IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ダイヘンの特許一覧

<>
  • 特開-バーチャルパワープラント 図1
  • 特開-バーチャルパワープラント 図2
  • 特開-バーチャルパワープラント 図3
  • 特開-バーチャルパワープラント 図4
  • 特開-バーチャルパワープラント 図5
  • 特開-バーチャルパワープラント 図6
  • 特開-バーチャルパワープラント 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023150839
(43)【公開日】2023-10-16
(54)【発明の名称】バーチャルパワープラント
(51)【国際特許分類】
   H02J 3/00 20060101AFI20231005BHJP
   H02J 3/14 20060101ALI20231005BHJP
   H02J 3/38 20060101ALI20231005BHJP
   H02J 13/00 20060101ALI20231005BHJP
【FI】
H02J3/00 170
H02J3/14
H02J3/38 110
H02J13/00 301A
H02J13/00 311R
【審査請求】未請求
【請求項の数】6
【出願形態】OL
(21)【出願番号】P 2022060151
(22)【出願日】2022-03-31
(71)【出願人】
【識別番号】000000262
【氏名又は名称】株式会社ダイヘン
(74)【代理人】
【識別番号】100135389
【弁理士】
【氏名又は名称】臼井 尚
(74)【代理人】
【識別番号】100168044
【弁理士】
【氏名又は名称】小淵 景太
(72)【発明者】
【氏名】花尾 隆史
(72)【発明者】
【氏名】北村 高嗣
(72)【発明者】
【氏名】大堀 彰大
【テーマコード(参考)】
5G064
5G066
【Fターム(参考)】
5G064AA01
5G064AA04
5G064AC05
5G064AC09
5G064CB06
5G064CB12
5G064DA02
5G066AA03
5G066HA15
5G066HA17
5G066HB06
5G066HB09
(57)【要約】
【課題】需要家の契約における制約による不都合の発生を防止できるバーチャルパワープラントを提供する。
【解決手段】バーチャルパワープラントCは、複数の需要家Bと、複数の需要家Bを管理する全体制御装置Aとを備えている。各需要家Bはそれぞれ、受電点を介して電力系統に接続された負荷4と、負荷4に接続されたパワーコンディショナ3と、パワーコンディショナ3を管理する集中管理装置2とを備えている。集中管理装置2は、全体制御装置Aから受信した上位指標prに基づく個別指令値PiC2を補正する指令値補正部24と、補正後の個別指令値PiC2に基づく下位指標pr’を設定する指標算出部22と、下位指標pr’をパワーコンディショナ3に送信する送信部25とを備えている。
【選択図】図1
【特許請求の範囲】
【請求項1】
複数の需要家と、前記複数の需要家を管理する全体制御装置と、を備えているバーチャルパワープラントであって、
前記各需要家はそれぞれ、受電点を介して電力系統に接続された負荷と、前記負荷に接続されたパワーコンディショナと、前記パワーコンディショナを管理する集中管理装置と、を備え、
前記集中管理装置は、
前記全体制御装置から受信した上位目標に基づく個別指令値を補正する補正部と、
補正後の個別指令値に基づく下位目標を設定する設定部と、
前記下位目標を前記パワーコンディショナに送信する送信部と、
を備えている、
バーチャルパワープラント。
【請求項2】
前記パワーコンディショナまたは前記負荷を停止させる停止部をさらに備え、
前記補正部は、前記停止部が前記パワーコンディショナまたは前記負荷の停止を行ってから所定時間経過までの間、前記個別指令値の変化を抑制するように補正する、
請求項1に記載のバーチャルパワープラント。
【請求項3】
前記補正部は、前記個別指令値を、前記個別指令値と前回受信した上位目標に基づく前回個別指令値との差に係数を乗算した値を前記前回個別指令値に加算した値に補正することで、前記個別指令値の変化を抑制する、
請求項2に記載のバーチャルパワープラント。
【請求項4】
前記補正部は、前記個別指令値を上限値以下の値、または、下限値以上の値に補正する、
請求項1ないし3のいずれかに記載のバーチャルパワープラント。
【請求項5】
前記全体制御装置は、
前記複数の需要家の各受電点電力を合計した合計電力を合計出力指令値にするための共通の上位指標を、前記各需要家に送信するための前記上位目標として算出し、
前記設定部は、当該需要家の受電点電力を前記補正後の個別指令値にするための下位指標を算出して、前記下位目標として設定し、
前記パワーコンディショナは、受信した前記下位目標を用いて、あらかじめ設定されている最適化問題に基づいて、自装置の個別出力電力の目標値である個別目標電力値を算出し、前記個別目標電力値に基づいて、前記個別出力電力の制御を行う、
請求項1ないし4のいずれかに記載のバーチャルパワープラント。
【請求項6】
前記集中管理装置は、
前記全体制御装置から前記上位目標を受信しない場合、当該需要家のエネルギーマネジメントのための需要家指令値に基づいて前記下位指標を算出する、
請求項5に記載のバーチャルパワープラント。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バーチャルパワープラントに関する。
【背景技術】
【0002】
現在、エネルギーシステムの改革が進められており、バーチャルパワープラント(Virtual Power Plant:以下では、「VPP」と略して記載する場合がある)が注目されている。VPPは、複数の需要家(工場、事業所、ビル、個人宅などの、電力の供給を受けて使用する者)を、電力の需要を管理するシステムネットワークでまとめて制御するものであり、複数の需要家をあたかも1つの発電所のように機能させる仮想の発電所を意味している。VPPは、複数の需要家、および、複数の需要家の電力の需要を管理する全体制御装置を備えている。特許文献1には、複数の需要家の代わりに複数の発電システムを制御するVPPが開示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第6849177号
【発明の概要】
【発明が解決しようとする課題】
【0004】
VPPは、複数の需要家の受電点電力を束ねて調整力を供出させる。受電点電力は、各需要家が電力系統に接続する受電点での電力であり、電力系統から需要家に電力を供給する場合を正の値とし、需要家から電力系統に電力を供給する場合(逆潮流)を負の値とする。VPPにおいて、全体制御装置は、調整力の供出が必要な場合、複数の需要家にそれぞれ受電点電力の目標値を設定する。各需要家は、目標値に応じて受電点電力を制御する。一方、各需要家は、全体制御装置から目標値を設定されていない場合は、それぞれ需要家内でのエネルギーマネジメントを行っている。各需要家は、それぞれ電力会社などとの契約電力が設定されている。また、自家消費の契約をしている場合は、逆電力継電器(Reverse Power Relay:以下では、「RPR」と略して記載する場合がある)、または、不足電力継電器(Under Power Relay:以下では、「UPR」と略して記載する場合がある)が設置されている。
【0005】
例えば、VPPの調整力の供出のために、全体制御装置が、各需要家の受電点電力の目標値を大きくする方向に変更していくと、ある需要家において、受電点電力が契約電力を超過する可能性がある。また、VPPの調整力の供出のために、全体制御装置が、各需要家の受電点電力の目標値を小さくする方向に変更していくと、ある需要家において、UPR(RPR)が動作する可能性がある。また、需要家が、UPR(RPR)を動作させないように調整力を供出させる機器の出力を停止させた場合、全体的な調整力の供出量が不足するので、他の需要家が不足分を補う。その後、調整力の供出を停止させた需要家が再度調整力を供出すると、調整力の供出量が過剰になり、他の需要家の調整力を抑制する必要がある。このような動作が繰り返されると、VPPは、安定した電力需給調整ができなくなる恐れがある。
【0006】
本発明は上記した事情のもとで考え出されたものであって、需要家の契約における制約による不都合の発生を防止できるバーチャルパワープラントを提供することをその目的としている。
【課題を解決するための手段】
【0007】
上記課題を解決するため、本発明では、次の技術的手段を講じている。
【0008】
本発明によって提供されるバーチャルパワープラントは、複数の需要家と、前記複数の需要家を管理する全体制御装置と、を備えているバーチャルパワープラントであって、前記各需要家はそれぞれ、受電点を介して電力系統に接続された負荷と、前記負荷に接続されたパワーコンディショナと、前記パワーコンディショナを管理する集中管理装置と、を備え、前記集中管理装置は、前記全体制御装置から受信した上位目標に基づく個別指令値を補正する補正部と、補正後の個別指令値に基づく下位目標を設定する設定部と、前記下位目標を前記パワーコンディショナに送信する送信部と、を備えている。
【0009】
本発明の好ましい実施の形態においては、前記パワーコンディショナまたは前記負荷を停止させる停止部をさらに備え、前記補正部は、前記停止部が前記パワーコンディショナまたは前記負荷の停止を行ってから所定時間経過までの間、前記個別指令値の変化を抑制するように補正する。
【0010】
本発明の好ましい実施の形態においては、前記補正部は、前記個別指令値を、前記個別指令値と前回受信した上位目標に基づく前回個別指令値との差に係数を乗算した値を前記前回個別指令値に加算した値に補正することで、前記個別指令値の変化を抑制する。
【0011】
本発明の好ましい実施の形態においては、前記補正部は、前記個別指令値を上限値以下の値、または、下限値以上の値に補正する。
【0012】
本発明の好ましい実施の形態においては、前記全体制御装置は、前記複数の需要家の各受電点電力を合計した合計電力を合計出力指令値にするための共通の上位指標を、前記各需要家に送信するための前記上位目標として算出し、前記設定部は、当該需要家の受電点電力を前記補正後の個別指令値にするための下位指標を算出して、前記下位目標として設定し、前記パワーコンディショナは、受信した前記下位目標を用いて、あらかじめ設定されている最適化問題に基づいて、自装置の個別出力電力の目標値である個別目標電力値を算出し、前記個別目標電力値に基づいて、前記個別出力電力の制御を行う。
【0013】
本発明の好ましい実施の形態においては、前記集中管理装置は、前記全体制御装置から前記上位目標を受信しない場合、当該需要家のエネルギーマネジメントのための需要家指令値に基づいて前記下位指標を算出する。
【発明の効果】
【0014】
本発明によると、集中管理装置は、全体制御装置から受信した上位目標に基づく個別指令値を補正し、補正後の個別指令値に基づく下位目標をパワーコンディショナに送信する。集中管理装置は、需要家の契約における制約に応じた補正を行うことができる。したがって、本発明に係るバーチャルパワープラントは、需要家の契約における制約による不都合の発生を防止できる。
【0015】
本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
【図面の簡単な説明】
【0016】
図1】第1実施形態に係るバーチャルパワープラントの全体構成を示すブロック図である。
図2】集中管理装置が行う下位指標生成処理を説明するためのフローチャートの一例である。
図3】バーチャルパワープラントでのシミュレーション結果を示す図である。
図4】バーチャルパワープラントでのシミュレーション結果を示す図である。
図5】バーチャルパワープラントでのシミュレーション結果を示す図である。
図6】バーチャルパワープラントでのシミュレーション結果を示す図である。
図7】第2実施形態に係るバーチャルパワープラントの全体構成を示すブロック図である。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態を、図面を参照して具体的に説明する。
【0018】
〔第1実施形態〕
図1は、第1実施形態に係るバーチャルパワープラントC1の全体構成を示すブロック図である。バーチャルパワープラントC1は、全体制御装置Aおよび複数の需要家Bを備えている。バーチャルパワープラントC1は、全体制御装置Aが複数の需要家Bの受電点電力を管理して制御することで、あたかも1つの発電所のように機能する。本実施形態では、説明の便宜上、全体制御装置Aが需要家B1,B2,B3を管理する場合について説明するが、全体制御装置Aが管理する需要家Bの数は限定されない。実際には、全体制御装置Aはより多数の需要家Bを管理する。
【0019】
全体制御装置Aは、需要家B1,B2,B3を管理する。全体制御装置Aは、各需要家Bと通信を行っている。当該通信は、無線通信であってもよいし、有線通信であってもよい。全体制御装置Aは、各需要家Bから受電点電力を受信し、受電点電力の合計値に基づいて各需要家Bの受電点電力の目標値を算出して、各需要家Bに送信する。各需要家Bは、受信した目標値に基づいて、受電点電力を制御する。本実施形態では、受電点電力の目標値として、共通の上位指標prが用いられる。上位指標prは、各需要家Bの受電点電力の合計電力を後述する出力指令値Pにするための情報であり、各需要家Bに指示される目標値に相当する情報である。全体制御装置Aは、出力指令値取得部11、受信部12、指標算出部13、および送信部14を備えている。
【0020】
出力指令値取得部11は、電力会社などから指令される出力指令値Pを取得する。出力指令値取得部11は、取得した出力指令値Pを指標算出部13に出力する。出力指令値取得部11は、電力会社から出力指令値Pを指令されていない場合、出力指令値Pを出力しない。なお、出力指令値取得部11は、出力指令値Pを取得する代わりに、抑制率[%]の情報を取得して、抑制率に基づいて出力指令値Pを算出してもよい。
【0021】
受信部12は、需要家B1,B2,B3から、それぞれの受電点電力P1,P2,P3を受信する。受信部12は、受信した受電点電力P1,P2,P3を、指標算出部13に出力する。
【0022】
指標算出部13は、受信部12が受信した受電点電力P1,P2,P3、および、出力指令値取得部11が取得した出力指令値Pに基づいて、需要家B1,B2,B3に対する上位指標prを算出する。指標算出部13は、受信部12より入力された受電点電力P1,P2,P3を合計した合計電力Pallを算出する。そして、指標算出部13は、合計電力Pallを、出力指令値取得部11より入力された出力指令値Pにするための上位指標prを算出する。指標算出部13は、勾配係数をεall、 時間をtとして、下記(1)式に基づいてラグランジュ乗数λallを算出し、ラグランジュ乗数λallを上位指標prとする。なお、下記(1)式において、受電点電力Piおよび出力指令値Pが、時間tに対して変化する値であるため、それぞれ受電点電力をPi(t)、出力指令値をP(t)と記載している。指標算出部13は、算出した上位指標prを、送信部14に出力する。また、指標算出部13は、出力指令値取得部11から出力指令値Pを入力されない場合、上位指標prを算出せず、送信部14に出力しない。なお、指標算出部13は、出力指令値Pを入力されない場合、その旨を示す情報を上位指標prとして送信部14に出力してもよい。
【0023】
【数1】
【0024】
送信部14は、指標算出部13から入力された上位指標prを、需要家B1,B2,B3に送信する。
【0025】
需要家Bi(i=1,2,3)は、通常時は、それぞれ需要家内でのエネルギーマネジメントを行っており、受電点電力Pi(i=1,2,3)を制御している。また、需要家Biは、全体制御装置Aから上位指標prを受信した場合、受信した上位指標prに基づいて、受電点電力Piを制御する。各需要家Bは、集中管理装置2、パワーコンディショナ3、および負荷4を備えている。各需要家Bが備えているパワーコンディショナ3および負荷4の数は限定されない。
【0026】
集中管理装置2は、受電点電力Piを監視し、受電点電力Piを制御するための下位指標pr’を生成する。集中管理装置2は、通常時は、需要家内でのエネルギーマネジメントのための個別指令値Piに基づいて、受電点電力Piを個別指令値Piにするための下位指標pr’を算出する。また、集中管理装置2は、全体制御装置Aより上位指標prを入力された場合、当該上位指標prに基づいて、下位指標pr’を生成する。集中管理装置2は、受電点電力検出部21、指標算出部22、通信部23、指令値補正部24、送信部25、および停止部26を備えている。
【0027】
受電点電力検出部21は、受電点で、受電点電力Piを検出する。受電点電力検出部21は、検出した受電点電力Piを、指標算出部22、通信部23、および停止部26に出力する。
【0028】
指標算出部22は、受電点電力検出部21が検出した受電点電力Piを、エネルギーマネジメントのための個別指令値Piにするための下位指標pr’を算出する。指標算出部22は、勾配係数をε、時間をtとして、下記(2)式に基づいてラグランジュ乗数λを算出し、ラグランジュ乗数λを下位指標pr’とする。なお、下記(2)式において、受電点電力Piおよび個別指令値Piが、時間tに対して変化する値であるため、それぞれ受電点電力をPi(t)、出力指令値をPi(t)と記載している。指標算出部22は、算出した下位指標pr’を、送信部25に出力する。
【0029】
【数2】
【0030】
通信部23は、全体制御装置Aと通信を行う。通信部23は、受電点電力検出部21が検出した受電点電力Piを、全体制御装置Aの受信部12に送信する。また、通信部23は、全体制御装置Aの送信部14が送信した上位指標prを受信した場合、受信した上位指標prを指令値補正部24に出力する。
【0031】
停止部26は、受電点電力検出部21が検出した受電点電力Piが急変した場合に、いずれかのパワーコンディショナ3または負荷4を停止させる。需要家B内で、電力需要の急変または電力供給の急変が発生する場合がある。この場合、受電点電力Piが一時的に契約電力を超過したり、UPR(RPR)が動作する可能性がある。これを防ぐために、停止部26は、受電点電力Piが急変した場合に、いずれかのパワーコンディショナ3または負荷4を停止させることで、受電点電力Piの変化を抑制する。停止部26は、その後、パワーコンディショナ3または負荷4の停止を解除する。なお、パワーコンディショナ3および負荷4は、停止部26からの指令による場合以外にも、例えば外部接点などによっても停止する場合がある。
【0032】
指令値補正部24は、通信部23から入力される上位指標prと、エネルギーマネジメントのための個別指令値Piとから、個別指令値PiC2を算出する。個別指令値PiC2は、補正用の係数をaとして、PiC2=Pi+a・prで算出される。指令値補正部24は、算出した個別指令値PiC2を補正して、補正後の個別指令値PiC2を指標算出部22に出力する。指令値補正部24は、算出した個別指令値PiC2を、あらかじめ設定されている上限値PiC2_max以下で、かつ、下限値PiC2_min以上の値に補正する。上限値PiC2_maxは、契約電力に基づいて設定され、契約電力の電力値またはこれより少し小さい電力値が設定される。下限値PiC2_minは、UPR(RPR)の動作電力に基づいて設定され、UPR(RPR)の動作電力の電力値より少し大きい電力値が設定される。
【0033】
また、指令値補正部24は、停止部26がパワーコンディショナ3または負荷4の停止を行った場合、所定時間経過までの間、算出した個別指令値PiC2の変化を抑制するように補正する。具体的には、指令値補正部24は、今回算出した個別指令値PiC2[k]と前回算出した個別指令値PiC2[k-1]との差ΔPiC2(=PiC2[k]―PiC2[k-1])に係数αを乗算した乗算値を算出する。そして、指令値補正部24は、前回算出した個別指令値PiC2[k-1]に、当該乗算値を加算した加算値(PiC2[k-1]+α・ΔPiC2)を、補正後の値とする。係数αは、0<α<1の数値であり、本実施形態では、例えば1/4である。これにより、指令値補正部24は、算出した個別指令値PiC2の変化量を1/4に抑制するように補正できる。なお、係数αは限定されず、実験またはシミュレーション結果などに基づいて、適宜設定される。所定時間は、本実施形態では、例えば制御周期の10周期程度の時間である。なお、所定時間は限定されず、実験またはシミュレーション結果などに基づいて、適宜設定される。
【0034】
指令値補正部24は、上記補正を行った場合、補正後の値を個別指令値PiC2として指標算出部22に出力し、上記補正を行わなかった場合、算出した個別指令値PiC2をそのまま指標算出部22に出力する。指標算出部22は、指令値補正部24から個別指令値PiC2を入力された場合、受電点電力検出部21が検出した受電点電力Piを個別指令値PiC2にするための下位指標pr’を算出する。この場合、指標算出部22は、上記(2)式において、Pi(t)をPiC2(t)に置き換えた式に基づいてラグランジュ乗数λを算出し、ラグランジュ乗数λを下位指標pr’とする。
【0035】
送信部25は、指標算出部22から入力される下位指標pr’を、各パワーコンディショナ3に送信する。送信部25と各パワーコンディショナ3との通信は、無線通信であってもよいし、有線通信であってもよい。
【0036】
集中管理装置2は、通信部23が全体制御装置Aから上位指標prを受信していない間は、エネルギーマネジメントのための個別指令値Piに基づいて算出された下位指標pr’を用い、上位指標prを受信している間は、受信した上位指標prに応じて指令値補正部24が算出して補正した個別指令値PiC2に基づいて算出された下位指標pr’を用いる。
【0037】
図2は、集中管理装置2が行う下位指標生成処理を説明するためのフローチャートの一例である。当該下位指標生成は、所定のタイミングごとに実行される。
【0038】
まず、上位指標prが受信されたか否かが判別される(S1)。具体的には、通信部23が、全体制御装置Aから上位指標prを受信したか否かが判別される。受信された場合(S1:YES)、個別指令値PiC2が算出される(S2)。具体的には、指令値補正部24が上位指標prと個別指令値Piとから、個別指令値PiC2を算出する。次に、個別指令値PiC2が下限値PiC2_minより小さいか否かが判別される(S3)。個別指令値PiC2が下限値PiC2_minより小さい場合(S3:YES)、個別指令値PiC2が下限値PiC2_minに補正され(S4)、ステップS7に進む。個別指令値PiC2が下限値PiC2_min以上の場合(S3:NO)、個別指令値PiC2が上限値PiC2_maxより大きいか否かが判別される(S5)。個別指令値PiC2が上限値PiC2_maxより大きい場合(S5:YES)、個別指令値PiC2が上限値PiC2_maxに補正され(S6)、ステップS7に進む。個別指令値PiC2が上限値PiC2_max以下の場合(S5:NO)、個別指令値PiC2が下限値PiC2_min以上で上限値PiC2_max以下なので、個別指令値PiC2がそのままで、ステップS7に進む。ステップS3~S6によって、個別指令値PiC2が、PiC2_min≦PiC2≦PiC2_maxの範囲に補正される。
【0039】
次に、停止部26が停止を行ってから所定時間経過までの間であるか否かが判別される(S7)。停止から所定時間経過までの間の場合(S7:YES)、個別指令値PiC2は変化を抑制する補正が行われる(S8)。一方、停止から所定時間が経過、または、停止部26が停止を行っていない場合(S7:NO)、個別指令値PiC2はステップS7の処理による補正が行われない。次に、個別指令値PiC2に基づいて、下位指標pr’が指標算出部22によって算出され(S9)、下位指標pr’が各パワーコンディショナ3に送信されて(S10)、当該処理は終了する。
【0040】
一方、ステップS1で、上位指標prが受信されなかった場合(S1:NO)、個別指令値Piに基づいて、下位指標pr’が指標算出部22によって算出され(S11)、下位指標pr’が各パワーコンディショナ3に送信されて(S10)、当該処理は終了する。なお、集中管理装置2が行う下位指標生成処理は、上述したものに限定されない。
【0041】
パワーコンディショナ3は、図示しないインバータ回路を備え、直流電力と交流電力との変換を行う。パワーコンディショナ3には、例えば太陽電池または燃料電池などに接続され、直流電力を交流電力に変換して出力するものがある。また、パワーコンディショナ3には、例えば蓄電池などに接続され、蓄電池の充電および放電を行うものがある。
【0042】
各パワーコンディショナ3は、集中管理装置2から受信した下位指標pr’(後述)に基づいて、出力電力の制御を行う。具体的には、各パワーコンディショナ3は、集中管理装置2から共通の下位指標pr’を受信し、受信した下位指標pr’を用いて、あらかじめ設定されている最適化問題に基づいて、自装置の個別出力電力の目標値である個別目標電力値を算出する。そして、各パワーコンディショナ3は、個別目標電力値に基づいて、個別出力電力の制御を行う。
【0043】
各負荷4は、電力を消費する。負荷4には、集中管理装置2から入力される下位指標pr’に基づいて、オンとオフとを切り替える負荷が含まれてもよい。この場合、当該負荷4は、集中管理装置2によって消費電力を制御される。各負荷4が消費する電力から、各パワーコンディショナ3が出力する個別出力電力を減じたものが、受電点電力Piになる。
【0044】
集中管理装置2から受信した共通の下位指標pr’に基づいて、各パワーコンディショナ3が自律的に入出力電力を制御する。これにより、集中管理装置2が上位指標prを入力されていない場合は、受電点電力Piが個別指令値Piに制御される。一方、集中管理装置2が上位指標prを入力されている場合は、受電点電力Piが上位指標prに応じた電力値に制御される。この場合、各需要家Biが上位指標prに応じて受電点電力Piを制御することで、受電点電力Piを合計した合計電力Pallが出力指令値Pに制御される。
【0045】
図3図6は、バーチャルパワープラントC1でのシミュレーション結果を示している。
【0046】
図3は、バーチャルパワープラントC1が調整力の供出を開始して、全体制御装置Aが出力する上位指標prを上昇させた場合を示している。図3(a)~(c)において、黒丸が付された実線は、それぞれ、需要家内でのエネルギーマネジメントによる個別指令値Piの時間変化を示しており、100kWが設定されている。白丸が付された実線は、それぞれ、需要家B1~B3の指令値補正部24が算出して補正した個別指令値PiC2の時間変化を示している。また、破線は、それぞれ、需要家B1~B3で設定されている個別指令値PiC2の上限値PiC2_maxを示している。図3(d)は、各受電点電力Piを合計した合計電力Pallの時間変化を示している。図3(d)における破線は、出力指令値Pを示しており、時刻t0以降は440kWが設定されている。
【0047】
時刻t0までは、全体制御装置Aが上位指標prを出力しないので、各需要家B1~B3がそれぞれ、受電点電力Piを個別指令値Pi(100kW)に制御する。これにより、合計電力Pallは、300kWになっている。時刻t0から、全体制御装置Aが上位指標prを出力し、合計電力Pallを出力指令値P(440kW)にするために、上位指標prを上昇させている。需要家B1は、図3(a)に示すように、上限値PiC2_maxが140kWなので、個別指令値PiC2はそれ以上上昇していない。仮に、上限値PiC2_maxが設定されていない場合は、一点鎖線のように個別指令値PiC2が上昇するので、受電点電力P1が需要家B1の契約電力を超過してしまう可能性がある。
【0048】
一方、需要家B2,B3は、図3(b)、(c)に示すように、上限値PiC2_maxが160kWで余裕があるので、個別指令値PiC2が150kWまで上昇している。これにより、需要家B2,B3が余分に調整力を供出することで、合計電力Pallが出力指令値P(440kW)に制御されている。
【0049】
図4は、バーチャルパワープラントC1が調整力の供出を開始して、全体制御装置Aが出力する上位指標prを低下させた場合を示している。図4(a)~(c)において、黒丸が付された実線および白丸が付された実線は、図3(a)~(c)と同様である。破線は、それぞれ、需要家B1~B3で設定されている個別指令値PiC2の下限値PiC2_minを示している。図4(d)は、各受電点電力Piを合計した合計電力Pallの時間変化を示している。図4(d)における破線は、出力指令値Pを示しており、時刻t0以降は200kWが設定されている。
【0050】
時刻t0までは、全体制御装置Aが上位指標prを出力しないので、各需要家B1~B3がそれぞれ、受電点電力Piを個別指令値Pi(100kW)に制御する。これにより、合計電力Pallは、300kWになっている。時刻t0から、全体制御装置Aが上位指標prを出力し、合計電力Pallを出力指令値P(200kW)にするために、上位指標prを低下させている。需要家B1は、図4(a)に示すように、下限値PiC2_minが80kWなので、個別指令値PiC2はそれ以上低下していない。仮に、下限値PiC2_minが設定されていない場合は、一点鎖線のように個別指令値PiC2が低下するので、需要家B1のUPR(RPR)が動作する可能性がある。
【0051】
一方、需要家B2,B3は、図4(b)、(c)に示すように、下限値PiC2_minが60kWで余裕があるので、個別指令値PiC2が60kWまで低下している。これにより、需要家B2,B3が余分に調整力を供出することで、合計電力Pallが出力指令値P(200kW)に制御されている。
【0052】
図5および図6は、バーチャルパワープラントC1が調整力の供出を安定して行っているときに、需要家B1の集中管理装置2の停止部26が、パワーコンディショナ3を停止させた場合を示している。図6は、指令値補正部24が、上述した上位指標prの変化を抑制する補正を行った場合のものである。図5は、比較のためのシミュレーション結果であって、指令値補正部24が上位指標prの変化を抑制する補正を行わない場合のものである。
【0053】
図5(a)~(c)において、黒丸が付された実線は、それぞれ、需要家B1~B3の指令値補正部24が算出して補正した個別指令値PiC2の時間変化を示している。白丸が付された一点鎖線は、それぞれ、受電点電力Piの時間変化を示している。破線は、それぞれ、需要家B1~B3で設定されている個別指令値PiC2の下限値PiC2_minを示している。図5(d)は、各受電点電力Piを合計した合計電力Pallの時間変化を示している。図5(d)における破線は、出力指令値Pを示しており、300kWが設定されている。
【0054】
時刻t0までは、各需要家B1~B3は、受信した上位指標prに応じて、受電点電力P1~P3を制御している。これにより、合計電力Pallが出力指令値P(300kW)に制御されている。時刻t0において、需要家B1のパワーコンディショナ3の出力が急増し、集中管理装置2の停止部26がパワーコンディショナ3を停止させたことで、時刻t1において、受電点電力P1が上昇している。これにより、合計電力Pallが出力指令値Pより大きくなっている。時刻t2では、合計電力Pallが出力指令値Pに一致するように上位指標prが生成されることで、各需要家B1~B3での個別指令値PiC2が大きく低下している。これにより、需要家B2,B3は、調整力の分担量を増加させて、受電点電力P2,P3を低下させている。その後、時刻t3以降は、需要家B1も調整力を供出している。各需要家B1~B3の受電点電力P1~P3は、電力目標値に収束するまでの時間応答に時間がかかることから、フィードバックによる調整力の分担量の制御が過剰に行われてしまうので、合計電力Pallが出力指令値Pと一致しない。
【0055】
図6(a)~(c)における、黒丸が付された実線、白丸が付された一点鎖線、および破線と、図6(d)における、黒丸が付された実線および破線とは、それぞれ、図5(a)~(d)と同様である。
【0056】
時刻t0から時刻t1までは、図5での説明と同様である。時刻t2では、合計電力Pallが出力指令値Pに一致するように上位指標prが生成されるので、各需要家B2,B3での個別指令値PiC2が大きく低下している。一方、需要家B1では、指令値補正部24が個別指令値PiC2の変化を抑制する補正を行ったことで、個別指令値PiC2の低下が抑制されている。これにより、需要家B1は、需要家B2,B3と比較して、調整力の分担量が少なくなる。分担量が少ない状態は所定時間継続する。これにより、調整力の分担量の制御が安定して、合計電力Pallが出力指令値Pに収束している。
【0057】
図5および図6に示すように、停止部26がパワーコンディショナ3を停止させた場合に、指令値補正部24が個別指令値PiC2の変化を抑制する補正を行ったことで、調整力の分担量の制御が安定する。したがって、バーチャルパワープラントC1は、安定した電力需給調整を行うことができる。
【0058】
次に、本実施形態に係るバーチャルパワープラントC1の作用効果について説明する。
【0059】
本実施形態によると、集中管理装置2の指令値補正部24は、全体制御装置Aから受信した上位指標prと、エネルギーマネジメントのための個別指令値Piとから、個別指令値PiC2を算出し、算出した個別指令値PiC2を補正して、補正後の個別指令値PiC2を指標算出部22に出力する。指令値補正部24は、算出した個別指令値PiC2を、契約電力に基づいて設定された上限値PiC2_max以下の値に補正する。これにより、需要家Biの受電点電力Piが契約電力を超過してしまうことを防止できる。また、指令値補正部24は、算出した個別指令値PiC2を、UPR(RPR)の動作電力に基づいて設定された下限値PiC2_min以上の値に補正する。これにより、需要家BiのUPR(RPR)が動作してしまうことを防止できる。また、指令値補正部24は、停止部26がパワーコンディショナ3または負荷4の停止を行った場合、所定時間経過までの間、算出した個別指令値PiC2の変化を抑制する補正を行う。これにより、需要家Biは、他の需要家Biと比較して、個別指令値PiC2の変化が抑制され、調整力の分担量が少なくなる。これにより、調整力の分担量の制御が安定する。したがって、バーチャルパワープラントC1は、安定した電力需給調整を行うことができる。以上のように、バーチャルパワープラントC1は、需要家Biの契約における制約による不都合の発生を防止できる。
【0060】
また、本実施形態によると、全体制御装置Aは、指標算出部13が算出した共通の上位指標prを、各需要家Bに送信することで、合計電力Pallを出力指令値Pに制御する。全体制御装置Aは、各需要家Bの状態などを把握することなく、共通の上位指標prを算出して送信するだけなので、演算や通信の負担が小さい。全体制御装置Aは、高性能である必要がないので、初期導入費用を軽減できる。また、需要家Bを追加したり、削除する場合でも、全体制御装置Aの改修が容易である。
【0061】
また、本実施形態によると、各需要家Bにおいて、集中管理装置2は、共通の下位指標pr’を、各パワーコンディショナ3に送信するだけである。集中管理装置2は、各パワーコンディショナ3の状態などを把握する必要がないので、演算や通信の負担が小さい。集中管理装置2は、高性能である必要がないので、初期導入費用を軽減できる。また、パワーコンディショナ3を追加したり、削除する場合でも、集中管理装置2の改修が容易である。
【0062】
また、本実施形態によると、集中管理装置2は、全体制御装置Aから上位指標prを受信していない間は、需要家B内のエネルギーマネジメントのための個別指令値Piに基づいて指標算出部22が算出した下位指標pr’を各パワーコンディショナ3に送信する。これにより、集中管理装置2は、上位指標prを受信していない間は、需要家B内のエネルギーマネジメントを行うことができる。
【0063】
なお、本実施形態では、全体制御装置Aが共通の上位指標prを各需要家Biに送信する場合について説明したが、これに限られない。全体制御装置Aは、需要家Biごとに異なる上位指標priを算出してもよい。この場合、例えば、指標算出部13は、出力指令値取得部11が取得した出力指令値Pから、需要家Biごとの個別指令値Piを、容量や受電量などに応じて設定する。指標算出部13は、各需要家Biの受電点電力Piを設定した個別指令値Piにするための上位指標priを算出する。なお、上位指標priは、上記(2)式と同様の式に基づいて算出できる。送信部14は、指標算出部13が算出した上位指標priを、対応する需要家Biに送信する。
【0064】
〔第2実施形態〕
図7は、第2実施形態に係るバーチャルパワープラントC2の全体構成を示すブロック図である。図7において、上記第1実施形態と同一または類似の要素には、上記第1実施形態と同一の符号を付している。本実施形態に係るバーチャルパワープラントC2は、全体制御装置Aが各需要家Bに個別指令値PiC3を送信する点で、第1実施形態に係る蓄電池システムA1と異なる。
【0065】
本実施形態に係る全体制御装置Aは、指標算出部13の代わりに個別指令値設定部15を備えている。個別指令値設定部15は、出力指令値取得部11が取得した出力指令値Pから、需要家Biごとの個別指令値PiC3を、容量や受電量などに応じて設定する。送信部14は、個別指令値設定部15が設定した個別指令値PiC3を、対応する需要家Biに送信する。
【0066】
本実施形態に係る各需要家Bの集中管理装置2の指令値補正部24は、通信部23から入力される個別指令値PiC3と、エネルギーマネジメントのための個別指令値Piとから、個別指令値PiC2を算出する。個別指令値PiC2は、PiC2=Pi+PiC3で算出される。指令値補正部24は、算出した個別指令値PiC2を補正して、補正後の個別指令値PiC2を指標算出部22に出力する。指令値補正部24が行う補正は、第1実施形態に係る指令値補正部24と同様である。
【0067】
本実施形態によると、集中管理装置2の指令値補正部24は、全体制御装置Aから受信した個別指令値PiC3と、エネルギーマネジメントのための個別指令値Piとから、個別指令値PiC2を算出し、算出した個別指令値PiC2を補正して、補正後の個別指令値PiC2を指標算出部22に出力する。指令値補正部24は、第1実施形態に係る指令値補正部24と同様の補正を行う。したがって、バーチャルパワープラントC2は、需要家Bの契約における制約による不都合の発生を防止できる。また、本実施形態においても、各需要家Bにおいて、集中管理装置2は、共通の下位指標pr’を、各パワーコンディショナ3に送信するだけである。したがって、集中管理装置2の初期導入費用を軽減でき、また、パワーコンディショナ3を追加したり、削除する場合でも、集中管理装置2の改修が容易である。また、本実施形態によると、集中管理装置2は、全体制御装置Aから個別指令値PiC3を受信していない間は、需要家B内のエネルギーマネジメントのための個別指令値Piに基づいて指標算出部22が算出した下位指標pr’を各パワーコンディショナ3に送信する。これにより、集中管理装置2は、全体制御装置Aから個別指令値PiC3を受信していない間は、需要家B内のエネルギーマネジメントを行うことができる。
【0068】
なお、本実施形態では、集中管理装置2が下位指標pr’を算出して、各パワーコンディショナ3に送信する場合について説明したが、これに限られない。集中管理装置2は、指令値補正部24が補正した個別指令値PiC2、または、需要家B内のエネルギーマネジメントのための個別指令値Piから、パワーコンディショナ3ごとの指令値を設定して、当該指令値を対応するパワーコンディショナ3に送信してもよい。この場合、各パワーコンディショナ3は、受信した指令値に基づいて、個別出力電力の制御を行う。
【0069】
本発明に係るバーチャルパワープラントは、上述した実施形態に限定されるものではない。本発明に係るバーチャルパワープラントの各部の具体的な構成は、種々に設計変更自在である。
【符号の説明】
【0070】
C:バーチャルパワープラント、A:全体制御装置、B,B1,B2,B3:需要家、2:集中管理装置、24:指令値補正部、25:送信部、26:停止部、3:パワーコンディショナ、4:負荷
図1
図2
図3
図4
図5
図6
図7