係数1×標準内外温度差+係数2×標準風圧係数差×標準外部風速2)
・・・(4)
【0089】
ここで、換気量算出用データ(標準条件)53bは、「係数1×標準内外温度差+係数2×標準風圧係数差×標準外部風速2」の部分である。このとき、標準内外温度差は、例えば、2つの方式により設定することが考えられる。第1の方式は、冬を中心とした条件設定である。すなわち、室温を20℃とし、外気温を、気象庁が公開している建物の近隣の気象観測点における計測データに基づいて算出した1月の平均気温とするものである。
【0090】
第2の方式は、通年で評価する条件設定である。すなわち、室温を24℃(冬を20℃、夏を28℃と設定した場合の平均値)とし、外気温を、気象庁が公開している建物の近隣の気象観測点における計測データに基づいて算出した年間平均気温とするものである。
【0091】
なお、標準風圧係数差は、標準条件での風圧係数差である。ここで、風圧係数差は、建物周辺の環境(例えば、市街地か、ひらけているか等)と風速から求められ、標準風圧係数差を求める場合、風速としては、例えば、年平均風速が用いられる。また、標準外部風速は、気象データ52cから把握される年平均風速である。
【0092】
このように、建物の気密性能を評価するための標準的な条件として標準内外温度差、標準風圧係数差、及び標準外部風速を設定することによって、室温や外気温の測定時点の環境に影響を受けていない換気量を算出することができる。なお、換気量算出用データ(標準条件)53bは、上記のような第1の方式、第2の方式以外にも様々な基準によって設定することができる。
【0093】
このように算出された換気量は、その後、気積(室内容量)で除算されて換気回数が求められ、こうして求められた換気回数を用いてQ値54の推定が行われる。
【0094】
次に、
図5(B)、
図6、及び
図7を参照して、本発明に係る熱損失係数推定システム1における処理の流れを、より詳細に説明する。
【0095】
図6は、本発明に係る熱損失係数推定システム1における処理の流れを説明するためのフローチャートであり、
図7は、本発明に係る熱損失係数推定システム1において、シミュレーションによって得られた部屋の予測室温データと、部屋の温度を測定して得られた実測室温データを示すグラフである。
【0096】
ユーザ端末10におけるユーザの指示に基づいて、
図6のフローチャートに示す処理が開始される。そして最初に、ステップS01において、シミュレーション実行制御部155の制御により、シミュレーション用データ52として設定したすべてのC値52aについて、シミュレーションが完了したか否かを判定する。本実施形態では、C値52aの候補として、例えば、経験則的に知られている代表的な値を含んで、一定間隔で上下にスライドさせた複数の値を設定したり、代表的な複数の値を個別に設定したりするなど、様々な方法で、複数のC値52aを設定することができる。
【0097】
すべてのC値52aについてシミュレーションが完了していると判定された場合(ステップS01のYES)、ステップS06に進む。一方、すべてのC値52aについてシミュレーションが完了していないと判定された場合(ステップS01のNO)、ステップS02において、未使用のC値52aの1つを選択し、そのC値52aでシミュレーションを実行する。
【0098】
次に、ステップS03において、換気量算出部157が、設定されたC値52aと換気量算出用データ(実測条件)53aに基づいて換気量を算出する。C値52aと換気量算出用データ(実測条件)53aに基づく換気量の算出方法については、前述した通りである。
【0099】
次に、ステップS04において、シミュレーション実行制御部155が、ステップS03で算出された換気量と、実測外気温データ52b、気象データ52c、及びその他パラメータ52dを用いてシミュレーションを実行するように、シミュレーション実行部154に指示を行う。
【0100】
次に、ステップS05において、シミュレーション実行制御部155が、シミュレーションの結果得られた予測室温データを、C値52aに対応付けて、記憶装置170の予測室温データ55として記憶する。シミュレーションにより求められる予測室温は、入力の換気量や実測外気温データ52b、気象データ52cが時間の経過とともに変化するのに伴って、時間ごとに変化する。本実施形態では、例えば、1時間ごとに変化する入力値を提供することによって、それに応じた1時間ごとの予測室温データ55を一定期間、取得することになる。
【0101】
ステップS05の後、ステップS01に戻り、シミュレーション実行制御部155の制御によって、すべてのC値52aについて、シミュレーションが完了したか否かの判定が繰り返される。
【0102】
ステップS06では、予測室温データ選択部156が、記憶装置170に記憶されている予測室温データ55と、実測室温データ51をそれぞれ対応するタイミング同士の温度と比較する。この比較処理は、予測室温データ55がC値52aごとに記憶されているので、それらの予測室温データ55のそれぞれに対して行う。そして、比較処理の結果、実測室温データ51に最も一致度が高い予測室温データ55を選択し、その予測室温データ55に対応するC値52aを、最適C値56に決定する。
【0103】
ここで、最適な予測室温データ55を選択する基準として、例えば、予測室温データ55と実測室温データ51を、対応する時刻の温度同士で比較し、その温度差の二乗のトータルが最も小さいものを、最も一致度が高い予測室温データ55として選択する。もちろん、一致度の評価に関しては、他の様々な基準を採用することができる。
【0104】
ここで、
図7を参照すると、シミュレーションによって得られた部屋の予測室温データ55と、部屋の温度を測定して得られた実測室温データ51がグラフで示されている。実線の折れ線は、実測室温であり、点線の折れ線は、予測室温である。本実施形態では、例えば、予測室温データ55の取得期間は、(冬期において)夜間の暖房を停止した時刻(
図7では、t0で表されている)から、明け方に陽が昇り、気温が上昇し始める手前の時刻(
図7ではt12で表されている)までとする。
【0105】
予測室温の取得期間(t0~t12)において、予測室温データ55と実測室温データ51が比較される。
図7では、その温度差が、両矢印でそれぞれ表されている。上述した比較処理では、このような予測室温データ55と実測室温データ51の差の二乗をそれぞれのタイミングごとにトータルし、そのようなトータルの算出を、設定したC値52aの数だけ繰り返し、すべてのC値52aについてトータルの算出をしたときに、そのトータルの値が最も小さい予測室温データ55に対応するC値52aを最適C値56とする。
【0106】
図6のフローチャートに戻ると、ステップS07において、換気量算出部157が、最適C値56と換気量算出用データ(標準条件)53bに基づいて換気量を算出する。最適C値56と換気量算出用データ(標準条件)53bに基づく換気量の算出方法については、前述した通りである。
【0107】
次に、ステップS08において、熱損失係数推定部158が、算出された換気量に基づいて、熱損失係数(Q値)を推定する。Q値は、断熱性能と気密性能の両方を考慮した温熱環境の指標であり、上述した数式(1)により推定されるが、より詳細には、
図5(B)に示す数式(5)によって推定される。Q値は、室内外の温度差が1℃のとき、建物全体から床面積1m
2あたりに逃げ出す熱量(単位は[W])のことを指す。
【0108】
数式(5)では、建物から逃げる熱量(単位は[W/K])を延床面積(単位は[m2])で除算することによってQ値が求められる。
【0109】
ここで、建物から逃げる熱量は、建物の各部位の熱損失量と、換気による熱損失量の合計である。建物の各部位の熱損失量は、
図5(B)に示すように、部位の面積、U値、及び温度差係数を乗算した値を、各部位(例えば、屋根・天井、外壁、床、開口等)について合計することで得られる。
【0110】
各部位の面積は、例えば、その他パラメータ52dに含まれる建物の形状や寸法から求めることができ、U値(熱貫流率)は、1/熱抵抗値で表され、この熱抵抗値は、その他パラメータ52dに含まれる部位の仕様(厚さや熱伝導率)により求めることができる。また、温度差係数は、部位が接する外気の区分によって決まる係数であり、例えば、外気に接する場合は1.0、外気に通じる床裏に接する場合は0.7といった値が設定されている。
【0111】
換気による熱損失量は、固定値0.35、換気回数、及び気積を乗算した値である。ここで、固定値0.35は、比熱に関する係数である。換気回数は、本発明により決定された最適C値56に基づいて、
図6のステップS07で求められた換気量を、気積で除算することによって求められる。気積は、室内の空気の総量であり、その他パラメータ52dに含まれる建物の形状や寸法から求めることができる。
【0112】
Q値を、このような実情にあった換気量(換気回数)を用いて推定することにより、建物の実情(断熱性能、気密性能、及び住まい方の実情)を反映した温熱性能の指標が得られることになる。
【0113】
その後、ステップS09において、推定された熱損失係数(Q値)が、表示制御部159の制御により、ディスプレイ105等の表示装置に表示され、あるいは、熱損失係数推定部158の制御により、記憶装置170に記憶される。
【0114】
本実施形態では、
図6に示したように、用意したC値52aのすべてについてシミュレーションが終了した後で最適C値56を決定するようにしたが、それぞれのC値52aについてのシミュレーションが終了した段階で、予測室温データ55と実測室温データ51について比較処理を行い、比較処理の結果が所定の範囲(十分に一致度が高いと考えられる値の範囲)となった場合に、以降のシミュレーションを中止し、その予測室温データ55に対応するC値52aを最適C値56として決定するように構成してもよい。
【0115】
また、本実施形態では、基本的に、建物の1部屋(暖房室)について実測室温データ51を取得し、その実測室温データ51と、シミュレーションで得られた予測室温データ55とを比較する構成を想定しているが、建物の複数の部屋について実測室温データ51を取得し、部屋ごとに実行したシミュレーションで得られた予測室温データ55を、対応する部屋の実測室温データ51と比較し、各部屋での一致度を算出し評価することで最適C値56を決定するように構成することもできる。
【0116】
これまで、本発明に係る熱損失係数推定システムを、図を参照して説明してきたが、これらは一例にすぎず、他の様々な構成によって本発明の技術的思想を実現することができる。
【符号の説明】
【0117】
1・・・熱損失係数推定システム
10・・・ユーザ端末