(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023015032
(43)【公開日】2023-01-31
(54)【発明の名称】複合材料の製造方法
(51)【国際特許分類】
A61K 6/58 20200101AFI20230124BHJP
A61K 6/84 20200101ALI20230124BHJP
A61L 27/06 20060101ALI20230124BHJP
C23C 14/06 20060101ALI20230124BHJP
C23C 14/48 20060101ALI20230124BHJP
C22C 14/00 20060101ALN20230124BHJP
【FI】
A61K6/58
A61K6/84
A61L27/06
C23C14/06 G
C23C14/48 Z
C22C14/00 Z
【審査請求】有
【請求項の数】17
【出願形態】OL
(21)【出願番号】P 2022160717
(22)【出願日】2022-10-05
(62)【分割の表示】P 2020522583の分割
【原出願日】2019-05-30
(31)【優先権主張番号】P 2018106267
(32)【優先日】2018-06-01
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000006633
【氏名又は名称】京セラ株式会社
(74)【代理人】
【識別番号】110003029
【氏名又は名称】弁理士法人ブナ国際特許事務所
(72)【発明者】
【氏名】雑賀 健一
(72)【発明者】
【氏名】渡辺 健一
(72)【発明者】
【氏名】京本 政之
(57)【要約】 (修正有)
【課題】複合材料および該材料を含む生体インプラントを提供する。
【解決手段】一実施形態に係る複合材料は、チタンフッ化物の結晶相2と、チタンの金属結晶相3と、を有する。チタンフッ化物の結晶相は、表面から深さ方向に離れて位置する第1領域12に存在する。
【選択図】
図1
【特許請求の範囲】
【請求項1】
チタンフッ化物の結晶相と、チタンの金属結晶相と、を有し、
前記チタンフッ化物の結晶相は、表面から深さ方向に離れて位置する第1領域に存在する、複合材料。
【請求項2】
前記チタンフッ化物は、TiOF2である、請求項1に記載の複合材料。
【請求項3】
前記金属結晶相は、フッ素を含む第1相を有する、請求項1または2に記載の複合材料。
【請求項4】
前記第1相は、前記第1領域に位置している、請求項3に記載の複合材料。
【請求項5】
前記金属結晶相は、前記第1相よりも内方に位置する第2相、をさらに有し、
前記第2相は、フッ素を含まない、請求項3または4に記載の複合材料。
【請求項6】
前記第2相は、前記第1領域よりも内方に位置している、請求項5に記載の複合材料。
【請求項7】
チタンおよびフッ素を含む非晶質相、をさらに有する、請求項1~6のいずれかに記載の複合材料。
【請求項8】
前記非晶質相、前記チタンフッ化物の結晶相、および前記金属結晶相の混合相、をさらに有する、請求項7に記載の複合材料。
【請求項9】
フッ素濃度は、表面よりも内方において最大値を示す、請求項1~8のいずれかに記載の複合材料。
【請求項10】
前記フッ素濃度は、前記表面から内方に向かうにつれて大きくなって最大値に至っている、請求項9に記載の複合材料。
【請求項11】
前記フッ素濃度は、前記第1領域内で最大値に至っている、請求項9または10に記載の複合材料。
【請求項12】
前記フッ素濃度は、前記第1領域の深さ方向の中央部よりも前記表面の側で最大値に至っている、請求項11に記載の複合材料。
【請求項13】
硬度は、表面よりも内方において最大値を示す、請求項1~12のいずれかに記載の複合材料。
【請求項14】
前記硬度は、前記表面から内方に向かうにつれて大きくなって最大値に至っている、請求項13に記載の複合材料。
【請求項15】
前記硬度は、前記第1領域内で最大値に至っている、請求項13または14に記載の複合材料。
【請求項16】
前記硬度は、前記第1領域の深さ方向の中央部よりも前記表面の側で最大値に至っている、請求項15に記載の複合材料。
【請求項17】
硬度は、フッ素濃度が最大値を示す位置よりも表面の側で最大値を示す、請求項1~16のいずれかに記載の複合材料。
【請求項18】
生体インプラント用である、請求項1~17のいずれかに記載の複合材料。
【請求項19】
請求項1~18のいずれかに記載の複合材料を含む、生体インプラント。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、複合材料および生体インプラント(Implant)に関する。
【背景技術】
【0002】
表面にフッ素イオンが注入された金属材料が知られている(例えば、特許文献1および非特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【非特許文献】
【0004】
【非特許文献1】M.Yoshinari, Y.Oda, T.Kato, K.Okuda, 「Influence of surface modifications to titanium on antibacterial activity in vitro」, Biomaterials, 2001, 22, p. 2043-2048
【発明の概要】
【0005】
一実施形態に係る複合材料は、チタンフッ化物の結晶相と、チタンの金属結晶相と、を有する。チタンフッ化物の結晶相は、表面から深さ方向に離れて位置する第1領域に存在する。
【0006】
一実施形態に係る生体インプラントは、一実施形態に係る複合材料を含んでいる。
【図面の簡単な説明】
【0007】
【
図1】
図1は、一実施形態に係る複合材料を示す概略図である。
【
図2】
図2は、一実施形態に係る生体インプラントの一例である。
【
図3】
図3は、実施例におけるフッ素濃度の測定結果を示すグラフである。
【
図4】
図4は、実施例および比較例における硬度の測定結果を示すグラフである。
【発明を実施するための形態】
【0008】
<複合材料>
以下、一実施形態に係る複合材料について、図面を用いて詳細に説明する。但し、以下で参照する図は、説明の便宜上、実施形態を説明する上で必要な構成のみを簡略化して示したものである。したがって、一実施形態に係る複合材料は、参照する図に示されていない任意の構成を備え得る。また、図中の構成の寸法は、実際の構成の寸法および寸法比率などを忠実に表したものではない。これらの点は、後述する生体インプラントにおいても同様である。
【0009】
図1は、一実施形態に係る複合材料を示す概略図である。
図1では、複合材料の表面を含む部分の断面を拡大して示している。
【0010】
複合材料1は、チタン(Ti)およびフッ素(F)を含んでおり、チタンフッ化物の結晶相2(以下、「結晶相2」ということがある。)と、チタンの金属結晶相3(以下、「金属結晶相3」ということがある。)とを有している。結晶相2では、チタンおよびフッ素の化合物であるチタンフッ化物が結晶の状態で存在している。金属結晶相3では、チタンが金属結合によって構成される結晶の状態で存在している。
【0011】
複合材料1は、上述のとおり、フッ素を含んでおり、且つ、結晶相2を有していることから、フッ素に起因する抗菌性を発揮することが可能となる。また、複合材料1は、大きな硬度を有していることから、優れた耐摩耗性などを発揮することが可能となる。複合材料1が大きな硬度を有している理由としては、以下の理由が推測される。
【0012】
チタンフッ化物におけるチタンとフッ素との結合は、共有結合である。それゆえ、結晶相2は、金属結晶相3を移動する転移の障害物として機能する。したがって、複合材料1が結晶相2を有していると、転移の移動に必要なエネルギー量が大きくなり、その結果、複合材料1の硬度が大きくなる。なお、複合材料1におけるフッ素濃度が大きくなると、結晶相2の割合が大きくなる傾向がある。
【0013】
チタンフッ化物としては、例えば、TiF(フッ化チタン)、TiF2(二フッ化チタン)、TiF3(三フッ化チタン)、TiF4(四フッ化チタン)、TiOF(オキシフッ化チタン)、TiOF2(オキシ二フッ化チタン)またはF-TiO2(フッ素ドープ酸化チタン)などが挙げられる。チタンフッ化物は、TiOF2であってもよい。結晶相2は、Ti-F-Ti結合(共有結合)を有していてもよい。
【0014】
結晶構造の測定方法としては、例えば、透過型電子顕微鏡(Transmission Electron Microscope:以下、「TEM」ということがある。)、X線回折(X-ray Diffraction:以下、「XRD」ということがある。)またはX線光電子分光分析法(X-ray Photoelectron Spectroscopy:以下、「XPS」ということがある。)などが挙げられる。
【0015】
複合材料1は、複合材料1の表面11を含み表面11から深さ方向に所定厚みを有する領域(第1領域)12を備えていてもよい。また、第1領域12は、チタンおよびフッ素の複合相である。なお、第1領域12のフッ素濃度は、1ppm以上であってもよい。
【0016】
第1領域12の厚みTは、例えば、30~800nmである。なお、数値範囲を「~」を使用して示すときは、特に断りがない限り、下限および上限の数値をそれぞれ含むものとする。例えば、数値範囲が30~800nmのときは、下限が30nm以上を示し、上限が800nm以下を示す。
【0017】
結晶相2は、第1領域12内に位置していてもよい。このような構成を満たすときは、結晶相2が表面11の近くに位置することから、チタンフッ化物のフッ素に起因する抗菌性が高まるとともに、表面11およびその近傍の硬度を大きくすることができる。
【0018】
結晶相2は、表面11から深さ20~200nmの領域に位置していてもよい。深さは、表面11を基準にして判断すればよい。
【0019】
金属結晶相3は、フッ素を含む第1相31(フッ素含有相)を有していてもよい。言い換えれば、金属結晶相3は、チタンの結晶格子中にフッ素を含む第1相31を有していてもよい。第1相31では、チタンの結晶格子中にフッ素が侵入型元素として導入されていてもよい。金属結晶相3が第1相31を有していれば、複合材料1の硬度をより大きくすることができる。この理由としては、以下の理由が推測される。
【0020】
第1相31において、フッ素原子は、金属結合によって構成されるチタンの結晶格子中の空間内に侵入する。これにより、チタンの結晶には、侵入したフッ素原子の大きさに応じた格子歪みが生じる。チタンの結晶格子の変形は、結晶格子の欠陥である転移の移動によって引き起こされる。チタンの結晶格子がフッ素原子の侵入によって歪んでいると、転移の移動度が低下し、その結果、複合材料1の硬度が大きくなる。したがって、金属結晶相3が第1相31を有していれば、結晶相2に加えて第1相31も複合材料1の硬度に寄与することから、複合材料1の硬度をより大きくすることができる。また、複合材料1におけるフッ素濃度を小さくすると、第1相31の割合が大きくなる傾向がある。
【0021】
第1相31は、第1領域12内に位置していてもよい。このような構成を満たすときは、第1相31が表面11の近くに位置することから、表面11およびその近傍の硬度を大きくすることができる。また、第1相31が位置する第1領域12は、結晶相2が位置する第1領域12と同一である。この点は、後述する第2相32が位置する第1領域12、フッ素濃度の最大値が位置する第1領域12、および硬度の最大値が位置する第1領域12においても同様である。すなわち、各構成の説明における第1領域12はいずれも、互いに同一である。
【0022】
金属結晶相3は、第1相31よりも内方に位置するフッ素を含まない第2相32(フッ素非含有相)をさらに有していてもよい。このような構成を満たすときは、第2相32よりも表面11の側に位置している第1相31を含む部位が損傷し難くなる。具体的に説明すると、第2相32は、フッ素を含まないことに起因して、第1相31よりも高い靱性を有する。それゆえ、表面11に衝撃が加わったときには、相対的に高い靱性を有する第2相32によって衝撃を緩和することができる。その結果、第2相32よりも表面11の側に位置している第1相31を含む部位が損傷し難くなる。
【0023】
なお、第2相32が第1相31よりも内方に位置するとは、第2相32が第1相31よりも表面11から離れて位置することを意味する。内方とは、表面11に対して複合材料1の内側のことを意味する。言い換えれば、内方とは、複合材料1において深さが大きくなる方向のことを意味する。また、フッ素を含まないとは、フッ素を実質的に含んでおらず、フッ素による影響が実質的にない状態のことを意味する。具体的には、フッ素濃度が1ppm未満のとき、フッ素を含まないと判断してもよい。
【0024】
第2相32は、第1領域12よりも内方に位置していてもよい。このような構成を満たすときは、相対的に高い靱性を有する第2相32によって、第2相32よりも表面11の側に位置している第1領域12が損傷し難くなる。
【0025】
複合材料1は、第1領域12よりも内方に位置する領域(第2領域)13をさらに備えていてもよい。第2領域は、チタンを含み、且つ、フッ素を含まない領域であればよい。また、第2相32は、第2領域内に位置していてもよい。第2領域13は、第1領域12に接していてもよい。すなわち、第1領域12と第2領域13は、複合材料1において連続する領域であってもよい。
【0026】
金属結晶相3は、例えば、チタン系金属を含んでいてもよい。チタン系金属としては、例えば、純チタンまたはチタン合金などが挙げられる。純チタンとしては、例えば、母相をチタンとするC.P.2種チタンなどの工業用純チタンが挙げられる。チタン合金は、母相をチタンとする合金であり、例えば、Ti-6Al(アルミニウム)-4V(バナジウム)、Ti-15Mo(モリブデン)-5Zr(ジルコニウム)-3Al、Ti-Nb(ニオブ)、Ti-6Al-7Nb、Ti-6Al-2Nb-1Ta(タンタル)、Ti-30Zr-Mo、Ni(ニッケル)-Ti、Ti-3Al-2.5V、Ti-10V-2Fe(鉄)-3AlまたはTi-15V-3Cr(クロム)-3Al-3Sn(スズ)などが挙げられる。
【0027】
複合材料1は、チタンおよびフッ素を含む非晶質相4(アモルファス相)をさらに有していてもよい。このような構成を満たすときは、非晶質相4の高い靱性によって、複合材料1が損傷し難くなる。
【0028】
非晶質相4は、第1領域12内に位置していてもよい。このような構成を満たすときは、非晶質相4の高い靱性によって、第1領域12が損傷し難くなる。
【0029】
複合材料1は、非晶質相4、結晶相2、および金属結晶相3(第1相31)を含有する混合相5をさらに有していてもよい。一実施形態において、混合相5は、第1領域12内に位置している。混合相5では、複数の非結晶相4、結晶相2および金属結晶相3が混在している。この場合、各相の材料特性はそれぞれ異なるが、第1領域12における複合材料1の材料特性は、各相の割合に応じた特性となる。具体的には、含有する各相の材料特性を平均した特性、あるいはこれに近い特性となる。すなわち、複合材料1は、各相を混合相5として含有することで、第1領域において材料特性が異なる部分を低減することができる。したがって、複合材料1は、混合相5を有することで、第1領域12から材料が部分的に剥離する可能性を低減することができる。すなわち、複合材料1の安定性を向上させることができる。
【0030】
複合材料1において、フッ素濃度は、表面11よりも内方において最大値を示していてもよい(
図3参照)。このような構成を満たすときは、摩耗などによって新しい表面11が露出するとき、相対的に大きなフッ素濃度を有する表面11が露出しやすくなることから、長期にわたって抗菌性を発揮しやすくなる。
【0031】
フッ素濃度は、表面11から内方に向かうにつれて大きくなって最大値に至っていてもよい(
図3参照)。言い換えれば、深さが大きくなるにつれて、フッ素濃度が大きくなって最大値に至っていてもよい。このような構成を満たすときは、摩耗などによって新しい表面11が露出するとき、相対的に大きなフッ素濃度を有する表面11が露出することから、長期にわたって抗菌性を発揮することが可能となる。また、フッ素濃度の分布を調整することで、複合材料1は、抗菌性能を発揮する時期を調整することができる。
【0032】
フッ素濃度の最大値は、第1領域12内に位置していてもよい。このような構成を満たすときは、フッ素濃度の最大値が表面11の近くに位置することから、抗菌性が高まる。
【0033】
フッ素濃度の最大値は、第1領域12の厚み方向Aの中央部12aよりも表面11の側に位置していてもよい(
図1および
図3参照)。このような構成を満たすときは、フッ素濃度の最大値が表面11の近くに位置することから、抗菌性が高まる。
【0034】
ここで、フッ素濃度における濃度とは、原子濃度である。一実施形態において、フッ素濃度とは、単位体積当たりのチタン原子の理想原子数とフッ素原子数の和に対する、単位体積当たりのフッ素原子数である。フッ素濃度の測定方法としては、例えば、二次イオン質量分析法(Secondary Ion Mass Spectrometry:以下、「SIMS」ということがある。)またはXPSなどが挙げられる。SIMSは、フッ素濃度が比較的小さいときに好適である。XPSは、フッ素濃度が比較的大きいときに好適である。
【0035】
フッ素濃度の最大値は、例えば、10~80原子%である。表面11から深さ5nm未満の領域におけるフッ素濃度は、例えば、0.5~20原子%である。深さ5nm以上20nm未満の領域におけるフッ素濃度は、例えば、2~30原子%である。深さ20nm以上50nm未満の領域におけるフッ素濃度は、例えば、5~80原子%である。深さ50nm以上100nm以下の領域におけるフッ素濃度は、例えば、2~80原子%である。
【0036】
複合材料1の硬度は、表面11よりも内方において最大値を示していてもよい(
図4参照)。このような構成を満たすときは、摩耗などによって新しい表面11が露出するとき、相対的に大きな硬度を有する表面11が露出しやすくなることから、長期にわたって表面11が大きな硬度を有する可能性が高まる。なお、硬度の説明における表面11は、上述したフッ素濃度の説明における表面11と同一である。
【0037】
硬度は、表面11から内方に向かうにつれて大きくなって最大値に至っていてもよい(
図4参照)。言い換えれば、深さが大きくなるにつれて、硬度が大きくなって最大値に至っていてもよい。このような構成を満たすときは、摩耗などによって新しい表面11が露出するとき、相対的に大きな硬度を有する表面11が露出することから、長期にわたって表面11が大きな硬度を有するようになる。
【0038】
また、硬度は、表面11から内方に向かうにつれて大きくなって最大値に至った後、さらに内方に向かうにつれて小さくなっていてもよい(
図4参照)。言い換えれば、複合材料1は、内部において硬度の変化が緩やかになるように構成されてもよい。これによれば、複合材料1内部の硬度が急激に変化する構成と比較して、局所的な応力の発生を低減することができるため、第1領域12が剥離する可能性を低減することができる。
【0039】
硬度の最大値は、第1領域12内に位置していてもよい。このような構成を満たすときは、硬度の最大値が表面11の近くに位置することから、表面11およびその近傍の硬度を大きくすることができる。
【0040】
硬度の最大値は、第1領域12の厚み方向Aの中央部12aよりも表面11の側に位置していてもよい(
図1および
図4参照)。このような構成を満たすときは、硬度の最大値が表面11の近くに位置することから、表面11およびその近傍の硬度を大きくすることができる。
【0041】
硬度の最大値は、フッ素濃度の最大値よりも表面11の近くに位置していてもよい(
図3および
図4参照)。このような構成を満たすときは、フッ素濃度の最大値よりも表面11の近くに位置している部位の硬度が、相対的に大きくなる。それゆえ、フッ素濃度の最大値よりも表面11の近くに位置している部位が、摩耗などによって損傷し難くなり、長期にわたって抗菌性を発揮することが可能となる。
【0042】
硬度は、例えば、3~10GPaである。硬度の最大値は、例えば、5~10GPaである。硬度は、押し込み硬度であって、表面11が変形を受けるときの変形し難さを示すものである。硬度は、表面11に圧子を押し込んだときの押し込み深さと要する力とから算出される。具体的な硬度の測定方法としては、例えば、ナノインデンテーション法(ISO 14577準拠)などが挙げられる。
【0043】
複合材料1は、最表面に位置している酸化皮膜(不図示)をさらに備えていてもよい。この場合、複合材料1の表面11は、酸化皮膜の表面からなる。酸化皮膜の厚みは、例えば、2~5nmである。酸化皮膜の組成としては、例えば、TiO2(二酸化チタン)などが挙げられる。酸化皮膜は、フッ素を含んでいてもよい。酸化皮膜は、例えば、酸化処理などによって形成される。酸化処理としては、例えば、自然酸化、熱処理、酸素プラズマ処理、酸溶液への浸漬または陽極酸化などが挙げられる。
【0044】
複合材料1において、チタンの含有量は、フッ素の含有量よりも多くてもよい。また、複合材料1は、チタンを主成分として含んでいてもよい。主成分とは、複合材料1中に質量比で最も多く含まれる成分のことである。
【0045】
<複合材料の製造方法>
次に、一実施形態に係るに係る複合材料の製造方法について、上述した複合材料1を得る場合を例にとって、詳細に説明する。
【0046】
まず、チタン系金属を準備する。チタン系金属は、必要に応じて洗浄してもよい。洗浄には、例えば、有機溶剤などを使用してもよい。有機溶剤としては、例えば、エタノールまたはアセトンなどが挙げられる。例示した有機溶剤は、混合して使用してもよい。洗浄は、超音波をかけて行ってもよい。洗浄後のチタン系金属は、例えば、デシケーター内で真空乾燥させてもよい。
【0047】
次に、チタン系金属の表面にフッ素イオンを注入し、複合材料1を得る。フッ素イオンの注入条件としては、例えば、以下の条件が挙げられる。
注入エネルギー:30keVよりも大きく80keV以下
注入ドーズ:1×1016~5×1017原子/cm2(atom/cm2)
【0048】
得られた複合材料1は、必要に応じて洗浄してもよい。洗浄の条件は、上述したチタン系金属で例示したのと同じ条件が挙げられる。洗浄後の複合材料1は、例えば、デシケーター内で真空乾燥させてもよい。
【0049】
なお、上述した実施形態では、フッ素イオンの注入によって複合材料1を得る場合を例にとって説明したが、複合材料1の製造方法としては、これに限定されるものではなく、複合材料1が得られる限り、フッ素イオンの注入以外の他の方法を採用することができる。
【0050】
<生体インプラント>
次に、一実施形態に係る生体インプラントについて、図面を用いて詳細に説明する。なお、本実施形態では、生体インプラントの例として、歯科インプラントについて説明する。
【0051】
図2は、一実施形態に係る歯科インプラントの外観を示す概略図である。
【0052】
歯科インプラント100は、フィクスチャー101と、フィクスチャー101の端部に取り付けられているアバットメント102と、アバットメント102を介してフィクスチャー101に取り付けられている人工歯103とを備えている。
【0053】
歯科インプラント100は、フィクスチャー101、アバットメント102および人工歯103のそれぞれが複合材料1を含んでいる。上述の通り、複合材料1が、抗菌性を有し、且つ、大きな硬度を有していることから、歯科インプラント100は、細菌の増殖を抑制することができ、ブラッシング、繰り返しの使用または洗浄などに対して優れた耐久性を発揮することが可能となる。
【0054】
ここで、フィクスチャー101、アバットメント102および人工歯103のそれぞれは、複合材料1のみで構成されていてもよい。また、これらは、一部が複合材料1で構成されており、残りの部位が複合材料1以外の材料で構成されていてもよい。また、フィクスチャー101、アバットメント102および人工歯103のうち少なくとも1つが複合材料1を含んでおり、他の部材が複合材料1以外の材料を含んでいればよい。上記のような構成によれば、インプラント表面の細菌の増殖が抑制される。例えば、フィクスチャー101、およびアバットメント102は酸素の欠乏した環境で使用されるため嫌気性細菌の増殖抑制が期待できる。また、例えば、人工歯103は口腔内で露出し空気にさらされるため通性嫌気性細菌や好気性細菌の増殖抑制が期待できる。したがって、複合材料1は、増殖を抑制したい菌種、必要な抗菌性能に応じて、フィクスチャー101、アバットメント102および人工歯103に適宜用いられればよい。
【0055】
複合材料1における第1領域12は、例えば、歯科インプラント100のうち細菌が接触する可能性がある部位、摩耗する可能性がある部位などに位置していればよい。例えば、歯科インプラント100は、第1領域12が、フィクスチャー101、アバットメント102、および人工歯103の表面に位置するように構成されればよい。また、例えば、歯科インプラント100は、第1領域12が、フィクスチャー101、アバットメント102、および人工歯103の各接合箇所に位置するように構成されればよい。この点は、後述する他の生体インプラント、生体インプラント以外の他の部材においても同様である。
【0056】
以上、本開示に係る一実施形態について例示したが、本開示は上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない限り任意のものとすることができることはいうまでもない。
【0057】
例えば、上述した実施形態では、生体インプラントが歯科インプラントである場合を例にとって説明したが、生体インプラントは、これに限定されるものではない。例えば、生体インプラントは、チタンなどの生体用金属製のインプラントであればよい。他の生体インプラントとしては、例えば、大腿骨ステムまたは寛骨臼シェルなどの人工関節、および脊椎固定インストゥルメンテーションなどの脊椎外科インプラントなどが挙げられる。
【0058】
また、上述した実施形態では、複合材料1が生体インプラント用である場合を例にとって説明したが、複合材料1は、生体インプラント用に限定されるものではない。すなわち、複合材料1は、抗菌性および高硬度性を要する部材の材料として用いられればよい。他の部材としては、例えば、歯科矯正ワイヤー、手術器具、注射針、メガネのフレーム、食器類、食品工場のライン、水筒の飲み口、包丁、トイレ、ウォシュレット(登録商標)、蛇口または上下水道管などが挙げられる。
【0059】
以下、実施例を挙げて本開示を詳細に説明する。なお、本開示は以下の実施例に限定されるものではない。
【実施例0060】
[実施例1および実施例2]
<複合材料の作製>
まず、以下に示す試験片を準備した。
試験片:C.P.2種チタンからなる厚さ1mmの純チタン
【0061】
上述した試験片を、直径14mm、厚さ1mmの円盤状に成形した後、エタノールおよびアセトンで超音波洗浄し、デシケーター内で真空乾燥させた。そして、試験片の表面に異なる条件でフッ素イオンを注入し、実施例1および実施例2の複合材料1を得た。
【0062】
フッ素イオンの注入条件は、以下のとおりである。
(実施例1)
注入エネルギー:40keV
注入ドーズ:5×1017原子/cm2
(実施例2)
注入エネルギー:40keV
注入ドーズ:5×1016原子/cm2
【0063】
得られた複合材料1は、エタノールおよびアセトンで超音波洗浄し、デシケーター内で真空乾燥させた後、評価に使用した。
【0064】
[比較例1]
実施例1および実施例2と同じ試験片であってフッ素イオンを注入しなかったものを比較例1とした。
【0065】
<評価>
実施例1および実施例2の複合材料1について、フッ素濃度、硬度および結晶構造を測定した。また、実施例1の複合材料1については、抗菌性を測定した。比較例1については、硬度および抗菌性を測定した。
【0066】
図3は、実施例1および実施例2におけるフッ素濃度の測定結果を示すグラフである。
【0067】
(フッ素濃度)
実施例1および実施例2のフッ素濃度は、XPSおよびSIMSによって測定した。具体的には、フッ素濃度が比較的大きくてSIMSの測定範囲を超える領域はXPSよってフッ素濃度を求め、それ以外の領域はSIMSによってフッ素濃度を求めた。具体的には、フッ素濃度が10原子%までの範囲はSIMSによってフッ素濃度を求めた。また、フッ素濃度が10原子%以上の範囲は、XPSによってフッ素濃度を求めた。ここで、XPSの測定は、深さ0~200nmで実施し、SIMSの測定は、深さ0~900nmで実施した。なお、
図3には、深さ0~200nmの測定結果のみを示した。また、
図3において、深さ0nmは、複合材料1の表面11を示す。この点は、後述する
図4においても同様である。XPSおよびSIMSのそれぞれの測定条件は、以下のとおりである。
【0068】
(XPSの測定条件)
分析装置:ULVAC-PHI社製のX線光電子分光分析装置「PHI Quantera II」
X線源:モノクロAlKα
スパッタリングイオン:Ar+
加速電圧:4kV
【0069】
(SIMSの測定条件)
分析装置:ULVAC-PHI社製の二次イオン質量分析装置「D-SIMS 6650」
一次イオン種:Cs+
二次イオン極性:Negative
加速電圧:2kV
ビーム電流:25nA
電荷補償:なし
ラスターサイズ:400μm
【0070】
測定結果から、実施例1では、深さ90nmにフッ素濃度の最大値が位置していることが明らかとなった。実施例1のフッ素濃度の最大値は、63原子%であった。実施例2では、深さ46nmにフッ素濃度の最大値が位置していていることが明らかとなった。実施例2のフッ素濃度の最大値は、11原子%であった。
【0071】
深さ0nm(表面11)からフッ素濃度が1ppmとなる深さまでを第1領域12とし、その厚みTを測定した。測定結果は、以下のとおりである。
(第1領域の厚みT)
実施例1:740nm
実施例2:390nm
【0072】
図4は、実施例1、実施例2および比較例1における硬度の測定結果を示すグラフである。
【0073】
(硬度)
硬度は、ナノインデンテーション法(ISO 14577準拠)によって測定した。ここで、測定は、深さ0~1000nmで実施した。なお、
図4には、深さ0~500nmの測定結果のみを示した。
【0074】
硬度の測定条件は、以下のとおりである。
測定装置:MTSシステムズ社製の「ナノインデンターXP」
測定モード:連続剛性測定
押込み深さ:最大1000nm
硬度単位:ビッカース硬度
【0075】
測定結果から、実施例1では、深さ70nmに硬度の最大値が位置していることが明らかとなった。実施例1の硬度の最大値は、5GPaであった。実施例2では、深さ20nmに硬度の最大値が位置していることが明らかとなった。実施例2の硬度の最大値は、7GPaであった。
【0076】
(結晶構造)
結晶構造は、TEM、XRDおよびXPSによって評価した。なお、TEM、XRDおよびXPSの各測定では、上述した第1領域12の厚みTから第1領域12を判断し、第1領域12よりも内方に位置している領域を第2領域とした。
【0077】
TEMの測定条件は、以下のとおりである。
分析装置:FEI社製の透過型電子顕微鏡「Talos F200X」
加速電圧:200kV
ビーム電流値:150pA
測定場所:複合材料1を厚み方向に切断した断面
【0078】
XRDの測定条件は、以下のとおりである。
分析装置:PANalytical社製の「X’ Pert PRO-MRD」
管球:CuKα
入射角度:0.5°
測定範囲:10~120°
【0079】
XPSの測定条件は、上述したフッ素濃度と同じである。
【0080】
まず、TEMによる断面観察を実施した。回折パターンは、国際回折データセンター(International Centre for Diffraction Data, ICDD)が提供するデータベースを参照した(TiOF2:ICDD No.00-008-0060、チタンα相:ICDD No.00-044-1294)。観察の結果、実施例1および実施例2ではいずれも、第1領域12内にTiOF2(結晶相2)に帰属する回折パターンが得られ、第2領域内にチタンα相の回折パターン(第2相32)が得られた。
【0081】
また、実施例1および実施例2ではいずれも、第1領域12内に第1相31が確認された。実施例1では、結晶相2が第1相31よりも多く確認された。実施例2では、第1相31が結晶相2よりも多く確認された。また、実施例1では、第1領域12内に非晶質相4および混合相5が確認された。
【0082】
次に、XRDによる測定を実施した。回折パターンはICDDが提供するJCPDSを参照した。測定の結果、第1領域12において第2領域と異なる結晶構造が確認された。
【0083】
そして、XPSによる測定を実施した。ピークの帰属については、表1に示す。測定の結果、実施例1および実施例2ではいずれも、TiF
3、TiF
4およびF-TiO
2に帰属するピークが得られた。また、実施例1では、Ti-F-Ti結合に帰属するピークが得られたが、このピークは、チタンフッ化物の結晶に起因するものと考えられる。その他は、
図1に示す状態が確認された。
【0084】
【0085】
(抗菌性)
抗菌性は、黄色ブドウ球菌を使用したフィルム密着試験(JIS Z 2801準拠)によって測定した。
【0086】
測定結果は、以下のとおりである。
付着生菌数(CFUs)
実施例1:<10(検出限界以下)
比較例1:17667
【0087】
測定の結果、実施例1では、付着生菌数が検出限界以下であった。また、実施例1の抗菌活性値は、3.2であった。したがって、実施例1は、抗菌効果を有していることが明らかとなった。
前記第2乾燥工程の後において、前記チタン系金属の表面からフッ素濃度が1ppmとなる深さまでの第1領域の厚みは、30nm以上800nm以下である、請求項9に記載の複合材料の製造方法。