IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ダイヘンの特許一覧

<>
  • 特開-高電圧印加回路 図1
  • 特開-高電圧印加回路 図2
  • 特開-高電圧印加回路 図3
  • 特開-高電圧印加回路 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023150211
(43)【公開日】2023-10-16
(54)【発明の名称】高電圧印加回路
(51)【国際特許分類】
   H02M 7/48 20070101AFI20231005BHJP
   H05H 1/46 20060101ALN20231005BHJP
【FI】
H02M7/48 M
H05H1/46 R
【審査請求】未請求
【請求項の数】4
【出願形態】OL
(21)【出願番号】P 2022059198
(22)【出願日】2022-03-31
(71)【出願人】
【識別番号】000000262
【氏名又は名称】株式会社ダイヘン
(72)【発明者】
【氏名】河野 真吾
【テーマコード(参考)】
2G084
5H770
【Fターム(参考)】
2G084BB07
2G084CC08
5H770AA05
5H770AA21
5H770LA01Z
5H770PA11
5H770PA21
5H770QA01
5H770QA08
(57)【要約】

【課題】コロナ放電を抑制できる高電圧印加回路を提供する。
【解決手段】グランド電位に接続された平面を有するヒートシンク10と、前記第1金属材の平面上に設けた平板形状のセラミック板20と、金属基板30と、第1端子36および第2端子37を除き金属基板30を覆う絶縁樹脂40とを備えている。金属基板30は、金属材31、絶縁層32、第1高電圧が印加される第1導電領域33および第2高電圧が印加される第2導電領域34を有するとともに、第1導電領域33および第2導電領域34との間に電気部品35が実装され、且つ、第1端子36および第2端子37が形成されている。金属基板30は、絶縁樹脂40を介して、ヒートシンク10と熱的に接続されており、金属基板30の第1端子36および第2端子37は、セラミック板20とは反対側に設けられている
【選択図】図1
【特許請求の範囲】
【請求項1】
グランド電位に接続された平面を有する第1金属材と、
前記第1金属材の平面上に設けた平板形状の第1絶縁材と、
第2金属材、絶縁層、第1高電圧が印加される第1導電領域および前記第1高電圧とは異なる第2高電圧が印加される第2導電領域を有するとともに、前記第1導電領域と前記第2導電領域との間に電気部品が実装され、且つ、前記第1導電領域と電気的に接続された第1端子および前記第2導電領域と電気的に接続された第2端子が形成された金属基板と、
前記第1端子および前記第2端子を除き、前記金属基板を覆う第2絶縁材と、を備え、
前記金属基板は、前記第1絶縁材に対して前記第1金属材と反対側の位置に設けられており、
前記金属基板の前記第1絶縁材に近い面は、前記第2絶縁材を介して、前記第1絶縁材と熱的に接続されており、
前記金属基板の第1端子および第2端子は、前記第1絶縁材とは反対側に設けられている、
高電圧印加回路。
【請求項2】
前記第2絶縁材の比誘電率は3以上である、
請求項1に記載の高電圧印加回路。
【請求項3】
前記第1金属材と前記第1絶縁材との間には、オイルコンパウンドが塗布されている、
請求項1又は2の何れか一項に記載の高電圧印加回路。
【請求項4】
前記第1高電圧は、絶対値が10kV以上の電圧であり、
前記第2高電圧は、絶対値が10kV以上で前記第1高電圧とは異なる電圧である
請求項1~3の何れか一項に記載の高電圧印加回路。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、高電圧が印加される高電圧印加回路に関する。
【背景技術】
【0002】
半導体ウェハや液晶基板を製造する工程で用いられるプラズマ処理装置では、例えば、パルス状の電圧(パルス電圧)を発生させるパルス電源装置のように、高電圧を発生させる電源装置が設けられている(例えば、特許文献1参照)。
パルス電源装置は、例えば、直流電力をインバータ回路で交流電力に変換した後、変圧器により異なる電圧値の交流電力に変換し、整流平滑回路で整流・平滑し、さらにスイッチング回路等によりパルス電圧を発生させるよう構成される。
上記のようなパルス電源装置では、絶対値が10kV程度の高電圧の電位を有するパルス電圧を出力する。その都合上、整流平滑回路やスイッチング回路では絶対値が10kV程度の高電圧が印加される部位(以下、高電位部位)が生じる。周知のように、印加される電圧が高いほどコロナ放電が発生し易くなるので、このような高電位部位で用いる高電圧印加回路では、コロナ放電を抑制する必要がある。
【0003】
コロナ放電を抑制する技術を開示している文献としては、例えば、特許文献2がある。この特許文献2は、スイッチング素子等の部品を含む高電圧印加回路のネジ(グランド電位)の周囲の空隙(ネジ穴の一部)に電界が集中することによるコロナ放電の発生を抑制する技術が開示している。具体的には、ネジ周囲の空隙と高電位部位との間にグランド電位の導体を挿入して、空隙への電界集中を無くすことでコロナ放電を抑制している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2013-125729号公報
【特許文献2】特開2018-067644号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、特許文献2は、ネジの周囲の空隙に対する対策にすぎない。また、印加電圧が3.3kV程度なので、比較的低い電圧である。
それに対して、例えば、絶対値10kV以上の高電圧が印加されると、より一層コロナ放電が発生し易くなるので、高電圧が印加される高電位部位(金属基板の導電領域等)とグランド電位の部材との間でのコロナ放電が発生しないように対策を行う必要がある。特に、部品の端子や角張った箇所からコロナ放電が発生し易いので、それらの箇所について、コロナ放電を抑制する対策が必要となる。
【0006】
本発明は、このような課題に鑑みてなされたものであり、高電圧が印加される高電位部位とグランド電位の部材との間でのコロナ放電を抑制できる高電圧印加回路を提供することを目的とする。
【課題を解決するための手段】
【0007】
本開示に係る高電圧印加回路は、
グランド電位に接続された平面を有する第1金属材と、
前記第1金属材の平面上に設けた平板形状の第1絶縁材と、
第2金属材、絶縁層、第1高電圧が印加される第1導電領域および前記第1高電圧とは異なる第2高電圧が印加される第2導電領域を有するとともに、前記第1導電領域と前記第2導電領域との間に電気部品が実装され、且つ、前記第1導電領域と電気的に接続された第1端子および前記第2導電領域と電気的に接続された第2端子が形成された金属基板と、
前記第1端子および前記第2端子を除き、前記金属基板を覆う第2絶縁材と、を備え、
前記金属基板は、前記第1絶縁材に対して前記第1金属材と反対側の位置に設けられており、
前記金属基板の前記第1絶縁材に近い面は、前記第2絶縁材を介して、前記第1絶縁材と熱的に接続されており、
前記金属基板の第1端子および第2端子は、前記第1絶縁材とは反対側に設けられている。
【発明の効果】
【0008】
本発明によれば、高電圧印加回路において、高電圧が印加される高電位部位とグランド電位の部材との間でのコロナ放電を抑制できる。
【図面の簡単な説明】
【0009】
図1図1は、本実施形態の高電圧印加回路1の断面図である。
図2図2は、本実施形態の高電圧印加回路1を上から見た場合の平面図である。
図3図3は、金属基板30の電位を説明するための説明図である。
図4図4は、図1に対応する比較例の高電圧印加回路2の断面図である。
【発明を実施するための形態】
【0010】
本実施形態の高電圧印加回路1は、例えば、プラズマ処理装置にパルス状の電圧(パルス電圧)を供給するパルス電源装置に用いられる。パルス電源装置は、例えば、直流電力をインバータ回路で交流電力に変換した後、変圧器により異なる電圧値の交流電力に変換し、整流平滑回路で整流・平滑し、さらにスイッチング回路等によって絶対値が10kV程度の高電圧のパルス電圧を出力する。
そして、高電圧印加回路1は、整流平滑回路やスイッチング回路のように、絶対値が10kV程度の高電圧が印加される部位(以下、高電位部位)で用いられるので、コロナ放電の発生を抑制できる構造にする必要がある。
【0011】
以下、添付の図1乃至図4を参照しながら、本開示に係る高電圧印加回路1の実施の形態を詳細に説明する。
図1は、本実施形態の高電圧印加回路1の断面図である。
図2は、本実施形態の高電圧印加回路1を上から見た場合の平面図である。
図1および図2に示すように、高電圧印加回路1は、ヒートシンク10と、ヒートシンク10の上側に設けられたセラミック板20と、セラミック板20の上側に設けられた金属基板30と、金属基板30を覆う絶縁樹脂40と、を備える。
【0012】
なお、図2では、絶縁樹脂40を透過させて図示することにより、本来であれば見えない金属基板30内部の絶縁層32、第1導電領域33、第2導電領域34、電気部品35、第1端子36および第2端子37を図示している。金属材31は、絶縁層32、第1導電領域33および第2導電領域34で隠れているので図示していない。また、絶縁層32は、図面の関係上、一部しか図示していない。
【0013】
ヒートシンク10は、「第1金属材」の一例であり、グランド電位に接続された冷却用の金属材であり、平面を有する平板形状をしている。ヒートシンク10の材質は、例えば、銅、アルミニウム等であり、熱伝導率が高い材質が適している。なお、ヒートシンク10の内部を冷却水が循環できるように構成してもよい。
【0014】
セラミック板20は「第1絶縁材」の一例であり、ヒートシンク10(第1金属材)の平面上に設けられた平板形状の部材である。好ましくはアルミナ、窒化ケイ素、窒化アルミ等が用いられる。本実施形態におけるセラミック板20の厚みは10mmである。
一般的に、セラミック板20の厚みが厚いほど、後述の金属基板30の金属材31とヒートシンク10との間の距離が長くなるので、コロナ放電が発生し難くなる方向に働く。しかし、セラミック板20の厚みを厚くするほど、ヒートシンク10による放熱効果が低くなるので、あまり厚くすることは好ましくない。本実施形態のように、セラミック板20を例えばアルミナのセラミックス板とし、かつ、厚みが10mmとする構成にすることで、絶対値が10kV以上の高電圧を部品に印加したときにコロナ放電を抑制しつつ、十分な放熱効果を得ることができることができる。
【0015】
金属基板30は、例えば、金属ベース基板や金属コア基板を用いた回路基板であり、基板のベースまたは内部に金属材を用いることで放熱性を高めることができる。なお、図1は、金属基板30として金属ベース基板を用いた一例を示しているが、金属コア基板を用いることも可能である。
【0016】
金属基板30は、図1に示すように、例えば、金属材31、絶縁層32、第1導電領域33、第2導電領域34、電気部品35、第1端子36および第2端子37を有している。
【0017】
金属材31は、「第2金属材」の一例であり、放熱性を高めるための金属材である。金属材の材質は、例えば、アルミニウム、銅またはステンレスである。なお、図1では金属材31が金属ベースとして金属基板30の下側に位置しているが、金属コア基板のように絶縁層で挟み込むようにしてもよい。
金属材31は、他の導電体と電気的に接続されていないが、絶縁樹脂40、セラミック板20を介してヒートシンク10に熱的に接続されているので、電気部品35で発生する熱を効果的に放熱させることができる。
金属材31の厚みは、0.8~5.0mm程度である。本実施形態では厚みが2mm(アルミニウムまたは銅)の金属材31を用いている。
金属材31の材質の熱伝導率や厚みは、コスト、金属基板30の大きさ、実装物の重量(反らないように)等を考慮して定められる。
なお、上述したように、角張った箇所は、コロナ放電が発生し易いので、図2に示すように、金属材31および第1導電領域33の角部は直角ではなく、丸みを持たせている。
【0018】
絶縁層32は、金属材31の上部に形成された絶縁層であり、金属材31と第1導電領域33および第2導電領域34との絶縁をするものである。
なお、絶縁層32の厚みは0.1mm程度なので薄い。しかし、図1では、理解し易くするために、実際よりも厚み持たせて図示している。
【0019】
第1導電領域33は、絶対値が10kV以上の第1高電圧が印加される導電領域であり、金属基板30の表面の銅箔層を加工して形成される。この第1導電領域33には、例えば、-10kVの電圧が印加される。
【0020】
第2導電領域34は、絶対値が10kV以上の第2高電圧が印加される導電領域であり、金属基板30の表面の銅箔層を加工して形成される。この第2導電領域34には、例えば、-11.5kVの電圧が印加される。
【0021】
電気部品35は、第1導電領域33と第2導電領域34との間に実装される電気部品である。電気部品35は、例えば、ダイオード、コンデンサ、インダクタ、スイッチング素子、抵抗、2端子以上を持つコネクタおよびジャンパ等である。
上記の例では、電気部品35の一方の端子に-10kVの電位が印加され、他方の端子に-11.5kVの電圧が印加される。すなわち、上記の例では、電気部品35の両端には、電位差1.5kVの電圧が印加される。
【0022】
なお、電気部品35の両端に印加される電圧(第1導電領域33と第2導電領域34との間の電圧)は、直流電圧であってもよいが、通常は、交流電圧またはパルス電圧のように電圧値が変化する電圧である。この場合、電気部品35の両端に印加される電圧は、時間と共に変化する。
【0023】
また、図1には、説明を簡略化するために、電気部品35を1つしか図示していないが、複数の電気部品35を実装してもよい。また、複数の電気部品35を直列接続したものを第1導電領域33と第2導電領域34との間に実装してもよい。
また、電気部品35が、例えばMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)であれば、本来3つの端子(ゲート、ドレイン、ソース)がある。そのため、第1導電領域33および第2導電領域34以外にも導電領域が必要であるが、説明を簡略化するために、図1では電気部品35の端子および導電領域を一部省略している。
【0024】
第1端子36は、第1導電領域33と電気的に接続された端子であり、この端子を介して外部と電気的に接続できるようになっている。また、第2端子37は、第2導電領域34と電気的に接続された端子であり、この端子を介して外部と電気的に接続できるようになっている。そのため、属基板30に形成された第1端子36および第2端子37は絶縁樹脂40から突出している。
【0025】
なお、以下では、第1高電圧が印加される第1導電領域33および第1導電領域33と同じ電位の部位を第1高電位部位とし、第2高電圧が印加される第2導電領域34および第2導電領域34と同じ電位の部位を第2高電位部位とする
【0026】
絶縁樹脂40は「第2絶縁材」の一例であり、第1端子36および第2端子37を除き、金属基板30を覆う絶縁材であり、例えば、シリコーン等の絶縁材で形成されている。
この絶縁樹脂40は、金属基板30からのコロナ放電を抑制するためと、放熱性を高めるために用いられる。そのため、絶縁樹脂40は、絶縁耐力が大きく、熱伝導率の良いものが望ましい。
【0027】
ここで、シリコーン等の絶縁材の絶縁耐力は、空気の絶縁耐力3.0kV/mmよりも大きいことが知られている。例えば、20~30kV/mm程度の絶縁耐力を有するシリコーンゴムが販売されている。
また、上記シリコーンゴムの熱伝導率は、空気の熱伝導率0.0241W/m・Kよりも大きく、例えば、0.1~5.1W/m・K程度である。そのため、絶縁樹脂40をシリコーン等の絶縁材で形成すれば、放熱性を大幅に低下させることなく、コロナ放電を抑制することができる。
このように、用途に合わせた様々なシリコーン等の絶縁材が販売されているので、絶縁耐力や熱伝導率を考慮し、適切な材料を選択すればよい。
【0028】
なお、後述するように、金属板の底面に塗布する絶縁樹脂40の厚みは0.1mm程度なので薄い。また、金属板の側面の絶縁樹脂40の厚みは、1~2mm以上にすることが好ましい。しかし、図1では、理解し易くするために、実際と厚みを異ならせて図示している。
【0029】
また、上記のように、電気部品35の両端に印加される電圧(第1導電領域33と第2導電領域34との間の電圧)は、通常は、交流電圧またはパルス電圧のように電圧値が変化する電圧である。そのため、コロナ放電の抑制に関しては、絶縁耐力だけでなく、比誘電率も重要となる。これについて説明する。
【0030】
<絶縁樹脂40の比誘電率について>
コロナ放電は、金属基板30からヒートシンク10に至る経路上で発生する。この経路において、金属基板30の金属材31を一方の電極とし、ヒートシンク10を他方の電極とするキャパシタ(コンデンサ)と見なすことができる。
また、電気部品35に印加される高電圧が、交流電圧またはパルス電圧のように電圧値が変化する場合は、絶縁樹脂40の比誘電率が大きい方が望ましい。何故ならば、比誘電率が大きい程、電極間のキャパシタンスが大きくなるので、交流に対するインピーダンスが小さくなる。その結果、電界強度が弱まる(小さくなる)ので、コロナ放電が発生し難くなる方向に働くからである。そのため、絶縁樹脂40の比誘電率は、大気の比誘電率である1よりも大きくする必要があり、少なくとも3以上が望まれる。これによって、確実に電界強度を弱めて、コロナ放電を抑制することができる。
【0031】
また、絶縁樹脂40の比誘電率は、セラミック板20の比誘電率と同程度のものが好ましい。何故ならば、金属基板30からヒートシンク10に至る経路上における絶縁体(誘電体)の比誘電率が均一であると、上記の経路上において電界強度が線形的に変化するので、コロナ放電が発生し難くなる方向に働くからである。
ただし、セラミック板20に用いるアルミナ、窒化ケイ素、窒化アルミ等の比誘電率は8~10程度であるが、絶縁樹脂40として用いるシリコーン等の比誘電率は、大きくても6程度なので、両者の比誘電率を同じにするのは困難である。そのため、ある程度の比誘電率の差を許容した上で、絶縁樹脂40を選定することになる。このような状況を踏まえ、絶縁樹脂40の比誘電率は6以上とするのが好ましい。この場合、セラミック板20の比誘電率と絶縁樹脂40の比誘電率との差は、2~4となる。このようにすれば、コロナ放電の発生を抑制し易くなる。
【0032】
<金属基板30の電位について>
上記のように、金属材31は、他の導電体と電気的に接続されていないが、高電位となる。この理由を図3を参照して説明する。
図3は、金属基板30の電位を説明するための説明図である。
第1導電領域33、第2導電領域34およびヒートシンク10は導電体なので、第1導電領域33および第2導電領域を一方の電極とし、ヒートシンク10を他方の電極とするコンデンサ50であると考えることができる。厳密には、第1導電領域33には、例えば-10kVの電圧が印加され、第2導電領域34には、例えば-11.5kVの電圧が印加されるので、2種類のコンデンサになるが、説明を簡略化するために、ここではコンデンサ50の一方の電極に-10kVの電圧が印加され、他方の電極がグランド電位であるとする。
【0033】
上記のような関係があるため、金属材31は、上記の一方の電極と他方の電極の間の浮遊電極になる。そのため、図3に示すように、コンデンサ50は、第1コンデンサ51と第2コンデンサ52とが直列接続されたものであると考えることができる。
この場合、第1コンデンサ51の電極間の誘電体は、絶縁層32となる。第2コンデンサ52の電極間の誘電体は、絶縁樹脂40およびセラミック板20となる。
ただし、金属材31の底面に塗布される絶縁樹脂40の厚み(0.1mm程度)がセラミック板20の厚み(10mm)に比べて非常に薄い。また、絶縁樹脂40の比誘電率とセラミック板20の比誘電率とは同じではないが、大きく違わない。そのため、以下では、説明を簡略化するために、第2コンデンサ52の電極間の誘電体がセラミック板20であるとして説明する。
【0034】
ここで、第1コンデンサ51の静電容量C51=ε・εr51・S51/d51とし、
第2コンデンサ52の静電容量C52=ε・εr52・S52/d52とする。
ただし、εは真空の誘電率、εr51は絶縁層32の比誘電率、S51は第1コンデンサ51の電極面積、d51は第1コンデンサ51の電極間距離、εr52はセラミック板20の比誘電率、S52は第2コンデンサ52の電極面積、d52はセラミック板20の厚み(10mm)である。
【0035】
また、説明を簡略化するために、絶縁層32の比誘電率εr51とセラミック板20の比誘電率εr52とが同じであり、第1コンデンサ51の電極面積と第2コンデンサ52の電極面積とが同じであるとする。
このように仮定すると、C51:C52=100:1となる。すなわち、第1コンデンサ51の静電容量C51は、第2コンデンサ52の静電容量C52の100倍となる。そのため、交流的には、第1コンデンサ51のインピーダンスは第2コンデンサ52のインピーダンスの1/100となる。また、第1コンデンサ51に印加される電圧は、第2コンデンサ52に印加される電圧の1/100となる。
したがって、浮遊電極となる金属材31の電位は、第1導電領域33および第2導電領域34と殆ど変わらず、約-10kVとなる。そのため、金属材31(特に角部)ではコロナ放電が発生し易い。
【0036】
<絶縁樹脂40の形成方法>
次に、絶縁樹脂40の形成方法について説明する。
(ステップ1)金属基板30の底面(セラミック板20に近い面)に、絶縁樹脂40を塗布する。
(ステップ2)金属基板30をセラミック板20に固定するとともに、金属基板30の周りに金型を固定する。金型は、金属基板30よりも少し大きい寸法になっているので、金型の中に金属基板30が入り込むような状態になる。
(ステップ3)金型に絶縁樹脂40を充填した後、硬化させる。
(ステップ4)金型を取り去ることにより、金属基板30が絶縁樹脂40で覆われた状態となる。
(ステップ5)第1端子36および第2端子37の箇所の絶縁樹脂40を取り去り、第1端子36および第2端子37を取り付ける。
以上の工程を行うことにより、第1端子36および第2端子37を除き、金属基板30を絶縁樹脂40で覆うことができる。
【0037】
なお、金属基板30の底面からの放熱性を高めるために、絶縁樹脂40の熱伝導率は、0.3W/m・K以上であることが好ましい。また、薄く塗布することができるように、絶縁樹脂40の粘度は、10Pa・s以下であることが好ましい。
【0038】
また、金属基板30の側面(特に金属材31の角部や第1導電領域33の角部)は、コロナ放電が発生し易いので、絶縁樹脂40の厚みを1~2mm以上にすることが好ましい。
【0039】
<絶縁樹脂40を設けることの効果>
次に、図4に示す比較例との対比を行うことにより、絶縁樹脂40を設けることの効果について更に説明を行う。
図4は、図1に対応する比較例の高電圧印加回路2の断面図であり、図1に示した高電圧印加回路1に比べて絶縁樹脂40が備わっていない。なお、絶縁樹脂40以外は図1と同様の構成なので、図1と同じ符号を用いている。
【0040】
図4に示す比較例では、絶縁樹脂40が備わっていないので、コロナ放電が発生し易い。特に点線で囲まれた部分、すなわち、金属材31の角部では、コロナ放電が発生し易い。同様に第1導電領域33の角部でもコロナ放電が発生し易いと考えられる。
しかし、本実施形態の金属基板30は、第1端子36および第2端子37を除き、絶縁樹脂40で覆われているので、コロナ放電を発生し難くすることができる。何故ならば、絶縁樹脂40の絶縁耐力は空気よりも大きいからである。また、絶縁樹脂40の比誘電率は、空気に比べて十分に大きいので、電気部品35等に印加される高電圧が、交流電圧またはパルス電圧のように電圧値が変化する場合であっても、高電位部位(第1高電位部位および第2高電位部位)における電界強度を弱く(小さく)することができる。そのため、コロナ放電を発生し難くすることができる。すなわち、コロナ放電を抑制することができる。
【0041】
このコロナ放電の抑制について、更に具体的に説明する。
コロナ放電が発生する箇所を金属基板30の金属材31の角部と仮定した場合、金属材31の角部からヒートシンク10に至る経路を比較例と本実施形態とで比較すると、次のようになる。
(1)比較例:金属材31の角部→空気層→セラミック板20→ヒートシンク10
(2)本実施形態:金属材31の角部→絶縁樹脂40→セラミック板20→ヒートシンク10
【0042】
このように、比較例では空気層であった箇所が、本実施形態では絶縁耐力の大きい絶縁樹脂40になっているので、比較例よりもコロナ放電を発生し難くすることができる。
また、金属基板30の第1端子36および第2端子37が、セラミック板20とは反対側の位置に設けられているので、第1端子36および第2端子37からヒートシンク10に至るまでの距離を物理的に遠くすることができる。そのため、第1端子36および第2端子37からのコロナ放電を発生し難くすることができる。
したがって、本実施形態のように高電圧印加回路1を構成すれば、絶対値が10kV以上の高電位部位(特に金属材31の角部または第1導電領域33の角部等)とヒートシンク10との間でのコロナ放電を抑制できる。
【0043】
また、金属基板30は、セラミック板20に対してヒートシンク10と反対側の位置に設けられており、絶縁樹脂40を介して、セラミック板20と熱的に接続されている。そのため、金属基板30で発生する熱を効果的に放熱することができる。すなわち、本実施形態では、コロナ放電を抑制するだけでなく、放熱面での対策も行うことができる。
【0044】
<その他>
(1)ヒートシンク10とセラミック板20との間に、オイルコンパウンドが塗布してもよい。このようにすると、ヒートシンク10とセラミック板20との密着性を高めることができるので、金属基板で発生する熱の放熱効果を高めることができる。
(2)図1および図2に示した実施形態では、第1高電位部位(例えば、-10kV)が金属基板30の外側に配置され、第2高電位部位(例えば、-11.5kV)が属基板30の中央に配置されていた。しかし、これに限定されるものではなく、第1高電位部位が金属基板30の中央に配置され、第2高電位部位が金属基板30の外側に配置されてもよい。ただし、図4で説明したように、金属基板30の外側の方が、コロナ放電が発生し易いので、電位の低い第1高電位部位を外側に配置した方が好ましい。
(3)上記で説明した実施形態では、第1高電位部位および第2高電位部位が負(マイナス)の電位を有していたが、正(プラス)の電位であってもよい。
【0045】
以上、本開示の実施形態を説明したが、上述の実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら新規な実施形態およびその変形は、発明の範囲および要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【0046】
また、本明細書に記載された実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
【符号の説明】
【0047】
1 高電圧印加回路1
10 ヒートシンク
20 セラミック板
30 金属基板
40 絶縁樹脂
31 金属材
32 絶縁層
33 第1導電領域
34 第2導電領域
35 電気部品
36 第1端子
37 第2端子
図1
図2
図3
図4