(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023153930
(43)【公開日】2023-10-18
(54)【発明の名称】発光素子、照明装置、発光装置、表示装置、及び電子機器
(51)【国際特許分類】
H10K 50/13 20230101AFI20231011BHJP
H10K 59/10 20230101ALI20231011BHJP
H10K 50/12 20230101ALI20231011BHJP
H10K 85/30 20230101ALI20231011BHJP
H10K 85/60 20230101ALI20231011BHJP
G09F 9/30 20060101ALI20231011BHJP
H10K 101/10 20230101ALN20231011BHJP
【FI】
H10K50/13
H10K59/10
H10K50/12
H10K85/30
H10K85/60
G09F9/30 365
H10K101:10
【審査請求】有
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2023125999
(22)【出願日】2023-08-02
(62)【分割の表示】P 2022081289の分割
【原出願日】2013-03-13
(31)【優先権主張番号】P 2012057241
(32)【優先日】2012-03-14
(33)【優先権主張国・地域又は機関】JP
(71)【出願人】
【識別番号】000153878
【氏名又は名称】株式会社半導体エネルギー研究所
(72)【発明者】
【氏名】山崎 舜平
(72)【発明者】
【氏名】瀬尾 哲史
(72)【発明者】
【氏名】平形 吉晴
(72)【発明者】
【氏名】石曽根 崇浩
(57)【要約】
【課題】複数の発光ドーパントを用いた発光素子において、発光効率が高い発光素子を提
供する。また、上述の発光素子を用いることにより、消費電力の低減された発光装置、発
光モジュール、発光表示装置、電子機器、及び照明装置を各々提供する。
【解決手段】分子間のエネルギー移動機構の一つであるフェルスター機構に注目し、エネ
ルギーを与える側の分子の発光波長と、エネルギーを受け取る側の分子の吸収スペクトル
に波長の4乗を掛け合わせたグラフにおける最も長波長側の極大を有するピークとを重ね
合わせることによって上記フェルスター機構におけるエネルギー移動を効率よく可能とす
る。
【選択図】
図2
【特許請求の範囲】
【請求項1】
一対の電極間に、第1の発光層と第2の発光層とを有し、
前記第1の発光層は、第1のりん光性化合物と、第1のホスト材料とを有し、
前記第2の発光層は、第2のりん光性化合物と、第2のホスト材料とを有し、
前記第1のりん光性化合物は、440nm乃至520nmの波長範囲に発光スペクトルのピークを有し、
前記第2のりん光性化合物のε(λ)λ4で表される関数は、440nm乃至520nmの波長範囲に極大値を有し、
λは、波長を表し、
ε(λ)は、モル吸光係数を表す発光素子。
【請求項2】
一対の電極間に、第1の発光層と第2の発光層とを有し、
前記第1の発光層は、第1のりん光性化合物と、第1のホスト材料とを有し、
前記第2の発光層は、第2のりん光性化合物と、第2のホスト材料とを有し、
前記第1のりん光性化合物は、440nm乃至520nmの波長範囲に発光スペクトルのピークを有し、
前記第2のりん光性化合物のε(λ)λ4で表される関数は、440nm乃至520nmの波長範囲に極大値を有し、
前記第2のりん光性化合物は、520nm乃至600nmの波長範囲に発光スペクトルのピークを有し、
λは、波長を表し、
ε(λ)は、モル吸光係数を表す発光素子。
【請求項3】
一対の電極間に、第1の発光層と第2の発光層とを有し、
前記第1の発光層は、第1のりん光性化合物と、第1のホスト材料とを有し、
前記第2の発光層は、第2のりん光性化合物と、第2のホスト材料とを有し、
前記第1のりん光性化合物は、520nm乃至600nmの波長範囲に発光スペクトルのピークを有し、
前記第2のりん光性化合物のε(λ)λ4で表される関数は、520nm乃至600nmの波長範囲に極大値を有し、
λは、波長を表し、
ε(λ)は、モル吸光係数を表す発光素子。
【請求項4】
一対の電極間に、第1の発光層と第2の発光層とを有し、
前記第1の発光層は、第1のりん光性化合物と、第1のホスト材料とを有し、
前記第2の発光層は、第2のりん光性化合物と、第2のホスト材料とを有し、
前記第1のりん光性化合物は、520nm乃至600nmの波長範囲に発光スペクトルのピークを有し、
前記第2のりん光性化合物のε(λ)λ4で表される関数は、520nm乃至600nmの波長範囲に極大値を有し、
前記第2のりん光性化合物は、600nm乃至700nmの波長範囲に発光スペクトルのピークを有し、
λは、波長を表し、
ε(λ)は、モル吸光係数を表す発光素子。
【請求項5】
請求項1乃至請求項4のいずれか一に記載の発光素子を有する照明装置。
【請求項6】
請求項1乃至請求項4のいずれか一に記載の発光素子と、前記発光素子を制御する手段を備えた発光装置。
【請求項7】
請求項1乃至請求項4のいずれか一に記載の発光素子を表示部に有し、前記発光素子を制御する手段を備えた表示装置。
【請求項8】
請求項1乃至請求項4のいずれか一に記載の発光素子を有する電子機器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機化合物を発光物質として用いた発光素子、表示装置、発光装置、電子機器
及び照明装置に関する。
【背景技術】
【0002】
近年、エレクトロルミネッセンス(EL:Electroluminescence)を
利用した発光素子の研究開発が盛んに行われている。これら発光素子の基本的な構成は、
一対の電極間に発光物質を含む層を挟んだものである。この素子に電圧を印加することに
より、発光物質からの発光を得ることができる。
【0003】
このような発光素子は自発光型であるため、液晶ディスプレイに比べ画素の視認性が高く
、バックライトが不要である等の利点があり、フラットパネルディスプレイ素子として好
適であると考えられている。また、このような発光素子を用いたディスプレイは、薄型軽
量に作製できることも大きな利点である。さらに非常に応答速度が速いことも特徴の一つ
である。
【0004】
これらの発光素子は発光層を膜状に形成することが可能であるため、面状に発光を得るこ
とができる。よって、大面積の素子を容易に形成することができる。このことは、白熱電
球やLEDに代表される点光源、あるいは蛍光灯に代表される線光源では得難い特色であ
るため、照明等に応用できる面光源としての利用価値も高い。
【0005】
発光物質に有機化合物を用い、一対の電極間に当該有機化合物を含む層を設けた有機EL
素子の場合、一対の電極間に電圧を印加することにより、陰極から電子が、陽極から正孔
(ホール)がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、
注入された電子及び正孔が再結合することによって発光性の有機化合物が励起状態となり
、励起された発光性の有機化合物から発光を得ることができる。
【0006】
有機化合物が形成する励起状態の種類としては、一重項励起状態と三重項励起状態があり
、一重項励起状態(S*)からの発光が蛍光、三重項励起状態(T*)からの発光がりん
光と呼ばれている。また、当該発光素子におけるその統計的な生成比率は、S*:T*=
1:3であると考えられている。
【0007】
一重項励起状態から発光する化合物(以下、蛍光性化合物と称す)では室温において、通
常、三重項励起状態からの発光(りん光)は観測されず、一重項励起状態からの発光(蛍
光)のみが観測される。したがって、蛍光性化合物を用いた発光素子における内部量子効
率(注入したキャリアに対して発生するフォトンの割合)の理論的限界は、S*:T*=
1:3であることを根拠に25%とされている。
【0008】
一方、三重項励起状態から発光する化合物(以下、りん光性化合物と称す)を用いれば、
三重項励起状態からの発光(りん光)が観測される。また、りん光性化合物は項間交差(
一重項励起状態から三重項励起状態へ移ること)が起こりやすいため、内部量子効率は1
00%まで理論上は可能となる。つまり、蛍光性化合物より高い発光効率が実現可能とな
る。このような理由から、高効率な発光素子を実現するために、りん光性化合物を用いた
発光素子の開発が近年盛んに行われている。
【0009】
特許文献1では、複数の発光ドーパントを含む発光領域を有し、当該発光ドーパントがり
ん光を発する白色発光素子が開示されている。
【先行技術文献】
【特許文献】
【0010】
【発明の概要】
【発明が解決しようとする課題】
【0011】
理論的に内部量子効率100%が可能なりん光性化合物ではあるが、素子構造や、他の材
料との組み合わせの最適化無しでは、高い効率を実現することは難しい。特に、異なるバ
ンド(発光色)のりん光性化合物を発光ドーパントとし複数種類用いる発光素子において
は、エネルギー移動を考慮するのはもちろんのこと、当該エネルギー移動自体の効率を最
適化せずには高い効率の発光を得ることは困難である。実際、上記特許文献1では、発光
ドーパントがすべてりん光の素子であってもその外部量子効率は3~4%程度である。こ
れは、光取り出し効率を考慮したとしても、内部量子効率は20%以下であると考えられ
、りん光発光素子としては低い値であると言わざるを得ない。
【0012】
また、発光効率を高めるだけでなく、異なる発光色のドーパントを用いた多色発光素子(
例えば青、緑、赤色を組み合わせた白色発光素子)においては、各発光色のドーパントが
バランス良く発光することが必要である。高い発光効率を達成しつつ、各ドーパントの発
光バランスをも保つのは、容易なことではない。
【0013】
そこで、本発明の一態様では、複数の発光ドーパントを用いた発光素子において、発光効
率が高い発光素子を提供することを目的とする。また、本発明の一態様は、上述の発光素
子を用いることにより、消費電力の低減された発光装置、表示装置、電子機器、及び照明
装置を各々提供することを目的とする。
【0014】
本発明は上述の課題のうちいずれか一を解決すればよいものとする。
【課題を解決するための手段】
【0015】
本発明では、分子間のエネルギー移動機構の一つであるフェルスター機構に注目し、エネ
ルギーを与える側の分子の発光スペクトルの山と、エネルギーを受け取る側の分子の吸収
スペクトルに波長の4乗を掛け合わせた特性曲線における最も長波長側の極大を有する山
と、が重なりあうような分子の組み合わせを適用することによって上記フェルスター機構
におけるエネルギー移動を効率よく可能とする。ここで、上記エネルギー移動は、一般的
なホストからドーパントへのエネルギー移動ではなく、ドーパント間でのエネルギー移動
であることが特徴の一つである。このように、ドーパント間でのエネルギー移動効率が高
くなるような組み合わせのドーパントを適用し、さらには各ドーパント分子間を適切に隔
離する素子構造を設計することで、本発明の一態様の発光素子を得ることができる。
【0016】
すなわち、本発明の一態様は、一対の電極間に、青色発光を呈する第1のりん光性化合物
が、第1のホスト材料に分散された第1の発光層と、440nm乃至520nmの範囲に
ε(λ)λ4で表される関数の最も長波長側に位置する極大値Aを有し、かつ前記第1の
りん光性化合物よりも長波長の発光を呈する第2のりん光性化合物が、第2のホスト材料
に分散された第2の発光層と、520nm乃至600nmの範囲にε(λ)λ4で表され
る関数の最も長波長側に位置する極大値Bを有し、かつ前記第2のりん光性化合物よりも
長波長の発光を呈する第3のりん光性化合物が、第3のホスト材料に分散された第3の発
光層と、を含み、前記第1乃至第3の発光層がこの順に積層されている発光素子である。
(ただし、ε(λ)は各りん光性化合物のモル吸光係数を表し、波長λの関数である。)
。
【0017】
また、本発明の他の一態様は一対の電極間に、青色発光を呈する第1のりん光性化合物が
、第1のホスト材料に分散された第1の発光層と、440nm乃至520nmの範囲にε
(λ)λ4で表される関数の最も長波長側に位置する極大値Aを有し、かつ520nm乃
至600nmの範囲にりん光発光のピーク波長を有する第2のりん光性化合物が、第2の
ホスト材料に分散された第2の発光層と、520nm乃至600nmの範囲にε(λ)λ
4で表される関数の最も長波長側に位置する極大値Bを有し、かつ前記第2のりん光性化
合物よりも長波長の発光を呈する第3のりん光性化合物が、第3のホスト材料に分散され
た第3の発光層と、を含み、前記第1乃至第3の発光層がこの順に積層されている発光素
子である。(ただし、ε(λ)は各りん光性化合物のモル吸光係数を表し、波長λの関数
である。)。
【0018】
また、本発明の他の一態様は、上記構成を有する発光素子において、前記極大値Aに比べ
、前記極大値Bの方が大きいことを特徴とする発光素子である。
【0019】
また、本発明の他の一態様は、上記構成を有する発光素子において、前記第1の発光層は
電子輸送性であり、前記第2の発光層および前記第3の発光層は正孔輸送性である発光素
子である。
【0020】
また、本発明の他の一態様は、上記構成を有する発光素子において、前記第1のホスト材
料は電子輸送性であり、前記第2のホスト材料および前記第3のホスト材料は正孔輸送性
である発光素子である。
【0021】
また、本発明の他の一態様は、上記構成を有する発光素子において、前記第1の発光層は
正孔輸送性であり、前記第2の発光層および前記第3の発光層は電子輸送性である発光素
子である。
【0022】
また、本発明の他の一態様は、上記構成を有する発光素子において、前記第1のホスト材
料は正孔輸送性であり、前記第2のホスト材料および前記第3のホスト材料は電子輸送性
である発光素子である。
【0023】
また、本発明の他の一態様は、上記構成を有する発光素子において、前記第1乃至第3の
発光層はこの順に互いに接して積層されていることを特徴とする発光素子である。
【0024】
また、本発明の他の一態様は、上記構成を有する発光素子において、前記第2の発光層の
膜厚は、5nm以上20nm以下、好ましくは5nm以上10nm以下であることを特徴
とする発光素子である。
【0025】
また、本発明の他の一態様は、上記構成を有する発光素子を備えた発光装置、発光表示装
置、電子機器及び照明装置である。
【0026】
なお、本明細書中における発光装置とは、発光素子を用いた画像表示デバイスを含む。ま
た、発光素子にコネクター、例えば異方導電性フィルム、もしくはTCP(Tape C
arrier Package)が取り付けられたモジュール、TCPの先にプリント配
線板が設けられたモジュール、又は発光素子にCOG(Chip On Glass)方
式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものとする
。さらに、照明器具等に用いられる発光装置も含むものとする。
【発明の効果】
【0027】
本発明の一態様は、発光効率が高い発光素子を提供できる。本発明の一態様は、該発光素
子を用いることにより、消費電力の低減された発光装置、発光表示装置、電子機器、及び
照明装置を提供できる。
【図面の簡単な説明】
【0028】
【
図3】青りん光からのフェルスター移動を説明する図。
【
図4】青りん光からのフェルスター移動を説明する図。
【
図5】青りん光からのフェルスター移動を説明する図。
【
図17】発光素子1及び発光素子2の電流密度-輝度特性を示す図。
【
図18】発光素子1及び発光素子2の輝度-電流効率特性を示す図。
【
図19】発光素子1及び発光素子2の電圧-輝度特性を示す図。
【
図20】発光素子1及び発光素子2の輝度-色度特性を示す図。
【
図21】発光素子1及び発光素子2の輝度-パワー効率特性を示す図。
【
図22】発光素子1及び発光素子2の輝度-外部量子効率特性を示す図。
【
図23】発光素子1及び発光素子2の発光スペクトルを示す図。
【
図24】青りん光からのフェルスター移動を説明する図。
【
図25】発光素子3の電流密度-輝度特性を示す図。
【
図26】発光素子3の輝度-電流効率特性を示す図。
【
図29】発光素子3の輝度-パワー効率特性を示す図。
【
図30】発光素子3の輝度-外部量子効率特性を示す図。
【
図32】発光素子4の電流密度-輝度特性を示す図。
【
図33】発光素子4の輝度-電流効率特性を示す図。
【
図36】発光素子4の輝度-パワー効率特性を示す図。
【
図37】発光素子4の輝度-外部量子効率特性を示す図。
【
図39】発光素子4の時間-規格化輝度特性を表す図。
【発明を実施するための形態】
【0029】
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の
説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を
様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す
実施の形態の記載内容に限定して解釈されるものではない。
【0030】
(実施の形態1)
まず、本発明の一態様の発光素子の動作原理について説明する。本発明の主旨は、青色発
光を呈する第1のりん光性化合物(具体的には、440nm~520nmに発光のピーク
を有するりん光性化合物、または、CIE色度(x,y)が0.12≦x≦0.25かつ
0.05≦y≦0.5となる色域の発光色を呈するりん光性化合物)と、該第1のりん光
性化合物よりも長波長の発光(例えば緑色発光や赤色発光)を示す第2及び第3のりん光
性化合物を用い、第1~第3のりん光性化合物の全てを効率良く発光させることにより、
高効率な多色発光素子を得るというものである。
【0031】
りん光性化合物を用いた多色発光素子を得る一般的な手法としては、何らかのホスト材
料中に、異なる発光色の複数のりん光性化合物を適当な比率で分散する手法が考えられる
。しかしながらこのような手法の場合、最も長波長の発光を示すりん光性化合物が発光し
やすくなってしまうため、多色発光を得るための素子構造(特にホスト材料中の各りん光
性化合物の濃度)の設計・制御は非常に困難である。
【0032】
多色発光素子を得る他の手法として、異なる発光色の発光素子を直列に積層する、いわゆ
るタンデム構造が挙げられる。例えば、青色発光素子と、緑色発光素子と、赤色発光素子
の3つを直列に積層して同時に発光させれば、容易に多色光(この場合白色光)が得られ
る。素子構造も、青、緑、赤色の各素子をそれぞれに最適化すればよいので、その設計・
制御は比較的容易である。しかしながら、3つの素子を積層するため、層数は増大し、作
製は煩雑となる。また、各素子の接続部(いわゆる中間層)での電気的接触に問題が生じ
ると、駆動電圧の増大、すなわち電力ロスを招いてしまう場合がある。
【0033】
一方、本発明の一態様の発光素子は、一対の電極間に、青色発光を呈する第1のりん光性
化合物が第1のホスト材料に分散された第1の発光層と、前記第1のりん光性化合物より
も長波長の発光を呈する第2のりん光性化合物が第2のホスト材料に分散された第2の発
光層と、前記第2のりん光性化合物よりも長波長の発光を呈する第3のりん光性化合物が
第3のホスト材料に分散された第3の発光層とを含み、前記第1乃至第3の発光層がこの
順に積層された発光素子である。この時、第1~第3の各発光層は、タンデム構造とは異
なり、互いに接して設けられていても良い。
【0034】
図1に、上述した本発明の一態様の発光素子の素子構造を模式的に示す。
図1(C)には
第1の電極101、第2の電極102、EL層103が記載されている。EL層103に
は少なくとも発光層113が設けられており、その他の層については適宜設ければよい。
図1(C)においては、正孔注入層111、正孔輸送層112、電子輸送層114及び電
子注入層115が設けられている構成を仮に示してある。なお、第1の電極101は陽極
として機能し、第2の電極102は陰極として機能するものとする。
【0035】
また、
図1(a)、(b)は、当該発光素子における発光層113を拡大して示した図
である。
図1(a)、(b)には第1の発光層113B、第2の発光層113G、第3の
発光層113R、当該3層を合わせた発光層113、第1のりん光性化合物113Bd、
第2のりん光性化合物113Gd、第3のりん光性化合物113Rd、第1のホスト材料
113Bh、第2のホスト材料113Gh、第3のホスト材料113Rh及び再結合領域
113exが示されている。
図1(a)は、第1の発光層113Bが陰極側に設けられて
いる場合の、
図1(b)は、第1の発光層113Bが陽極側に設けられている場合の模式
図である。いずれの場合においても、各りん光性化合物(第1~第3のりん光性化合物)
はホスト材料中に分散されているため、各りん光性化合物は各ホスト材料によって互いに
隔離されている。なお、第1~第3の各ホスト材料は、同一であっても異なっていても良
い。
【0036】
この場合、各りん光性化合物間において、電子交換相互作用(いわゆるデクスター機構)
によるエネルギー移動は抑制される。すなわち、第1のりん光性化合物113Bdが励起
された後、その励起エネルギーがデクスター機構により第2のりん光性化合物113Gd
あるいは第3のりん光性化合物113Rdへ移動する現象を防ぐことができる。また、第
2のりん光性化合物113Gdが励起された後、その励起エネルギーがデクスター機構に
より第3のりん光性化合物113Rdへ移動する現象も防ぐことができる。したがって、
最も長波長の発光を示す第3のりん光性化合物113Rdが主として発光してしまう現象
を抑制することができる。なお、第3の発光層113Rにて直接励起子が生成すると、や
はり第3のりん光性化合物113Rdが主として発光してしまうため、キャリアの再結合
領域113exは、第1の発光層113B内、あるいは第1の発光層113Bと第2の発
光層113Gとの界面近傍とする(すなわち、第1のりん光性化合物113Bdを主とし
て励起する)ことが好ましい。
【0037】
ただし、第1のりん光性化合物113Bdからのエネルギー移動が完全に抑制されてしま
うと、今度は第3のりん光性化合物113Rdの発光が得られないことになる。そこで本
発明の一態様では、青色発光を呈する第1のりん光性化合物113Bdの励起エネルギー
が、部分的に第2のりん光性化合物113Gdへ移動し、さらには、第2のりん光性化合
物113Gdの励起エネルギーが、部分的に第3のりん光性化合物113Rdへ移動する
ような素子設計を行う。このような隔離された分子間でのエネルギー移動は、双極子-双
極子相互作用(フェルスター機構)を利用することによって可能となる。
【0038】
ここで、フェルスター機構について説明する。以下では、励起エネルギーを与える側の分
子をエネルギードナー、励起エネルギーを受け取る側の分子をエネルギーアクセプターと
記す。すなわち、本発明の一態様においては、エネルギードナー、エネルギーアクセプタ
ーのいずれもりん光性化合物であり、ホスト材料によって互いに隔離されている。
【0039】
フェルスター機構は、エネルギー移動に、分子間の直接的接触を必要としない。エネルギ
ードナー及びエネルギーアクセプター間の双極子振動の共鳴現象を通じてエネルギー移動
が起こる。双極子振動の共鳴現象によってエネルギードナーがエネルギーアクセプターに
エネルギーを受け渡し、励起状態のエネルギードナーが基底状態になり、基底状態のエネ
ルギーアクセプターが励起状態になる。フェルスター機構によるエネルギー移動の速度定
数kFを数式(1)に示す。
【0040】
【0041】
数式(1)において、νは、振動数を表し、F(ν)は、エネルギードナーの規格化され
た発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル
、三重項励起状態からのエネルギー移動を論じる場合はりん光スペクトル)を表し、ε(
ν)は、エネルギーアクセプターのモル吸光係数を表し、Nは、アボガドロ数を表し、n
は、媒体の屈折率を表し、Rは、エネルギードナーとエネルギーアクセプターの分子間距
離を表し、τは、実測される励起状態の寿命(蛍光寿命やりん光寿命)を表し、cは、光
速を表し、φは、発光量子収率(一重項励起状態からのエネルギー移動を論じる場合は蛍
光量子収率、三重項励起状態からのエネルギー移動を論じる場合はりん光量子収率)を表
し、K2は、エネルギードナーとエネルギーアクセプターの遷移双極子モーメントの配向
を表す係数(0~4)である。なお、ランダム配向の場合はK2=2/3である。
【0042】
式(1)からわかるように、フェルスター機構によるエネルギー移動(フェルスター移動
)の条件は、1.エネルギードナーとエネルギーアクセプターが離れすぎないこと(距離
Rに関連)、2.エネルギードナーが発光すること(発光量子収率φに関連)、3.エネ
ルギードナーの発光スペクトルとエネルギーアクセプターの吸収スペクトルが重なりを有
すること(積分項に関連)、が挙げられる。
【0043】
ここで、
図1にて説明したように、各りん光性化合物(第1~第3のりん光性化合物)は
各ホスト材料中に分散されており、各りん光性化合物は各ホスト材料によって互いに隔離
されているため、距離Rは少なくとも一分子以上(1nm以上)の距離を有している。し
たがって、第1のりん光性化合物で生じた励起エネルギーの全てが、フェルスター機構に
よって第2乃至は第3のりん光性化合物にエネルギー移動してしまうことはない。一方で
、Rが10nm~20nm程度までであれば、フェルスター移動は可能であるため、例え
ば
図1における第2の発光層113Gの膜厚を20nm以下とすることで、部分的なエネ
ルギー移動が発生し、第1のりん光性化合物113Bd、第2のりん光性化合物113G
d、第3のりん光性化合物113Rdの全てを発光させることができる。
【0044】
青色発光を呈する第1のりん光性化合物113Bdと、前記第1のりん光性化合物よりも
長波長の発光(例えば緑色発光)を呈する第2のりん光性化合物113Gdと、前記第2
のりん光性化合物113Gdよりも長波長の発光(例えば赤色発光)を呈する第3のりん
光性化合物113Rdを用いた本発明の一態様の発光素子における、各りん光性化合物間
でのフェルスター移動の模式図を
図2に示す。
図2においては、電極10、電極11の間
に第1の発光層113B、第2の発光層113G及び第3の発光層113Rが積層された
構成を示した。なお、電極10及び電極11はどちらか一方が陽極として機能し、他方が
陰極として機能する電極である。
図2に示すように、まず第1のりん光性化合物113B
dで生じた一重項励起状態(S
B)は、項間交差により三重項励起状態(T
B)に変換さ
れる。すなわち、第1の発光層113Bにおける励起子は、基本的にT
Bに集約される。
【0045】
次に、このTB状態の励起子のエネルギーは、一部はそのまま発光して青色発光に変換さ
れるが、フェルスター機構を利用することにより、一部は第2のりん光性化合物113G
dの三重項励起状態(TG)に移動することができる。これは、第1のりん光性化合物1
13Bdが発光性である(りん光量子収率φが高い)ことと、第2のりん光性化合物11
3Gdが一重項基底状態から三重項励起状態への電子遷移に相当する直接吸収を有してい
る(三重項励起状態の吸収スペクトルが存在する)ことに起因している。これらの条件を
満たせば、TBからTGへの三重項-三重項フェルスター移動が可能となる。また、TB
から第3のりん光性化合物113Rdの一重項励起状態(SR)へのエネルギー移動も、
寄与は小さいものの、フェルスター移動の条件を満たせば発生し得る。これは、後述する
が、第3のりん光性化合物113Rdが赤色発光材料の場合に生じやすい。SRは項間交
差により、第3のりん光性化合物113Rdの三重項励起状態(TR)に変換されるため
、第3のりん光性化合物113Rdの発光に寄与する。なお、フェルスター機構における
エネルギードナー(ここでは第1のりん光性化合物113Bd)は発光性である必要があ
るため、第1のりん光性化合物113Bdのりん光量子収率は、0.1以上であることが
好ましい。
【0046】
なお、第2のりん光性化合物113Gdの一重項励起状態(SG)は、第1のりん光性化
合物113Bdの三重項励起状態(TB)よりもエネルギーが高い場合が多いため、上述
したエネルギー移動にあまり寄与しない場合が多い。したがってここでは割愛している。
【0047】
さらに、第2のりん光性化合物113Gdの三重項TGの状態の励起子のエネルギーは、
一部はそのまま発光(例えば緑色発光)に変換されるが、フェルスター機構を利用するこ
とにより、一部は第3のりん光性化合物113Rdの三重項励起状態(TR)に移動する
ことができる。これは、第2のりん光性化合物113Gdが発光性である(りん光量子収
率φが高い)ことと、第3のりん光性化合物113Rdが一重項基底状態から三重項励起
状態への電子遷移に相当する直接吸収を有している(三重項励起状態の吸収スペクトルが
存在する)ことに起因している。これらの条件を満たせば、TGからTRへの三重項-三
重項フェルスター移動が可能となる。なお、フェルスター機構におけるエネルギードナー
(ここでは第2のりん光性化合物113Gd)は発光性である必要があるため、第2のり
ん光性化合物113Gdのりん光量子収率は、0.1以上であることが好ましい。
【0048】
以上で述べたようなエネルギー移動により生成したTRは、第3のりん光性化合物113
Rdの発光(例えば赤色発光)に変換される。このようにして、第1~第3のりん光性化
合物の各々から発光を得ることができる。
【0049】
なお、上述のフェルスター移動を、効率よくドーパントであるりん光性化合物間で発生さ
せ、ホスト材料にはエネルギー移動しないように設計するためには、第1~第3のホスト
材料は、青色の領域に吸収スペクトルを有さないことが好ましい。具体的には、吸収スペ
クトルの吸収端が440nm以下であることが好ましい。このように、ホスト材料(具体
的には第2あるいは第3のホスト材料)を介することなく、ドーパント間で直接エネルギ
ー移動を行わせることにより、余分なエネルギー移動の経路の発生を抑制し、高い発光効
率に結びつけることができる。
【0050】
また、第1のホスト材料は、青色発光を呈する第1のりん光性化合物を消光させないよう
、該第1のりん光性化合物よりも高い三重項励起エネルギーを有していることが好ましい
。
【0051】
以上で述べたように、本発明の一態様の基本コンセプトは、まず第1~第3の各りん光性
化合物をホスト材料および積層構造を用いて隔離しつつ、最も短波長の発光を示す第1の
りん光性化合物を主として励起する素子構造とすることである。このような素子構造にお
いては、ある程度の距離以内(~20nm)であればフェルスター型のエネルギー移動が
一部で生じるため、青色発光を呈する第1のりん光性化合物の励起エネルギーが、部分的
に第2のりん光性化合物へ移動し、さらには、第2のりん光性化合物の励起エネルギーが
、部分的に第3のりん光性化合物へ移動し、第1~第3の各りん光性化合物から発光を得
ることができる。
【0052】
しかし、ここで本発明の一態様においてさらに重要な点は、そのエネルギー移動を考慮し
た材料の選択および素子構造である。
【0053】
まず、フェルスター移動を発生させるためには、エネルギードナー側の発光量子収率φが
高い必要があるが、本発明の一態様においてはりん光性化合物(具体的には、りん光量子
収率が0.1以上の発光性化合物)を用いるため、問題は生じない。重要な点は、式(1
)の積分項を大きくする、すなわち、エネルギードナーの発光スペクトルF(ν)とエネ
ルギーアクセプターのモル吸光係数ε(ν)をうまくオーバーラップさせることである。
【0054】
一般には、エネルギーアクセプターのモル吸光係数ε(ν)が大きい波長領域で、エネル
ギードナーの発光スペクトルF(ν)を重ねればよい(つまり、F(ν)ε(ν)の積を
大きくすればよい)と考えられている。しかし、これはフェルスター機構においては必ず
しも真ではない。なぜならば、式(1)の積分項は、振動数νの4乗に反比例しており、
波長依存性が存在するためである。
【0055】
より分かりやすくするために、まず式(1)を変形する。光の波長をλとすると、ν=c
/λであるから、式(1)は下記式(2)の通り書き換えることができる。
【0056】
【0057】
つまり、積分項は波長λが大きいほど大きくなることがわかる。端的には、長波長側ほど
エネルギー移動は起こりやすくなることを意味している。つまり、モル吸光係数ε(λ)
が大きい波長領域でF(λ)が重なればよいという単純なものではなく、ε(λ)λ4が
大きい領域においてF(λ)が重なるようにしなければならない。
【0058】
したがって本発明の一態様の発光素子における第2のりん光性化合物113Gdとしては
、青色発光を呈する第1のりん光性化合物113Bd(具体的には440nm~520n
mに発光のピークを有するりん光性化合物)からのエネルギー移動効率を高めるために、
440nm~520nmの範囲にε(λ)λ4で表される関数の最も長波長側に位置する
極大値Aを有し、かつ前記第1のりん光性化合物113Bdよりも長波長の発光を呈する
りん光性化合物(具体的には520nm~600nmの範囲に発光のピークを有するりん
光性化合物)を用いる。また、第3のりん光性化合物113Rdとしては、第2のりん光
性化合物113Gdからのエネルギー移動効率を高めるために、520nm~600nm
の範囲にε(λ)λ4で表される関数の最も長波長側に位置する極大値Bを有し、かつ前
記第2のりん光性化合物113Gdよりも長波長の発光を呈するりん光性化合物を用いる
。なお、各りん光性化合物の発光が各々上記のような発光であることによって、照明用途
であれば、演色性の高い発光が得られ、また、ディスプレイ用途であれば、良好な色度の
発光を効率良く得ることができるようになる。
【0059】
このようなりん光性化合物の構成(特に極大値AやB)に関し、理解を深めるため、以下
では具体例を用いて説明する。ここでは、青色発光を示す第1のりん光性化合物113B
dとして、下記化合物(1)(トリス{2-[5-(2-メチルフェニル)-4-(2,
6-ジメチルフェニル)-4H-1,2,4-トリアゾール-3-イル-κN2]フェニ
ル-κC}イリジウム(III)(略称:Ir(mpptz-dmp)3))を、第1の
りん光性化合物113Bdよりも長波長の発光(緑色発光)を示す第2のりん光性化合物
113Gdとして、下記化合物(2)((アセチルアセトナト)ビス(6-tert-ブ
チル-4-フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm)
2(acac)))を、第2のりん光性化合物113Gdよりも長波長の発光(赤色発光
)を示す第3のりん光性化合物113Rdとして、下記化合物(3)(ビス(2,3,5
-トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:I
r(tppr)2(dpm)))を、それぞれ用いた場合を例に説明する。
【0060】
【0061】
図3(a)は、第2のりん光性化合物である化合物(2)のモル吸光係数ε(λ)と、ε
(λ)λ
4とを示したものである。モル吸光係数ε(λ)は、長波長側になるにつれて低
下していくが、ε(λ)λ
4は490nm付近(化合物(2)の三重項MLCT吸収帯に
相当する)で極大値Aを有している。この例からわかるように、λ
4の項の影響で、第2
のりん光性化合物のε(λ)λ
4は、最も長波長側に位置する吸収帯(三重項MLCT吸
収帯)に極大値Aを有する。
【0062】
一方、
図3(b)は、化合物(1)のフォトルミネッセンス(PL)スペクトルF(λ)
と、化合物(2)のε(λ)λ
4とを示したものである。化合物(1)は第1のりん光性
化合物であり、475nmおよび505nm付近に発光ピークを有する青色発光を呈する
。この第1のりん光性化合物のPLスペクトルF(λ)は、第2のりん光性化合物のε(
λ)λ
4の極大値A付近において、ε(λ)λ
4と大きな重なりを有しており、第1のり
ん光性化合物から第2のりん光性化合物へフェルスター機構によるエネルギー移動が発生
する。なおこの場合、極大値Aは三重項MLCT吸収帯に対応しているため、三重項-三
重項のフェルスター型エネルギー移動である(
図2におけるT
B-T
Gエネルギー移動)
。
【0063】
次に、
図4(a)は、第3のりん光性化合物である化合物(3)のモル吸光係数ε(λ)
と、ε(λ)λ
4とを示したものである。モル吸光係数ε(λ)は、長波長側になるにつ
れて低下していくが、ε(λ)λ
4は550nm付近(化合物(3)の三重項MLCT吸
収帯に相当する)で極大値Bを有している。この例からわかるように、λ
4の項の影響で
、第3のりん光性化合物のε(λ)λ
4は、最も長波長側に位置する吸収帯(三重項ML
CT吸収帯)に極大値Bを有する。
【0064】
一方、
図4(b)は、化合物(2)のフォトルミネッセンス(PL)スペクトルF(λ)
と、化合物(3)のε(λ)λ
4とを示したものである。化合物(2)は第2のりん光性
化合物であり、545nm付近に発光ピークを有する緑色発光を呈する。この第2のりん
光性化合物のPLスペクトルF(λ)は、第3のりん光性化合物のε(λ)λ
4の極大値
B付近において、ε(λ)λ
4と大きな重なりを有しており、第2のりん光性化合物から
第3のりん光性化合物へフェルスター機構によるエネルギー移動が発生する。なおこの場
合、極大値Bは三重項MLCT吸収帯に対応しているため、三重項-三重項のフェルスタ
ー型エネルギー移動である(
図2におけるT
G-T
Rエネルギー移動)。
【0065】
なお、以上のことから、第2および第3のりん光性化合物は、吸収スペクトルの最も長波
長側に、一重項基底状態から三重項励起状態への電子遷移に相当する直接吸収(例えば、
三重項MLCT吸収)を有していることが好ましい。このような構成とすることで、
図2
に示したような三重項-三重項のエネルギー移動が効率よく生じることになる。
【0066】
ここで、
図3(b)と
図4(b)を同一の図上にまとめ、さらに第3のりん光性化合物で
ある化合物(3)のPLスペクトルも併せて記載した図を、
図5に示す。化合物(1)の
PLスペクトルと化合物(2)のε(λ)λ
4との重なり(極大値A付近)を使って化合
物(1)から化合物(2)へ、そして、化合物(2)のPLスペクトルと化合物(3)の
ε(λ)λ
4との重なり(極大値B付近)を使って化合物(2)から化合物(3)へ、段
階的にエネルギー移動が可能であることがわかる。なお、第1のりん光性化合物である化
合物(1)から、第3のりん光性化合物である化合物(3)に直接エネルギー移動するこ
ともできる。これは、
図5からわかるように、化合物(3)の三重項MLCT吸収帯(極
大値B付近)よりも短波長側で、化合物(1)のPLスペクトルF(λ)と化合物(3)
のε(λ)λ
4とが重なっているためであり、三重項-一重項のフェルスター型エネルギ
ー移動が存在することが示唆される(
図2におけるT
B-S
Rエネルギー移動)。
【0067】
以上の
図3、4、5からわかる重要なことは、λ
4の影響により、第2のりん光性化合物
に比べ、第3のりん光性化合物の方がエネルギーを受け取りやすい(エネルギーアクセプ
ターとなりやすい)ことである。第2のりん光性化合物、第3のりん光性化合物共に、最
も長波長側の三重項MLCT吸収帯のモル吸光係数ε(λ)は5000[M
-1cm
-1
]程度であり、ほぼ同等である。にも関わらず、
図5を見るとわかるように、ε(λ)λ
4の極大値Aと極大値Bとを比較すると、極大値Bの方が1.6倍ほど大きくなっている
。これはλ
4の項の影響であり、より長波長に吸収帯を有している化合物の方が、ε(λ
)λ
4はより大きくなる傾向を示している。それ故に、第2のりん光性化合物に比べて、
第3のりん光性化合物の方がエネルギーを受け取りやすいことを示している。
【0068】
そこで、第1乃至第3の発光層をこの順に積層し、さらにキャリアの再結合領域を、第1
の発光層内、あるいは第1の発光層と第2の発光層との界面近傍とする(すなわち、第1
のりん光性化合物を主として励起する)素子構造へ着目した(
図1で示した通りである)
。このような素子構造とすることで、第2のりん光性化合物が含まれる第2の発光層より
も、第3のりん光性化合物が含まれる第3の発光層の方が、キャリアの再結合領域から遠
くなる。この様に、エネルギーを受け取りやすい第3のりん光性化合物を再結合領域から
遠くに、相対的にエネルギーを受け取りにくい第2のりん光性化合物を再結合領域の近く
に、それぞれ配置することで、バランス良く第1~第3の各りん光性化合物からの発光を
得ることができるのである。結果として、発光効率が良好で、スペクトルのバランスがよ
い発光素子を得ることができる。
【0069】
なお、上述した再結合領域を得るために、第1の発光層は電子輸送性であり、前記第2の
発光層および前記第3の発光層は正孔輸送性であることが好ましい(
図1(a))。具体
的には、例えば、第1のホスト材料として電子輸送性の材料を用い、第2のホスト材料お
よび前記第3のホスト材料として、正孔輸送性の材料を用いればよい。
【0070】
また、上述した再結合領域を得る他の一態様として、第1の発光層は正孔輸送性であり、
前記第2の発光層および前記第3の発光層は電子輸送性であることが好ましい(
図1(b
))。具体的には、例えば、第1のホスト材料として正孔輸送性の材料を用い、第2のホ
スト材料および前記第3のホスト材料として、電子輸送性の材料を用いればよい。
【0071】
さらに、第2の発光層からの発光を得ると共に、第3の発光層からの発光をも得るために
は、フェルスター移動の距離Rを考慮すると、第2の発光層の膜厚が5nm以上20nm
以下であることが好ましい。より好ましくは、5nm以上10nm以下である。
【0072】
(実施の形態2)
本実施の形態では実施の形態1で説明した発光素子の詳細な構造の例について
図1を用
いて以下に説明する。
【0073】
本実施の形態における発光素子は、一対の電極間に複数の層からなるEL層を有する。
本実施の形態において、発光素子は、第1の電極101と、第2の電極102と、第1の
電極101と第2の電極102との間に設けられたEL層103とから構成されている。
なお、本形態では第1の電極101は陽極として機能し、第2の電極102は陰極として
機能するものとして、以下説明をする。つまり、第1の電極101の方が第2の電極10
2よりも電位が高くなるように、第1の電極101と第2の電極102に電圧を印加した
ときに、発光が得られる構成となっている。
【0074】
第1の電極101は陽極として機能するため、仕事関数の大きい(具体的には4.0e
V以上)金属、合金、導電性化合物、およびこれらの混合物などを用いて形成することが
好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium T
in Oxide)、ケイ素若しくは酸化ケイ素を含有した酸化インジウム-酸化スズ、
酸化インジウム-酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(
IWZO)等が挙げられる。これらの導電性金属酸化物膜は、通常スパッタリング法によ
り成膜されるが、ゾル-ゲル法などを応用して作製しても構わない。作製方法の例として
は、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1~20wt%の酸化亜鉛を加
えたターゲットを用いてスパッタリング法により形成する方法などがある。また、酸化タ
ングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)は、酸化インジウムに対
し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含有したターゲッ
トを用いてスパッタリング法により形成することもできる。この他、金(Au)、白金(
Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)
、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、または金属材料の
窒化物(例えば、窒化チタン)等が挙げられる。グラフェンも用いることができる。なお
、後述する複合材料をEL層103における第1の電極101と接する層に用いることで
、仕事関数に関わらず、電極材料を選択することができるようになる。
【0075】
EL層103の積層構造については、発光層113が実施の形態1に示したような構成
となって入れば他は特に限定されない。例えば、正孔注入層、正孔輸送層、発光層、電子
輸送層、電子注入層、キャリアブロック層、中間層等を適宜組み合わせて構成することが
できる。本実施の形態では、EL層103は、第1の電極101の上に順に積層した正孔
注入層111、正孔輸送層112、発光層113、電子輸送層114、電子注入層115
を有する構成について説明する。各層を構成する材料について以下に具体的に示す。
【0076】
正孔注入層111は、正孔注入性の高い物質を含む層である。モリブデン酸化物やバナ
ジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等を用いること
ができる。この他、フタロシアニン(略称:H2Pc)や銅フタロシアニン(CuPC)
等のフタロシアニン系の化合物、4,4’-ビス[N-(4-ジフェニルアミノフェニル
)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N,N’-ビス{4-[ビス
(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフェニル-(1,1’-ビフ
ェニル)-4,4’-ジアミン(略称:DNTPD)等の芳香族アミン化合物、或いはポ
リ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS
)等の高分子等によっても正孔注入層111を形成することができる。
【0077】
また、正孔注入層111として、正孔輸送性の物質にアクセプター性物質を含有させた
複合材料を用いることができる。なお、正孔輸送性の物質にアクセプター性物質を含有さ
せたものを用いることにより、電極の仕事関数に依らず電極を形成する材料を選ぶことが
できる。つまり、第1の電極101として仕事関数の大きい材料だけでなく、仕事関数の
小さい材料も用いることができるようになる。アクセプター性物質としては、7,7,8
,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(略称:F4-TC
NQ)、クロラニル等を挙げることができる。また、遷移金属酸化物を挙げることができ
る。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができ
る。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブ
デン、酸化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いため好ましい
。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため
好ましい。
【0078】
複合材料に用いる正孔輸送性の物質としては、芳香族アミン化合物、カルバゾール誘導
体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種
々の有機化合物を用いることができる。なお、複合材料に用いる有機化合物としては、正
孔輸送性の高い有機化合物であることが好ましい。具体的には、10-6cm2/Vs以
上の正孔移動度を有する物質であることが好ましい。以下では、複合材料における正孔輸
送性の物質として用いることのできる有機化合物を具体的に列挙する。
【0079】
例えば、芳香族アミン化合物としては、N,N’-ジ(p-トリル)-N,N’-ジフ
ェニル-p-フェニレンジアミン(略称:DTDPPA)、4,4’-ビス[N-(4-
ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N
,N’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフ
ェニル-(1,1’-ビフェニル)-4,4’-ジアミン(略称:DNTPD)、1,3
,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン
(略称:DPA3B)等を挙げることができる。
【0080】
複合材料に用いることのできるカルバゾール誘導体としては、具体的には、3-[N-
(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバ
ゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3
-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)
、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]
-9-フェニルカルバゾール(略称:PCzPCN1)等を挙げることができる。
【0081】
また、複合材料に用いることのできるカルバゾール誘導体としては、他に、4,4’-
ジ(N-カルバゾリル)ビフェニル(略称:CBP)、1,3,5-トリス[4-(N-
カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9-[4-(10-フェニル-
9-アントリル)フェニル]-9H-カルバゾール(略称:CzPA)、1,4-ビス[
4-(N-カルバゾリル)フェニル]-2,3,5,6-テトラフェニルベンゼン等を用
いることができる。
【0082】
また、複合材料に用いることのできる芳香族炭化水素としては、例えば、2-tert
-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、2-
tert-ブチル-9,10-ジ(1-ナフチル)アントラセン、9,10-ビス(3,
5-ジフェニルフェニル)アントラセン(略称:DPPA)、2-tert-ブチル-9
,10-ビス(4-フェニルフェニル)アントラセン(略称:t-BuDBA)、9,1
0-ジ(2-ナフチル)アントラセン(略称:DNA)、9,10-ジフェニルアントラ
セン(略称:DPAnth)、2-tert-ブチルアントラセン(略称:t-BuAn
th)、9,10-ビス(4-メチル-1-ナフチル)アントラセン(略称:DMNA)
、2-tert-ブチル-9,10-ビス[2-(1-ナフチル)フェニル]アントラセ
ン、9,10-ビス[2-(1-ナフチル)フェニル]アントラセン、2,3,6,7-
テトラメチル-9,10-ジ(1-ナフチル)アントラセン、2,3,6,7-テトラメ
チル-9,10-ジ(2-ナフチル)アントラセン、9,9’-ビアントリル、10,1
0’-ジフェニル-9,9’-ビアントリル、10,10’-ビス(2-フェニルフェニ
ル)-9,9’-ビアントリル、10,10’-ビス[(2,3,4,5,6-ペンタフ
ェニル)フェニル]-9,9’-ビアントリル、アントラセン、テトラセン、ルブレン、
ペリレン、2,5,8,11-テトラ(tert-ブチル)ペリレン等が挙げられる。ま
た、この他、ペンタセン、コロネン等も用いることができる。このように、1×10-6
cm2/Vs以上の正孔移動度を有し、炭素数14~42である芳香族炭化水素を用いる
ことがより好ましい。
【0083】
なお、複合材料に用いることのできる芳香族炭化水素は、ビニル骨格を有していてもよ
い。ビニル基を有している芳香族炭化水素としては、例えば、4,4’-ビス(2,2-
ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10-ビス[4-(2,2-
ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。
【0084】
また、ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェ
ニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニル
アミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](
略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス
(フェニル)ベンジジン](略称:Poly-TPD)等の高分子化合物を用いることも
できる。
【0085】
正孔注入層を形成することによって、正孔の注入性が良好となり、駆動電圧の小さい発
光素子を得ることが可能となる。
【0086】
正孔輸送層112は、正孔輸送性の物質を含む層である。正孔輸送性の物質としては、
例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略
称:NPB)やN,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,
1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’,4’’-トリス
(N,N-ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4
’’-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]トリフェニルアミン
(略称:MTDATA)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2
-イル)-N―フェニルアミノ]ビフェニル(略称:BSPB)、4-フェニル-4’-
(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)など
の芳香族アミン化合物等を用いることができる。ここに述べた物質は、正孔輸送性が高く
、主に10-6cm2/Vs以上の正孔移動度を有する物質である。また、上述の複合材
料における正孔輸送性の物質として挙げた有機化合物も正孔輸送層112に用いることが
できる。また、ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルト
リフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。なお
、正孔輸送性の物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以上
積層したものとしてもよい。
【0087】
発光層113は、発光性の物質を含む層である。発光層113は、実施の形態1で説明
したような構成を有していることから、本実施の形態における発光素子は非常に発光効率
の良好な発光素子とすることができる。発光層113の構成及び材料については実施の形
態1の記載を参照されたい。
【0088】
発光層113において、発光物質、若しくは発光中心物質として用いることが可能な材
料としては特に限定は無い。上記発光物質又は発光中心物質としては例えば、以下のよう
なものが挙げられる。
【0089】
第1のりん光性化合物は青色発光を示すものが好ましく、例えば440nm~520nm
に発光のピークを有するりん光性化合物を選択することができる。具体的には、トリス{
2-[5-(2-メチルフェニル)-4-(2,6-ジメチルフェニル)-4H-1,2
,4-トリアゾール-3-イル-κN2]フェニル-κC}イリジウム(III)(略称
:Ir(mpptz-dmp)3)、トリス(5-メチル-3,4-ジフェニル-4H-
1,2,4-トリアゾラト)イリジウム(III)(略称:Ir(Mptz)3)、トリ
ス[4-(3-ビフェニル)-5-イソプロピル-3-フェニル-4H-1,2,4-ト
リアゾラト]イリジウム(III)(略称:Ir(iPrptz-3b)3)のような4
H-トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3-メチル-1-(
2-メチルフェニル)-5-フェニル-1H-1,2,4-トリアゾラト]イリジウム(
III)(略称:Ir(Mptz1-mp)3)、トリス(1-メチル-5-フェニル-
3-プロピル-1H-1,2,4-トリアゾラト)イリジウム(III)(略称:Ir(
Prptz1-Me)3)のような1H-トリアゾール骨格を有する有機金属イリジウム
錯体や、fac-トリス[1-(2,6-ジイソプロピルフェニル)-2-フェニル-1
H-イミダゾール]イリジウム(III)(略称:Ir(iPrpmi)3)、トリス[
3-(2,6-ジメチルフェニル)-7-メチルイミダゾ[1,2-f]フェナントリジ
ナト]イリジウム(III)(略称:Ir(dmpimpt-Me)3)のようなイミダ
ゾール骨格を有する有機金属イリジウム錯体や、ビス[2-(4’,6’-ジフルオロフ
ェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)
ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナ
ト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2
-[3’,5’-ビス(トリフルオロメチル)フェニル]ピリジナト-N,C2’}イリ
ジウム(III)ピコリナート(略称:Ir(CF3ppy)2(pic))、ビス[2
-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)
アセチルアセトナート(略称:FIr(acac))のような電子吸引基を有するフェニ
ルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。上述した中でも
、4H-トリアゾール、1H-トリアゾール、イミダゾールのようなポリアゾール骨格を
有する有機金属イリジウム錯体は、正孔トラップ性が高い。したがって、本発明の一態様
の発光素子における第1の発光層が電子輸送性である場合(具体的には、第1のホスト材
料が電子輸送材料である場合)、ポリアゾール骨格を有する有機金属イリジウム錯体を第
1のりん光性化合物として用いることで、キャリアの再結合領域を第1の発光層内、ある
いは第1の発光層と第2の発光層との界面近傍に制御することができるため好ましい。な
お、4H-トリアゾール骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも
優れるため、特に好ましい。
【0090】
第2のりん光性化合物は、第1のりん光性化合物よりも長波長の発光を示す化合物を用い
ればよいが、好ましくは、例えば520nm~600nmに発光のピークを有するりん光
性化合物を選択することができる。具体的には、トリス(4-メチル-6-フェニルピリ
ミジナト)イリジウム(III)(略称:Ir(mppm)3)、トリス(4-t-ブチ
ル-6-フェニルピリミジナト)イリジウム(III)(略称:Ir(tBuppm)3
)、(アセチルアセトナト)ビス(6-メチル-4-フェニルピリミジナト)イリジウム
(III)(略称:Ir(mppm)2(acac))、(アセチルアセトナト)ビス(
6-tert-ブチル-4-フェニルピリミジナト)イリジウム(III)(略称:Ir
(tBuppm)2(acac))、(アセチルアセトナト)ビス[6-(2-ノルボル
ニル)-4-フェニルピリミジナト]イリジウム(III)(略称:Ir(nbppm)
2(acac))、ビス{2-[5-メチル-6-(2-メチルフェニル)-4-ピリミ
ジニル-κN3]フェニル-κC}(2,4-ペンタンジオナト-κ2O,O’)イリジ
ウム(III)(略称:Ir(mpmppm)2(acac))、(アセチルアセトナト
)ビス(4,6-ジフェニルピリミジナト)イリジウム(III)(略称:Ir(dpp
m)2(acac))のようなピリミジン骨格を有する有機金属イリジウム錯体や、(ア
セチルアセトナト)ビス(3,5-ジメチル-2-フェニルピラジナト)イリジウム(I
II)(略称:Ir(mppr-Me)2(acac))、(アセチルアセトナト)ビス
(5-イソプロピル-3-メチル-2-フェニルピラジナト)イリジウム(III)(略
称:Ir(mppr-iPr)2(acac))のようなピラジン骨格を有する有機金属
イリジウム錯体や、トリス(2-フェニルピリジナト-N,C2’)イリジウム(III
)(略称:Ir(ppy)3)、ビス(2-フェニルピリジナト-N,C2’)イリジウ
ム(III)アセチルアセトナート(略称:Ir(ppy)2acac)、ビス(ベンゾ
[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:Ir(bzq)
2(acac))、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:I
r(bzq)3)、トリス(2-フェニルキノリナト-N,C2’)イリジウム(III
)(略称:Ir(pq)3)、ビス(2-フェニルキノリナト-N,C2’)イリジウム
(III)アセチルアセトナート(略称:Ir(pq)2(acac))のようなピリジ
ン骨格を有する有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェ
ナントロリン)テルビウム(III)(略称:Tb(acac)3(Phen))のよう
な希土類金属錯体が挙げられる。上述した中でも、ピリミジン、ピラジンのようなジアジ
ン骨格を有する有機金属イリジウム錯体は、正孔トラップ性が弱く、電子トラップ性が高
い。したがって、本発明の一態様の発光素子における第2の発光層が正孔輸送性である場
合(具体的には、第2のホスト材料が正孔輸送材料である場合)、ジアジン骨格を有する
有機金属イリジウム錯体を第2のりん光性化合物として用いることで、キャリアの再結合
領域を第1の発光層内、あるいは第1の発光層と第2の発光層との界面近傍に制御するこ
とができるため好ましい。なお、ピリミジン骨格を有する有機金属イリジウム錯体は、信
頼性や発光効率にも際だって優れるため、特に好ましい。
【0091】
第3のりん光性化合物は、第2のりん光性化合物よりも長波長の発光を示す化合物を用い
ればよいが、好ましくは、例えば600nm~700nmに発光のピークを有する赤色発
光のりん光性化合物を選択することができる。具体的には、ビス[4,6-ビス(3-メ
チルフェニル)ピリミジナト](ジイソブチリルメタノ)イリジウム(III)(略称:
Ir(5mdppm)2(dibm))、ビス[4,6-ビス(3-メチルフェニル)ピ
リミジナト](ジピバロイルメタナト)イリジウム(III)(略称:Ir(5mdpp
m)2(dpm))、ビス[4,6-ジ(ナフタレン-1-イル)ピリミジナト](ジピ
バロイルメタナト)イリジウム(III)(略称:Ir(d1npm)2(dpm))の
ようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス
(2,3,5-トリフェニルピラジナト)イリジウム(III)(略称:Ir(tppr
)2(acac))、ビス(2,3,5-トリフェニルピラジナト)(ジピバロイルメタ
ナト)イリジウム(III)(略称:Ir(tppr)2(dpm))、(アセチルアセ
トナト)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(I
II)(略称:Ir(Fdpq)2(acac))のようなピラジン骨格を有する有機金
属イリジウム錯体や、トリス(1-フェニルイソキノリナト-N,C2’)イリジウム(
III)(略称:Ir(piq)3)、ビス(1-フェニルイソキノリナト-N,C2’
)イリジウム(III)アセチルアセトナート(略称:Ir(piq)2acac)のよ
うなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,13,
17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtO
EP)のような白金錯体や、トリス(1,3-ジフェニル-1,3-プロパンジオナト)
(モノフェナントロリン)ユーロピウム(III)(略称:Eu(DBM)3(Phen
))、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフ
ェナントロリン)ユーロピウム(III)(略称:Eu(TTA)3(Phen))のよ
うな希土類金属錯体が挙げられる。上述した中でも、ピリミジン、ピラジンのようなジア
ジン骨格を有する有機金属イリジウム錯体は、正孔トラップ性が弱く、電子トラップ性が
高い。したがって、本発明の一態様の発光素子における第3の発光層が正孔輸送性である
場合(具体的には、第3のホスト材料が正孔輸送材料である場合)、ジアジン骨格を有す
る有機金属イリジウム錯体を第3のりん光性化合物として用いることで、キャリアの再結
合領域を第1の発光層内、あるいは第1の発光層と第2の発光層との界面近傍に制御する
ことができるため好ましい。なお、ピリミジン骨格を有する有機金属イリジウム錯体は、
信頼性や発光効率にも際だって優れるため、特に好ましい。また、ピラジン骨格を有する
有機金属イリジウム錯体は、色度の良い赤色発光が得られるため、本発明の一態様の白色
発光素子に適用することで演色性を高めることができる。
【0092】
また、以上で述べたりん光性化合物の他、公知のりん光性発光材料の中から、実施の形態
1に示したような関係を有する第1のりん光材料、第2のりん光材料及び第3のりん光材
料を選択し、用いてもよい。
【0093】
また、上記第1~第3のホスト材料として用いることが可能な材料としては、特に限定
はなく、種々のキャリア輸送材料を選択し、
図1に示した素子構造が得られるように適宜
組み合わせればよい。この時、上述した通り、電子輸送性のホスト材料と正孔輸送性のホ
スト材料を組み合わせる事が好ましい。
【0094】
例えば、電子輸送性を有するホスト材料としては、ビス(10-ヒドロキシベンゾ[h]
キノリナト)ベリリウム(II)(略称:BeBq2)、ビス(2-メチル-8-キノリ
ノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス
(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾ
リル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾ
リル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、2-(4-ビ
フェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール
(略称:PBD)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブ
チルフェニル)-1,2,4-トリアゾール(略称:TAZ)、1,3-ビス[5-(p
-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(
略称:OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-
イル)フェニル]-9H-カルバゾール(略称:CO11)、2,2’,2’’-(1,
3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称
:TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル
-1H-ベンゾイミダゾール(略称:mDBTBIm-II)などのポリアゾール骨格を
有する複素環化合物や、2-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベン
ゾ[f,h]キノキサリン(略称:2mDBTPDBq-II)、2-[3’-(ジベン
ゾチオフェン-4-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略
称:2mDBTBPDBq-II)、2-[3’-(9H-カルバゾール-9-イル)ビ
フェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、
4,6-ビス[3-(フェナントレン-9-イル)フェニル]ピリミジン(略称:4,6
mPnP2Pm)、4,6-ビス〔3-(4-ジベンゾチエニル)フェニル〕ピリミジン
(略称:4,6mDBTP2Pm-II)などのジアジン骨格を有する複素環化合物や、
3,5-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリジン(略称:35
DCzPPy)、1,3,5-トリ[3-(3-ピリジル)フェニル]ベンゼン(略称:
TmPyPB)などのピリジン骨格を有する複素環化合物が挙げられる。上述した中でも
、ジアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼性が
良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格を有する複素環化合
物は、電子輸送性が高く、駆動電圧低減にも寄与する。
【0095】
また、正孔輸送性を有するホスト材料としては、4,4’-ビス[N-(1-ナフチル)
-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェ
ニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称
:TPD)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N
―フェニルアミノ]ビフェニル(略称:BSPB)、4-フェニル-4’-(9-フェニ
ルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニル-
3’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPAFL
P)、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェ
ニルアミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-(9-フェニル
-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi1BP)、4
-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェ
ニルアミン(略称:PCBANB)、4,4’-ジ(1-ナフチル)-4’’-(9-フ
ェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBNBB)、
9,9-ジメチル-N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3
-イル)フェニル]フルオレン-2-アミン(略称:PCBAF)、N-フェニル-N-
[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]スピロ-9,9’-
ビフルオレン-2-アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合
物や、1,3-ビス(N-カルバゾリル)ベンゼン(略称:mCP)、4,4’-ジ(N
-カルバゾリル)ビフェニル(略称:CBP)、3,6-ビス(3,5-ジフェニルフェ
ニル)-9-フェニルカルバゾール(略称:CzTP)、3,3’-ビス(9-フェニル
-9H-カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物や、
4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(
略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-フェニル-9H-フ
ルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTFLP-III)、
4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-6-フェニルジ
ベンゾチオフェン(略称:DBTFLP-IV)などのチオフェン骨格を有する化合物や
、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾフラン)(略
称:DBF3P-II)、4-{3-[3-(9-フェニル-9H-フルオレン-9-イ
ル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi-II)などのフ
ラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合
物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く
、駆動電圧低減にも寄与するため好ましい。
【0096】
また、以上で述べたホスト材料の他、公知の物質の中からホスト材料を用いても良い。な
お、ホスト材料としては、りん光性化合物の三重項準位(基底状態と三重項励起状態との
エネルギー差)よりも大きい三重項準位を有する物質を選択することが好ましい。また、
これらホスト材料は青色の領域に吸収スペクトルを有さないことが好ましい。具体的には
、吸収スペクトルの吸収端が440nm以下であることが好ましい。
【0097】
以上のような構成を有する発光層113は、真空蒸着法での共蒸着や、混合溶液として
インクジェット法やスピンコート法やディップコート法などを用いて作製することができ
る。
【0098】
電子輸送層114は、電子輸送性の物質を含む層である。例えば、トリス(8-キノリ
ノラト)アルミニウム(略称:Alq)、トリス(4-メチル-8-キノリノラト)アル
ミニウム(略称:Almq3)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリ
リウム(略称:BeBq2)、ビス(2-メチル-8-キノリノラト)(4-フェニルフ
ェノラト)アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキノリン骨
格を有する金属錯体等からなる層である。また、この他ビス[2-(2-ヒドロキシフェ
ニル)ベンズオキサゾラト]亜鉛(略称:Zn(BOX)2)、ビス[2-(2-ヒドロ
キシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ)2)などのオキサゾール
系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金属錯体
以外にも、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3
,4-オキサジアゾール(略称:PBD)や、1,3-ビス[5-(p-tert-ブチ
ルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7
)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)
-1,2,4-トリアゾール(略称:TAZ)、バソフェナントロリン(略称:BPhe
n)、バソキュプロイン(略称:BCP)なども用いることができる。ここに述べた物質
は、電子輸送性が高く、主に10-6cm2/Vs以上の電子移動度を有する物質である
。なお、上述した電子輸送性のホスト材料を電子輸送層114に用いても良い。
【0099】
また、電子輸送層114は、単層のものだけでなく、上記物質からなる層が二層以上積
層したものとしてもよい。
【0100】
また、電子輸送層と発光層との間に電子キャリアの移動を制御する層を設けても良い。
これは上述したような電子輸送性の高い材料に、電子トラップ性の高い物質を少量添加し
た層であって、電子キャリアの移動を抑制することによって、キャリアバランスを調節す
ることが可能となる。このような構成は、発光層を電子が突き抜けてしまうことにより発
生する問題(例えば素子寿命の低下)の抑制に大きな効果を発揮する。
【0101】
また、電子輸送層114と第2の電極102との間に、第2の電極102に接して電子
注入層115を設けてもよい。電子注入層115としては、フッ化リチウム(LiF)、
フッ化セシウム(CsF)、フッ化カルシウム(CaF2)等のようなアルカリ金属又は
アルカリ土類金属又はそれらの化合物を用いることができる。例えば、電子輸送性を有す
る物質からなる層中にアルカリ金属又はアルカリ土類金属又はそれらの化合物を含有させ
たものを用いることができる。なお、電子注入層115として、電子輸送性を有する物質
からなる層中にアルカリ金属又はアルカリ土類金属を含有させたものを用いることにより
、第2の電極102からの電子注入が効率良く行われるためより好ましい。
【0102】
第2の電極102を形成する物質としては、仕事関数の小さい(具体的には3.8eV
以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる
。このような陰極材料の具体例としては、リチウム(Li)やセシウム(Cs)等のアル
カリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)
等の元素周期表の第1族または第2族に属する元素、およびこれらを含む合金(MgAg
、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこ
れらを含む合金等が挙げられる。しかしながら、第2の電極102と電子輸送層との間に
、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、ケ
イ素若しくは酸化ケイ素を含有した酸化インジウム-酸化スズ等様々な導電性材料を第2
の電極102として用いることができる。これら導電性材料は、スパッタリング法やイン
クジェット法、スピンコート法等を用いて成膜することが可能である。
【0103】
また、EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用い
ることができる。例えば、真空蒸着法、インクジェット法またはスピンコート法など用い
ても構わない。また各電極または各層ごとに異なる成膜方法を用いて形成しても構わない
。
【0104】
電極についても、ゾル-ゲル法を用いて湿式法で形成しても良いし、金属材料のペース
トを用いて湿式法で形成してもよい。また、スパッタリング法や真空蒸着法などの乾式法
を用いて形成しても良い。
【0105】
以上のような構成を有する発光素子は、第1の電極101と第2の電極102との間に
生じた電位差により電流が流れ、発光性の高い物質を含む層である発光層113において
正孔と電子とが再結合し、発光するものである。つまり発光層113に発光領域が形成さ
れるような構成となっている。
【0106】
発光は、第1の電極101または第2の電極102のいずれか一方または両方を通って
外部に取り出される。従って、第1の電極101または第2の電極102のいずれか一方
または両方は、透光性を有する電極で成る。第1の電極101のみが透光性を有する電極
である場合、発光は第1の電極101を通って取り出される。また、第2の電極102の
みが透光性を有する電極である場合、発光は第2の電極102を通って取り出される。第
1の電極101および第2の電極102がいずれも透光性を有する電極である場合、発光
は第1の電極101および第2の電極102を通って、両方から取り出される。
【0107】
なお、第1の電極101と第2の電極102との間に設けられる層の構成は、上記のも
のには限定されない。しかし、発光領域と電極やキャリア注入層に用いられる金属とが近
接することによって生じる消光が抑制されるように、第1の電極101および第2の電極
102から離れた部位に正孔と電子とが再結合する発光領域を設けた構成が好ましい。
【0108】
また、発光層113に接する正孔輸送層や電子輸送層、特に発光層113における発光
領域に近い方に接するキャリア輸送層は、発光層で生成した励起子からのエネルギー移動
を抑制するため、そのバンドギャップが発光層を構成する発光物質もしくは、発光層に含
まれる発光中心物質が有するバンドギャップより大きいバンドギャップを有する物質で構
成することが好ましい。
【0109】
本実施の形態における発光素子は、ガラス、プラスチックなどからなる基板上に作製す
ればよい。基板上に作製する順番としては、第1の電極101側から順に積層しても、第
2の電極102側から順に積層しても良い。発光装置は一基板上に一つの発光素子を形成
したものでも良いが、複数の発光素子を形成しても良い。一基板上にこのような発光素子
を複数作製することで、素子分割された照明装置やパッシブマトリクス型の発光装置を作
製することができる。また、ガラス、プラスチックなどからなる基板上に、例えば薄膜ト
ランジスタ(TFT)を形成し、TFTと電気的に接続された電極上に発光素子を作製し
てもよい。これにより、TFTによって発光素子の駆動を制御するアクティブマトリクス
型の発光装置を作製できる。なお、TFTの構造は、特に限定されない。スタガ型のTF
Tでもよいし逆スタガ型のTFTでもよい。また、TFTに用いる半導体の結晶性につい
ても特に限定されず、非晶質半導体を用いてもよいし、結晶性半導体を用いてもよい。ま
た、TFT基板に形成される駆動用回路についても、N型およびP型のTFTからなるも
のでもよいし、若しくはN型のTFTまたはP型のTFTのいずれか一方からのみなるも
のであってもよい。
【0110】
なお、本実施の形態は、他の実施の形態と適宜組み合わせることが可能である。
【0111】
(実施の形態3)
本実施の形態では、実施の形態1及び実施の形態2に記載の発光素子を用いた発光装置
について説明する。
【0112】
本実施の形態では、実施の形態1及び実施の形態2に記載の発光素子を用いて作製され
た発光装置について
図6を用いて説明する。なお、
図6(A)は、発光装置を示す上面図
、
図6(B)は
図6(A)をA-BおよびC-Dで切断した断面図である。この発光装置
は、発光素子の発光を制御するものとして、点線で示された駆動回路部(ソース線駆動回
路)601、画素部602、駆動回路部(ゲート線駆動回路)603を含んでいる。また
、604は封止基板、625は乾燥剤、605はシール材であり、シール材605で囲ま
れた内側は、空間607になっている。
【0113】
なお、引き回し配線608はソース線駆動回路601及びゲート線駆動回路603に入
力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプ
リントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号
等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント
配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光
装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものと
する。
【0114】
次に、断面構造について
図6(B)を用いて説明する。素子基板610上には駆動回路
部及び画素部が形成されているが、ここでは、駆動回路部であるソース線駆動回路601
と、画素部602中の一つの画素が示されている。
【0115】
なお、ソース線駆動回路601はnチャネル型TFT623とpチャネル型TFT62
4とを組み合わせたCMOS回路が形成される。また、駆動回路は、種々のCMOS回路
、PMOS回路もしくはNMOS回路で形成しても良い。また、本実施の形態では、基板
上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を
基板上ではなく外部に形成することもできる。
【0116】
また、画素部602はスイッチング用TFT611と、電流制御用TFT612とその
ドレインに電気的に接続された第1の電極613とを含む複数の画素により形成される。
なお、第1の電極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ
型の感光性アクリル樹脂膜を用いることにより形成する。
【0117】
また、被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有
する曲面が形成されるようにする。例えば、絶縁物614の材料としてポジ型の感光性ア
クリルを用いた場合、絶縁物614の上端部のみに曲率半径(0.2μm~3μm)を有
する曲面を持たせることが好ましい。また、絶縁物614として、ネガ型の感光性樹脂、
或いはポジ型の感光性樹脂のいずれも使用することができる。
【0118】
第1の電極613上には、EL層616、および第2の電極617がそれぞれ形成され
ている。ここで、陽極として機能する第1の電極613に用いる材料としては、仕事関数
の大きい材料を用いることが望ましい。例えば、ITO膜、またはケイ素を含有したイン
ジウム錫酸化物膜、2~20wt%の酸化亜鉛を含む酸化インジウム膜、窒化チタン膜、
クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタンとアルミニウ
ムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタ
ン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての抵抗
も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる
。
【0119】
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート
法等の種々の方法によって形成される。EL層616は、実施の形態1及び実施の形態2
で説明したような構成を含んでいる。また、EL層616を構成する他の材料としては、
低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い
。
【0120】
さらに、EL層616上に形成され、陰極として機能する第2の電極617に用いる材
料としては、仕事関数の小さい材料(Al、Mg、Li、Ca、またはこれらの合金や化
合物、MgAg、MgIn、AlLi等)を用いることが好ましい。なお、EL層616
で生じた光が第2の電極617を透過させる場合には、第2の電極617として、膜厚を
薄くした金属薄膜と、透明導電膜(ITO、2~20wt%の酸化亜鉛を含む酸化インジ
ウム、ケイ素を含有したインジウム錫酸化物、酸化亜鉛(ZnO)等)との積層を用いる
のが良い。
【0121】
なお、第1の電極613、EL層616、第2の電極617でもって、発光素子が形成
されている。当該発光素子は実施の形態1及び実施の形態2に記載の発光素子である。な
お、画素部は複数の発光素子が形成されてなっているが、本実施の形態における発光装置
では、実施の形態1及び実施の形態2に記載の発光素子と、それ以外の構成を有する発光
素子の両方が含まれていても良い。
【0122】
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、
素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光素
子618が備えられた構造になっている。なお、空間607には、充填材が充填されてお
り、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材605で充填され
る場合もある。封止基板には凹部を形成し、そこに乾燥材625を設けると水分の影響に
よる劣化を抑制することができ、好ましい構成である。
【0123】
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。ま
た、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また
、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiberg
lass-Reinforced Plastics)、PVF(ポリビニルフロライド
)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。
【0124】
以上のようにして、実施の形態1及び実施の形態2に記載の発光素子を用いて作製され
た発光装置を得ることができる。
【0125】
本実施の形態における発光装置は、実施の形態1及び実施の形態2に記載の発光素子を
用いているため、良好な特性を備えた発光装置を得ることができる。具体的には、実施の
形態1及び実施の形態2で示した発光効率の良好な発光素子であり、消費電力の低減され
た発光装置とすることができる。また、駆動電圧の小さい発光素子であり、駆動電圧の小
さい発光装置を得ることができる。
【0126】
以上のように、本実施の形態では、アクティブマトリクス型の発光装置について説明し
たが、この他、パッシブマトリクス型の発光装置であってもよい。
図7には本発明を適用
して作製したパッシブマトリクス型の発光装置を示す。なお、
図7(A)は、発光装置を
示す斜視図、
図7(B)は
図7(A)をX-Yで切断した断面図である。
図7において、
基板951上には、電極952と電極956との間にはEL層955が設けられている。
電極952の端部は絶縁層953で覆われている。そして、絶縁層953上には隔壁層9
54が設けられている。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁
と他方の側壁との間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短
辺方向の断面は、台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁
層953と接する辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層9
53と接しない辺)よりも短い。このように、隔壁層954を設けることで、静電気等に
起因した発光素子の不良を防ぐことが出来る。また、パッシブマトリクス型の発光装置に
おいても、低駆動電圧で動作する実施の形態1及び実施の形態2に記載の発光素子を有す
ることによって、低消費電力で駆動させることができる。また、実施の形態1及び実施の
形態2に記載の発光素子を有することによって信頼性の高い発光装置とすることが可能と
なる。
【0127】
また、フルカラー表示とするためには、発光素子からの光が発光装置の外部に出る為の
光路上に着色層もしくは色変換層を設ければ良い。着色層等を設けることによってフルカ
ラー化した発光装置の例を
図8(A)及び(B)に示す。
図8(A)には基板1001、
下地絶縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008
、第1の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部10
40、駆動回路部1041、発光素子の第1の電極1024W、1024R、1024G
、1024B、隔壁1025、有機化合物を含む層1028、発光素子の第2の電極10
29、封止基板1031、シール材1032などが図示されている。また、着色層(赤色
の着色層1034R、緑色の着色層1034G、青色の着色層1034B)は透明な基材
1033に設ける。また、黒色層(ブラックマトリックス)1035をさらに設けても良
い。着色層及び黒色層が設けられた透明な基材1033は、位置合わせし、基板1001
に固定する。なお、着色層、及び黒色層は、オーバーコート層1036で覆われている。
また、本実施の形態においては、光が着色層を透過せずに外部へと出る発光層と、各色の
着色層を透過して外部に光が出る発光層とがあり、着色層を透過しない光は白、着色層を
透過する光は赤、青、緑となることから、4色の画素で映像を表現することができる。
【0128】
また、以上に説明した発光装置では、TFTが形成されている基板1001側に光を取
り出す構造(ボトムエミッション型)の発光装置としたが、封止基板1031側に発光を
取り出す構造(トップエミッション型)の発光装置としても良い。トップエミッション型
の発光装置の断面図を
図9に示す。この場合、基板1001は光を通さない基板を用いる
ことができる。TFTと発光素子の陽極とを接続する接続電極を作製するまでは、ボトム
エミッション型の発光装置と同様に形成する。その後、第3の層間絶縁膜1037を電極
1022を覆って形成する。この第3の層間絶縁膜1037は平坦化の役割を担っていて
も良い。第3の層間絶縁膜1037は第2の層間絶縁膜と同様の材料の他、他の公知の材
料を用いて形成することができる。
【0129】
発光素子の第1の電極1024W、1024R、1024G、1024Bはここでは陽
極とするが、陰極であっても構わない。また、
図9のようなトップエミッション型の発光
装置である場合、第1の電極を反射電極とすることが好ましい。有機化合物を含む層10
28の構成は、実施の形態1及び実施の形態2で説明したような構成とし、白色の発光が
得られるような素子構造とする。白色の発光が得られる構成としては、EL層を2層用い
た場合には一方のEL層における発光層から青色の光が、もう一方のEL層における発光
層から橙色の光が得られるような構成や、一方のEL層における発光層から青色の光が、
もう一方のEL層における発光層からは赤色と緑色の光が得られるような構成などが考え
られる。また、EL層を3層用いた場合には、それぞれの発光層から、赤色、緑色、青色
の発光が得られるようにすることで白色発光を呈する発光素子を得ることができる。なお
、実施の形態1及び実施の形態2で示した構成を適用しているのであれば、白色発光を得
る構成はこれに限らないことはもちろんである。
【0130】
着色層は、発光素子からの光が外部へとでる光路上に設ける。
図8(A)のようなボト
ムエミッション型の発光装置の場合、透明な基材1033に着色層1034R、1034
G、1034Bを設けて基板1001に固定することによって設けることができる。また
、
図8(B)のように着色層をゲート絶縁膜1003と第1の層間絶縁膜1020との間
に設ける構成としても良い。
図9のようなトップエミッションの構造であれば着色層(赤
色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)を設けた封
止基板1031で封止を行うこともできる。封止基板1031には画素と画素との間に位
置するように黒色層(ブラックマトリックス)1035を設けても良い。着色層(赤色の
着色層1034R、緑色の着色層1034G、青色の着色層1034B)や黒色層(ブラ
ックマトリックス)1035はオーバーコート層1036によって覆われていても良い。
なお封止基板1031は透光性を有する基板をもちいることとする。
【0131】
こうして得られた有機発光素子の一対の電極間に電圧を印加すると白色の発光領域10
44Wが得られる。また、着色層と組み合わせることで、赤色の発光領域1044Rと、
青色の発光領域1044Bと、緑色の発光領域1044Gとが得られる。本実施の形態の
発光装置は実施の形態1及び実施の形態2に記載の発光素子を用いていることから、消費
電力の小さい発光装置の実現が可能である。
【0132】
また、ここでは赤、緑、青、白の4色でフルカラー表示を行う例を示したが特に限定さ
れず、赤、緑、青の3色でフルカラー表示を行ってもよい。
【0133】
また、本実施の形態は他の実施の形態と自由に組み合わせることができる。
【0134】
(実施の形態4)
本実施の形態では、実施の形態1及び実施の形態2に記載の発光素子を照明装置として
用いる例を
図10を参照しながら説明する。
図10(B)は照明装置の上面図、
図10(
A)は
図10(B)におけるe-f断面図である。
【0135】
本実施の形態における照明装置は、支持体である透光性を有する基板400上に、第1
の電極401が形成されている。第1の電極401は実施の形態3における第1の電極1
01に相当する。
【0136】
第1の電極401上には補助電極402が設けられている。本実施の形態では、第1の
電極401側から発光を取り出す例を示したため、第1の電極401は透光性を有する材
料により形成する。補助電極402は透光性を有する材料の導電率の低さを補うために設
けられており、第1の電極401の抵抗が高いことによる電圧降下を起因とする発光面内
の輝度むらを抑制する機能を有する。補助電極402は少なくとも第1の電極401の材
料よりも導電率の大きい材料を用いて形成し、好ましくはアルミニウムなどの導電率の大
きい材料を用いて形成すると良い。なお、補助電極402における第1の電極401と接
する部分以外の表面は絶縁層で覆われていることが好ましい。これは、取り出すことがで
きない補助電極402上部からの発光を抑制するためであり、無効電流を低減し、電力効
率の低下を抑制するためである。なお、補助電極402の形成と同時に第2の電極404
に電圧を供給するためのパッド412を形成しても良い。
【0137】
第1の電極401と補助電極402上にはEL層403が形成されている。EL層40
3は実施の形態1及び実施の形態2に説明した構成を有する。なお、これら構成について
は当該記載を参照されたい。なお、EL層403は第1の電極401よりも平面的に見て
少し大きく形成することが、第1の電極401と第2の電極404とのショートを抑制す
る絶縁層の役割も担えるため好ましい構成である。
【0138】
EL層403を覆って第2の電極404を形成する。第2の電極404は実施の形態3
における第2の電極102に相当し、同様の構成を有する。本実施の形態においては、発
光は第1の電極401側から取り出されるため、第2の電極404は反射率の高い材料に
よって形成されることが好ましい。本実施の形態において、第2の電極404はパッド4
12と接続することによって、電圧が供給されるものとする。
【0139】
以上、第1の電極401、EL層403、及び第2の電極404(及び補助電極402
)を有する発光素子を本実施の形態で示す照明装置は有している。当該発光素子は発光効
率の高い発光素子であるため、本実施の形態における照明装置は消費電力の小さい照明装
置とすることができる。また、当該発光素子は信頼性の高い発光素子であることから、本
実施の形態における照明装置は信頼性の高い照明装置とすることができる。
【0140】
以上の構成を有する発光素子を、シール材405、406を用いて封止基板407を固
着し、封止することによって照明装置が完成する。シール材405、406はどちらか一
方でもかまわない。また、内側のシール材406には乾燥剤を混ぜることもでき、これに
より、水分を吸着することができ、信頼性の向上につながる。
【0141】
また、パッド412、第1の電極401及び補助電極402の一部をシール材405、
406の外に伸張して設けることによって、外部入力端子とすることができる。また、そ
の上にコンバータなどを搭載したICチップ420などを設けても良い。
【0142】
以上、本実施の形態に記載の照明装置は、EL素子に実施の形態1及び実施の形態2に
記載の発光素子を有することから、消費電力の小さい照明装置とすることができる。また
、駆動電圧の低い照明装置とすることができる。また、信頼性の高い照明装置とすること
ができる。
【0143】
(実施の形態5)
本実施の形態では、実施の形態1及び実施の形態2に記載の発光素子をその一部に含む
電子機器の例について説明する。実施の形態1及び実施の形態2に記載の発光素子は発光
効率が良好であり、消費電力が低減された発光素子である。その結果、本実施の形態に記
載の電子機器は、消費電力が低減された発光部を有する電子機器とすることが可能である
。また、実施の形態1及び実施の形態2に記載の発光素子は、駆動電圧の小さい発光素子
であるため、駆動電圧の小さい電子機器とすることが可能である。
【0144】
上記発光素子を適用した電子機器として、例えば、テレビジョン装置(テレビ、またはテ
レビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタル
ビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう
)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機など
が挙げられる。これらの電子機器の具体例を以下に示す。
【0145】
図11(A)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体71
01に表示部7103が組み込まれている。また、ここでは、スタンド7105により筐
体7101を支持した構成を示している。表示部7103により、映像を表示することが
可能であり、表示部7103は、実施の形態1及び実施の形態2に記載の発光素子をマト
リクス状に配列して構成されている。当該発光素子は、発光効率の良好な発光素子とする
ことが可能である。また、駆動電圧の小さい発光素子とすることが可能である。また、寿
命の長い発光素子とすることが可能である。そのため、当該発光素子で構成される表示部
7103を有するテレビジョン装置は消費電力の低減されたテレビジョン装置とすること
ができる。また、駆動電圧の小さいテレビジョン装置とすることが可能である。また、信
頼性の高いテレビジョン装置とすることができる。
【0146】
テレビジョン装置の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作
機7110により行うことができる。リモコン操作機7110が備える操作キー7109
により、チャンネルや音量の操作を行うことができ、表示部7103に表示される映像を
操作することができる。また、リモコン操作機7110に、当該リモコン操作機7110
から出力する情報を表示する表示部7107を設ける構成としてもよい。
【0147】
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般
のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信
ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者
と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
【0148】
図11(B1)はコンピュータであり、本体7201、筐体7202、表示部7203、
キーボード7204、外部接続ポート7205、ポインティングデバイス7206等を含
む。なお、このコンピュータは、実施の形態2又は実施の形態3で説明したものと同様の
発光素子をマトリクス状に配列して表示部7203に用いることにより作製される。
図1
1(B1)のコンピュータは、
図11(B2)のような形態であっても良い。
図11(B
2)のコンピュータは、キーボード7204、ポインティングデバイス7206の代わり
に第2の表示部7210が設けられている。第2の表示部7210はタッチパネル式とな
っており、第2の表示部7210に表示された入力用の表示を指や専用のペンで操作する
ことによって入力を行うことができる。また、第2の表示部7210は入力用表示だけで
なく、その他の画像を表示することも可能である。また表示部7203もタッチパネルで
あっても良い。二つの画面がヒンジで接続されていることによって、収納や運搬をする際
に画面を傷つける、破損するなどのトラブルの発生も防止することができる。当該発光素
子は発光効率の良好な発光素子とすることが可能である。そのため、当該発光素子で構成
される表示部7203を有するコンピュータは消費電力の低減されたコンピュータとする
ことができる。
【0149】
図11(C)は携帯型遊技機であり、筐体7301と筐体7302の2つの筐体で構成さ
れており、連結部7303により、開閉可能に連結されている。筐体7301には、実施
の形態1及び実施の形態2で説明した発光素子をマトリクス状に配列して作製された表示
部7304が組み込まれ、筐体7302には表示部7305が組み込まれている。また、
図11(C)に示す携帯型遊技機は、その他、スピーカ部7306、記録媒体挿入部73
07、LEDランプ7308、入力手段(操作キー7309、接続端子7310、センサ
7311(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度
、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、
振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン7312)等を備
えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも表示部
7304および表示部7305の両方、または一方に実施の形態1及び実施の形態2に記
載の発光素子をマトリクス状に配列して作製された表示部を用いていればよく、その他付
属設備が適宜設けられた構成とすることができる。
図11(C)に示す携帯型遊技機は、
記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能や、
他の携帯型遊技機と無線通信を行って情報を共有する機能を有する。なお、
図11(C)
に示す携帯型遊技機が有する機能はこれに限定されず、様々な機能を有することができる
。上述のような表示部7304を有する携帯型遊技機は、表示部7304に用いられてい
る発光素子が、良好な発光効率を有することから、消費電力の低減された携帯型遊技機と
することができる。また、表示部7304に用いられている発光素子が低い駆動電圧で駆
動させることができることから、駆動電圧の小さい携帯型遊技機とすることができる。ま
た、表示部7304に用いられている発光素子が寿命の長い発光素子であることから、信
頼性の高い携帯型遊技機とすることができる。
【0150】
図11(D)は、携帯電話機の一例を示している。携帯電話機は、筐体7401に組み込
まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7
405、マイク7406などを備えている。なお、携帯電話機7400は、実施の形態1
及び実施の形態2に記載の発光素子をマトリクス状に配列して作製された表示部7402
を有している。当該発光素子は発光効率の良好な発光素子とすることが可能である。また
、駆動電圧の小さい発光素子とすることが可能である。また、寿命の長い発光素子とする
ことが可能である。そのため、当該発光素子で構成される表示部7402を有する携帯電
話機は消費電力の低減された携帯電話機とすることができる。また、駆動電圧の小さい携
帯電話機とすることが可能である。また、信頼性の高い携帯電話機とすることが可能であ
る。
【0151】
図11(D)に示す携帯電話機は、表示部7402を指などで触れることで、情報を入力
することができる構成とすることもできる。この場合、電話を掛ける、或いはメールを作
成するなどの操作は、表示部7402を指などで触れることにより行うことができる。
【0152】
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
【0153】
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力を
主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合
、表示部7402の画面のほとんどにキーボードまたは番号ボタンを表示させることが好
ましい。
【0154】
また、携帯電話機内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検
出装置を設けることで、携帯電話機の向き(縦か横か)を判断して、表示部7402の画
面表示を自動的に切り替えるようにすることができる。
【0155】
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操作
ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類に
よって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画の
データであれば表示モード、テキストデータであれば入力モードに切り替える。
【0156】
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表示
部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
【0157】
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部74
02に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。ま
た、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光
源を用いれば、指静脈、掌静脈などを撮像することもできる。
【0158】
なお、本実施の形態に示す構成は、実施の形態1乃至実施の形態4に示した構成を適宜組
み合わせて用いることができる。
【0159】
以上の様に実施の形態1及び実施の形態2に記載の発光素子を備えた発光装置の適用範
囲は極めて広く、この発光装置をあらゆる分野の電子機器に適用することが可能である。
実施の形態1及び実施の形態2に記載の発光素子を用いることにより、消費電力の低減さ
れた電子機器を得ることができる。
【0160】
図12は、実施の形態1及び実施の形態2に記載の発光素子をバックライトに適用した
液晶表示装置の一例である。
図12に示した液晶表示装置は、筐体901、液晶層902
、バックライトユニット903、筐体904を有し、液晶層902は、ドライバIC90
5と接続されている。また、バックライトユニット903には、実施の形態1及び実施の
形態2に記載の発光素子が用いられおり、端子906により、電流が供給されている。
【0161】
実施の形態1及び実施の形態2に記載の発光素子を液晶表示装置のバックライトに適用
したことにより、消費電力の低減されたバックライトが得られる。また、実施の形態2に
記載の発光素子を用いることで、面発光の照明装置が作製でき、また大面積化も可能であ
る。これにより、バックライトの大面積化が可能であり、液晶表示装置の大面積化も可能
になる。さらに、実施の形態2に記載の発光素子を適用した発光装置は従来と比較し厚み
を小さくできるため、表示装置の薄型化も可能となる。
【0162】
図13は、実施の形態1及び実施の形態2に記載の発光素子を、照明装置である電気ス
タンドに用いた例である。
図13に示す電気スタンドは、筐体2001と、光源2002
を有し、光源2002として、実施の形態4に記載の発光装置が用いられている。
【0163】
図14は、実施の形態1及び実施の形態2に記載の発光素子を、室内の照明装置300
1および表示装置3002として用いた例である。実施の形態1及び実施の形態2に記載
の発光素子は消費電力の低減された発光素子であるため、消費電力の低減された照明装置
とすることができる。また、実施の形態1及び実施の形態2に記載の発光素子は大面積化
が可能であるため、大面積の照明装置として用いることができる。また、実施の形態1及
び実施の形態2に記載の発光素子は、薄型であるため、薄型化した照明装置として用いる
ことが可能となる。
【0164】
実施の形態1及び実施の形態2に記載の発光素子は、自動車のフロントガラスやダッシ
ュボードにも搭載することができる。
図15に実施の形態2に記載の発光素子を自動車の
フロントガラスやダッシュボードに用いる一態様を示す。表示5000乃至表示5005
は実施の形態1及び実施の形態2に記載の発光素子を用いて設けられた表示である。
【0165】
表示5000と表示5001は自動車のフロントガラスに設けられた実施の形態1及び
実施の形態2に記載の発光素子を搭載した表示装置である。実施の形態1及び実施の形態
2に記載の発光素子は、第1の電極と第2の電極を透光性を有する電極で作製することに
よって、反対側が透けて見える、いわゆるシースルー状態の表示装置とすることができる
。シースルー状態の表示であれば、自動車のフロントガラスに設置したとしても、視界の
妨げになることなく設置することができる。なお、駆動のためのトランジスタなどを設け
る場合には、有機半導体材料による有機トランジスタや、酸化物半導体を用いたトランジ
スタなど、透光性を有するトランジスタを用いると良い。
【0166】
表示5002はピラー部分に設けられた実施の形態1及び実施の形態2に記載の発光素
子を搭載した表示装置である。表示5002には、車体に設けられた撮像手段からの映像
を映し出すことによって、ピラーで遮られた視界を補完することができる。また、同様に
、ダッシュボード部分に設けられた表示5003は車体によって遮られた視界を、自動車
の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を
高めることができる。見えない部分を補完するように映像を映すことによって、より自然
に違和感なく安全確認を行うことができる。
【0167】
表示5004や表示5005はナビゲーション情報、スピードメーターやタコメーター
、走行距離、給油量、ギア状態、エアコンの設定など、その他様々な情報を提供すること
ができる。表示は使用者の好みに合わせて適宜その表示項目やレイアウトを変更すること
ができる。なお、これら情報は表示5000乃至表示5003にも設けることができる。
また、表示5000乃至表示5005は照明装置として用いることも可能である。
【0168】
実施の形態1及び実施の形態2に記載の発光素子は発光効率の高い発光素子とすること
ができる。また、消費電力の小さい発光素子とすることができる。このことから、表示5
000乃至表示5005のような大きな画面を数多く設けても、バッテリーに負荷をかけ
ることが少なく、快適に使用することができることから実施の形態1及び実施の形態2に
記載の発光素子を用いた発光装置または照明装置は、車載用の発光装置又は照明装置とし
て好適に用いることができる。
【0169】
図16(A)及び
図16(B)は2つ折り可能なタブレット型端末の一例である。
図1
6(A)は、開いた状態であり、タブレット型端末は、筐体9630、表示部9631a
、表示部9631b、表示モード切り替えスイッチ9034、電源スイッチ9035、省
電力モード切り替えスイッチ9036、留め具9033、操作スイッチ9038、を有す
る。なお、当該タブレット端末は、実施の形態1及び実施の形態2に記載の発光素子を備
えた発光装置を表示部9631a、表示部9631bの一方又は両方に用いることにより
作製される。
【0170】
表示部9631aは、一部をタッチパネル領域9632aとすることができ、表示され
た操作キー9637にふれることでデータ入力をすることができる。なお、表示部963
1aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領域
がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部963
1aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部96
31aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表示
画面として用いることができる。
【0171】
また、表示部9631bにおいても表示部9631aと同様に、表示部9631bの一
部をタッチパネル領域9632bとすることができる。また、タッチパネルのキーボード
表示切り替えボタン9639が表示されている位置に指やスタイラスなどでふれることで
表示部9631bにキーボードボタンを表示することができる。
【0172】
また、タッチパネル領域9632aとタッチパネル領域9632bに対して同時にタッ
チ入力することもできる。
【0173】
また、表示モード切り替えスイッチ9034は、縦表示または横表示などの表示の向き
を切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替え
スイッチ9036は、タブレット型端末に内蔵している光センサで検出される使用時の外
光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光セ
ンサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置
を内蔵させてもよい。
【0174】
また、
図16(A)では表示部9631bと表示部9631aの表示面積が同じ例を示
しているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表
示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネ
ルとしてもよい。
【0175】
図16(B)は、閉じた状態であり、本実施の形態におけるタブレット型端末では、筐
体9630、太陽電池9633、充放電制御回路9634、バッテリー9635、DCD
Cコンバータ9636を備える例を示す。なお、
図16(B)では充放電制御回路963
4の一例としてバッテリー9635、DCDCコンバータ9636を有する構成について
示している。
【0176】
なお、タブレット型端末は2つ折り可能なため、未使用時に筐体9630を閉じた状態
にすることができる。従って、表示部9631a、表示部9631bを保護できるため、
耐久性に優れ、長期使用の観点からも信頼性の優れたタブレット型端末を提供できる。
【0177】
また、この他にも
図16(A)及び
図16(B)に示したタブレット型端末は、様々な
情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻な
どを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ
入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有する
ことができる。
【0178】
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル
、表示部、または映像信号処理部等に供給することができる。なお、太陽電池9633は
、筐体9630の片面又は両面に設けることができ、バッテリー9635の充電を効率的
に行う構成とすることができる。
【0179】
また、
図16(B)に示す充放電制御回路9634の構成、及び動作について
図16(
C)にブロック図を示し説明する。
図16(C)には、太陽電池9633、バッテリー9
635、DCDCコンバータ9636、コンバータ9638、スイッチSW1乃至SW3
、表示部9631について示しており、バッテリー9635、DCDCコンバータ963
6、コンバータ9638、スイッチSW1乃至SW3が、
図16(B)に示す充放電制御
回路9634に対応する箇所となる。
【0180】
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する
。太陽電池で発電した電力は、バッテリー9635を充電するための電圧となるようDC
DCコンバータ9636で昇圧または降圧がなされる。そして、表示部9631の動作に
太陽電池9633で充電された電力が用いられる際にはスイッチSW1をオンにし、コン
バータ9638で表示部9631に必要な電圧に昇圧または降圧をすることとなる。また
、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにしてバ
ッテリー9635の充電を行う構成とすればよい。
【0181】
なお、太陽電池9633については、発電手段の一例として示したが、発電手段は特に
限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電
手段によってバッテリー9635の充電を行う構成であってもよい。無線(非接触)で電
力を送受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて
行う構成としてもよく、発電手段を有さなくとも良い。
【0182】
また、上記表示部9631を具備していれば、
図16に示した形状のタブレット型端末
に限定されない。
【実施例0183】
本実施例では、実施の形態1で説明した化合物(1)乃至(3)を用いた、本発明の一
態様に相当する発光素子1及び発光素子2について説明する。本実施例における発光素子
では、第1の発光層113B、第2の発光層113G及び第3の発光層113Rに用いら
れるりん光性化合物として、それぞれ実施の形態1で説明した化合物(1)、化合物(2
)及び化合物(3)を用いているため、各々の発光波長(F(λ))及びε(λ)λ
4の
関係は実施の形態1における
図5の説明のとおりである。
【0184】
本実施例における発光素子に用いた物質について以下に示す。
【0185】
【0186】
以下に、本実施例の発光素子1及び発光素子2の作製方法を示す。
【0187】
(発光素子1の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリン
グ法にて成膜し、第1の電極101を形成した。なお、その膜厚は110nmとし、電極
面積は2mm×2mmとした。ここで、第1の電極101は、発光素子の陽極として機能
する電極である。
【0188】
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200
℃で1時間焼成した後、UVオゾン処理を370秒行った。
【0189】
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着
装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度
放冷した。
【0190】
次に、第1の電極101が形成された面が下方となるように、第1の電極101が形成さ
れた基板を真空蒸着装置内に設けられた基板ホルダーに固定し、10-4Pa程度まで減
圧した後、第1の電極101上に、抵抗加熱を用いた蒸着法により上記構造式(i)で表
される4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェ
ン)(略称:DBT3P-II)、と酸化モリブデン(VI)を共蒸着することで、正孔
注入層111を形成した。その膜厚は、40nmとし、DBT3P-IIと酸化モリブデ
ンの比率は、重量比で4:2(=DBT3P-II:酸化モリブデン)となるように調節
した。なお、共蒸着法とは、一つの処理室内で、複数の蒸発源から同時に蒸着を行う蒸着
法である。
【0191】
次に、正孔注入層111上に、上記構造式(ii)で表される、4-フェニル-4’-(
9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)を20
nmの膜厚となるように成膜し、正孔輸送層112を形成した。
【0192】
さらに、正孔輸送層112上に、上記構造式(iii)で表される2-[3-(ジベンゾ
チオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBT
PDBq-II)と、上記構造式(iv)で表される4-フェニル-4’-(9-フェニ
ル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)と、
上記構造式(v)で表されるビス(2,3,5-トリフェニルピラジナト)(ジピバロイ
ルメタナト)イリジウム(III)(略称:[Ir(tppr)2(dpm)])(化合
物(3))とを、重量比0.5:0.5:0.05(=2mDBTPDBq-II:PC
BA1BP:[Ir(tppr)2(dpm)])となるように10nm共蒸着し、第3
の発光層113Rを作製した後、2mDBTPDBq-IIとPCBA1BPと上記構造
式(vi)で表される(アセチルアセトナト)ビス(6-tert-ブチル-4-フェニ
ルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)2(acac)
])(化合物(2))とを、重量比で0.5:0.5:0.05(=2mDBTPDBq
-II:PCBA1BP:[Ir(tBuppm)2(acac)])となるように、5
nm共蒸着し、第2の発光層113Gを形成し、さらに、上記構造式(vii)で表され
る3,5-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリジン(略称:3
5DCzPPy)と上記構造式(viii)で表される3,3’-ビス(9-フェニル-
9H-カルバゾール)(略称:PCCP)と上記構造式(ix)で表されるトリス{2-
[5-(2-メチルフェニル)-4-(2,6-ジメチルフェニル)-4H-1,2,4
-トリアゾール-3-イル-κN2]フェニル-κC}イリジウム(III)(略称:[
Ir(mpptz-dmp)3])(化合物(1))とを、重量比で0.5:0.5:0
.06(=35DCzPPy:PCCP:[Ir(mpptz-dmp)3])となるよ
うに30nm共蒸着し第1の発光層113Bを形成し、発光層113を形成した。
【0193】
なお、2mDBTPDBq-IIとPCBA1BP、35DCzPPyとPCCPはそれ
ぞれ励起錯体を形成する。さらに、2mDBTPDBq-IIは電子輸送性を有し、PC
BA1BPは正孔輸送性を有しており、これらを0.5:0.5の割合で含ませることに
よって、第2の発光層113G及び第3の発光層113Rは正孔輸送性となっている。ま
た、35DCzPPyは電子輸送性を有しており、PCCPは正孔輸送性を有しており、
これらを0.5:0.5の割合で含ませることによって第1の発光層113Bは電子輸送
性となっている。
【0194】
その後、発光層113上に上記構造式(x)で表される2-[3-(ジベンゾチオフェン
-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾール(略称:mDBTB
Im-II)を膜厚10nmとなるように成膜し、さらに、上記構造式(xi)で表され
るバソフェナントロリン(略称:BPhen)を20nmとなるように成膜して、電子輸
送層114を形成した。
【0195】
電子輸送層114を形成したら、その後、フッ化リチウム(LiF)を1nmの膜厚とな
るように蒸着し、電子注入層115を形成し、最後に、陰極として機能する第2の電極1
02として、アルミニウムを200nmの膜厚となるように蒸着することで、本実施例の
発光素子1を作製した。
【0196】
なお、上述した蒸着過程において、蒸着は全て抵抗加熱法を用いた。
【0197】
(発光素子2の作製方法)
発光素子2は、発光素子1における第2の発光層113Gの膜厚を10nmとなるよう
に形成した他は発光素子1と同じ構成、工程によって作製した。
【0198】
発光素子1及び発光素子2を、窒素雰囲気のグローブボックス内において、発光素子が大
気に曝されないようにガラス基板により封止する作業(シール材を素子の周囲に塗布し、
封止時に80℃にて1時間熱処理)を行った後、これら発光素子の信頼性について測定を
行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
【0199】
発光素子1及び発光素子2の電流密度-輝度特性を
図17に、輝度-電流効率特性を
図1
8に、電圧-輝度特性を
図19に、輝度-色度特性を
図20に、輝度-パワー効率特性を
図21に、輝度-外部量子効率特性を
図22に、発光スペクトルを
図23に示す。
【0200】
以上のように発光素子1は実用輝度である1000cd/m
2付近において電流効率47
cd/A、外部量子効率22%、パワー効率32lm/Wの非常に良好な特性を示すこと
が解った。また、発光色は2930Kの電球色であり、平均演色評価数Raは91.7と
良好な演色性を示すことも解った。発光素子2は、実用輝度である1000cd/m
2付
近において電流効率52cd/A、外部量子効率22%、パワー効率36lm/Wの非常
に良好な効率を示すことが解った。なお、
図20より、本発明の一態様の発光素子である
発光素子1及び発光素子2は色度の輝度依存性が小さいという特徴を有することも解る。
【0201】
また、発光素子1及び発光素子2のキャリアの再結合領域は、各発光層の輸送性から第1
の発光層113Bと第2の発光層113Gとの界面近傍であるが、第2の発光層113G
が5nmである発光素子1及び第2の発光層113Gが10nmである発光素子2ともに
第3の発光層113Rの発光が充分に得られている。また、第1の発光層113B乃至第
3の発光層113R各々に含まれる発光物質からの光がスペクトル中に明確に表れている
ことから、励起エネルギーの移動が有効に且つバランス良く行われていることがわかる。