(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023148440
(43)【公開日】2023-10-13
(54)【発明の名称】設計支援装置及び設計支援方法
(51)【国際特許分類】
G06F 30/20 20200101AFI20231005BHJP
G06F 119/14 20200101ALN20231005BHJP
G06F 111/10 20200101ALN20231005BHJP
【FI】
G06F30/20
G06F119:14
G06F111:10
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2022056453
(22)【出願日】2022-03-30
(71)【出願人】
【識別番号】000157083
【氏名又は名称】トヨタ自動車東日本株式会社
(74)【代理人】
【識別番号】100101878
【弁理士】
【氏名又は名称】木下 茂
(72)【発明者】
【氏名】神谷 忍
【テーマコード(参考)】
5B146
【Fターム(参考)】
5B146AA05
5B146DC05
5B146DJ02
5B146DJ07
5B146EA08
(57)【要約】
【課題】パネル状の親部品を複数の子部品に分割する場合において、部品の全体重量を抑えつつ、性能を満足するパネル分割位置を容易に決定する。
【解決手段】親部品Wの設計情報及び解析条件を用いて性能解析の演算処理を行う解析部を備え、解析部30は、予め設定したスポット溶接の打点ピッチの距離寸法ごとに前記親部品を分割し、複数の分割パネルwiを形成する処理と、前記複数の分割パネル毎に、要求性能を満たす板厚を決定する処理と、前記複数の分割パネルからなる親部品の形状において、前記複数の分割パネル毎に決定した板厚の値を座標上で繋げて板厚分布曲線Cを形成する処理と、前記板厚分布曲線のうち、変曲点Cp間で厚板側の領域をパネルラップ領域Rとする処理と、前記パネルラップ領域に基づき、子部品の分割位置を決定する処理と、を行う。
【選択図】
図3
【特許請求の範囲】
【請求項1】
複数のパネル状の子部品に分割されるパネル状の親部品において、前記子部品に分割する分割位置と各子部品の板厚とを求める設計支援装置であって、
前記親部品の設計情報及び解析条件を用いて性能解析の演算処理を行う解析部を備え、
前記解析部は、
予め設定したスポット溶接の打点ピッチの距離寸法ごとに前記親部品を分割し、複数の分割パネルを形成する処理と、
前記複数の分割パネル毎に、要求性能を満たす板厚を決定する処理と、
前記複数の分割パネルからなる親部品の形状において、前記複数の分割パネル毎に決定した板厚の値を座標上で繋げて板厚分布曲線を形成する処理と、
前記板厚分布曲線のうち、変曲点間で厚板側の領域をパネルラップ領域とする処理と、
前記パネルラップ領域に基づき、子部品の分割位置を決定する処理と、を行うことを特徴とする設計支援装置。
【請求項2】
前記解析部は、
各子部品において、前記パネルラップ領域を除く複数の分割パネルの板厚のうち、最も大きい板厚を該子部品の板厚に決定する処理を行うことを特徴とする請求項1に記載された設計支援装置。
【請求項3】
コンピュータと、前記コンピュータにより実行可能なプログラムが格納される記憶装置とが具備された設計支援装置において、前記コンピュータが前記記憶装置に格納されたプログラムを実行することにより、パネル状の親部品を複数の子部品に分割する分割位置と、各子部品の板厚とを求める設計支援方法であって、
前記コンピュータが前記記憶装置に格納されたプログラムを実行することにより、前記コンピュータは、
予め設定したスポット溶接の打点ピッチの距離寸法ごとに前記親部品を分割し、複数の分割パネルを形成するステップと、
前記複数の分割パネル毎に、要求性能を満たす板厚を決定するステップと、
前記複数の分割パネルからなる親部品の形状において、前記複数の分割パネル毎に決定した板厚の値を座標上で繋げて板厚分布曲線を形成するステップと、
前記板厚分布曲線のうち、変曲点間で厚板側の領域をパネルラップ領域とするステップと、
前記パネルラップ領域に基づき、子部品の分割位置を決定するステップと、を実行することを特徴とする設計支援方法。
【請求項4】
前記パネルラップ領域に基づき、子部品の分割位置を決定するステップの後、
前記コンピュータは、
前記各子部品において、前記パネルラップ領域を除く複数の分割パネルの板厚のうち、最も大きい板厚を該子部品の板厚に決定するステップを実行することを特徴とする請求項3に記載された設計支援方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、設計支援装置及び設計支援方法に関し、例えば車両の構成部品における最適な分割位置を決定する設計支援装置及び設計支援方法に関する。
【背景技術】
【0002】
車両を構成する複数の部品の各々において、どの位置で部品形状を分割するかについては、その性能面から所定の制約があり、分割可能な領域がおのずと決定される。この決定された分割可能な領域内において、具体的にどの位置で製品を分割するかについては、設計者の経験に基づいて行われているのが現状である。
【0003】
特許文献1には、薄板をプレス成形して形成された複数のパネル部品(子部品と呼ぶ)を連結して構成される製品(親部品と呼ぶ)における、該親部品における最適な分割位置を決定する方法が開示されている。
特許文献1に開示される最適分割位置決定方法は、親部品のCAD情報の分割可能領域内において分割位置候補を複数設定し、分割位置候補のひとつで親部品を分割した場合の各子部品の展開形状を計算する。
【0004】
次に、該展開形状に必要な余裕代を設ける余裕代展開形状を計算し、各余裕代展開形状を含む最小の板材寸法を計算し、該板材寸法等から部品全体の合計材料費を計算する。
また、他の分割位置候補についても同様に合計材料費を計算し、材料費が最小になるような分割位置候補を最適分割位置として決定する。
このような方法によれば、コストを低減できる最適分割位置を決定することができ、より安価な製品の製造を可能とすることができる。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1に開示された方法にあっては、部品全体のコストは確実に抑えることができるが、分割形成された子部品における、剛性や共振周波数等の性能、重量、部品同士の重なり領域(ラップ領域)等を全く考慮しないものである。
そのため、この方法により決定された分割位置に基づく製品(親部品)は、性能面の要求を満たすことが困難であるという課題があった。
【0007】
上記のような剛性や共振周波数等の性能、重量、部品同士のラップを考慮する場合、従来からコンピュータに有限要素法による構造解析を実行させるプログラムや、当該プログラムを実装した設計支援装置(CAE)が広く用いられている。
【0008】
しかしながら、CAEを用いて応力や変形状態を確認し、分割位置を決定していく場合、プログラム実行ごとに作業者の経験に基づき部品の分割位置及び板厚を調整し、最適な分割位置が求まるまで、CAEを繰り返す必要があり、長い時間と労力を必要とするという課題があった。
【0009】
本発明は、前記した点に着目してなされたものであり、パネル状の親部品を複数の子部品に分割する場合において、部品の全体重量を抑えつつ、性能を満足するパネル分割位置を容易に決定することのできる設計支援方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
前記した課題を解決するために、本発明に係る設計支援装置は、複数のパネル状の子部品に分割されるパネル状の親部品において、前記子部品に分割する分割位置と各子部品の板厚とを求める設計支援装置であって、前記親部品の設計情報及び解析条件を用いて性能解析の演算処理を行う解析部を備え、前記解析部は、予め設定したスポット溶接の打点ピッチの距離寸法ごとに前記親部品を分割し、複数の分割パネルを形成する処理と、前記複数の分割パネル毎に、要求性能を満たす板厚を決定する処理と、前記複数の分割パネルからなる親部品の形状において、前記複数の分割パネル毎に決定した板厚の値を座標上で繋げて板厚分布曲線を形成する処理と、前記板厚分布曲線のうち、変曲点間で厚板側の領域をパネルラップ領域とする処理と、前記パネルラップ領域に基づき、子部品の分割位置を決定する処理と、を行うことに特徴を有する。
【0011】
尚、前記解析部は、各子部品において、前記パネルラップ領域を除く複数の分割パネルの板厚のうち、最も大きい板厚を該子部品の板厚に決定する処理を行うことが望ましい。
【0012】
このような構成によれば、パネル状の親部品をスポット溶接の最小打点ピッチで分割した複数の分割パネルの各々について最適板厚を例えばCAEにより求める。そして、分割パネルを親部品形状に連結した際の板厚分布近似曲線から変曲点を求め、変曲点間で厚板側の領域でパネルを重ねるようにして子部品の範囲を決定する。これにより、親部品において、部品全体の重量を抑えつつ、剛性等の性能を満足するとともに子部品同士のラップ位置を考慮した分割位置を決定することができる。
また、複数の分割パネルの各々について最適板厚を求めることで、小部品の範囲(分割位置)が決定するため、従来のように最適な分割位置が求まるまでCAEを繰り返して評価する必要がなく、労力と時間を大幅に低減することができる。
【0013】
また、前記した課題を解決するために、本発明に係る設計支援方法は、コンピュータと、前記コンピュータにより実行可能なプログラムが格納される記憶装置とが具備された設計支援装置において、前記コンピュータが前記記憶装置に格納されたプログラムを実行することにより、パネル状の親部品を複数の子部品に分割する分割位置と、各子部品の板厚とを求める設計支援方法であって、前記コンピュータが前記記憶装置に格納されたプログラムを実行することにより、前記コンピュータは、予め設定したスポット溶接の打点ピッチの距離寸法ごとに前記親部品を分割し、複数の分割パネルを形成するステップと、前記複数の分割パネル毎に、要求性能を満たす板厚を決定するステップと、前記複数の分割パネルからなる親部品の形状において、前記複数の分割パネル毎に決定した板厚の値を座標上で繋げて板厚分布曲線を形成するステップと、前記板厚分布曲線のうち、変曲点間で厚板側の領域をパネルラップ領域とするステップと、前記パネルラップ領域に基づき、子部品の分割位置を決定するステップと、を実行することに特徴を有する。
【0014】
尚、前記パネルラップ領域に基づき、子部品の分割位置を決定するステップの後、前記コンピュータは、前記各子部品において、前記パネルラップ領域を除く複数の分割パネルの板厚のうち、最も大きい板厚を該子部品の板厚に決定するステップを実行することが望ましい。
【0015】
このような方法によれば、パネル状の親部品をスポット溶接の最小打点ピッチで分割した複数の分割パネルの各々について最適板厚を例えばCAEにより求める。そして、分割パネルを親部品形状に連結した際の板厚分布近似曲線から変曲点を求め、変曲点間で厚板側の領域でパネルを重ねるようにして子部品の範囲を決定する。これにより、親部品において、部品全体の重量を抑えつつ、剛性等の性能を満足するとともに子部品同士のラップ位置を考慮した分割位置を決定することができる。
また、複数の分割パネルの各々について最適板厚を求めることで、小部品の範囲(分割位置)が決定するため、従来のように最適な分割位置が求まるまでCAEを繰り返して評価する必要がなく、労力と時間を大幅に低減することができる。
【発明の効果】
【0016】
本発明によれば、パネル状の親部品を複数の子部品に分割する場合において、部品の全体重量を抑えつつ、性能を満足するパネル分割位置を容易に決定することのできる設計支援方法を提供することができる。
【図面の簡単な説明】
【0017】
【
図1】
図1は、本発明の設計支援方法を実行する設計支援装置の機能ブロック図である。
【
図2】
図2は、本実施形態の情報処理装置のハードウェア構成図である。
【
図3】
図3は、本発明の設計支援方法に沿った親部品の分割位置及び分割された子部品の厚さを算出する処理の手順を示したフローチャートである。
【
図4】
図4は、本実施の形態における親部品の形状を示す斜視図である。
【
図5】
図5は、親部品を最小打点ピッチで分割した分割パネルの位置を示す斜視図である。
【
図6】
図6は、分割パネルを形成する分割線の位置を示す平面図である。
【
図7】
図7は、分割パネルから子部品を形成する方法を説明するためのグラフであり、板厚分布近似曲線を示すグラフである。
【
図8】
図8は、子部品の範囲(親部品の分割位置)を示す斜視図である。
【
図9】
図9は、
図3のフローチャートに続くフローチャートである。
【発明を実施するための形態】
【0018】
以下、本発明に係る設計支援装置及び設計支援方法の実施形態について、図面に基づいて説明する。尚、本実施の形態においては、車両を構成する複数の部品の各々(以下、親部品と呼ぶ)において、パネル状の親部品を複数の部品(以下、子部品と呼ぶ)に分割する位置と、分割する各子部品の板厚とを決定する方法について説明する。
【0019】
先ず、本発明に係る設計支援方法を実行する設計支援装置の機能構成を
図1に基づいて説明する。
図1は、本発明の設計支援方法を実行する設計支援装置の機能ブロック図である。
図示するように、設計支援装置100は、パネル状の親部品における分割位置及び分割された子部品の板厚を決定する情報処理装置1と、設計者からの各種要求を受け付ける入力装置2と、情報処理装置1が行った解析結果を出力する出力装置3とを備えている。また、情報処理装置1は、LAN(Local Area Network)等のネットワークNWを介して、CAD装置4に接続されている。
【0020】
ここで、入力装置2は、キーボードやマウス等により構成され、設計者からの各種要求や解析条件(物性値情報、拘束条件、荷重条件、体積密度等)等を受け付け情報処理装置1に出力する。
出力装置3は、液晶ディスプレイ等により構成され、情報処理装置1が出力する画像情報を表示する。
また、CAD装置4には、構造解析を行う対象の構造物のCAD情報(例えば、自動車の構成部品の設計情報)が格納されている。そして、CAD装置4は、情報処理装置1からの要求に従い、情報処理装置1にCAD情報を出力する。なお、本実施形態のCAD装置4は、公知の技術により実現されるため、詳細な説明を省略する。
【0021】
また、情報処理装置1は、制御部10、データ取得部20、解析部30および出力部40を備えている。
制御部10は、情報処理装置1の全体の動作を制御する。また、制御部10は、入力装置2を介して、設計者が入力する各種要求を受け付ける。そして、制御部10は、上記の受け付けた要求にしたがい、データ取得部20、解析部30、および出力部40を制御して、設計者からの要求に応じた各種の処理を行う。
【0022】
また、データ取得部20は、ネットワークNWに接続されている外部装置(例えば、CAD装置4)と通信を行い、外部装置との間でデータの授受を行う。例えば、データ取得部20は、ネットワークNWを介して、CAD装置4にアクセスし、CAD装置4に格納されている設計情報(CAD情報)を取得する。
また、データ取得部20は、入力装置2を介して、設計者が入力する解析対象の構造物の解析条件の入力を受け付ける。
【0023】
解析部30は、CAD装置4から取得した構造物(親部品)の「設計情報」および「解析条件」を用いて、
図3に示す各処理ステップを実行し、ねじり剛性等の性能を満足しつつ軽量化等が可能な親部品の分割位置及び分割された子部品の厚さを算出する。
また、出力部40は、解析部30から解析結果を取得し、その解析結果を示す画像情報等を生成し、出力装置3に、その生成した画像情報等を出力する。
【0024】
つぎに、情報処理装置1のハードウェア構成を説明する。
図2は、本実施形態の情報処理装置のハードウェア構成図である。
図示するように、情報処理装置1は、CPU(Central Processing Unit)50と、RAM(Random Access Memory)等により構成された主記憶装置51と、I/Oインタフェース52と、SSD(Solid State Drive)等により構成された補助記憶装置53と、ネットワークNWに接続されている装置との間で行うデータ授受の制御を行うネットワークインタフェース54とを有する。
また、補助記憶装置53には、上述した各部(制御部10、データ取得部20、解析部30、および出力部40)の機能を実現するためのプログラム(設計支援プログラム55)が格納されている。
【0025】
そして、情報処理装置1の各部(制御部10、データ取得部20、解析部30、および出力部40)の機能は、CPU50(コンピュータ)が補助記憶装置53に格納されている前記プログラムを主記憶装置51にロードして実行することにより実現される。
【0026】
続いて、設計支援装置100が行うパネル状の親部品における分割位置及び分割される子部品の板厚を求める処理について
図3のフローに基づいて説明する。
ここで、
図3は、本発明の設計支援方法に沿った親部品の分割位置及び分割された子部品(構成部品)の厚さを算出する処理の手順を示したフローチャートである。
【0027】
尚、以下の説明では、解析対象の構造物(親部品)が
図4に示すような自動車車両200のバックドア開口部パネル250を親部品Wとする場合を例にする。また、以下の処理ステップの中で行われるCAE処理(例えば剛性CAE)は、周知のものと同様であるため詳細な説明を省略する。
【0028】
先ず、情報処理装置1のデータ取得部20が、解析対象のデータの読み込みを行う(
図3のステップS1)。
具体的には、データ取得部20は、ネットワークNWを介して、CAD装置4にアクセスし、CAD装置4に格納されている親部品Wの設計情報(CAD情報)を取得し、情報処理装置1のメモリ(主記憶装置51又は補助記憶装置53)に、前記取得したバックドア開口部パネル250の設計情報を格納する。
また、データ取得部20は、設計者が入力装置2を介して入力する「親部品Wの解析条件」を受け付け(受信し)、前記メモリ(主記憶装置51又は補助記憶装置53)に、前記解析条件を格納する。ここで、解析条件とは、親部品Wの材質、板厚等の条件である。
【0029】
次いで解析部30は、得られた親部品Wの形状データに対し、
図5に示すように、面方向に最小打点ピッチで複数のパネルwi(i=1~n(nは正の整数))に分割する(
図3のステップS2、S3)。ここで、最小打点ピッチとは、複数の子部品をスポット溶接により接合する際の、実質的に最短のピッチとなる距離寸法のことであり、例えば20mmとする。また、分割方向は、
図6に示すように最小打点ピッチでの各分割線長を計算し、それらの合計長さが最短となる方向とし、分割線Lを決定する。これにより最終形状での分割長さをより小さくし、強度低下を抑制することができる。
【0030】
次いで、解析部30は、各分割パネルwiについて、順番に板厚初期値(例えば設定可能な範囲での最大の板厚値)を設定し(
図3のステップS4、S5、S6)、必要な性能評価、例えば剛性CAE(剛性解析)を実行して、各分割パネルwiの例えば「たわみ量」を算出する(
図3のステップS7)。
具体的には、解析部30は、板厚設定した分割パネルwiの設計情報および解析条件を用いて、有限要素法による剛性CAEを実行し、各分割パネルwiのたわみ量を求める。
【0031】
解析部30は、各分割パネルwiについて、剛性CAEの結果が要求性能を満たすか判定し(
図3のステップS8)、満たす場合には、板厚の設定値をより小さい値に設定して、剛性CAEを繰り返す。そして、剛性が要求性能を満たさない場合には(
図3のステップS8)、一つ前の板厚設定値を最終的な板厚値として採用し、各分割パネルwiの板厚値を決定する(
図3のステップS9)。
【0032】
すべての分割パネルwiの板厚が決定すると(
図3のステップS10)、解析部30は、
図7のグラフに示すような各分割パネルwiを連結した際の板厚分布近似曲線Cを2次元座標上に形成する(
図3のステップS11)。
尚、
図7のグラフの縦軸は、板厚(mm)、横軸はパネル幅(稜線の線長)方向の位置(mm)である。また、
図7のグラフは、n個の分割パネルwiのうちの一部(i=1~26)を示すものであり、その範囲で例えば3つの子部品SWが形成される場合の例を示すものである。
解析部30は、板厚分布近似曲線Cの変曲点Cpを求め、隣り合う変曲点Cp間の厚板側(板厚がより厚い方向)をパネルラップ領域R(重なり領域)に設定する(
図3のステップS12)。ラップ領域Rの板厚は、重なる2枚の子部品SWの板厚を合わせた厚さとなる。尚、実際のパネルラップ領域Rにおける2枚の小部品SWの上下の位置関係は製造工程により決まる。
【0033】
そして、パネルラップ領域Rを設定することにより、
図7に示すように、隣り合う2つのパネル状の子部品SWがパネルラップ領域Rで重なる構成が特定され、子部品SWの分割位置が決定される(
図3のステップS13)。このようにして、例えば
図8に示すように複数の子部品SWが決定される。
図8の例では、子部品SW1~SW7に分割されている。各子部品SW1~SW7の板厚は、
図7に一例を示すように、パネルラップ領域Rを除き、その子部品SWを構成する各分割パネルwiのうち最大の板厚値が採用され設定される。これにより、その子部品SW全体における性能を満たすことができる。
このように決定した子部品SWとその板厚値によれば、親部品W全体の重量を抑えつつ、剛性等の性能を満足することができる。
【0034】
以上のように本実施の形態によれば、パネル状の親部品Wをスポット溶接の最小打点ピッチで分割した複数の分割パネルwiの各々について最適板厚をCAEにより求める。そして、分割パネルwiを親部品W形状に連結した際の板厚分布近似曲線Cから変曲点Cpを求め、変曲点Cp間で厚板側の領域Rでパネルを重ねるようにして子部品SWの範囲を決定する。これにより、親部品Wにおいて、部品全体の重量を抑えつつ、剛性等の性能を満足するとともに子部品SW同士のラップ位置を考慮した分割位置を決定することができる。
また、複数の分割パネルwiの各々について最適板厚を求めることで、小部品SWの範囲(分割位置)が決定するため、従来のように最適な分割位置が求まるまでCAEを繰り返して評価する必要がなく、労力と時間を大幅に低減することができる。
【0035】
尚、前記実施の形態においては、特定の一材質により形成される親部品Wについて、性能を満たしつつ重量を軽量化できる方法について説明したが、前記実施の形態に説明した方法を用い、親部品Wの材質を決定することもできる。
図9は、
図3のフローチャートに続けて実施可能なフローチャートである。
図9のフローチャートを実施する場合、
図3のフローチャートにおいて材質の初期値は、材質のランクが最も低いもの、即ち重量が最も大きいものに設定する。
続き、
図3のステップS13において、親部品Wにおける分割位置を決定した後、部品全体(親部品W)の重量が目標重量を下まわるか否かを判定する(
図9のステップS14)。
【0036】
ここで、親部品Wの重量が目標重量よりも大きい場合、材質のランクを一つ上げて設定し(
図9のステップS15)、再度、
図3のステップS4~ステップS13の処理を実施し、親部品Wの重量が目標重量を下まわるか否かを判定する(
図9のステップS14)。
この処理を、親部品Wの重量が目標重量を下まわるまで繰り返し実施して、下まわったときの材質を決定する(
図9のステップS16)。
【0037】
また、
図9のフローチャートでは、親部品W全体の材質を一種のものとしたが、さらに子部品SWごとに材質を変えてもよい。
その場合、一部の子部品SWの材質を変えて、
図3のステップS4~S13を実施し、全体重量が目標重量を下まわり、且つ目標重量に最も近い組合せ(各子部品SWの材質の組み合わせ)を採用すればよい。
【0038】
また、前記実施の形態においては、性能評価として、たわみの剛性評価のみを例に説明したが、剛性評価のみに限らず、共振周波数、重量、耐熱特性等を含めて性能評価するようにしてもよい。
【符号の説明】
【0039】
1 情報処理装置
2 入力装置
3 出力装置
4 CAD装置
10 制御部
20 データ取得部
30 解析部
40 出力部
50 CPU(コンピュータ)
51 主記憶装置51
52 I/Oインタフェース
53 補助記憶装置
100 設計支援装置
C 板厚分布近似曲線
Cp 変曲点
W 親部品
SW 子部品
w 分割パネル
R ラップ領域